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The transverse vibration of an axially accelerating string is investigated. The equation
of motion is developed using Hamilton's principle. The resulting partial differential
equations are discretized using Galerkin's method. Assuming the axial velocity to be
periodic, a stability analysis is performed using Floguet theory. One-, two-, three-, four-,
six- and eight-term series approximations are considered in the Galerkin's method. The
one-term approximation leads to a Mathieu equation, the solution of which is well known.
The numerical results for one term are compared with the analytical solution for the
Mathieu equation, and they are in full agreement. The two-term approximation leads to
gyroscopically coupled equations, and the solutions differ significantly from that of the
one-lerm approximation, whereas the three-term approximation solutions look similar to
the one-term approximation solutions. The analysis is carried out for higher order even
approximations and the solutions are in qualitative agreement. The two- and four-term
approximation solutions are compared with the analytical results from Hsu’s method, and
are in reasonable agreement, The results show that instabilities occur at much higher

amplitudes and frequencies of the periodic axial velocity than that of typical devices such
as tape machines and band saws.

I. INTRODUCTION

Many technological devices involve the transverse vibratien of axially moving materials,
High speed fiber winding, magnetic tape systems, thread lines, band saw blades, belts
and pipes transporting fluids all belong to this class. Numerous researchers have examined
the dynamic response of such systems. The early research in this area includes studies
by Skutch [1] and Sack [2). The work done up to 1978 has been reviewed by Ulsoy,
Mote and Szymani [3)], and a more recent review is given by Wickert and Mote [4]. Basic
characteristics of such devices include a transport velocity dependent natural frequency
spectrum, and the existence of a critical speed at which a divergence instability occurs [3].
Among the studies reviewed in reference [3] are several investigations of parametric
instability due to axial tension variations and periodic edge loads in strings and bands
moving axially at constant velocity. More recently, Ulsoy and Mote [5] have used an axially
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moving plate model to investigate the role of in-plane stresses in the transverse vibration
of band saw blades. The coupled vibrations of the belt and tensioner in automotive
accessory drive systems has also been experimentally and analytically investigated [6].
Chonan [7] studied the steady state response of the axially moving thick beam subjected
to a concentrated constant lateral force, Recently, Wickert and Mote [8] showed that the
total mechanical energy associated with an axially moving string or beam that travels
between two supports is not constant, but varies at twice the frequency of free oscillations.
The same authors [9] examined an axiallly moving monocable ropeway with attached
masses. They also presented a modal analysis for the axially moving string and the
travelling beam [10],

In all these works, the axial transport velocity was taken to be constant. However,
many systems are subject to accelerations and decelerations, which in fact may seriously
change the vibration behaviour. The equation of motion for the transverse vibration of
an axially accelerating string was derived by Miranker [11], but no solution was presented.
In the present study, the case in which velocity is not constant but a prescribed function
of time is treated. The partial differential equation governing the motion are derived.
Discretization of the partial differential equation by Galerkin’s method gives a system of
n ordinary differential equations. In the present analysis, up to eight-term approximations
based upon the eigenfunctions of the stationary string are considered (i.e.,
n=1,23,4,6,8). The time dependent axial velocity function v(¢) is assumed to be
sinusoidal, A stability analysis for each approximation is carried out using Floquet theory.
Taking only on¢ term in Galerkin's approximation results in the standard Mathieu
equation, the sclution of which is well known. Taking two terms, the resulting two
ordinary differential equations are gyroscopically coupled and periodic. The two-term
approximation and one-term approximation solutions differ greatly, whereas three-term
approximation solutions are similar to those of the one-term approximation. The
even-term approximations capture the gyroscopic coupling and represent the physics of
the system more accurately. Thus, the four-, six- and eight-term approximations are
considered. While a qualitative agreement is evident among the even-term approximations,
increasing the number of terms in the approximation improves the quantitative results.
Finally, the two-term and four-term Floquet solutions are compared to the anaiytical
solution presented in reference [12] and show reasonable agreement. The results show that
instabilities occur for sinusoidal transport velocities when the amplitude and frequency of
the velocity become large.

