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Abstract 

We provide new results on asymptotic values for the random knapsack problem. For a very general 

model in which the parameters are determined by a rather arbitrary joint distribution, we compute 

the rate of growth as the number of objects increases, the number of constraints being fixed. For 
a particular model, we find strong bounds on the asymptotic value as the numbers of objects and 

constraints increase together. 

This paper is a continuation of the work in [3,4] on estimating the values of 

random knapsack problems with many decision variables. It consists of two indepen- 

dent parts. In Section 1, we show how to estimate the growth rate of the value of 

a random knapsack when the parameters are determined by a very general class of 

joint distributions. In Section 2, we concentrate on a particular random knapsack 

model, and give rather sharp new bounds on its asymptotic value. In more detail: 

In Section 1, we first settle a question left open in [3] related to a single-constraint 

random knapsack problem, then apply this new result to a multiconstraint problem. 

Consider the problem 

V, = max i XjSj, 
j= 1 

subject to i ~~j I K, djc (03 l} 
j=l 

where the random variable pairs ( Wj, Xi) are independent, identically distributed 

draws from any one of a very wide class of joint distributions F,,. (In particular, we 

do not assume that W and X are independent.) For t > 0, let F(t) = E( W 1 ix t rW;) 

and G(t) = E(X 1 ix 2 tw;). 
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In [3], we proved that V, is asymptotically equal to nG 0 Fm ‘(K/n) as n + cc. 

However, to carry out this proof we needed a seemingly unnatural extra hypothesis on 

F wx> namely that the function G 0 F ’ is concave on some interval (0, t). In Theo- 

rem 1.2, we prove this hypothesis. As an application of Theorem 1.2, we obtain 

(Theorem 1.3) nice bounds on the asymptotic growth rate of the m-constraint 

extension of this general problem, and show (Theorem 1.4) that these bounds are 

essentially the best possible. 

In Section 2, we extend and improve our results in [4] on a particular random 

knapsack model. Consider the problem 

V,,= max i Xjfij, 
j=l 

subject to i ~jSj~ 1 for i= l,...,m, 6jE{O,l) 
j= 1 

where the random variables Xi, Fj are mutually independent, and all uniformly 

distributed on the interval (0,l). 

In [4], we showed that, for fixed m, Vmn/c.cmn converges to 1 in probability as n --f co, 

where a,,,, = (m + l)(n/(m + 2)!)li@+ l). In Theorem 2.2, we obtain a rather sharp 

bound on P(l( Vm,,/clm,) - 11 > E), which will allow us to infer (Corollary 2.3) 

(1) Kn/%l, converges to 1 completely (so, a fortiori, almost surely), and 

(2) complete convergence holds even if the number of constraints m is allowed to 

grow with n, provided m = m, I (logn)” for some v] < 1. 

This bound on the growth rate of m is essentially best possible, as we show (Theo- 

rem 2.4) that if m, 2 ylog n for some ‘/ > 0, then V,, is almost surely uniformly 

bounded. 

We do not assume familiarity with [3,4]. The few results from those papers needed 

here are stated in full. 

I would like to thank the referee for several most helpful suggestions. 

1. 

We first consider the single-constraint random knapsack problem 

V, = max i Xj6j, 
i= 1 

subject to i ~~j I K, 6jE{O, 1). (I) 
j= 1 

We assume that the pairs (Wj, Xj) are independent draws from a joint distribution 

Fwx which satisfies the properties: W > 0,O < X < 1, and the random variable Xl W 



is absolutely continuous with density,fx:&t) which is positive for all sufficiently large 

t. Define, for t > 0, 

In [l], we proved 

Theorem 1.1. P(II/,/(nGcFml(K/n)) - 11 I o(l))+ 1 as n+ Y;). 

As usual, o( 1) denotes a sequence which converges to 0. To carry out this proof, we 

required the additional hypothesis (called (A2) in [3]) that the function G 0 F-’ is 

concave (that is, lies above its chords) on the interval (0, tI), for some tI > 0. Our first 

task here is to prove hypothesis (A2). 

Theorem 1.2. There exists t, > 0 such that d/dt(G p F- l(t)) = F-‘(t) for 0 < t < tI. 

In particular, the function G 3 Fm ‘(t) is concave on (0, t,). 

Proof. It is clear from our hypotheses that F(t) decreases monotonically to 0 and is 

continuous for sufficiently large t. Thus there exists tl such that F’(t) exists 

and is monotone decreasing on (0, tI). Therefore once we have shown that 

d/dt(G 2 F-‘(t)) = F’(t) for t in (0, tl), it will follow that G 0 Fm l(t) is concave there. 

