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Abstract

We provide new results on asymptotic values for the random knapsack problem. For a very general
model in which the parameters are determined by a rather arbitrary joint distribution, we compute
the rate of growth as the number of objects increases, the number of constraints being fixed. For
a particular model, we find strong bounds on the asymptotic value as the numbers of objects and
constraints increase together.

This paper is a continuation of the work in [3,4] on estimating the values of
random knapsack problems with many decision variables. It consists of two indepen-
dent parts. In Section 1, we show how to estimate the growth rate of the value of
a random knapsack when the parameters are determined by a very general class of
joint distributions. In Section 2, we concentrate on a particular random knapsack
model, and give rather sharp new bounds on its asymptotic value. In more detail:

In Section 1, we first settle a question left open in [3] related to a single-constraint
random knapsack problem, then apply this new result to a multiconstraint problem.
Consider the problem

V,=max Y X;5;,

ji=1

subject to Y W4, <K, 4;€{0,1}
ji=1
where the random variable pairs (W, X;) are independent, identically distributed
draws from any one of a very wide class of joint distributions Fy x. (In particular, we
do not assume that W and X are independent.) For ¢t >0, let F(t) = E(W1.x > 1w1)
and G([) = E(XI{X > tW) )
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In [3], we proved that ¥, is asymptotically equal to nGo F~'(K/n) as n— oc.
However, to carry out this proof we needed a seemingly unnatural extra hypothesis on
Fwy, namely that the function G F~! is concave on some interval (0,t). In Theo-
rem 1.2, we prove this hypothesis. As an application of Theorem 1.2, we obtain
(Theorem 1.3) nice bounds on the asymptotic growth rate of the m-constraint
extension of this general problem, and show (Theorem 1.4) that these bounds are
essentially the best possible.

In Section 2, we extend and improve our results in [4] on a particular random
knapsack model. Consider the problem

Viw = max > X;9;,
=1

J

subject to ). W;; <1 fori=1,....m 5;€{0,1}
i=1

J

where the random variables X;, W; are mutually independent, and all uniformly
distributed on the interval (0, 1).

In [4], we showed that, for fixed m, V,,,/x,., converges to 1 in probability as n —» o0,
where &,,, = (m + 1)(n/(m + 2))/"* D In Theorem 2.2, we obtain a rather sharp
bound on P(|(V,n/tm,) — 1] > ¢), which will allow us to infer (Corollary 2.3)

(1) Viun/%an converges to 1 completely (so, a fortiori, almost surely), and

(2) complete convergence holds even if the number of constraints m is allowed to
grow with n, provided m = m, < (logn)" for some n < 1.

This bound on the growth rate of m is essentially best possible, as we show (Theo-
rem 2.4) that if m, > ylogn for some y >0, then V,, is almost surely uniformly
bounded.

We do not assume familiarity with [3, 4]. The few results from those papers needed
here are stated in full.

I would like to thank the referee for several most helpful suggestions.

We first consider the single-constraint random knapsack problem

I/n = max Z Xjaj,
=1

J
subject to ). W;d; < K, 9;€{0,1}. (I
i=1

We assume that the pairs (W}, X ;) are independent draws from a joint distribution
Fwx which satisfies the properties: W > 0,0 < X < 1, and the random variable X/W
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is absolutely continuous with density fx u(t) which is positive for all sufficiently large

e Myafine far o~ 0
t. LJEINE, 107 { > v,

F)= E(Wlix>w)) and G@)=EX1yxsm)

In [1], we proved
Theorem 1.1. P(|V,/(nG=F '(K/n)) — 1| < o(1))> 1 as n—> .

As usual, o(1) denotes a sequence which converges to 0. To carry out this proof, we
required the additional hypothesis (calied (A2) in [3]) that the function G- Flis
concave (that is, lies above its chords) on the interval (0, ¢, ), for some ¢, > 0. Our first

4ol o hacic FAMN
LdAdK IIUIC lb to plove 1 _leUL JLlen) i Ve P25 2

Theorem 1.2. There exists i; > 0 such that d/di{GF '{©)y = F
In particular, the function G = F~'(t) is concave on (0,1,).