2. EQUATIONS OF MOTION

The physical model considered, and shown in Figure 1, is a continuous string or strip
passing over two pulleys at a transport velocity v(t). The velocity i1s not constant, but is
assumed to be a prescribed function of time.
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Figure 1. Co-ordinates and geometry,
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According to Hamilton's principle [13],

5'[”(7;1/).:1::0, )

where J§ denotes the variation. The kinetic energy T is
A L
1"'=97J~ (¥ +oy")* + 02} dx, Q)
0

where p is the density, A is the cross-sectional area, L is the length, y is the transverse
displacement and v is the axial velocity of the string, Note that ( - ) denotes the derivative
with respect to time and ( )’ denotes the derivative with respect to the spatial variable x.
The potential energy ¥V is

L
V=J [Pe+%ez+FA]dx, &)
0
where P is the tension in the string, e represents the strain, E is Young’s modulus, F is
an arbitrary driving force and 4 is the total longitudinal displacement of the system.
The first term in the integral in equation (3) is due to the tension force P, the second term
is due to axial deformation and the third term is the work done by the arbitrary driving
force F. It is assumed that the tension force P is large and that the flexural rigidity of the
string or strip is negligibly small.
The strain can be written as [14]

e=(1+()Vy-1, 4)
and inserting equatton (4) into equation (3), then equations (3} and (2) into equation (1),

one obtains

n L _oA
d J. J {_2— [P+ 290y + 0y ¥ + 03] — P[(1 + (3" V) — 1]
) Q
E

—TA[I + (P +1-21 +(y')2)”2]—FA}dx dt =0. (5)

Taking the variation with respect to », 4 and p, rearranging the terms and writing 64
instead of v, the expression in equation (5) becomes

ta L .
j J. {PA[ﬁy’ +o(y'V + 0184 — F84 + pA[(y + vy")8y + (Jv + v?y")oy"]
n Jo

=[Py’ (L +(yPY? — Edy (1 - 1/(1 + (y')z)”"')léJf'} dx dr =0. (6)

Now applying integration by parts to the first two terms in the integral in equation {6),
equating to zero, and eliminating the higher order terms, one obtains the equation

F = pAv. N

The driving force F(t) is arbitrary, so v(z) is also arbitrary, and equation (7) does not
restrict the choice of the transport velocity.

Taking the remaining terms in the integral in equation (6), applying integration by parts,
equating to zero, and eliminating the higher order terms, the equation of transverse
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vibration is obtained as
pA(J + 6y + 209") + (pAv> — P)y" = 0. (8)

This linear equation of motion for the transverse vibration of the axially moving string
is valid for small displacements y, and for large values of P, the tension force. Equation
(8) has also been presented in reference [11]. However, its solution has not been studied,
and that will be the goal of the following analysis.

3. SOLUTION METHODS

Galerkin’s method [14] is applied to solve equation (8). The trial function is chosen to
be of the form,

y(x,t)= ) q{t) sin (inx /L), ®
i=1
where sin (izx/L) is the ith eigenfunction of the simply supported stationary string, and
the ¢,(r) are generalized displacements. Taking the appropriate derivatives and substituting
into equation (8), one obtains the residual

inx
R = A sin — A —
Z: {p q,sm +2p qu,cos L +pAqu,cos T
. N2 .
+ (P — pdv?) (%) a sin%}. (10)
Application of Galerkin’s method requires that
L
.[ Rwi{x)dx =0, j=12,..,n (11)
0

The weighting functions w;(x) are also the stationary string eigenfunctions [15]
w;(x) =sin (jrx/L). (12)

Inserting equations (10) and (12) into equation (11} and integrating yields a sct of
ordinary differential equations of the form :

Mi+Cq+Kq=0, (13)
where the elements of the matrices in equation (13) are defined as
my = J: (sm % smﬂ%x) dx = {(1)1/2, :i i :j: (14)
Liomiv  imx | jnx 0 ’ ?f ! =J L
c,~,~=L (TCOST L)dx—{ L ?f!'?‘-'j‘,l‘-l-].=2n, (15)
dip[(j* —i%), fiji+j=2n+1,

