The diffusion-limited reaction $\mathrm{A}+\mathrm{A} \rightarrow 0$ in the steady state: influence of correlations in the source

E. Clément ${ }^{\text {a }}$, R. Kopelman ${ }^{\text {b,c }}$ and L. Sander ${ }^{\text {c }}$
a Laboratoire d'Acoustique et d'Optique de la Matière Condensée, Université Pierre et Marie Curie, case 86, 4 place Jussieu, 75252 Paris Cedex 05, France
${ }^{\text {b }}$ Department of Chemistry, The Unversity of Michigan, Ann Arbor, MI 48109, USA
c Department of Physics. The University of Michigan. Ann Arbor. MI 48109. USA

Received 15 June 1993; in final form 11 October 1993

Abstract

We study theoretically the kinetics of the diffusion-limited reaction $A+A \rightarrow 0$ in the steady state. We consider the effect of an external source which adds correlated pairs of particles. We show that in dimensions below 2 and in the low-density limit spatial self-organization of reactants occurs and is controlled by the correlation in the source term. At higher densities there is a crossover to a regime similar to the random landing case, exhibiting a non-classical order of reaction.

In recent years, there has been a great deal of work showing the anomalous behavior of diffusion-limited reaction kinetics in confined media and/or in fractal structures [1,2]. In the steady state it was shown that for a medium with a spectral dimension $d_{\mathrm{s}} \leqslant 2$ (including fractal sets as well as Euclidean spaces), a mesoscopic scale of self-organization is generated and leads to anomalous rate laws. This self-organization is directly linked to topological properties of the random walk in these media. In particular, theoretical treatments [3,5], computer simulations [6,7] and experiments [8,9] have shown non-classical kinetics for the one-species, $A+A \rightarrow 0$ and $\mathrm{A}+\mathrm{A} \rightarrow \mathrm{A}$, diffusion-limited annihilation and fusion in the steady state. For a medium of spectral dimension $d_{\mathrm{s}}<2$, the effective order of the reaction is found to be $X=1+2 / d_{\mathrm{s}}$ instead of the classical result $X=2$ for a bimolecular reaction. However, most of the investigations on binary diffusion-limited reactions assume that particles land randomly on a lattice, which may not be correct in some real chemical systems. For example, two atoms may land at adjacent sites as a result of a dissociative adsorption of diatomic molecules, and solitons and antisolitons may be created in pairs on a polymer (e.g. trans-polyacetylene) [10].

Some theoretical approaches have considered correlations in the external particle source. Rácz [3] derived the rate law of $\mathrm{A}+\mathrm{A} \rightarrow 0$ steady state reactions in one-dimensional systems for the case in which particles are produced in "geminate" pairs at the nearest-neighbor lattice sites. The reaction order is found to be $2 . \mathrm{Li}$ and Kopelman [11] have studied the self-organization aspect of this problem in 1D for arbitrary correlation lengths using computer simulations. A good deal of work has been done on source correlation for the $A+A \rightarrow 0, A+A \rightarrow A$ $[9,12-16], \mathrm{A}+\mathrm{B} \rightarrow 0[14,18]$ batch reactions, as well as $\mathrm{A}+\mathrm{B} \rightarrow 0$ steady state reactions $[17,19,20,22]$. In particular, in the case of $\mathrm{A}+\mathrm{B} \rightarrow 0$, the importance of the source term structure and the influence of correlation between the landing species was carefully studied [20-22]. Here we follow the same theoretical scheme we developed in a previous work [4]. We give a general treatment of the influence of correlations in the source term for the A+A case in the steady state limit. We also compare results with recent simulations [11].

We consider an external source creating particles in pairs which land on the substrate separated by a fixed distance λ and with a rate of arrival $R / 2$. Of course, in a real situation, the actual number of particles landing on the substrate and the distribution of distances λ would depend on the detailed interactions between the pairs, the substrate and the other particles. To treat all possible differences in the details of the sources (vertical anni-
hilation, random sequential adsorption, etc.), we would have to consider a wide variety of different correlation rules for the source term. However, we are here interested in the low-density limit; thus we can avoid problems of jamming and higher correlation effects due to random sequential adsorption which may indeed take place at higher densities [4]. In this limit, the detailed structure of the source term does not play a fundamental role as long as a typical correlation length is present. In fact, for all the specific sources we considered we are led to the same rate equation, and all the differences are absorbed into an effective rate of arrival Q (which is equal, in the steady state, to the bimolecular reaction rate). This simplification was also emphasized in ref. [4] for random landing of particles. Note that the $A+A \rightarrow 0$ case is different from the $A+B \rightarrow 0$ case where the exact definition of the source is crucial even in the low-density limit.