Proof. It is clear from our hypotheses that F(¢) decreases monotonically to 0 and is

......... f 1
continuous for sufficie ﬂtly large t. Th St su ch that F~ “\ exists

and is monotone decreasing on (0,t;). Therefore once we have shown that
d/dt(G= F~1(t)) = F (1) for t in (0,,), it will follow that G = F~'(z) is concave there.

To this end, for 0 < t < t, let 4, denote the area of the set {(x,y)e R?*: x > 0 and
0 < y < minf{t, F(x)}}. By ordinary integration,

o’

t
A= [F '(wdy=tF '(n+ [ F(x)dx. (%)
0 F' (1)
Now, by Fubini’s theorem, Jfrf,!m F(x)dx = E([], v Wlix 2 owydx). For fixed o,
x [ w(X_ F“(z)\, it X > F W,
| Wlxswdx= \w )
Fo 0, otherwise.
Therefore
E{ | Wlxswmdx)=E(W w PO iz rromw
NFh) / \ N / /

=EXlixsrgw) — F'OEW x5 prgwy)
=G=F '(t) — tF Y1).

Thus by (* jo F~Y(y)dy = G° F~1(r). By the fundamental theorem of calculus, the
proof of the theorem is complete. [
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We now show how Theorems 1.1 and 1.2 can be applied to a multiconstraint

Lromasmannl svaen llats Hamoidan tha mo~lalacs
l\lla})ba\,l\ lJlUUlClll CUILISIUCT LllC PlUUlClll
n
V,=max ¥ X3
pa Jre
j=1
n
- - o . A PPN
subject to ). W8, <1 fori=1,2,....m, §;€{0,1} (11)
i=1
We shall compute to within a multiplicative constant the asymptotic value of V) as
n — oo, for fixed m.
Let
— 1
Wy=—(W;;+ Wy + - + W,
m
and
H/} = maX{I/VU, %]’ ey ij}
Consider the two singie-constraint probiems
n
¥/ _ e NV S
Vp — HHdAA L‘ AJ'Uj,
ji=1
n —
subject to 3 W;d; <1, 8;€{0,1}, (11*)
i=1
and
n
V,=max ) X;;,
i=1
n
; 1
subject to Y. W;d; < 1, §;€ 0.1}, (IL,)

It is easy to see that V, < V, < V,: indeed, any (8,,...,6,) feasible in (IL,) will be
feasible in (II), and any (34, ...,d,) feasible i in (1I1) will be feasible in (IT*). This turns
out to be somewhat useful because V, and V, exhibit the same asymptotic growth rate
under the following rather weak hypotheses. The (m + 1)-tuples (W5, ..., Wy;, X;) are
independent draws from an absolutely continuous joint distribution FW,, ..w..x such
that W, >0 for i=1,...,m 0 < X < 1, and such that the density fy,(¢t) of the
random variable X/W is positive for all large enough t. As before, for t > 0 we let

ZtW}) and G_(t)zE(Xl{erW})

Theorem 1.3. P(nGoF '(1/n)(1 —o(1)) < ¥, <nG-F '(I/m)(1 + o(1)))> 1 as
n— oo. This computes the asymptotic value of V,, to within a multiplicative constant,
because lim, ., Ge F 1(1/n)/G°E~Y(1/n) < m.
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Proof. By Theorem 1.1,
n = (1
Pl V,<nG-F ;(1+o(1))—>1

P<nGOEI<1)(1 —o(l) < _,,)—»1 as n— oo

n

and

and since ¥V, < ¥, < ¥, the first part of Theorem 1.3 is proved.

To prove the second part, first note that W; < mWjfor allj,so ¥, < max }."_, X;4;,
subject to Z;’ W;6; < m, §;€{0,1}. Thus, by another use of Theorem 1.1,

=1 —J
_ _fm
P<V,, <nGeF 1(—)(1 + 0(1)))—» 1 asn— .
n
Note that G° F~'(0) = G(o0) = 0. Using Theorem 1.2, we have

m 1

GoF '|=]|—=GeF (-
m 1 - <"> - <">1
GOE1<—>:GOF1<_>+(m_1) -
n _ n

n £

so in fact P(V, <mnG°F '(1/n)(1 + o(1))) = 1. But since P(V,>nGeF '(1/n)
x (1 —o(1)))— 1 as n— oo, the proof of the theorem is complete. [J

We conclude this section by observing that the bounds on ¥, in Theorem 1.3 are in
a sense best possible; that is, there exists a class of joint distributions on
(Wi, ..., W, X) under which ¥, is asymptotic to nG>F~'(1/n), and another class of
joint distributions under which V, is asymptotic to nG< F~ '(1/n).