L P . .
k,.-=L {(H—vz)(%) sm!L smj—TIr‘—x+% os? sm’E} dx

{(P/(M) —v)Gr/LYL2,  ili=),

0 . ifi#j, i+j=2, (16)
2605 /(j2 = i%) . ifi#ji+j=2n+1
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Taking the first term in the series solution (9), equation (13) reduces to a scalar ordinary
differential equation:

. (P r’
‘It*‘(;;*vz)Pfh-——O- (17)

Taking two terms in the series solution (9), equation (13) reduces to a set of coupled
ordinary differential equations

P S\ 7t B
voat [0 -2 (_A‘”)E 3L
[ ][?‘]+ 60 3L [?‘]+ e ) [q‘]=0.
0 1] 4 EYA 0 UE E i _p? 4_”_ 9z
3L pA L’
(13)
Higher order approximate equations can also be written by evaluating equations
(14)-(16) in a similar manner. These approximate solutions employ admissible functions
and will converge to the exact solution as the number of terms is increased. Equation (18)
introduces features of the problem which are not evident in the one-term approximation
in equation (17); namely, the skew symmetric gyroscopic matrix multiplying the general-
ized velocities, and the skew symmetric coupling terms in the stiffness matrix. The
gyroscopic coupling terms are known to be significant in the constant axial velocity case
{3]. Note also that both the gyroscopic and stiffness matrices contain time varying
parameters due to the presence of the velocity v(r) and acceleration #(¢). Higher order,
even-lerm approximations share common properties with that of the two-term approxi-
mation in equation (18).

4, RESULTS AND DISCUSSION

The solutions of equations (17) and (18) corresponding to one- and two-term approxi-
mations, respectively, as well as the higher order approximations, will be presented
here for a particular velocity function »(¢). Consider the system to have a variation of
velocity that increases from start-up, reaching a maximum and then decreasing to zero.
This is the ideal case in which acceleration is constant and followed by an equal constant
deceleration phase. However, taking the velocity as a sine function and the acceleration
as a cosine function will be more realistic, since abrupt changes in velocity and acceleration
are not typically observed in physical systems. Therefore, the axial velocity will be written
here as

v(t) =y, sin wyd, (19}

where v, is the axial velocity amplitude and w, is the frequency of axial velocity variation.

The tension force in the band or string varies with velocity according to the following
relation [16]:

P = Py + npAv?, (20)

where P, is the initial tension and 0 <5 < 1. One can also define a pulley support
parameter k = | — », the value of which depends on the pulley support system. In constant
displacement mechanisms, such as tapes, x can be taken as 1 (i.c., in Figure 1, & = o).
In constant tension mechanisms, ¥ =0 (i.e., in Figure 1, k = 0). See reference [16] for a
derivation of the pulley support parameters.
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4,1. ONE-TERM APPROXIMATION

Inserting equation (19) and (20) into equation (17) and using ¥ = 1 —n leads to

. P, . n?
q,+ (p—; — kv sin? coot)?q, =0

Using the trigonometric identity

sin? @yt = (1 — cos 2w, 1)/2

and defining " = wy¢ yiclds

d*q, 2P, n? 2xvin? ,
F7e) + {(;Z — Kv} ol + FWEYE cos2t’y g, =0.

Comparing equation (23) to the standard Mathieu equation [17]

d2Q1
dr”?

+ (8 4+ 2¢ cos 2t g, = 0,

one can define

2P, n? kvin?
5=(0 2} T i Ly
(pA "”") il T it

21

(22)

(23)

(29)

(25)

The well known solution of the Mathieu equation (e.g., reference [17]} is presented for
convenience here in the form of a Strutt diagram in Figure 2. The solution leads to stability
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Figure 2. Mathieu stability (shaded) and instability areas (from reference [17]). Floquet results for unstable

points are indicated on the graphs as points.
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Figure 3. & vs. v, for specific @, values (indicated on the curves).

and instability regions, where the shaded areas in Figure 2 represent the stable regions.
The aim, therefore, in design is to ensure operation in the stable region,