To this end, for 0 < t < tl let A, denote the area of the set {(x, y)~lR*: x 2 0 and 

0 < y I min{t,F(x)} ). By ordinary integration, 

A, = i F-‘(y)dy = tF-l(t) + 7 F(x)dx. (*) 
0 F- ’ (t) 

Now, by Fubini’s theorem, jT_l,f) F(x) dx = E( ~~_j,,j WI jx 2 zw) dx). For fixed (I), 

j Wl ;xt.rw;dx = 
W($-- F-‘(t)), if X 2 F-‘(t) W, 

0, otherwise. F-‘(f) 

Therefore 

E 7 Wl 
F-‘(r) 

;x>sw)dx 

= -Wl~x~~-~ct,w;)- F-‘(t)E(Wl(x~F~l(t)w)) 

= G’:Fml(t) - tF_‘(t). 

Thus by ( * ) j: F- ’ (y) dy = G 0 F l(t). By the fundamental theorem of calculus, the 

proof of the theorem is complete. 0 
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We now show how Theorems 1.1 and 1.2 can be applied to a multiconstraint 

knapsack problem. Consider the problem 

V, = max i XjSj, 
j= 1 

subject to f. ~jSj I 1 for i= 1,2 ,..., m, (sjE{O,l}. (II) 
j= 1 

We shall compute to within a multiplicative constant the asymptotic value of V, as 

n + co, for fixed m. 

Let 

q = A(cc;’ + W2j + ..’ + W,j) 

and 

& = lllaX{ Wlj, Wzj, , Wmj}. 

Consider the two single-constraint problems 

V, = max i Xj~j, 
j=l 

subject to i F&dj I 1, sjE {O, l}, 
j= 1 

(II*) 

and 
n 

-V, = max C Xj6j, 
j= 1 

n 

subject to C WjSj I 1, 6j E (0, 1). (II*) 
j= 1 

It is easy to see that _V, I V, I c; indeed, any (6,) . . . ,6,) feasible in (II,) will be 

feasible in (II), and any (6,) ,a,,) feasible in (II) will be feasible in (II*). This turns 

out to be somewhat useful because _V, and V, exhibit the same asymptotic growth rate 

under the following rather weak hypotheses: The (m + 1)-tuples (Wlj, , Wmj, Xj) are 

independent draws from an absolutely continuous joint distribution Fw,,..., W,,X such 

that K ~0 for i = l,... ,m, 0 < X < 1, and such that the density f~;&t) of the 

random variable X/W is positive for all large enough t. As before, for t > 0 we let 

F(t) = E(@‘l(,.,,;) and G(t) = E(xl~~~~w;) 

and similarly define E and G. Then we have 

Theorem 1.3. P(nGoE-‘(l/n)(l - o(1)) I V, 5 riGoF_‘(l/n)(l + o(l)))+ 1 as 

n + a3. This computes the asymptotic value of V, to within a multiplicative constant, 

because lim,, E ccF~‘(l/n)/G~E-‘(l/n) I m. 



Proof. By Theorem 1.1, 
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P V,InCoF-’ 
( 

($1 + o(L)))+ 1 

and 

and since -V, I V, I c, the first part of Theorem 1.3 is proved. 

TO prove the second part, first note that ~j I m @ for allj, so c < max cJn= 1 Xjdj, 

subject to I;= 1 @‘j:Sj I m, 6jE (0, 1). Thus, by another use of Theorem 1.1, 

Note that G 0 Em ‘(0) = G(co) = 0. Using Theorem 1.2, we have 

n n 

GoE-’ 1 0 - 1 n IGoE-’ 1 + 
(m 

0 - 
1) 

n l/n ‘ii 

(because G 0 F- ’ is concave) 

1 
CmG0E-r - 0 n 

so in fact P(c I mnGoE~‘(l/n)(l + o(l)))+ 1. But since P(c 2 nC?°F-‘(l/n) 

x (1 - o(1))) -+ 1 as n + CD, the proof of the theorem is complete. 0 

We conclude this section by observing that the bounds on V, in Theorem 1.3 are in 

a sense best possible; that is, there exists a class of joint distributions on 

(W,, . . , W,, X) under which V, is asymptotic to nG0 F- '(l/n), and another class of 

joint distributions under which V, is asymptotic to nG 0 E- ‘(l/n). 

Theorem 1.4. (a) Zf WI 2 W,,..., W, as., then P(V, I nGoE_‘(l/n)(l + o(l)))+ 1. 

