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An analytical and computer simulation investigation of the dynamic behavior associated
with the flexible connecting rod of an otherwise rigid, in-line, planar slider-crank
mechanism is presented. The main goal of this work is to determine the manner in which
this response depends on the system parameters, with a particular emphasis on non-linear
analyses of the dynamic response near resonance conditions. A single-mode model is
distilled from the governing partial equations and is used to describe the transverse
deflection of the connecting rod. It is found that the slider mass is the primary source of
the non-linearity, and that the connecting rod behaves as a system with a softening type
of non-linearity, which is subjected to both external and parametric excitations. The effects
of selected non-dimensional system parameters, such as the length ratio, damping ratios,
frequency ratios and inertia ratios, are investigated in detail. A systematic numerical study
is also carried out and compared with the analytical results.

1. INTRODUCTION

High operating speeds, superior reliability and accurate performance are major character-
istics of modern industrial machinery and commercial equipment. A traditional rigid body
analysis, which presumes low operating speeds, becomes insufficient to describe the
performance of such high speed machinery. A thorough understanding of the dynamic
behavior of machine elements undergoing high speed operations is necessary in these
situations. It is the purpose of this investigation to present an analytical approach for
describing the dynamic response of an elastic mechanism element and provide a theoretical
explanation for some of the dynamic phenomena observed in both numerical and
experimental studies {1-4]. One of the simplest and most common mechanisms, the
slider-crank mechanism, is selected as the prototype system to demonstrate this anpalytical
work. ‘

In this investigation, the vibration associated with a flexible connecting rod of an
otherwise rigid, in-line, planar slider—crank mechanism is considered. This problem is
equivalent to determining the flexural response of a simply supported beam which is
subjected to (1} support motion which arises from the motion of the crank shaft and the
kinematic constraints of the mechanism, and (2) an axial load arising from forces applied
to the slider mass and the inertial force of the slider mass.

Similar systems have been investigated by several authors. A brief survey of some
relevant papers is given below. More complete information is found in the series of review
articles provided in references [5-8].

Neubauer, Cohen and Hall [9] examined the transverse deflection of an elastic
connecting rod of a slider—crank mechanism by neglecting the longitudinal deformation,
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the Coriolis, relative tangential and relative normal components of acceleration. By using
the method of averaging and assuming a small length ratio, Jasinski er al. [10, 11)
investigated the dynamic stability of a flexible connecting rod in a slider-crack mechanism.
Viscomi and Ayre [4] examined the non-linear bending response of the connecting rod,
using simulations of single- and multi-mode models. By applying a regular perturbation
method to Euler-Bernouli and Timoshenko beam models, Badlani and Kleinhenz [12]
considered the dynamic stability of the undamped elastic connecting rod of an in-line
slider—crank, and compared the results from each approach. Tadjbakhsh [13] introduced
a general method for obtaining a single partial differential equation describing the
transverse vibration of an undamped elastic link of a mechanism which contains evolutes
only, using a two-parameter perturbation approach. Zhu and Chen [14] studied the
stability of the response of the connecting rod by using a regular perturbation technique.
Badlani and Midha [15] studied the effect of internal material damping on the dynamic
response behavior of a slider-crank mechanism by using a regular perturbation method.
Beale and Lec [16] studied the motion of the flexible connecting rod of a slider—crank
mechanism with a direct variational approach. Farhang and Midha [17] have carried out
a detailed study of the parameter regions in which parametric instabilities can occur in this
system, and have included several modes in their study. Additional results on parametric
instabilities in mechanisms can be found in the work of Midha and co-workers [18-20].

In addition to the analytical and computational works described above, some exper-
imental work has been carried out, Golebiewski and Sadler [2] analytically and experimen-
tally determined the bending stress at the mid-point of an elastic connecting rod. Beale
et al. have recently carried out an experimental study of a system very similar to the one
considered herein, and found responses consistent with their analysis [21] and the present
work. Sutherland [3] studied a fully eiastic, planar four-bar mechanism analytically and
experimentally.

Most previous stability investigations have considered a non-homogeneous Mathieu
equation to describe the stability of transverse vibrations, and only linear stability analyses
were provided, The existence of superharmonic, subharmonic and combination resonances
has been observed both in simulations and experiments [1-4]. A numerical study of the
overall non-linear response, especially dealing with the superharmonic, subharmonic
responses and their associated stability, is given by Beale er al. [16, 21]. The purpose of
this study is to provide a complementary analytical study. This work focuses on the
non-linear aspects of the dynamic response, including primary, principal parametric,
superharmonic and subharmonic resonances and their stability.

In the course of this study, extensive use was made of the computer-assisted symboiic
manipulation program Mathematica™. This was essential in the length calculations
involved in the perturbation procedures. In a companion paper [22], the authors provide
a detailed investigation of a continuous parameter model of the same system, which
includes the effects of shear deformations and rotary inertia.

This paper is organized as follows. Section 2 contains the basic assumptions and the
derivation of the differential equation of motion. Section 3 provides the analysis of this
equation using the method of multiple scales. Section 4 contains detailed numerical
simulations for this model and a discussion of the effects of several dimensionless
parametcrs on the response. The paper is closed with some conclusions in section 5.

2. EQUATION OF MOTION

In this section, an equation describing the first mode flexural vibration associated with
the flexible connecting rod of an otherwise rigid, in-line, planar slider—crank mechanism
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is derived by using Euler—Bernoulli beam theory and a shadow-beam formulation {23-23].
The connecting rod 4B depicted in Figure 1 is assumed to be uniform and made of a
viscoelastic material (Kelvin-Voigt material [15]}, and is simply supported at both pivots
{(points 4 and B). The crank element O4 is assumed to be perfectly rigid, and operating
with constant angular speed . The slider mass has no clearance and no offset. There is
no external {piston) force applied to the slider mass. The OXY co-ordinate system
represents a fixed inertial reference frame, with its origin attached to the rotation center
of the crank shaft. The oxy co-ordinate sysiem represents a moving reference frame with
its origin attached at joint 4 and the ox axis passing through the ideal pin joints at the
ends of the undeformed connecting rod; it makes an angle — ¢ with respect to the OX axis.
Let u(x, ¢) and v{x, ¢) represent the axial and transverse displacements of the connecting
rod in the x and y directions, respectively. Based on previous assumptions, the equations
of motion in the oxy co-ordinate system are

8P(x, 1)/0x = EA(u, +503), + Ap (u, +502), = pAa,, (D
Evaxxx + Iucvxxxxr EA [(” + v:r eV x]x - nucA [(ux + %vi)rvx]x = PAay, (2)

where P(x, 1) is the axial force acting on the connecting rod along the x-direction, [ is the
area moment of inertia of the connecting rod, £ is the Young’s modulus, p is the mass
density (mass per unit volume), 4 is the cross-sectional area, g, is the internal material

damping coefficient, and a,(x, ¢) and a,(x, t) are the acceleration components of a material
clement. These are given by .