A computer code, valid for any n-term approximation, was developed to integrate the
equations over one period by an adaptive step size Runge-Kutta subroutine, calculate
the monodromy matrix and then obtain the eigenvalues or Floquet multipliers of the
system [18]. Numerical calculations are performed in the interval 0 < v, <100 and
0 < wy < 50, and yield the unstable points indicated by the open circles on Figure 2.
Although most of the points lie outside the region shown in the plot, the ones inside
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Figure 4. ¢ vs. v, for specific e, values (indicated on the curves).
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TapLE |

Standard parameter values used

Parameter Standard value Unit
P, 76-22 N
p 7754-0 kg/m?
A 0-5202 x 10* m?
K 022
L 0-3681 m

show full agreement with the analytical results. This is the case because a small area
in the vy~w, plane is mapped to a very large area in the §—¢ plane, thereby making
the solutions highly sensitive to the given v, and w, values. The relations between &, & and
vy, @, can be more casily seen in Figures 3 and 4. In all numerical calculations, the
parameters for a table top band saw, as given in reference [5] and summarized in Table 1,
were used,

Examining the definitions of & and ¢ from equation (25), one sees that P, and o, are
important parameters influencing § and ¢. The parameter v, appears in the expressions for
both é and e; increasing v, increases & and decreases 8. Thus, one concludes that the
possibility of instability is greater at high speeds. P, influences & only, and increasing P,
increases & without any change in &. Thus, increasing P, may be useful for stability. The
constant x is another parameter which alters the magnitude of 5 and ¢ and, as discussed
previously, depends on the pulley support configuration.

4.2. HIGHER ORDER APPROXIMATIONS

For higher order approximations, solutions are obtained using the same computer code
described previously. The program calculates the monodromy matrix and finds the
magnitudes of the eigenvalues of the matrix. If all the magnitudes of eigenvalues are less
than 1, the solutions are stable; if all are equal to 1, the solutions are periodic and bounded;
and if at least one of them is greater than 1, the system is unstable [18]. For even
approximations, if 4 is an eigenvalue then 1/4 is also an eigenvalue. Therefore, bounded
or stable solutions are obtained only if all the magnitudes of eigenvalues are equal to 1,
in agreement with reference [19]. As in the case of a one-term approximation, this is not
true for the three-term approximation. The one- and three-term approximation solutions
look qualitatively similar, whereas the even-term approximations differ significantly from
the odd-term approximations. For a detailed discussion of parametric stability, the reader
is referred to references [20, 21].

The program was also checked for the two- and four-term approximations
against the known constant velocity solutions given in reference [22], and is in full
agreement,

Even approximations are expected to be better in modelling the physical system,
since they lead to gyroscopically coupled terms; preliminary calculations were first
performed for n =2,4,6 and 8. The results are displayed in the v—w, plane for 1250
points in the intervals 0 < v, < 100, 0 < w2, < 100 and 10 < w, < 50 with an increment of
2 for each parameter. The results show that all approximations agree that the critical
instability region is at v, > 70, w, > 10. Since 100 for », and 50 for e, were considered
as the maximum values, the region of interest becomes 70 € vy £ 50. For this region a
step size of 1 is chosen, and the calculations are repeated for all even approximations
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Figure 5. Two-term approximation stable and unstable points in the vy—w, plane (all intersection points
without a label indicate stable points, wheteas circled ones indicate unstable points).

for 1271 points. The combined results are shown in Figures 5-8. In these figures, all
intersection points are stable except the points marked with an open circle, which are
unstable. The finer grid region is shown within the coarse grid for convenience. Although
agreement between the n =2,4,6 and 8 approximations in the coarse grid region is
evident, this is not the case for the finer grid region. As the number of terms in the
approximation is increased, one obtains more unstable points and at lower frequencies.
This trend is in agreement with the analytical solution presented in the next section.
As one increases the number of terms, the unstable points tend to cluster, and
represent a better defined instability region. However, there are some disjointed points
even in the eight-term approximation. This happens because the equations are highly
sensitive to the v, and w, values and, as a consequence, a small area in the vg—w, plane
is mapped into a very large area in the §—¢ plane. To better identify the instability
boundaries, a very fine grid of step size 02 is taken for both parameters in the intervals
90 < vy <95 and 45 € w; < 50 for the eight-term approximation. The result is shown in
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Figure 6. Four-term approximation stable and unstable points in the vy—w, plane {all intersection points
without a label indicate stable points, whereas circled ones indicate unstable points).