(b) 1.X, 4, . . . , W, are mutually independent and Wl , . . , W, are identically distrih- 

uted, then P(V, 2 nGoF~‘(l/n)(l -o(l)))+ 1. 

Proof. Part (a) follows immediately from Theorem 1.1 once we observe that, under the 

hypotheses of (a), V, = -V,. 
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The proof of(b) seems to require repetition of part of the proof of [3, Theorem 11. 

By [3, Lemma 21, there exists a sequence {tnj of real numbers such that 

nF(t,) < 1 for all n, and nF(t,,)+ 1, t,(l - nF(t,))2 --f 0, 

C(Q+ cc and 
( 

C(t,)/nC~F-’ ; + 1 
( 1) 

as n+ m. (*) 

Let SJ = l(x,>g;. Since the W’s are i.i.d., we have, for i = 1, ,m, 

and 

Var 
(j=l 1 

mnF(t,) 
i K~SJ I nE(WfIS;) I yE(W,,B;) = 7. 

n n 

(The second inequality holds because, on {Xl 2 t, WI 11, 1 2 XI 2 t, (% 1 + ... 

+ W,, )/m, so W, I I m/L) 
Now, by Chebyshev’s inequality, 

P ( i 14$jsy>l 1 ! = P i M/ii6; - nF(t,) > 1 - nF(t,) 
j= 1 j=l 1 

mnF(t,) 

’ t,(l - nF(t,))* 

By (*) we have P((li;,hi, . ...6,“) is feasible in (II))+ 1 as n+ x and SO 

-+ 1 as n+ 8~. 

Now 

and 

E = nC(t,) 

Var 5 nE(Xf61) < nE(Xldl) = nC(tn), 

so by another use of Chebyshev’s inequality, 

j$, X,6; < nG(t,)(l - E,) I l/(nG(t,)$+ 0, 

where we take E, to be, say, (nC(t,))-“3. By (**) we have 

P(v, 2 nG(t,)(l - o(l)))-+ 1, 

and by the last part of ( *), the proof of(b) is complete. 0 

(**) 
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2. 

There seems to have been increasing interest in recent years in providing tighter 

bounds on the values of random combinatorial problems. In this section we shall do 

this for a particular random knapsack model. 

For the rest of this paper we shall consider the problem 

V,, = max i Xj6j, 
j=l 

subject to i KjSj I 1 for i= 1,2 )..., m,6jE{O,l} (III) 
j= 1 

where the random variables Xj and wj are mutually independent, and all uniformly 

distributed on the interval (0,l). 

Let SI,, = (m + l)(n/(m + 2)!)t’(m+1). In [4], we showed that, for fixed m, I/~,,/cI,, 

converges to 1 in probability, i.e., 

Theorem 2.1. For jixed m, P( ( Vmn/~,,,, - 11 I o(1)) -+ 1 as n --t X. 

(In fact, this is an instance of the present Theorem 1.4.) We shall improve this as 

follows: 

Theorem 2.2. There exist constants h and K such that,,for all m and n, 

Corollary 2.3. Suppose that,for some ye < 1, m = m, < (logn)” for all suJficiently large 

n. Then LJ’,,,,/~,,~ converges to 1 completely, i.e., c,“= 1 P( 1 Vmn/~,,, - 11 > E) < CC jtir all 

c > 0. In particular, this holds if m is jxed. 

Furthermore, the bound on the growth of m, in Corollary 2.3 is essentially best 

possible. We have 

Theorem 2.4. IL fbr some y > 0, m = m, 2 y log n for all sufjiciently large n, then for 

some r > 0, 1:‘ 1 P( Vmn > r) < m. In particular, V,, is a.s. uniformly bounded. 

In the proof of Theorem 2.2, we shall repeatedly use two standard probabilistic 

bounds. 

Chernoff’s bounds (cf. Cl]). Let Y be a binomial random variable, with parameters 

n and p. If E > 0, then 

P( Y - np I - E) I exp( - e2/2np) 
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and 

P( Y - np 2 8) 5 exp( - .5’/3np). 

Hoeffding’s bound (cf. [2]). Suppose that Y,, . . . , Y, are independent random vari- 

ables each with mean p such that a I Yi I b for i = 1,. , n. Then 

P i$l X - np 2 F I exp( - 2&‘/n(b - a)‘). 

We also require the following lemma from [4]: 

Lemma 2.5. Let t 1, . . , t, be positive numbers. Suppose that 

i WjljX,Zt,lV,,+ +f,W,,) 2 1 

j= 1 

,for i = l,..., m. Then 

We now proceed to prove Theorem 2.2. For the remainder of this proof, let m and 

n be fixed. 