&'u a v 8 d

a, = —ro’ cos (wt — ¢)+6t2 6?5?__ 6:3” ( ¢)(x+u) 3)
. o ou 0%

4= —re’sin ol - ¢)+a?( * )Ha?a!:Jraz (tja(f) @

Previous investigations [15] have shown that the axial displacement is small compared
to the transverse displacement, Therefore, we neglect the contribution of the axial
displacement on the inertia forces pAa, and pAa,. Equation (1), then, becomes

oP
37 = EA G+ 30D+ Apc(u, +500)

62 2
=pA[—rwzcos(wt d)— Z(ad))(&)——al—fr)w(%—?) x:). (5)

Figure 1. Slider—crank mechanism with flexible connecting rod (deformed state). The effects of foreshortening
are not depicted.
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Integrating equation (5) from 0 to x, the axial force in the connecting rod is obtained as

P(x,t)=P(0, 1)+ pA J. a, dx, (6)
0
where P(0, t) represents the force applied to the end of the connecting rod to which the
end mass m, is attached. Using Figure 1 and summing forces along the x-direction [4], the
time-varying axial force P(x,t) is determined to be

* » > L .v
Plx,t)=pA I a.dz +myd + 1,6 + pA(tan ¢/L)J (a,x —aw)dx —(m,Z(1)
L V]

+ i, Z(1))cos ¢, (7

where an overdot represents a time derivative, L denotes the length of the connecting rod,
Z(t) represents the contribution of the piston acceleration from the rigid body motion of
the mechanism, p, Z(¢) is the friction force acting on the slider along the X-axis due to
rigid body motion, m, represents the mass of the slider, é is the foreshortening due the
bending deflection of the rod, and the u,0 term represents the slider friction due to elastic
deformation,

The rigid body piston acceleration Z(¢) is easily determined from the rigid body
kinematic analysis. In order to retain the motion of the piston end along the X" direction,

we must have
Lsin(—¢)=rsinwt, (8)

which can be written in the dimensionless form
sin ¢ = — €& sin ot (9)

where ¢ represents the ratio of the crank throw to the length of the connecting rod and
is specified as the length ratio. With this geometrical relation, the piston dispiacement
function can be expressed as

Z(t)=rcosr + Lcos ¢ = L(£ cos Qt +cos ¢), (10)

from which Z(r} and Z(r) are readily obtained.
The foreshortening along the x-axis due to the bending deflection of the connecting rod
can be approximated to first order by assuming small transverse deformations:

é= le 1+ (fvjdx)dx — L ~1 jL(é‘v/afix)2 dx. an

Substituting equation (5) into equation (2), we obtain

2 2 2
Elvxxxx+ luclvxxxxr - [P(x& I)vx]x = pA [—-rCUISiH (ﬂ)t - ¢) +aa—l?x + %_ (%) U], (12)

where P(x, ¢) is given by equation (7), with Z(¢) and ¢ given in equations (10) and (11),
respectively. Equation (12) describes the transverse motion of the connecting rod.
We now consider the boundary conditions for the connecting rod. Since the crank shaft
is assumed to be perfectly rigid,
v(0,¢)=0. (13)

Also, at x = L, the piston motion is constrained to move along the X-direction; thus,

o(L, t) = u(L,t) tan (). (14)
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1t can be shown that this boundary condition can be approximated by v(L, ) =0 (see
reference {15]). In addition, based on the simply supported assumption,

00, ) =0, (L, 1) =0. (15)

From these observations and assumptions, the solution v(x, ) can be approximated as
N

v{x, 1)= Y &,(t)sin (nmx/L), (16)

n=1

where 5,(1) represents the contribution of the displacement at the mid-point of the beam
due to the nth mode, and sin (nmx/L) are the natural modes of transverse vibration for
a uniform beam with pinned ends. Previous work [4] has shown that higher order modes
have insignificant influence on the transverse response of the connecting rod over the
frequency range of most practical interest. Hence, it is assumed that the solution for ¢(x, t)
can be approximated by a single mode: v(x, 1) & #,(¢) sin (nx/L). Substituting this assumed
solution into equation (12) and projecting the equation onto the first mode, we obtain,
after rescaling,

(147w tan ¢ + (S/2)n*v)5 + 2,6 + Qfn)(d — 26Q7sin (Q — ¢))
+o[l 4+ $n¥(S + ) tan ¢ + GHnY3 + 23S — ) + (3 + S)EQ*n cos Q1 jcos P
+20u,(d — Q)P tan ¢ + v¥n + 2nEQ? tan ¢ cos (&t — P)] + 2ndiv tan ¢
+o((rYD)P tan ¢) + (n4/2)S6% + v¥(nP tan ¢ + p,7*) =0, (17

where, for notational simplification, overdots represent derivatives with respect to non-
dimensional time, &, is replaced by v, and the following dimensionless parameters have
been defined:

t=v/L, x¥=x/L, E=r/L, S =my[pAL, w? = Efn*{pAL?,
Q=wlo,, 1=, ty = p.¢n, [2E, #a= ft;/2pALw,,.

We note that this equation contains the following features: (1) non-linear inertial terms;
(2) external as well as parametric excitations arising from inertial forces; (3) dissipation
effects; and (4) time-dependent quadratic and cubic non-linearities. Despite its complexi-
ties, each term of equation (17) has an identifiable physical source. All the terms involving
the parameter S, except ((S/2)n*v*F) and ((S/2)r*v6?), which represent foreshortening
effects, arise from the inertial force associated with the rigid body motion of the slider
mass m,. The forcing term [(2/n)(¢ — 2EQ%sin (€t — ¢))] arises from the action of the
transverse acceleration component @, on the connecting rod. The following terms
arise from the effects of the bending moments caused by the accelerations a, and g,:
nop tan ¢, (¢/3) n%v tan, vd’, (¢/2) Q*n’v cos Qt/cos ¢, 2n{Q v’ tan ¢ cos (2t — ),
(rY2)v’¢ tan ¢ and mwi¢ tan ¢. All terms involving the parameter p, arise from the
friction force acting on the slider mass.