Figure 9, where it is evident that the equations are highly sensitive to the v, and w,
parameters.

For some unstable points, the Floquet solutions were checked using time inte-
gration results and they are in full agreement. Two simulation resulis, for two-
and four-term approximations, are presented in Figures 10 and 11, respectively, for
the first generalized displacement g,(¢). It can casily be seen that the instability is strong
in the lower-term approximations, whereas it tends to be weaker for the higher order
approximations. Finally, the calculated Floquet multipliers for the two-term and four-term
approximations are given in Tables 2 and 3, respectively. Only the unstable points are
given.

4.3, COMPARISON WITH ANALYTICAL RESULTS

To compare the results in the previous section with the analytical solution given in
reference [12), first insert equations (19) and (20) into equation (18) and then use the
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identity (22) to obtain

E

1

+

0

1

T é 0 _Len, sinayg! |[ ¢
‘f‘]+ 160, . 3L ‘ [?‘]
L4 —fsmmol 0 (5]
r{2P, 2 8,
(ﬁ—xvﬁ+xu§c032mot)ﬁ5 - 3°L°coswot a
=0
8 2P, 2n? [ ] '
0302)0 cos wy! (p—;—xuﬁ-i-xv%cos.?wot)% %
(26)

For equation (26), a general analytical solution is not available. However, a perturbation
solution is available for ¢ small in the equations [12]

X +eC()X + (B(0) + e B )X = 0. 27
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Figure 7. Six-lerm approximation stable and unstable points in the v,—w, plane (all intersection points without
a label indicate stable points, whereas circled ones indicate unstable points).
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Figure 8. Eight-term approximation stable and unstable points in the vy—ey, plane (all intersection points

without 2 label indicate stable points, whereas circled ones indicate unstable points).

Comparing equation (26) with equation (27), one may define the parameter ¢ as

€ =u,/L,

and the matrices in equation (27) are defined as

0 __16
C(a‘)=[|6 3:Isirl Wy,
5 0
(21»0 2) n? 0
— —KV§ | 553
B(0)=|\p4 2L: 72p, 272,
0 pd )7

[ o —8w,/3 Kpm2L 0
B() = [8&)0/3 0 ]COS Wol + |: 0 2xu,mifL

] €08 2w, L.

(28)

(29)

(30)

(31
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Figure 9. Eight-term approximation stable and unstable points for a small region in the -, plane (all
intersection points without a label indicate stable points, whereas circled ones indicate unstable points).

It is of interest to note that B(¢) in equation (31) involves both cos ayt and cos 2wyt
terms; the latter approaching zero as k approaches zero. Thus, in the two-term approxi-
mation for non-zero k, parametric excitation occurs at both the velocity variation
frequency «, and at twice that frequency. It is only the double frequency 2w, which appears
in equations (23) or (24) associated with the one-term approximation. Note also that
the part of B(r) associated with the double frequency is of order ¢ and thus very small for
small ¢,

g ()
[=]

00 0-5 1-0 15 2.0 2.5 3-0 3-5
Time, ¢ (s}

Figure 10. The first generalized displacement vs. time for v, = 92, o, = 38, using the two-term approximation.
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Figure 11. The first generalized displacement vs. time for o, = 90, w, = 42, using the four-term approximation.