Let 1j(f) = l;x,> r(w,,+ + w,,);. A computation shows that, for t 2 1, 

P(Z,(t) = 1) = 
1 

(m + l)! tm’ 

and 

E(W,,I,(t)) = 
1 

(m + 2)!t”+” 

1 
E(X1 II(t)) = 

(m + 2)m! tm’ 

(1) 

Let 5 = t(t) = (nt/(m + 2)!)“(“‘+‘). 5 was chosen so that nE( WI 1 I(t)) = l/t; we shall 

show that, in fact, ‘& 1 ~jZj(Z) is usually near l/t. A direct use of Hoeffding’s bound 

seems not to work, so we proceed somewhat indirectly. 

Let Fj(t) = W&, where k is the jth positive integer with the property that Zk(t) = 1. 

We have, for any positive integer r, 

(a) if I;= 1 [j(t) 2 Y, then 0 I CJ= 1 WjZj(t) - Cy= 1 Kj(t) I (I;= 1 Zj(t) - r)/t; 

(b) if EyEI Zj(t) 5 Y, then 0 I Cl= 1 Kj(t) - Cr= 1 KjZj(t) I (r - cy= 1 Zj(t))/t. 
(a) follows from the observation that EYE 1 Zj(t) - r counts the number of j’s among 

1, . . , n which satisfy Zj(t) = 1, excluding the first r such j’s, and EYE 1 &jZj(t) - 

Cl=1 ijO’ h Y f IS t e sum of Kj over those samej’s. But if Zj(t) = 1, then 1 2 Xj 2 t Kj, SO 

wj I l/t. The proof of(b) is similar. From (a) and (b) we have, for A, B > 0, 

P 

i = I,...,m j= 1 

i [j(t) - r 2 Bt . 

j=l 

(2) 



Now let J(t) = nP(l,(t) = 1) (= the expected number ofj’s among 1,. , n such that 

I,(t) = 1). Note that P(t)E(~j(z)) = ~‘(I,(T) = l).E(W,,ll,(T) = 1) = nE(Wl111(~)) 
= l/t. Also note that 0 5 yij(~) < l/z. Therefore 

( 
rmi 

P C Yij(Z) 2 f + E/2 
j=l ) 

Also 

I exp(- 2(&/2 -f)2z2/[fl(z)l) (by Hoeffding; we have put 

.f= rmlE(Yll(4) - l/t 
= (rml - b(w( 6 1(z)) 

5 exp(- (42 -.f)2z2/fl(r)). 

j$l Ij(T) - rb(T)l 2 T&/2 jil [j(T) - p(t) 2 T&/2 

By (l), (2), (3), and (4) we have 

2 eXp( - (E/2)‘T2/3fi(T)) 

by Chernoff’s bound. 

P 
( 

I =yT,y ,~ j$l wjrkT) 2 f + 8, 
. / 

5 (WI + l)eXp( - (E/2 -f)*T*/jfl(T)) 

= (m + l)exp( -(i:~2’)2((m+ 2;“1:‘:(i + l)!)l”nlil’), 

where 

f= (rbcT)l - o(T))E( yl 1 (T)) I Et yI I(T)) = 
(,~;z,++‘:iY)‘:‘“’ 1’. 

By the same methods, we also have the corresponding lower bound 

P 
( i =,.,,,, nlj$l ~jlj(‘)+) 

min 

I (m + l)exp( - (F/2 -f)‘T2/2b) 

= (m + I)rxp( -(‘i 21)2((M + 2~~~~(~ + l)l)l”m+l’). 

(3) 

(4) 

(9 

(5’) 
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Next we shall show that cy= 1 Xjlj(r) is usually relatively near ztmm/@‘+ I). (Recall 
that SI = CI,, = (m + l)(n/(m + 2)!)l’(,+ “.) w e use the device of (a) and (b) again. 

Let Z,(t) = X,, where k is thejth positive integer such that Ik(t) = 1. Then for any 

positive integer r, 

(c) if Iin= 1 Ij(t) 2 Y, th en 0 I Iin= 1 xjzj(t) - Cl= 1 Zj(t) I cy= 1 fj(t) - r; 

(d) if cy= 1 Ij(t) I r, then 0 I I;= 1 zj(t) - C’T= 1 XjIj(t) I r - J$ 1 rj(t). 
Therefore for A, B > 0, 