Now, let us reconsider equation (9). Since in most applications, the length ratio is smaller
than one, equation (9) can be expanded in terms of the length ratic £ to obtain

¢ = sin~! (sin Qr)
= —(& sin Q¢) — (& sin Q1)*/6) — (& sin 2¢)*/120+ - - -
= —(E+3EY4+- )sinQr — (3Y4+--)sin 3Qf — (E3/16+--)sin 5Qt +---.  (18)

This equation indicates that the excitation provided to the connecting rod is a superposi-
tion of harmonic inputs at frequencies which are multiples of the crank rotation speed.
Also, note that the force amplitude associated with the nth harmonics is of order &".
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3. ANALYSIS

3.1, METHOD OF MULTIPLE SCALES

Before applying the MMS (Method of Multiple Scales) to equation (17), first consider
a solution to the linearized model of equation (17). To achieve this, the original equation
of motion, equation (17), is expanded with the help of equations (9) and (18), and ail first’
order terms in £, v and time derivatives of v are retained. This results in the equation

G(t) + 2u, 6 (1) + 0(2) = (2/m)EQ sin Q1 (19)

which represents a linear oscillator subjected to an external excitation. The response of this
equation is given by

v(t)=Xsin(Qt — @), 20
where
X = (2jn) EQ% /(1 — Q% + 4ui? @hH
and
@ =tan"' 2u,Q/(1 — Q%). {22)

Equation (20) represents the response of the linearized system for very small length ratios.
From equation (21), it is seen that, to first order, the amplitude of the steady state response
is proportional to the length ratio £ as well as the square of the frequency ratio £. However,
this estimate is not sufficient to capture the true response under certain resonance
conditions. In the current section, the MMS [26] is used to locate these conditions and,
in subsequent sections, the approximation of the response for each individual resonance
condition is improved.

To apply MMS, a set of new independent time variables T, is introduced, according to

T,=¢". (23)

It follows that the derivatives with respect to ¢ become expansions in terms of the partial
derivatives with respect to 7, according to

d/dt =0/0Ty+ € /0T, + 2 0}0T,+ - =Dy +eD + €Dy + -+, (24)
d*/dr* = Dj + 2eDy D, + €X(D} + 2D, D) + -+, 25)

where D; denotes the partial derivative with respect to the independent time variable 7.
Moreover, it is initially assumed that the length ratio ¢ can be ordered by & = ¢£,. Since
the amplitude of the response is, to leading order, proportional to the length ratio &, it
is also assumed that the solution »(¢) can be represented by the expansion

v(t)= ey (Ty, Ty, To) + €05(To, Th, Ta) + € 03(To, 1, Ty) + -+ (26)

The damping parameters g, and g, are then rescaled in such a way that they show up in
the final resonance condition, together with the detuning parameter, o, which represents
the nearness of the frequency ratio £ to a resonance condition. Observations indicate that
the scaling of u, is assumed to be (1), and the order of g, is the same as that of o, the
detuning parameter, which is assumed to be of O(¢?). This leads to the following orderings
of the damping coefficients in terms of ¢: p; = ¢’ and p, = p,,. Substituting equations
(23), (24) and (25) and the rescaled damping parameters into equation (i7), and expanding
and equating the coefficients of ¢/ for j = 1 and 2, the following equations are obtained:

O(e):  Div +v,=(2/n ), Q% sin QT,; 27
O(c*). Div,+v,= —2DyD v, — (S + )& 7°Q%, cos QT, + (2/n)2%E}sin 2QT,.  (28)
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In obtaining the general solution of v, (T, T), T,) from equation (27), we need to
distinguish between the following special cases: (1) € is near to unity and (2) Q is away
from unity. The case in which £2 is near to one corresponds to the primary resonance. When
this occurs, the linear estimate (equation (20)) fails to provide a good prediction of the
response. This case will be investigated later so, for the present, let us assume that @ is
away from one and continue our analysis. Under this condition, the general solution of
v(T,, T\, T,) is given as the combination of the homogeneous and particular solutions,

v, (T, ), )= 4,(T), Ty exp (jTy) + Ay sin 2T, + c.c., {29)
where A, is an unknown complex function which will be determined later, A, is given by
A= @2m)E Q% (1 - 2%, (30)

and ¢.c. denotes the complex conjugate of the preceding terms on the right side of equation
(29). Note that, according to the linear theory, the homogeneous part of solution (29), i.e.,
the A, exp (jT,) term, will decay to zero due to the presence of the damping parameters.
Thus, the homogeneous solution is not included in the steady state response of the linear
system (equation (20)). For the present, the homogeneous solution is included in the
solution, and we proceed to find the conditions for which this homogeneous solution does
not decay to zero. The reason for the retention of the homogeneous solution will become
clear. Substituting the solution & (T}, T\, T,) into equation {28}, we obtain

Divy + v, = —25(D, 4,) exp (jTy) + (1/n)E3 Q% exp (QT, — jm[2)
—(S —3)8,2°n%(A, /4) exp 2JQT, - jr/2)
—($ +2)&Q%%(4,/2) exp (JQT, +7T)
— (8 +1)&,Q™n%(4, /2) exp (JQT, — jT,) + c.c. 31)

In analyzing the particular solution of equation (31}, there are three cases which need to
be considered separately; (1) €2 is near to §, (2) Q is near to 2, and (3) 2 is not near ! or
2. The first case corresponds to a superharmonic resonance, while the second one
corresponds to a subharmonic resonance, the principal parametric resonance. Both of
these cases are considered in detail and improved approximations are provided in sections
3.4 and 3.2, respectively, For the present, it is assumed that Q is away from { and 2, and
the analysis is continued, When @ is not near } or 2,

D A\(T,, ) =0 (32)

must hold in order to remove the secular term from the particular solution of »,, This
implies that the unknown amplitude function 4,(T}, T,) must be independent of the time
variable 7). As a consequence of this, all the higher order solutions are assumed to be
independent of the time variable T,. The particular solution of v,(T;, T,) is then given by

I &Il S 1 32 ] K
UZ—W[T— Z+8)€|RQA1 exXp ZJQTO_.IE

1 S 1 ] '
N EY) (E-D-Z)E[anz}l, exp (T, +iT,)
w_l s 1 .27 , ,
_1_(1_9)2 5'*‘1 & QA  exp (JOT, — jT,)} + c.c. (33

At this point, a brief discussion of some of the general features of this analysis procedure
is in order. By using the assumed solution sequence, the equations describing the transverse
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vibration of the connecting rod can be transformed into a sequence of ordinary differential
equations, which are solved relatively easily, since they are linearized by the nature of the
perturbation expansion. In solving these sequential equations, several resonant conditions
arise. The primary resonance arises first and then the principal parametric resonance. After
these two resonances, several secondary resonances arise. In principle, it is possible to
extend this analysis to study even higher order resonances, for instance, the subharmonic
resonance which occurs when @ is near 3w,. In fact, Hsich [29] had extended the current
method of analysis to consider all super- and subharmonic resonances up to order three.
However, cach higher order involves a non-trivial increase in the required amount of
computational work.