Our theoretical approach and notations follow ref. [4]. We note that all the contributions to the kinetics should be identical to the random landing case except, of course, for the source term. If ρ is the average density and $f(r)$ is the two-particle density correlation function, we have the Smoluchowski boundary condition [23],

$$
\begin{equation*}
Q=\left.2 D \Sigma_{a} \frac{\partial f(r)}{\partial r}\right|_{a} \tag{1}
\end{equation*}
$$

D is the diffusion constant, Σ_{a} and a are respectively the reaction surface and the radius of a particle A. Neglecting higher order correlations in the source, we have an effective source term $Q=R(1-v \rho)^{2}$, where v is an excluded volume of the order of a^{d}. If we apply dimensional analysis we find $\delta f(r) /\left.\delta r\right|_{r=a^{+}}=\rho^{2} / A$, where A is a typical length scale picturing the microscopic organization of reactants. Note that mean-field classical kinetic approach always takes A to be of the order of a microscopic size a. Thus eq. (1) can be put into the form

$$
\begin{equation*}
Q=2 \Sigma_{a} D \frac{\rho^{2}}{A} \tag{2}
\end{equation*}
$$

The contribution to the equation of motion of the correlation function, $f(r)$, of two sites separated by a distance r can be split into two terms. First, suppose that a particle occupies one of the sites and a member of the pair lands on the other (empty) one. Thus, we have a contribution S_{1} to the equation of motion which is on the average
$S_{1}=2 R[\rho-v f(r)]$.
The second source term S_{2} takes into account the case where a pair lands on two unoccupied sites. In the continuum limit we obtain
$S_{2}=R\left[1-2 v \rho-v^{2} f(r)\right] \frac{\delta_{r-\lambda}}{\Sigma_{\lambda}}$,
where δ_{x} is the delta function and Σ_{λ} is the surface of the sphere of radius λ. For the other terms, namely, diffusion and two- and three-particle correlation contributions, we use the forms already derived in ref. [4]. Let us recall that we take into account higher moments of multi-particle correlations coming from the BBKY expansion [24] by replacing the exact contribution of the three-particle correlation function by an effective term which is taken to be $-2 \alpha f(r)$. It implies an effective constant α that is calculated using a consistency condition $(1 / V) \int \mathrm{d} r f(r)=\rho^{2}$ and the boundary condition (2). In this approximation, we have an easy interpretation for α, i.e. $\alpha^{-1}=\rho / R$, corresponding to an average life-time for a particle in the field of the others. Finally, we obtain in steady state the equation
$2 D \nabla^{2} f(r)-\frac{2 R}{\rho} f(r)+2 R \rho-\frac{Q}{\Sigma_{a}} \delta_{r-a}+\frac{Q}{\Sigma_{\lambda}} \delta_{r-\lambda}=0$.
This is the same equation as found in ref. [4] for a random source, except for the delta function located at $r=\lambda$. It is a continuum approximation not suited to deal with exact geminate landing, i.e. with $\lambda=a$, as is done in
computer simulations and in lattice calculations. In this case, our theory leads to a divergent reaction rate. Using the transformation $f(r)=\rho^{2}[1-g(r)]$ and the length scale
$\xi=\sqrt{\frac{\rho D}{R}}$,
we obtain the differential equation
$\nabla^{2} g(r)-\frac{g(r)}{\xi^{2}}=\frac{Q}{2 D \rho^{2}}\left(-\frac{\delta_{r-a}}{\Sigma_{a}}+\frac{\delta_{r-\lambda}}{\Sigma_{\lambda}}\right)$.
A Fourier transform of eq. (6) gives
$\tilde{g}_{q}=\frac{Q}{2 D \rho^{2}} \frac{\Phi(a q) / \Sigma_{a}-\Phi(\lambda q) / \Sigma_{\lambda}}{q^{2}+\xi^{-2}}$,
where $\Phi(x q)$ is the Fourier transform of δ_{r-x}. Now, we now derive the rate equations in Euclidean dimensions $d=1,2$ and 3 .