Theorem 1.4. (a) If W, = W,, ..., W,, as., then P(V, < nG°F ~'(1/n)(1 + o(1)))— 1.
(b) If X, Wy, ..., W, are mutually independent and W, ..., W,, are identically distrib-
uted, then P(V, > nG~F~'(1/n)(1 — o(1))) - 1.

Proof. Part (a) follows immediately from Theorem 1.1 once we observe that, under the
hypotheses of (a), ¥, = V,.
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The proof of (b) seems to require repetition of part of the proof of [3, Theorem 1].
By [3, Lemma 2], there exists a sequence {t,} of real numbers such that

nF(t,) <1 forallm and nF(t,)—>1,  t,(1 —nF(,)*—0,
— ~ R 1
G(t,)—> o and (G(fn)/”G“‘F_1 <~)>—> 1 asn— . (%)
n
Let 6] = 1,x,> ., Since the W’s are iid., we have, for i =1,....m,

5§ mr)=( £ mar) = nrie

Var (
J

(The second inequality holds because, on {X,= t,,W“}, l>X,>2t, (W + -
+ Wai)/m, so Wi < mjt,.)
Now, by Chebyshev’s inequality,

and
. . Flt,
Wmﬁf) < nE(W}87) < ”:"E(Wnol) - ’"”t‘ ),
1

n n

I =

P<Z I/Vij51'~'>1>=P< I/V[jéf—nﬁ(t,,)>l—nl<:(t,,)>
j=1 j=1

mnF(t,)
<—="7.
tn(l - nF([n))z

By (*) we have P((3{,35,...,8,) is feasible in (IT)) > 1 as n — o and so
P(V,,ZZXJ-é}')—-»I as n— oc. (%)
i=1

Now

and
Var< Y X,»éj-') < nE(X{6%) < nE(X,37) = nGl(t,),
i=1
so by another use of Chebyshev’s inequality,

P< Y X;87 < nG(t,)(1 — e,,)) < 1/(nG(t,)ed) - 0,

i=1

where we take ¢, to be, say, (nG(t,))”'/?. By (%) we have
PV, = nG(t,)(1 — o(1))) > 1,

and by the last part of (*), the proof of (b) is complete. [J
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There seems to have been increasing interest in recent years in providing tighter
ues of random combinatorial problems. In this section we shall do

this for a particular random knapsack model.
For the rest of this paper we shall consider the problem

m
—~—
ol

—
N

(11)

where the random variables X ; and W; are mutually independent, and all uniformly
distributed on the interval (0, 1).

Let %, = (m + D)(n/(m + 2)H"* 1 In [4], we showed that, for fixed m, V,,,/¢pm,
converges to 1 in probability, ie.,

Theorem 2.1. For fixed m, P{(|V,,/0tpn — 1] < 0(1))—> 1 as n - .

(In fact, this is an instance of the present Theorem 1.4.) We shall improve this as
follows:

Theorem 2.2. There exist constants h and K such that, for all m and n,

V _ h = 1/m+ 1)\ 2 A
P( ™ _ 1‘28>§(2m+6)exp<—K<u—> -n”‘"‘“’).
Oy m

Corollary 2.3. Suppose that for somen <1, m= m,l < (logn)" for all sufficiently large

n. Then V,,, /% converges to 1 completely, i.e., L L PUVan /0 — 1] > &) < 0 for all
e > 0. In particular, this holds if m is fixed.

Furthermore, the bound on the growth of m, in Corollary 2.3 is essentially best
possible. We have

Theorem 2.4. If, for some vy >0, m = m, > ylogn for all sufficiently large n, then for
some r >0, Z: P(V,, >r) < . In particular, V,,, is a.s. uniformly bounded.

In the proof of Theorem 2.2, we shall repeatedly use two standard probabilistic
bounds.

Chernoff’s bounds (cf. [1]). Let Y be a binomial random variable, with parameters

- FaNrS o

ISR I 7 i
nana p. 11 &€ >V, ucin

P(Y — np < — ¢) < exp(— &2/2np)
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and
P(Y — np = &) < exp(— &%/3np).