Although the primary resonance arises first in the above procedure, in the analysis
below, the principle parametric resonance is considered first, followed by an investigation
of the primary resonance, since this simplifics the analysis somewhat. After these two cases,
the superhamonic resonance of order two is investigated.

3.2. PRINCIPAL PARAMETRIC RESONANCE (@2 = 2)

In analyzing the particular solution of equation (31), when the frequency ratio © is near
to 2, a principle parametric resonance takes place. To describe the dynamics when the
frequency ratio is close to 2, £ 1s expressed as

Q =2+ 2a,, (34)

where o, is the detuning parameter. The damping parameter g, is reordered by u, = p, .
Moreover, the damping parameter g, is rescaled according to u, = e, so that it will
appear, together with detuning parameter a4,, in the final resonant condition. After
carrying out the same procedure as that described in the last section, equation (28) reduces

to
Doy + v, = —2j(D, A)) exp (1) — 2y, A, exp (jTp)

—(S/2 4+ D&, Q24 exp (JT, + 2jo, Ty)
~&Quip, A exp 2jo, T\ —jn/2) + NS.T. +cc., (35)

where N.S.T. represents those terms which will not produce secular terms in the particular
solution of v,(T,, T}, T,). In order to eliminate the secular terms, the following must hold:

=D\ A) =~ Yy A, —HS 2+ D& A exp (2a, Ty)
—2n 2#4051/?1 exp (2jo, T, — jr(2) = 0. (36)

Expanding equation (36) with 4, = (a/2) exp (j¥), and separating the resultant equation
into real and imaginary parts, the following differential equations which govern a and @
are obtained:

a'= —py a —2af, A, 5in 20, + an’p, &, cos 29, 3D
a®|=oc,a — 2af,4,c08 2¢, — an’y, &, sin 20, (38)

where
¢ =0T —Y, A= (28 + 1)(=?/4), (39, 40)

and the primes indicate derivatives with respect to T, The steady state response conditions
are obtained by letting ¢’ = 0 and ¢]=0. This yields

ty, @ = —2a&, A,5in 20, + an’fy p, cos 2@, (41)
oy a = 2af, A,cos 2@, + an*l, p,, sin 2@, {42)
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Squaring these equations, and adding them together results in
[511""'#%, “(25144)2_(”251#40)2]“2 =0. (43)

Equation {43) is an equation which can be solved for the amplitude a as a function of the
detuning parameter, the damping parameters and the length ratio. From this equation, it
is seen that the trivial solution a = 0 is the unique steady state response for the current
resonant condition, To determine the stability of this solution, we substitute
A, = (B +jB))exp (jo, T, + yT,) into equation (36), in which B, and B, are two real
constants, and separate the resultant equations into real and imaginary parts to obtain two
equations. The non-trivial constant solutions of B, and B, are obtained from these two
equations [26]. From this, it is determined that the trivial solution is unstable when

ot + p3, < {4l +ntud) 44)

is satisfied. The curve given by ¢+ ,u%l = 3442+ n‘,uio) represents the transition curve
along which one of the eigenvalues associated with g and ¢ are either +1 or —1. In the
unstable region, any disturbance, no matter how small, applied to the steady state response
results in unbounded growth in the response amplitude of the linear model. In the
remaining part of this section, the analysis is extended to investigate the non-linear effects
which then dictate the response.

In order to capture the effects of the non-linearities, it is necessary to reorder either the
solution or the parameters, so that the non-linearities will be included in the eguation
describing the resonant condition. For the present problem, the amplitude of the response
is proportional to the length ratio (equation (21)). Therefore, a reordering of the length
ratio is equivalent to a reordering of the solution. To carry out the non-linear analysis,
the length ratio ¢ is reordered according to ¢ = ¢2¢,. Moreover, the damping parameters
py and p, are rescaled as u,=c’y, and p, = . Expanding equation (17) with these
rescaled relations, and equating the coefficients of ¢ for j =1, 2 and 3, the following
equations are obtained:

O@): Divyy+o=0; (45)
2
0(®): Divy+uv,= —2D¢Dv, +(;)¢2ﬂzsin QT,; (46)

0(63): Dév:; + v3 = "2DOD20| - 2_“221)001 - 7'[4S(ng%) - 2,“.407'{2{29!“ Sil‘l QT{]

— D}y, — 2Dy D\v, — nX(S +3)&,0%, cos T, — mu, (Dyv, ol

(47)
Equation (45) admits the solution
v T, Ty, T;) = A(T\, T3) exp (jT;) + c.c. (48)
Substituting this solution into equation (46) yields
Do, + v, = —2j(D, A;) exp (jT,) + (2/m)E, Q% sin QT, + c.c. (49)

In analyzing the solution of this equation, one needs to distingunish between two cases: (1)
£2 is near to one and (2) 2 is away from one. At this moment, case (2) is of interest. When
2 is away from one, D, 4, =0, which implies the independence of 4, with respect to the



34 S.-R. HSIEH AND S. W. SHAW

time variable T;. Therefore, all higher order solutions are also assumed to be independent
of T,. With this assumption, equation (47) reduces to

Div,+vy= —2fuy, A, exp (JTy) — 2j(D, Ay exp (jT,) — jug n' A3 4, exp (jT,)
—(S+ %)‘5292”2(21 /2) exp (JQT, — jTy) — 2.“407125221 exp (JQT, — jr/2)
+7n*SA24,exp (jT,) + NS.T. + ce., (50)

which describes the third order term in the flexural response associated with the connecting
rod. To describe the nearness of @ to 2, Q is expressed as

Q =2+ 2%;,. (51)
Hence, we must have

—2juy, 4, — 2j{D, 4,y — 4€, A A exp (o, T,) + n* A1 4, (S —Jtha,)
=2,m°E, A, exp (2o, T, — jn2) =0 (52)

in order to remove the secular terms from the particular solution of v,. Substituting
A= (af2)exp (j¥) into equation (52) and separating the resultant equation into real and
imaginary parts results in

a’ = —pya — pyn°a’(8 — 2&, A.a sin 20, 4 &;n’u, a cos 24, (53
ad; = o,a — 28, 4,a cos 2, — &, n, a sin 20, + 4;a°, (54)

where @, and A; are defined by
G,=0, T~ ¥, As=Ln's, (55, 56)

and primes represent derivatives with respect to the time scale 7,. The frequency response
equation then takes the form

*312[(1122 + !140734‘12/8)2 + (0, + 4sa%Y — (26,4, — (“zfzﬂa:u)z] =0. (57)
From this equation, the non-trivial solutions of a? are