In reference [12], it is stated that for small ¢ instability may occur at critical excitation
frequencies w, in the neighbourhood of

(Q:+%)s and (2;,—Q)/s, iLj,s=12,...,n, (32)

where the specific £2's, which are the diagonal terms of B(0), are defined as

2P i*n?
Q= (p—; - xug) 2T (33)

Note that although equations (29)(31) for the two-term approximation were given as an
example, equations (32} and (33) are valid for any n-term approximation of the system.
Only the two- and four-term approximations are considered, and the critical excitation

TABLE 2
The Floquet multipliers for the two-term approximation for unstable points

g W, Magnitude of eigenvalues

58 50 1000000 1-000000 0-998776 1001226
75 50 1-000000 1-000000 0-974578 1-026085
79 48 0-990363 0-990363 [-009731 1:009731
82 45 1-000000 1-000000 0983430 1-016849
84 22 1-000000 1-000000 0-981328 1-019027
84 35 1-000000 1-000000 0969742 1-031202
89 40 1-000000 1-000000 0937217 1-066989
91 31 1-000000 1-000000 0945522 1:057616
92 38 1-000000 1-000000 0-954281 1-047909
92 50 1-:000000 1-000000 0-935442 1-069013
93 25 1-000000 1-000000 0-955228 1-046871
94 48 1-000000 1-000000 0-936450 1-067863
96 35 1-000000 1-000000 0-964450 1-036860

99 33 1:000000 1-000000 0-963471 1-037913
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TABLE 3

193

The Floguer muitipliers for the four term approximation for unstable points

Magnitude of eigenvalues

83 42 1-000000
85 30 1-016025
85 39 1-000000
85 47 1-:000000
86 27 1-000000
86 40 1-000000
87 26 1-000000
87 29 1-024330
87 47 1-000000
89 28 1-012385
8% 38 1000000
90 19 1-000000
90 42 1-024769
91 14 1-000000
91 44 1-000000
91 48 1-000000
92 30 1-000000
92 38 1-000000
92 43 1000000
92 50 1-000000
93 18 1000000
93 47 1-000000
93 4% 1-000000
93 50 1-000000
94 28 1-000000
95 24 1000000
96 27 1-000000
96 40 1-000000
96 46 1-000000
97 43 1-000000
100 13 1-000000

1-000000
1-016025
1-000000
1-000060
1-000000
1-000000
1-000000
1-024330
1-000000
1-012385
1-000000
1-000000
1-024769
1-000000
1-000000
1-000000
1-000000
1-000000
1-000000
1-000000
1-000000
1-000000
1-000000
1-000000
1-0600000
1-000000
1-000000
1-000000
1-000000
1-000000
1-0600000

1-000000
0-984228
0972413
1000000
000000
10060000
£-000000
0-976248
1-060000
0-987766
1000000
1-000000
1-000000
1-019057
1000000
1-000000
i-000000
1-000000
0-986306
0-943917
1-000000
1-009187
1-000000
1000000
1-000000
1-000000
1-000000
1-000000
1-000000
1000000
1-000000

1-000000
1-984228
0-572413
1-000000
1-000000
1-000000
1-000000
0-976248
1-000000
0-987766
1-0600000
1-000000
1-000000
1-019057
1-000000
1-000000
1-000000
1-000000
0-986306
0-943917
1-000000
1-009187
1-000000
1-000000
1-000000
1-000000
1-000000
1-000000
1-000000
1-000000
1-000000

1-000000
1-000000
1-028370
1-000000
1-000000
1-:000000
0-992755
1-000000
1-000000
1-000000
1-000000
1-000000
0-975830
0-981299
1-000000
1-000000
0-564849
1-000000
1-013884
1-059415
1-000000
0-990897
1-000000
0-967623
1-000000
1-000000
1-000000
1-060000
1-000000
1-000000
1-000000

1-000000
1-00000¢
1-028370
1-000000
1-000000
1-000000
0-992755
1-000000
1-000000
1-000000
1-000000
1-000000
0-975830
0-981299
1-006000
1-000000
0-964849
1-000000
1-013884
1-059415
1-000000
0-990897
1-000000
0-967623
1-000000
1-000000
1-000000
1-000000
1-000000
1-000000
1-000000

0:973545
1-080000
1-000000
0-995872
0-978738
0-965511
1-007298
1-000000
0-948808
1-000000
0-566621
0-972739
1-000000
1-000000
0-934576
0-970156
1-036431
0-942544
1-000000
1-000000
0-576308
1-000000
0-897785
1-033460
0-983419
0977245
0-979253
0-967680
0-946831
0-969917
0-9240064