Hoeffding’s bound (cf. [2]). Suppose that Yi,..., Y, are independent random vari-
ables each with mean y such thata < Y, <bfori=1,...,n Then

P< i Y, — nu > a> < exp(— 2&*/n(b — a)?).
i=1

We also require the following lemma from [47]:
Lemma 2.5. Let ty,...,t, be positive numbers. Suppose that
:i Wilix,> 0o, wy,+ - +0um) =1
fori=1,...,m. Then
Vo < Zl Xilix > 0w+ e+ 1, Wy )
J

We now proceed to prove Theorem 2.2. For the remainder of this proof, let m and
n be fixed.
Let I;(t) = 1ix, > w,+ - + w,);- A computation shows that, fort > 1,

1
PI()=1)= W,
1
E(Wuln(l))zmv (1)
and )
E(X,I1,()) = W

Let T = t(t) = (nt/(m + 2)H"* D ¢ was chosen so that nE(W,, (1)) = 1/t; we shall
show that, in fact, Z;‘Zl W;;1;(z) is usually near 1/z. A direct use of Hoeffding’s bound
seems not to work, so we proceed somewhat indirectly.

Let Y;;(t) = W, where k is the jth positive integer with the property that I, () = 1.
We have, for any positive integer r,

(a) 1fz ) > r, then 0 < Z UIj(t) — Z;:l Y(t) < (Z;Zl 1;(t) — n)/t;

(b) if Z I (t ) <r, then 0 < Z Y Z;‘zl Wity < (r— Z;.':l 1;(0))/t.
(a) follows from the observation that Z (t) r counts the number of j’s among
1,...,n which satisfy I{f) =1, excludmg the first r such j’s, and Z | Wil (0) —
Z'A Y;;(z) is the sum of W}; over those same j’s. But if I;{t) = 1,then 1 > X > tW;, so

ji=1

W; < l/t. The proof of (b) is similar. From (a) and (b) we have, for 4,B > 0,

P< max Z ,Jj(t>A+B>

i=1,.

SP( max Zr: Yij(t)2A>+P<in(t)—rZBt>. 2)
i=1

i=1,....mj=1
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Now let B(t) = nP(I,(t) = 1) (= the expected number of j’s among 1, ..., n such that

I,(t) = 1). Note that B(1)E(¥;(r)) = nP(I,(1) = 1)- EV1[11(1) = 1) = nE(W111,(7))

= 1/t. Also note that 0 < ¥;;(r) < 1/t. Therefore

(8] 1
< Z Y(1) = - +s/2>

1
= P( Z Y;j(x) = [ B(x) |E(Y1,1(7)) > &/2 — <|—.3(T)-|E(Y11(T)) - ;))
i=1
2(¢/2 — f)*t¥[ B(x))) (by Hoeflding; we have put
f=[B)|E(Y1,(x)) — 1/t
= ([ B(x)]— B@)E(Y1,(1))

< exp(—

< exp(— (¢/2 — )*1*/B(v) G)

Also
P< i Li(ty—[B(r)] = rs/2> < P< Y Ity — Blo) = T8/2>

< exp(— (¢/2)*1%/3B(7))
by Chernoff’s bound. 4)

By (1), (2), (3), and (4) we have

! 1
P( max z I’V;JIJ(T) > ? + 8>

i=1,...,mj=1

< (m + exp(— (/2 — )?7%/34(2))

_ —(e—2f)? npm*2 1im+ 1)

where

I \ven+ 1)
= ([ B() 1= BEIE(Y:,(2) < E(Y,, (1) = (%) |

By the same methods, we also have the corresponding lower bound

P< min Z l — s)
i=1,...mj=1 Tt
< (m+ lexp(—(e/2 — f)*7*/2B)

_ _(B_Zf)l ntm+2 1/tm+1) )
=(m+ UexP( g <(m+2)m+2(m+ 1)!> ) ()
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Next we shall show that Z;':l X;1{(z) is usually relatively near az ™™+ 1) (Recall
that o = a,,, = (m + 1)(n/(m + 2)1)"""* V) We use the device of (a) and (b) again.
Let Z,(r) = X,, where k is the jth positive integer such that I,(f) = 1. Then for any
positive integer r,
(c Y5 10 = then 0 <Y X0yt~ X Z,0) < Y 1(0) —
1fz <, then0<z Zj(t)—z _ X1 (t)<r—z;':11](l)
Therefore for A, B >0,