(@) = (/) [+ /1P —km], (@ =(/k) -1~/ 1*—km)], (58, 59)

where
k=[P4 43, 1 =§p p,n" + dso,, (60, 61)
m=pi + 63— (25,4, — (& )% (62)
From equations (58) and (59), it is seen that a, and g; exist only when
EP—ikm>0. (63)

This implies that the magnitude of the forcing term must be above a certain critical level
in order to produce a sustained non-trivial steady state response. In particular, the
following condition

2 < Q5 AP + (W, P ~ 3, (64)
is required for the existence of a,, and
1< —/QEAY + (W) — 1, (65)

is required for the existence of 4,. In order to determine the stability of these steady state
responses the Jacobian matrix associated with equations (53) and (54) is computed from
which the following conclusions are obtained: (1) when o, > /&, A,) + (n°E pa ) — 113,
only the trivial solution is possible, and it is stable; (2) when |m|<




NON-LINEAR CONNECTING ROD 35

V@&, 4,7 + (@54, — 43, the trivial solution becomes unstable, while a, exists and is
stable, and a4, does not exist; (3) when 6, < —, /(25,4,) + (&) — u3,, ay exists and
is unstable, and a, and g, exist and are stable.

Before leaving this section, a few points need to be made. First, compare the linear
resonance condition (equations (37) and (38)) with the non-linear version (equations (53)
and (54)). They are identical at linear order. The difference in the equations describing the
variation of the amplitude, , is the non-linear term 3 u%a3. This term arises from the slider
friction induced by elastic deformation. The difference in the equations describing the
variation of phase angle, @,, is the 4,4’ term in equation (54), which arises from the slider
inertia. The frequency response equations obtained from the linear and non-linear analyses
coincide at linear order, and the influence of the non-lingarity can be determined by a direct
comparison. In the absence of the non-linearity, the response is globally unstable when the
parameters are located inside the unstable region. Due to non-linear effects, however, an
increasing response amplitude will be accompanied with an increase of the resistance force
and a change of the phase angle @. The resistance force arnses from the foreshortening
introduced by elastic deformation. As the amplitude of the response increases, this
resistance force, the magnitude of which is proportional to the foreshortening, also
increases. The amplitude of response reaches a dynamic equilibrium state when this
resistance ofisets the effect of the slider friction introduced by the rigid body motion.

3.3. PRIMARY RESONANCE (€2 = 1)

In order to bring out the effects of the non-linearities near primary resonance, it can be
shown that the following scalings are required [29): & =€°¢;, py=py, =€y, and
Q =1 + €’,. Substituting this reordering relation into equation (17), expanding and
equating the coefficients of ¢/, a new sequence of equations is obtained. The procedure of
section 3.2 yields the following condition for removal of the secular terms from the
particular solutions of vy:

—2j(Dy4:)— 2jﬂ22A1 _J'H%"4A%44_1 + (1/m)¢; Q% exp (jo, T, — jn(2) + “4-4%;1-1 =0. (66)

Expanding equation (66) with 4, = (a/2) exp (j¥), and separating the resulting equation
into real and imaginary parts, gives

a’ = —u,a —p, m'a*8 — (& /n) cos By, adi=a,a + 4;a° + (& /n)sin P,, (67,68)

where &, is given in equation (55) and 4, is given in equation (56). The solution z(7) can
be approximated by

v(=e,(Ty, T), 1)+ O(eD) =ea cos (QT, — @) + O(eD), (69)

where @ and & are described by equations (67) ‘and (68).
The frequency response equation is then given by

a{(pa, + pa,m %8 + (0, + 4507 = (&3 /n ). (70)
Equations (70) admits a peak amplitude, 4,, which is determined by solving
(&s/n) = ajluy, +gpgna;f = 0. @)

Moreover, this maximum amplitude occurs at the frequency @ =1+ ezazp, where
Uzp = —Asai. (72)

The ncgative sign in equation (72) implies that the response curve reaches this peak
amplitude at a frequency of less than one. Thus, the frequency response curve bends to
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the left, corresponding to a softening type of non-linearity. Hence, over a region of Q
values below one, there will generally exist more than one steady state response.

The stability of the steady state responses can be determined by computing the
eigenvalues of the Jacobian matrix associated with equations (67) and (68). From the
eigenvalues associated with this Jacobian matrix, it is determined that when

[1s, + s g, 722 ) 4, + S s, m*a%) + (0, + d5a%) (0, + 345a%) < 0, (73)

the steady state responses are unstable. Otherwise, they are stable.

Before closing this section, a few points shouid be mentioned. First, consider neglecting
the effects of p, , and compare the final equations describing the resonant conditions from
the linear and the non-linear analyses. A prudent observation shows that the maximum
amplitude of the response obtained from the linear (equation (21)} and non-linear analyses
(equation (71)) are exactly the same for y,, = 0. This implies that lincar theory is sufficient
to provide a good approximation of the peak amplitude of the steady state response.
However, if one compares the frequency at which the steady state response of the system
reaches its maximum amplitude, there exists a difference between the results from the lincar
and non-linear analyses. Linear analysis indicates that this peak amplitude is observed at
2 =1, while the non-linear analysis show that the response achieves this amplitude when
Qis at Q,=1— 4;a}.

Finally, consider the effects of u,, which represents slider friction. According the
analysis, u, has a favorable effect in reducing the amplitude of the response. This is caused
by the foreshortening accompanied with the transverse deformation of the connecting rod.
The existence of the slider friction will resist further deformation and hence has a tendency
in reducing the amplitude of the response. (This is true only at leading order, and it is
obvious that very large friction would lead to large amplitudes.)

3.4. SUPERHARMONIC RESONANCE (Q & $)

In analyzing the particular solution of v, from equation (31), it is assumed that Q is away
from 2 and }. When @ is near to }, a superharmonic resonance occurs. For © near to 3,
the frequency ratio £2 is conveniently expressed as

Q =41 +¢ay). (74)

In addition, the damping parameter g, is rescaled according to u, = ¢y, so that it appears
with the detuning parameter o, in the final resonant condition. Following the procedure
of sections 3.2 and 3.3, the following resonant condition is obtained:

(a [6)ETm exp (jo, 1) — 2/(Dy A\) ~ 2y, Ay + (£1/127) (3 — 4) exp (o T, ~ jrn /2) =0,
(75)

from the elimination of the secular terms of the particular solution of the resultant
equation. Here, g, is given in equation (74) and 4, is defined by equation (40). Therefore,
when Q is near to 1, the response equation takes the form

v(ty=e,(Ty, T, To) + Oe?) = e[A, 5in QT + a, cos QQT, — ®,)) + O(e?), (76)
where A, is given in equation (30). The steady state value of the phase angle @, is given
by