In $d=1$ we have $\Sigma_{a}=2$ and $\Phi(x q) / \Sigma_{x}=\cos q x$, then
$g(r)=\frac{Q}{2 D \rho^{2}} \frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} r \frac{\cos a q-\cos \lambda q}{q^{2}+\xi^{-2}} \mathrm{e}^{-\mathrm{i} q r}$.
We obtain, after integration,
$g(r)=\frac{Q \xi}{8 D \rho^{2}}\{\exp [(a-r) / \xi]+\exp [-(a+r) / \xi]-\exp [-|\lambda-r| / \xi]+\exp [-(\lambda+r) / \xi]\}$.
In the limit $a \ll \xi$, we expand eq. (9) and use the boundary condition $g(a)=1$. We obtain a reaction law which is consistent with eq. (1). We find
$Q=\frac{4 D \rho^{2}}{\xi[1-\exp (-\lambda / \xi)]}$.
Thus we obtain a scale of organization A which corresponds to an average depletion size around each particle:
$\Lambda=\xi[1-\exp (-\lambda / \xi)]$.
The correlation function $g(r)$ is
$g(r)=\frac{1-\cosh (r / \xi) \exp [-(\lambda-r) / \xi]}{1-\exp (-\lambda / \xi)} \exp (-r / \xi), \quad$ for $a<r<\lambda$,
$g(r)=\frac{1-\cosh (\lambda / \xi)}{1-\exp (-\lambda / \xi)} \exp (-r / \xi), \quad$ for $r \geqslant \lambda$.
For $\lambda \ll \xi$, we have the depletion scale $\Lambda=\lambda$ and we obtain a classical reaction rate with an order of reaction $X=2$. Eq. (5) shows that this situation is likely to happen at lower densities. For geminate landing, corresponding to $\lambda=a$, we do not any longer have a divergence of the reaction rate, and we obtain the result of Rácz [3] for the rate law up to a constant factor. For $\lambda \gg \xi$, we have the depletion scale $\Lambda=\xi$ and we obtain a reaction rate with the order of reaction $X=3$, the same as found in the theory of the random landing case [4]. Note that this constant is different from the result of the exact calculation by Rácz [3].
Our theoretical result compares well with the outcome of computer simulations on a line [11] for different values of λ. The validity of eq. (11) was especially checked by Li and Kopelman [11] and this equation could fit the computed values up to a rescaling of Λ by a factor 1.2.

In $d=2$ we have $\Sigma_{a}=2 \pi a$ and $\Phi(x q) / \Sigma_{x}=J_{0}(x q)$ where $J_{0}(z)$ is a Bessel function,
$g(r)=\frac{Q}{4 \pi D \rho^{2}} \frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} q \mathrm{~d} q \frac{J_{0}(a q)-J_{0}(\lambda q)}{q^{2}+\xi^{-2}} \int_{0}^{2 \pi} \mathrm{~d} \theta \exp (-\mathrm{i} q r \cos \theta)$,
we obtain after evaluation of this double integral:
$g(r)=\frac{Q \xi}{4 \pi D \rho^{2}}\left[I_{0}(a / \xi) K_{0}(r / \xi)-I_{0}(r / \xi) K_{0}(\lambda / \xi)\right], \quad$ for $a<r<\lambda$,
$g(r)=\frac{Q \xi}{4 \pi D \rho^{2}}\left[I_{0}(a / \xi) K_{0}(r / \xi)-I_{0}(\lambda / \xi) K_{0}(r / \xi)\right], \quad$ for $r \geqslant \lambda$,
where $I_{0}(z)$ and $K_{0}(z)$ are Bessel functions. From the condition $g(a)=1$ and in the limit $a / \xi \ll 1$, we extract a rate law compatible with eq. (1):
$Q=\frac{4 \pi D \rho^{2}}{C_{0}+\ln (2 \xi / a)-K_{0}(\delta / \xi)}$,
where $C_{0}=\Psi(1)=0.557 \ldots$ The correlation function $g(r)$ is then
$g(r)=\frac{K_{0}(r / \xi)-I_{0}(r / \xi) K_{0}(\lambda / \xi)}{C_{0}+\ln (2 \xi / a)-K_{0}(\lambda / \xi)}, \quad$ for $a \leqslant r<\lambda$,
$g(r)=\frac{1-I_{0}(\lambda / \xi)}{C_{0}+\ln (2 \xi / a)-K_{0}(\lambda / \xi)} K_{0}(r / \xi), \quad$ for $r \geqslant \lambda$.
For $a \ll \lambda \ll \xi$, we have $A=\ln (\lambda / a)$ and we obtain a classical reaction rate with an order of reaction $X=2$. For $\lambda \gg \xi$, we obtain the depletion scale $A=C_{0}+\ln (\xi / a)$, which is the result of the random landing case, and there is no simple power reaction law. As in $d=1$ we have, at a fixed λ, a cross-over between the low density limit, where we observe a self-organization at a scale λ, and the higher density limit, where we recover the result of random landing. This cross-over is observable when λ is larger than the macroscopic size a.