P< S X002 4+ B)
ji=1
< P(i Zi{t) = A)+P< Z L —r> B>. (6)

=1
Note that B(0})E(Z;(r)) = nP(I(z) = 1)-E(X, ]I (1) = )=t ™m*D and 0 < Z;
<1,so0

j=1

(B
p( Y Zi@) = ale D 4 8/2’>
B
_ p< Y 2,0~ [ B JEE, @)

> wg/2 — [ B)E(Zy(x) — at~™om* 1))>

< exp(— 2(¢/2 — g)*«*/[ B(x) )
(by Hoeflding; we have put g =[ B(r) |E(Z,(t) — at ~™m* D)/
= ([ B@) 1~ B()E(Z,(x))/x)
< exp(— (/2 — g)*22/B(1)). (7)
Also

P( Y Lo -Tpw = as/2>

< P< Z Ii(t) — Bz) > a£/2>

< exp(— (¢/2)*2%/3B(x)) by Chernoff’s bound. 8)
By (1), (6), (7) and (8), we have

P( S X0i(0) = e~ s))

j=1

< 2exp(— (¢/2 — g)?a?/3B(1))

B __(8_2g)2 n[m 1/(m+1)>
”zexP<T(m+ 1)2<(m+2)"‘+2(m+ 1)!> > O
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where

9= (BT~ PO EZ1(0)/2 < E(Z, )/ = (Mymm.

n(m + 2)™
By the same method, we also have the corresponding lower bound
P( > Xt < a(e™mmt D — 8)>
j=1

< 2exp(— (¢/2 — g)**/2B(v))

_ ) 2 m 1/(m+1)
=2e"p<_(8‘sg—)(’"+ 1)2<(m+ z)'"n*lz(m+ 1)!) ) ©

We now find probabilistic bounds on ¥;,,. To find an upper bound, first note that if

max;_ (. .m Z . Wi;I;(t) < 1, then the assignment J; = (t) is feasible in problem
(I1D), so ¥, = Z}.zl XI;(t). Thus, for A >0,
(e) P(V,,, < A) < P(max; - 1!“.,,,,22:1 Wili(ty > 1) + P(Z;le X,I;(t) < A).

In particular, given 0 < e < 1, let t = 1/(1 — ¢),s0 1/t + ¢ = 1. Since t =™+ 1) _ ¢ =
(1 —g)™m+D _ g > 1 — 2¢, we have

P(Vyw < a(1 — 28) < P(V,p, < ot~ ™m+ D _ gy)

£P< max 2”: W ,(r(t))>1>

i=1,....mj=1

P( S X1,(0) < afe oD - g)>

:P( max Z g J(T(t)>1+8>

i=1,....mj=1
P( Y X Ii(x(t)y < ot~ mimr D 8)). (10)
ji=1
To establish the corresponding lower bound ¥,,, note that, by Lemma 2.5, if
min;_ ., ijl Wil(t) > 1, then V,,, < Zj=1 X 1(t). Thus, for 4 >0,
() PV > A) < P(mini—y 30, Wyl < 1) + P, X100 > A).

Givene >0,let t = 1/(1 + ¢),s0 1/t — £ = 1. Since, t ™™V L g=(1 4+ g™tV 1 ¢
< 1+ 2¢ we have

PV > a(1 4 26)) < P(Vpy > aft “™m* D 4 ¢))

SP( min i W; J(r(t))<1>

i=1...mj=1

P< i XI(t(t)) > e ~mim T 4 8))
ji=1
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. - 1
=P min Y Wli(t() <-+¢
L /

\Ni=1,...,mj=1

—
—_
)

~

n
+P< Y X..I..(r(z))>c/,(r'"/""“’+g)>,

Theorem 2.2 now follows from (5), (9) and (10).

The proof of Theorem 2.4 is a bit easier. It is known that, for any positive integer r,
PWi,+ - + W, <1)=1/rl, so we have P(},,>r) < P( there exists j, < j,
< .- <j, such that W; + - +W; <1l for i=1...m<)A/r)"<
A (r)™ < n/(rl)71o8" = g7 7lee™) Thys if r is chosen large enough that ylog(r!)
>r+ 1, then ) *  P(V,, >r) < o0, as required.
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