0,(3—4,)— 2= .
@, = tan~" [ i(z s) ﬂzlﬂ%] a7
2n%0, gy + (3 — dydits,
and the amplitude of the steady state response g, is described by

(3, + oD)al = &Hl(uy, m/6Y + (3 — 4,)/127)]. (78)
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TaBLE 1
Identification of combinations of parameters

Case & Ay I i Ha Case 4 S M s My
1 0005 000 002 000 000 2 0005 050 002 000 000
3 0-005 1-00 002 000 000 4 0010 000 002 000 000
5 0016 050 @002 000 000 6 0:010 1-00 002 000 000
7 0050 000 002 000 000 8 0050 05 002 000 000
9 0-050 100 002 000 000 10 0-050 050 004 000 000
11 0-010 100 002 0-00 0-40 12 0050 000 002 000 0-40

Equation (78) represents the steady state frequency response necar this superharmonic
resonance, and equation (76) represents the first order approximation of the response. Note
that v, consists of two parts; the first term is the particular solution and the second term
is from free oscillation. Hence, the homogeneous solution does not generally decay to zero;
this is caused by the last term on the right side of equation (28). The amplitude of the
particular solution is proportional to the length ratio £, while the second term is
proportional to £2. This implies that the second term vanishes more rapidly than the first
as the length ratio £ is decreased. A simple calculation of the eigenvalues of the Jacobian
matrix shows that this homogeneous solution is stable everywhere for u, > 0. Hence, a
steady state superharmonic resonance exists for p, > 0, and the response is composed of
two terms with different frequencies. The particular solution possesses the same frequency
as that of the external excitation, while the homogeneous solution oscillates with twice the
frequency of the external excitation. It should be noted that this result is simply an
expansion of the response of the linearized time-varying system in terms of &, with the
second harmonic term arising from the 202 term in the excitation.

Near this resonance, an interesting observation is made regarding the influence of the
mass ratio § on the amplitude of the homogeneous solution. The amplitude of the
homogeneous solution is described by equation (78), and this can be minimized. It is
determined that a, reaches a minimum value when 4, = 3. This implies that a proper choice
of the mass ratio can be used to suppress this superharmonic resonance. The existence of
the slider friction, u, #0, prevents the homogeneous solution from having a zero
amplitude. This indicates that the damping parameter u, has an adverse effect on the
response of the system for this superharmonic resonance.
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0-0 05 1.0 1-6 2-0 25 30
Frequency ratio, {2

Figure 2. Frequency response curves from MMS —, AUTO (——} and LSODE (&) for £ =0-01, § = 0-30,
;=002 and y, =0-00.
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TABLE 2
Comparison of bifurcation data

Case Analytical AUTO
1 PD =19855 PD, = 20145 PD, =19700 PD, = 2:0330
2  LP,=09711 LP,=09%9 LP =— LPy=—
PD,=19549  PD,=2:0451  PD =19131 PD, =2:1013
3 LP, =09270 LP,=09643 LP, =09505 LP, =939}
PD, =19287 PD, = 20713 PD, = 18680 PD,=2:1670
4 PD=19549  PD,=20450  PD,=19153  PD,=2099
5 LP =0-8477 LP,=09296 LP,=09353 LP,=09104
PD, =19034 PD, = 20966 PD, = 1-8290 PD,=22312
6 LP =06925 LP, =0-9092 LP, =0-8582 LP,=09215
PD,=18533 PD, = 2-1467 PD, = 1-7564 PD, = 23909
7 PD,=1-7541 PD,=2-2459 PD, = 16354 PD, =2-8600
8 LP =0-T830 LP,=—-2-8534 LP =0-8430 LP,=0-7003
PD, = 15067 PD, = 2:4931 PD, =1:3593 PD, > 300
9 LP=— LP,=— LP, = 08133 LP,= 05956
PD, = 12600 PD, = 27400 PD, = 10936 PD, > 300
10 LP, =07873 LP,=— LP, = 08473 LP,=0-7799
PD, =1-5081 PD, = 24919 PD, =1-3625 PD,> 30
11 LP =06925 LP=— LP, = 08612 LP,= 09202
PD, = 1-8531 PD, =2-1469 PD, =1-7481 PD, = 2-4045
12 PD,=1-7509 PD,=12:2491 PD, =1-5537 PD,=—

4. DISCUSSION AND NUMERICAL SOLUTIONS

In the present section, a numerical simulation study of equation (17) is presented, the
main purpose of which is to explore the effects of the system parameters on the resonances
and to verify the analytical results. A systematic approach is adopted in which specific sets
of parameter values are considered; these cases are given in Table 1. In obtaining the
numerical solutions, the software packages LSODE [27] and AUTO [28] were used. The
former is a numerical solution package for solving initial values problems for ordinary
differential equations, and the latter is a software package capable of tracking steady state
response curves and providing stability information. AUTO is used to obtain response
curves over a large range of 2 values and LSODE is used to provide time traces for specific
parameter values,

The general features of the response of the system modelled by equation (17) are
demonstrated in Figure 2. The analytically predicted frequency response curve is compared
with that computed by AUTO and with simulations from LSODE at several frequencies
for a specific set of parameter values. From this figure, it is seen that the important features
of the response are captured by the MMS analysis for small values of the length ratio. In
particular, the bending of the primary resonance near = 1 and the parametric resonance
near £ =2 appear in the simulations and in both response curves. However, when the
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Figure 3. Location of points PD,, PD,, LP, and LP;.

length ratio & is larger than 0-10, the analytical results provide only rough qualitative
consistency with the actual results.

Table 2 contains bifurcation information obtained from analytical results and AUTOQ.
In this table, PD, and PD, indicate the points at which principal parametric resonance
instabilities occur, while the turning points associated with the primary resonance are
marked by LP, and LP;. (This notation is from AUTO, since period-doubling birfurca-
tions occur at PD points, and limit-point, or saddle-node, bifurcations occur at LP points.)
The locations of these points are indicated in Figure 3. The region between points PD,
and PD, represents the main region of instability near & =2, and the region between
points LP, and LP, represents the range of multiple steady states near £2 = 1. For the sake
of clearness in the figures, the branches of the non-trivial response associated with the
parametric resonance are often not included.

The effects of the system parameters on the overall response are now considered. In
section 4.1, the effect of the length ratio £ on the response is described. In section 4.2, the
effect of the mass ratio § on the response is considered. The effects of the damiping
parameters u, and p, are examined in sections 4.3 and 4.4, respectively. In section 4.5, the
influence of the frequency ratio 2 is described. For the sake of brevity, only certain key
results are discussed. More detailed numerical studies and in-depth discussions can be
found in Hsieh [29].
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Figure 4, Frequency response for § =0, p, =002, py=0. —, & =0005, —, & =0-01; ——, £ =0-05.
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Figure 5. Frequency response for § =0-5, u, =002, p, =0, —, £ =0-005; ——, { =0-01; ——, £ =0-05.