In $d=3$ we have $\Sigma_{a}=4 \pi a^{2}, \Phi(q x)=4 \pi \sin (q x) / q x$ and
$g(r)=\frac{Q}{2 D \rho^{2}} \frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} q^{2} \mathrm{~d} q \frac{\sin (a q) / a q-\sin (\lambda q) / \lambda q}{q^{2}+\xi^{-2}} \int_{-\pi}^{\pi} \mathrm{d} \varphi \exp (-\mathrm{i} q r \cos \varphi)$.
Then we obtain
$g(r)=\frac{Q}{16 \pi D \rho^{2}} \frac{\xi}{r}\{\exp [-(r-a) / \xi]-\exp [-(r+a) / \xi]-(a / \lambda)\{\exp (-|r-\lambda| / \xi)-\exp [-(r+\lambda) / \xi]\}$.
Using the boundary condition $g(a)=1$ and in the limit $\xi \gg a$ we obtain
$Q=\frac{8 \pi D a}{1-(a / \lambda) \exp (-\lambda / \xi)} \rho^{2}$.
Thus the organization length A is microscopic, i.e. of the order of a. Explicitly, we get
$\Lambda=a[1-(a / \lambda) \exp (-\lambda / \xi)]$.
In the low-density limit case, we have a classical rate law with a slight deviation from the classical length scale: $A=a(1-a / \lambda)$. In fact it is a reaction enhancement due to the presence of reactive pairs in a close proximity.

In summary, we have shown in a simple theoretical calculation, that in a dimension lower than two and in the very-low-density limit, a spatial self-organization of reactants is present and is controlled by the correlation in
the source term. At higher densities there is a cross-over to a regime similar to a random landing exhibiting a non-classical order of reaction. This cross-over is determined by comparing the correlation scale λ with the mean diffusion length of a particle in the medium before elimination by reaction.

This research was supported by grants from the National Science Foundation DMR-91-11622 (RK), DMR-91-17249 (LMS) and NATO collaborative research grant GRG910879, Laboratory A.O.M.C. is a U.R.A. of the C.N.R.S.

References

[1] R. Kopelman, Science 241 (1988) 1620.
[2] Special issue J. Stat. Phys. 69, no. 5/6 (1990) pp. 837-1283.
[3] Z. Rácz, Phys. Rev. Letters 55 (1985) 1707.
[4] E. Clément, L. Sander and R. Kopelman, Phys. Rev. A 39 (1989) 6472.
[5] E. Peacock-López and J. Keizer, J. Chem. Phys. 88 (1988) 1997.
[6] P.W. Klymko and R. Kopelman, J. Chem. Phys. 27 (1983) 5686.
[7] L.W. Anacker and R. Kopelman, J. Chem. Phys. 81 (1984) 6402.
[8] L.W. Anaker, R.P. Parson and R. Kopelman, J. Phys. Chem. 89 (1985) 4758.
[9] S.J. Parus and R. Kopelman, Phys. Rev. B 39 (1989) 889;
R. Kopelman, S.J. Parus and J. Prasad, Chem. Phys. 128 (1988) 209.
[10] W.P. Su and J.R. Schrieffer, Proc. Natl. Acad. Sci. USA 77 (1980) 5626;
J. Orenstein and G.L. Baker, Phys. Rev. Letters 49 (1982) 1043.
[11] L. Li and R. Kopelman, J. Phys. Chem. 96 (1992) 8079.
[12] C.R. Doering and D. ben-Avraham, Phys. Rev. A 38 (1988) 3035.
[13] C.R. Doering and D. ben-Avraham, Phys. Rev. Letters 62 (1989) 2563.
[14] P. Argyrakis and R. Kopelman, Phys. Rev. A 41 (1990) 2114, 2121.
[15] A. Bramson and D. Griffeath, Ann. Prob. 8 (1980) 183.
[16] J.L. Spouge, Phys. Rev. Letters 60 (1988) 871.
[17] K. Lindenberg, B. West and R. Kopelman, Phys. Rev. A 42 (1990) 890.
[18] K. Lindenberg, B. West and R. Kopelman, Phys. Rev. Letters 60 (1988) 1777.
[19] L.W. Anacker and R. Kopelman, J. Phys. Chem. 91 (1987) 5555.
[20] E. Clément, L. Sander and R. Kopelman, Phys. Rev. A 39 (1989) 6455.
[21] K. Lindenberg, B. West and R. Kopelman, in: Noise and chaos in nonlinear dynamical systems, ed. F. Moss, L. Lugiato and W. Schleich (Cambridge Univ. Press, Cambridge, 1990) pp. 142.
[22] L. Li and R. Kopelman, Chem. Phys. 174 (1993) 367.
[23] M. von Smoluchovski, Z. Physik. Chem. 29 (1917) 129.
[24] N.N. Bogoliubov, in: Studies in classical mechanics, Vol. 1, eds. L. de Boer and G.E. Uhlenbeck (North-Holland, Amsterdam, 1962).