! 
n 

P 1 XjIj(t) 2 A + B 
j=l 

I P f Zj(t) 2 A ( + P i Ij(t) - r 2 B (6) 
j=l 1 ( j= 1 > 

Note that fl(z)E(Zj(r)) = uP(I,(z) = l).E(Xt /II(T) = 1) = ~t-m”m+l) and 0 I Zj 

i l,so 

rmi 
P 

( 
C Zj(7) 2 M(t~m”m+” + E/2) 

j= 1 1 

rmi 
j51 zj(T) - rmwd7)) 

2 42 - rp(T)lE(zl(7) - at- 
mi(m+ 1))) 

Also 

I ew(- w/2 - dwrmi) 
(by Hoeffding; we have put y = rp(7)1E(Z,(7) - CC~!(~+ ‘))/a 

= (ml - ~(7))~(z~(7))b) 

I exp( - (42 - g)*r*/fi(z)). (7) 

I p f Zj(7) - P(7) 2 t&/2 
j= 1 

I exP(- (~/2)~e’/3P(z)) by Chernoff’s bound. 03) 

By (1X (6) (7) and (S), we have 

P 
( 

f XjIj(T) 2 ~l(t-“‘(~+ ‘) + E) 
j= 1 > 

I 2exp( - (s/2 - g)2r2/3fi(T)) 

l/(m+l) 

= 2exp ( - (E - W(* + 1)2 
ntm 

12 ( (m + 2)“+*(m + I)! > > ’ 
(9) 
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where 

By the same method, we also have the corresponding lower bound 

P ( f: XjZj(Z) 5 CL(f-m’(m+l) - E) 
j=l > 

5 2 exp( - (42 - g)‘a2/2fi(r)) 

= 2exp 
- (6 - w2(m + 1j2 ntm 

8 (m + 2)“+*(m + l)! 
(9’) 

We now find probabilistic bounds on V,,. To find an upper bound, first note that if 

max, = I,. ,,, EyEI wjlj(t) I 1, then the assignment 6j = Zj(t) is feasible in problem 

(III), SO V’,, 2 I;= 1 XjZj(t). Thus, for A > 0, 

(e) P(K, < A) i P(maxi = I,... ,m I;= 1 Kjrj(t) > 1) + P( I;= 1 xjZj(t) < A). 

In particular, given 0 < a < 1, let t = l/(1 - a), so l/t + 8 = I. Since t-m’(m+ l) - E = 
(1 - q/Cm+ 1) _ E 2 1 - 2c, we have 

P(V,, < cc(l - 28)) I P(V,, < ~~(t-m’(m+i) - Ejj 

IP 
( 

max i ~jij(s(t)) > 1 
i= I,...,m j=I 1 

+ P 
( 

i XjZj(Z(l)) < a(tcm’(m+l) - E) 
j=l ) 

= P 

( 
i =y”x,,, j$l KjlAT(t)) ’ f + ‘:) 

+ P 
( 

f: XjZj(T(t)) < tl(t-m’(m+l) - E) 
1 j=l 

(10) 

To establish the corresponding lower bound V,,, note that, by Lemma 2.5, if 

mini = I, ,m CJ= 1 Wjlj(t) 2 1, th en V,, I Cl= 1 XjZj(t). Thus, for A > 0, 

(f) P( V,, > A) < P(mini = I,....m I;= * Kjzj(t) < l) + p( Cr= 1 xjzj(t) > A). 

Given E > 0, let t = l/(1 + E), so l/t - e = 1. Since, t~““(~+l) + E = (1 + ~)~‘(m+ 1) + c 

I 1 + 2c, we have 

P(K, > cc(l + 24) I P(V,, > C((t-m’(m+l’ + E)) 

IP 
( 

i =yr m j$l Kjlj(t(t)) < l) 
, , 

+ P 
( 

i xjzj(z(t)) > Cl(t-m’(m+” + 8) 
j=l ) 
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= P min 
i= 

i ~jZj(s(t)) < f + & 

l,...,m j=l 

+ P 
( 

i XjZj(T(Q) > C((t-m’(m+l) +e) . 
> 

(10’) 
j=l 

Theorem 2.2 now follows from (5), (9) and (10). 

The proof of Theorem 2.4 is a bit easier. It is known that, for any positive integer r, 

P( WI, + ... + WI, I 1) = l/r!, so we have P(V,, 2 r) I P( there exists j, < j, 

< ... <j, such that Wj, + "' + wj, I 1 for i= 1 , . . ..m) I (:)(1/r!)” I 
d/(r!)” 2 nr/(r!)Y’ogn = nr~r’og(r!). Thus if r is chosen large enough that ylog(r!) 

> r + 1, then c,“= 1 P(V,, 2 r) < co, as required. 
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