4.1. EFFECT OF THE LENGTH RATIO ¢

The length ratio £ can be treated as the strength of the external excitation. This
connecting rod is essentially a simply supported beam, subjected to both vertical and
horizontal excitations arising from the same source: the motion of the crank and the
kinematic constraints. The magnitude of this excitation is proportional to the length ratio
£, An increase in £ implies an increase in the inertial forces, and hence the magnitude of
the excitation will increase.

The main effects of £ are as follows: (1) the amplitude of response near the primary
resonance is proportional to £, and this amplitude can be obtained using linear theory; (2)
the width of the region of parametric instability grows as £ is increased; (3) superharmonic
resonances appear at 1/n as ¢ increases, starting with the 1 superharmonic, and the added
amplitude near this resonance is proportional to £

Frequency response curves for § =0-0 with different £ values (cases 1, 4 and 7) are
shown in Figure 4. According to the analytical results, 5 =0 corresponds to a linear
oscillator, and hence there is no detuning associated with the primary resonance.
Moreover, the amplitude of the response is proportional to ¢ The main region of
instability exists near £2 =2. Both of these points are verified by Figure 4 and the
bifurcation data shown in Table 2. Also, note that the superharmonic resonance near Q =3
just begins to appear as £ is increased.
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Figure 6. Comparison between simulation and analytical approximation for case 5 at 2 = 0-50. ——, LSODE;
——, analytical.
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Figure 7. Comparison between simulation and analytical approximation for case 8 at @ =0-50. —, LSODE;

———, analytical.

Next, a case in which § #0 is considered. According to the results from MMS, for
S > 0, the systems possesses a softening type of non-linearity. The peak amplitude of the
response is the same as that given in the linear approximation, while the detuning
associated with the primary resonance (o, ) is proportional to £2. The numerical results for
three & values with § = 0-50 are shown in Figure 5. Again, as ¢ increases, the superhar-
monic resonance near 1 begins to appear. This is as predicted by the analysis of
section 3.4

Comparisons between the MMS approximations and simulation results for time traces
at the superharmonic resonance (2 = 0-3) are shown in Figures 6 and 7. It is very clear
that the MMS approximations match the simulation results almost exactly, and that the
second harmonic is more prominent for larger values of ¢ (Figure 7).

4.2, EFFECT OF THE MASS RATIO S

The main effects of S, which represents the primary source of non-linearity in the system,
are as follows: (1) increases in § shift the peak amplitude of the primary resonance to the
left, but have virtually no effect on the peak amplitude; (2) increases in S widen the region
of parametric instability while lowering the vibration amplitude in the resonant region; (3)
S has a varying effect on the superharmonic resonance near §, which may be used to
suppress vibration amplitude near this resonance.
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Figure 8. Frequency response curves from AUTO. -———, Case 7; =, cas¢ 8; ——, case 9.
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Figure 9. Simulation resuits from LSODE at 2 = 1-00. —, Case 7; ——, case 8.

The frequency response curves associated with cases 7, 8 and 9 are shown in Figure 8.
First, consider the primary resonance. This figure shows that the detuning o, increases as
5 increases from zero to one. According to the analysis, the detuning associated with the
primary resonance is directly proportional to S, while the peak amplitude remains
unchanged. An increase in S also enlarges the instability region associated with the primary
resonance. From the numerical resuits listed in Table 2, it is seen that the width of the
instability region near 2 =1 increases from zero {(case 4) to 0-0633 (case 6) as § increases
from zero to one. The simulation results for cases 7 and 8 with £2 = 1-00 are depicted in
Figure 9. From this figure, it is observed that smaller peak response amplitudes occur at
Q2 =1if § is increased. This is caused by the bending of the frequency response curves
associated with the primary resonance (see Figure 8).

In the principal parametric resonance, the influence of S is included in the terms 4, and
4;5. According to the linear analysis, the tnain region of instability, i.e., the unstable region
in the {02 plane, will be enlarged if the value of § is increased. To show this point, consider
equations (58) to (65). From these equations, the following facts are determined: (1) the
width of the unstable region increases as the mass ratio increases; (2} the amplitude of the
non-trivial solutions «, and g, decreases as the mass ratio increases, With these two
observations, it is seen that this parameter has both favorable and adverse effects on the
principal parametric resonance. An increment of S will enlarge the unstable region, while
this increment also reduces the amplitude of the non-trivial solutions. The physical reason
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Figure 10. Non-trivial responses associated with the principal parametric tesonance. ——, case 5; , case 6.
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Figure 11. Amplitude of response at @ =0-50 for § =001, y, =002 and p, =0.

for these features is the following: the slider mass provides a periodic inertial end load
which helps destabilize the system in the usual way when € is near 2. However, once
unstable, the motion is then limited by the same inertial resistance through foreshortening
effects. As a numerical example, consider the width of the region of instability, as indicated
in Table 2, which increases from 0-2338 to 0-6409 as § increases from zero (case 4) to one
(case 6). The branches of the non-trivial parametric response for cases 5 and 6 are shown
in Figure 10. From this figure, it is clear that as S is increased, these response branches
are reduced in amplitude, while the main region of instability is widened.

In the superharmonic resonant case (2 & 0'5), the parameter S has a very interesting
influence on the response. When the frequency 2 is near to 0-5, the amplitude of the
homogeneous solution depends on the length ratio and the mass ratio. From equation (78),
it is seen that the overall amplitude of this superharmonic response decreases as the mass
ratio increases from 0 to a critical value, which is about 0-11, while this amplitude increases
as the mass ratio increases beyond this critical value. Hence, it is possible to suppress the
contribution of this resonance by choosing the mass ratio properly. The amplitude of
the response at €2 =0-50, varied as a function of S as determined from AUTO is
shown in Figure 1. From this figure, it is clear that the numerical solution agrees in a

qualitative sense with this analytical prediction, although the actual minimum occurs near
S=11.
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Figure 12. Frequency response curves fromi AUTO, ~—, Case 8; ——, case 10.
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Figure 13, Simulation results from LSODE at £2 = 0-50. ——, Case 8; ——, case 10.

4.3. EFFECT OF THE DAMPING PARAMETER {,

The material damping coefficient u, has a favorable effect in reducing vibration
amplitudes and promoting stability in all resonance regions.

The response curves for cases 8 and 10 are shown in Figure 12. From this figure, it is
very clear that g, has a favorable effect on the response. Moreover, all trends predicted
by the analytical work are verified. A case in point is demonstrated in Figure 13, which
shows that the second harmonic of the response is significantly reduced as g, is increased
near the 2 = 0-5 superharmonic resonance.