1-027174
1-008000
1-000000
1-004145
1-021724
1-035721
1-007298
1-000000
1-053954
1-000000
1-034532
1-028025
1-000000
1-000000
1-070003
1-030762
1-036431
1-060959
1-000000
1-000000
1-024267
1-000000
1-113852
1-033460
1-016861
1-023285
1-021187
1-033399
1-056155
1-031016
1-082176

frequencies are calculated from equations (32) and (33). For smali values of ¢, the value
of v, is very small. Our previous Floquet results indicate that no instabilitics can be
expected for small v, values, except possibly for unrealistically large w, values. Taking
vy =001, so that € =0-0272 is also small, and using the two- and four-term approxi-
mations, leads to the results summarized in Tables 4 and 5. These tables, for the value of

TaBLE 4

The Floquet multipliers for the points at which instability may occur [12]
(two-term approximation)

vy Wy Magnitude of eigenvalues
0-01 185-5 1-000000 1-000000 1-000000 1-060000
0-01 37140 1-000000 1-000000 1-000000 §-000000
0-01 556'5 1-000000 1-000000 1-000000 1-000000
0-01 7420 1-000000 1000000 1-000000 1-000000
0-01 11130 1-000068 1-000068 0-999932 0-999932
0-01 1484-0 1-000000 1-000000 1600000 1-000000
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TABLE 5
The Floguet multipliers for the points at which instability may occur [12] ( four-term
approximation)
vy Wy Magnitude of eigenvalues

0-01 92:8  [-000000 1-000000 1-000000 1-000000 1-000C00 1-000000 1.000000  1-000000
0-01 1237 1-000000 1-000000 1-000000 1-000000 1000000  1-000000  1-000000  1-000000
001 185-5  1-000000  1-000000 1-000000 1-000000  1-000000 [-000000 1-000000 1-000000
001 2470 1-000000 1-000000 1000000 1-000000  1-000000 £-000000 1-00C000  1-000000
001 278-0  1-000000 1-000000 1-000000 1-000000 1-000000 1-000000  1-000000  1-000000
001 3710 1-000000 1-000000 1-G000CO  1-000000  1-000000 1-G00000  1-000000  1-000000
001 4640 1-000000 1-000000 1-000000 1-000000 [-000000 1-000000 [-000000 1-0CO000
0-01 495-0  1-000000 1-000000 1-000000 1-000000 1-000000 1-000000 I-000000 1-000000
001 556:5  [-000000 1-000000 1-006000 1-000000 [-000000 1-000000 [-000000 1-000000
001 618-0  [-000000 1-000000 1-0000G0 1-000000 1-000000 1-000000  [-000000 1-000000
001 649-0  [-000000 1-000000 1-000000 1-000000 1-000000 1-000000 1-000000 1-000000
0-01 7420  1-000000 1-000000 1-000000 1-000000 [-000000 1-000000  [-000000 1-000000
0-01 866-0 1-000000 1-00000C 1000000 1-000000 1-000000 1-000000 1-000000 1-000000
0-01 927-5  1-000000 1-000000 1000000 1-000000 [-000000 1-000000 E-000000 1-000000
0-01 989-0  1-000000 1-00000G  1-00000¢  1-000000 1-000000 1-000000 1-000000 1-000000
0-01 1113-0 1-000055 1-000055 (-599945 0-999945 1-000000 1000000  1-000060  1-000000
0-01 . 12980 1-000000 1-000000 1-000000  1-000000 1-000000 1-000000 1-000060 1-000000
001 1484-0 1-000000 1-00000C 1-000000 1-000000 1-000000 1-000000 1-0000G0  1-D00000
0-01 18550 1000038 1-000038 0999962 0-999962 0-999973 0999973  1-000027 1-000027
001 22260 1-000000 1-00000G 1-000000 1-000000 §-000000 1-G00000  1-000000  1-000000
001 25970 1-000021 1-000021  ©0-999979  0-999979  1-000000 1-000000  1-000000 1-000000
001 29680 1-000000 1-000000 1-000000 1-000000 1-000000 1-000000 1-000000 1-000000

vo= 001, show the w, values at potential instabilities as identified by equations (32)
and (33). Also shown in the tables are the Floquet multipliers obtained by numerical
solution of the two-term (Table 4) and four-term (Table 35) approximations. It is
shown in Table 4 that only one of the potential instability points is actually unstable
for the two-term approximation, and that this occurs at a large value of wy=1113.
Similarly, it is shown in Table § that only three of the potential instability points are
actually unstable; for values of w,=1113, 1855 and 2597. Note that the excitation
frequencies w,, at which instabilitics occur for v, =0-01, are very large and lie well
outside the vy—w, regions shown in Figures 5-8. Also, note that equations (32) and (33)
predict an increase in the number of potential instability points with an increase in the
number of terms (#) in the approximate solution. This trend is in agreement with the
increase in the number of actual unstable points with # as in both Tables 4 and 5 and
Figures 5-8.

5. SUMMARY AND CONCLUSIONS

The transverse vibration of an axially accelerating string has been investigated.
First, the equation of motion is derived for small transverse displacements and large
axtal tension values. The partial differential equation governing the motion is
discretized using Galerkin’s method. Taking one term in the Galerkin approximation
yiclds the Mathicu equation. Taking two terms leads to gyroscopically coupled ordinary
differential equations. The first- and second-term equations are fundamentally differ-
ent systems, and the first-term solutions are used only to check the Floquet
solutions against the well-known analytical solutions. The one-term and three-term
approximation solutions look qualitatively similar to each other. Because of the gyroscopic
coupling, the even-term approximations represent the system behaviour better, and
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extensive numerical calculations for two-, four-, six- and eight-term approximations were
performed.

A major conclusion from the calculations is that v, > 70 and w, > 10 is a critical region
with a high likelihood of instability. These velocities and excitation frequencies are much
higher than those that might be encountered in real engineering devices. Increasing the
number of terms leads to better results through convergence, and the unstable points
cluster more. However, the equations are highly sensitive to 1, and w, values and, as a
consequence, a small area in the vy—w, plane is mapped to a very large area in the ¢ plane.
The reason why results are displayed in the v—w, plane is to facilitate interpretation in
terms of the velocity amplitude and frequency. The Floquet solutions are also compared
with the analytical solutions given in reference [12] for smali ¢ perturbation parameters,
From the analytical solution, it is evident that for higher approximations one is more likely
to obtain unstable points at lower excitation frequencies. This was also observed in the
numerical calculations. The analytical solutions and the Floquet solutions are in reason-
able agreement. Simulations for some unstable points confirm the stability results. The
simulation approach shows that the instabilities are weaker for the higher order approxi-
mations.

This initial investigation of the transverse vibration of an axially accelerating string has
indicated some areas for further research. Topics for further investigation in axially
accelerating systems include experimental validation, consideration of transport velocity
functions other than a sinusoid, and sensitivity studies for parameters such as P, and x.
Also, in the Galerkin’s approximation stationary string eigenfunctions were used, and
these could be replaced by the moving string eigenfunctions given in reference [10] for
improved convergence in systems with velocity variations about a constant nominal axial
speed.
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APPENDIX: LIST OF SYMBOLS

T kinetic energy Ww; weighting functions
V potential energy M,C.K coefficients matrices in equa-
t time tion (13)
é variation N axial velocity amplitude
P density W, frequency of axial velocity vari-
A cross-sectional area ation
y transverse displacement P, initial tension
x spatial variable n a constant (0<n £1)
v axial velocity K pulley support parameter
L length & a parameter in Mathieu equa-
P tension tion
e strain € a parameter in Mathieu equa-
E Young's modulus tion
F force € perturbation parameter
A total longitudinal displacement X solution vector in equation (27)
g,(1) generalized displacements C(2), B(0), B(r) coefficient matrices in equation
q generalized displacement vec- 27
tor @ frequencies which are diagonal
R

residual terms of B{0}