4.4. EFFECT OF THE FRICTION PARAMETER f(,

The effects of the slider friction are as follows: (1) near the primary resonance, increases
in g, reduce the amplitude and lessen the possibility of jumps occurring; (2) increases in
yy slightly widen the regions of parametric instability while reducing the vibration
amplitude in the resonant region; (3) the amplitude of response near the superharmonic
resonance is increased for large values of .

The effect of the slider friction on the connecting rod is comprised of two components.
The first arises from the action of rigid body motion, while the second is caused by
foreshortening. The friction force induced by the rigid body motion is linear and has an
adverse effect on the response, essentially by causing an axial load on the connecting rod.
The slider friction introduced by foreshortening is non-linear, and has a favorable effect
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Figure 14. Frequency response curves from AUTQO, —, Case 6; ——, case 11.



NON-LINEAR CONNECTING ROD 45

030 T T T T T
025 =
020
015

0-10

0-00 4 L 1 ]
16 18 20 22 2-4

Frequency ratio, 2

Transverse displacement of mid-point

Figure 15. Non-trivial responses associated with the principal parametric resonance from AUTO. —-, Case
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on the response of the system by adding damping through the shoreshortening. When the
response amplitude is small, the foreshortening introduced is small, and the slider friction
is mainly composed of friction induced by rigid body motion. Hence, an increase in the
value of u, will be accompanied with an increase of the slider friction force. This
corresponds to an increase of the axial force acting on the connecting rod, and hence to
an increase of the amplitude of the response. This force also promotes parametrical type
instabilities. However, as the amplitude of the response increases, the friction force induced
by the elastic deformation also increases. This friction force acts as a resistance to prevent
the connecting rod from further elastic deformation. Hence, the friction induced by
foreshortening has a favorable effect on the amplitude of the response.

The overall frequency response curves for cases 6 and 1t are shown in Figure 14. This
figure shows that the friction parameter p, reduces the peak amplitude of the primary
resonance. In Figure 15 are shown the response branches originating from the main region
of instability near £ = 2 for cases 6 and 11, From this figure, it is clear that the friction
parameter g, has a favorable effect on the amplitude of the principal parametric resonance,
even though the width of the unstable region is slightly increased. In Figure 16 are shown
the frequency response curves near 2 =3 for cases 7 and 12, indicating the increase in
amplitude associated with p,. The analytical approximations and simulation results of the
response for case 12, at  =0-30, are shown in Figure 17, Near this resonance, as g, is
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Figure 16. Frequency response from LSODE. ——, Case 7; ~—, case 12.
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Figure 17. Analytical approximation and simulation results for case 12. ——, MMS; ——, LSODE.

increased, the amplitude of the second harmonic increases, demonstrating that the
perturbation approach provides very accurate results when compared with the numerical
solutions.,

4.5, EFFECT OF THE FREQUENCY RATIO

In order to understand the influence of @ on the response of the system, it is convenient
to scparate the discussion into three categories; low frequency ratios, non-resonant
frequency ratios and resenant frequencies ratios.

First, consider the low frequency ratio region. The inertial forces applied to the system,
due to the accelerations a, and a, are proportional to Q2. However, since the system is
non-linear, this does not necessarily imply that the amplitude of the sicady state response
is proportional to Q2

For small values of @ and &, equation (21) yields a satisfactory approximation given by

2
_2 0 ~ 2 e (79)
1 /(1 -0 +4ui0r
for Q < 1. This implies that the amplitude of the response is proportional to £R? in this
parameter range. This point has been made by previous investigators [1(]. The response
for large £ and small Q remains to be considered.

Next, consider the non-resonant cases. When no resonance is excited, the free oscillation
term will decay to zero due to the presence of the damping. Consequently, the linear
approximation will be sufficient to provide a good estimate of the response.

When a resonance occurs at a given operating frequency, an additional harmonic (or
harmonics) must be included in order to capture the effect of the homogeneous solution.
Therefore, additional peaks appear along the profile of the linear response curve. This
paper is essentially a characterization of these resonance cases.

It is interesting to consider the series expansion of the kinematic constraint given in
equation (18). From this expansion, it is clear that the applied force is composed of
multiple frequencies. Generally speaking, when @ is near to 1/r, a superhamonic resonance
is expected to arise. It is difficult to analytically study these higher order (n > 3)
superharmonic resonances, since the magnitude of the homogeneous solution is pro-
portional to the corresponding order of the length ratio, i.e., £" Unless the length ratio
i quite large, the contribution of the homogeneous solution on the steady state response
will be very small. This also explains the absence of these higher order resonances in the
simulation results.
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5. CONCLUSIONS

The results presented in this work represent a successful extension of previous efforts,
in that the effects of non-linearities on the vibration response of a flexible connecting rod
have been analyzed in a systematic manner. The major drawbacks of this approach are
that tedious manipulations are involved in analyzing the higher order resonances and that
only limited parameter ranges can be handled (e.g., £ < 0-1). With the advent of high speed
computers, the finite element approach has become more favorable for specific design
purposes. However, like most numerically based approaches, the finite element approach
can only provide pointwise information in parameter space. A recent finite element study
[30] used more than 100 simulations with a commercially available package to obtain a
single response curve. While such an approach can provide refiable and accurate solutions,
an analytical approach provides important information useful for the prediction of the
influence of various parameters along with explanations of the non-linear phenomena
associated with these systems.

As for the general improvement in analysis techniques for ¢lastic mechanism problems,
a more thorough understanding of the inertia force is required. In all previous analytical
works, the dynamics of the flexible link are formulated relative to a co-ordinate system
that follows the rigid body motion of the beam. This approach presumes infinitesimal
strains and is sometimes referred to as the shadow beam approach. In future work, one
should include large overall motion and strains by employing geometrically exact
formulations. Recent results from Simo and Vu-Quoc [31, 32] may prove useful for this
extension. Future work should also include considerations for multi-mode interactions and
the possibilities of internal resonances [17].

It is clear that more systematic and thorough experimental studies of systems such as
the one considered here are also in order. Recent efforts in this direction include the work
of Beale, in which the influence of the length ratio and crank speed are being systematically
investigated [16, 21]. In fact, some trends described by the present work have been verified
by Bealg, including the softening nature of the non-linearity and the appearance of the
superharmonic resenance as ¢ is increased.

In a complementary study [22], the authors have investigated a non-linear, distributed
parameter model using similar methods and have obtained consistent results. The effect
of rotary inertia and shear deformation are included in that study, The thesis by Hsich
[29] contains a detailed comparison of the results obtained by these two approaches.
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