J. Mol. Biol. (1994) 235, 625-634

Significance of Root-Mean-Square Deviation in
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In the study of globular protein conformations, one customarily measures the similarity in
three-dimensional structure by the root-mean-square deviation (RMSD) of the C* atomic
coordinates after optimal rigid body superposition. Even when the two protein structures
each consist of a single chain having the same number of residues so that the matching of C*
atoms is obvious, it is not clear how to interpret the RMSD. A very large value means they
are dissimilar, and zero means they are identical in conformation, but at what intermediate
values are they particularly similar or clearly dissimilar? While many workers in the field
have chosen arbitrary cutoffs, and others have judged values of RMSD according to the
observed distribution of RMSD for random structures, we propose a self-referential, non-
statistical standard. We take two conformers to be intrinsically similar if their RMSD is
smaller than that when one of them is mirror inverted. Because the structures considered
here are not arbitrary configurations of point atoms, but are compact, globular, polypeptide
chains, our definition is closely related to similarity in radius of gyration and overall chain
folding patterns. Being strongly similar in our sense implies that the radii of gyration must
be nearly identical, the root-mean-square deviation in interatomiec distances is linearly
related to RMSD, and the two chains must have the same general fold. Only when the
BRMSD exceeds this level can parts of the polypeptide chain undergo nontrivial
rearrangements while remaining globular. This enables us to judge when a prediction of a
protein’s conformation is “correct except for minor perturbations’, or when the ensemble of
protein structures deduced from NMR experiments are “basically in mutual agreement”.

Keywords: globular proteins; protein structure comparison;
optimal rigid body superposition; three-dimensional structural motif;
enantiomorphous relationships

1. Introduction

Suppose we have two alternative conformations
of some globular protein, and we want to decide
how similar they are. Typical situations where this
might arise are the ensemble of structures calcu-
lated from NMR studies on a protein’s conforma-
tion, or the comparison of the X-ray crystal
structure with structures proposed from homology
modeling or more ambitious tertiary structure
prediction methods. In any case, the alternatives
are reasonably compact and globular, and we are
concerned with the general folding of the backbone.
Hence, the protein is typically represented by its
virtual C* atom chain of » residues or points. For a
quantitative single-number measure of structural
similarity between structures A and B, one
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generally uses either the “distance RMSD”t {also
called the “distance matrix error”} {Nishikawa &
Ooi, 1972; Levitt, 1976):

-thlis(A9 B) = (r(n—1)/2)7! Z (dAij*dBij)z {1)
i< f

(where d,;; and dy;; are the corresponding distances
between the ith and jth atoms) or the ‘‘coordinate
RMSD” after optimal rigid body superposition (Rao
& Rossmann, 1973). In this work, we focus on the
comparison of entire globular structures and the
effect this has on assessing the significance of co-

T Abbreviations used: RMSD, root-mean-square
deviation; CMD, correlation matrix determinant.
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626 Signifieance of RMSD for Globular Proteins

ordinate RMSD values. It is quite a different
problem to judge the significance of spatial simi-
larity when different proteins are compared,
allowing insertions and deletions in the amino acid
sequence (Rossmann & Argos, 1976, 1977; Sippl,
1982; Remington & Matthews, 1978, 1980; Abagyan
& Maiorov, 1988, 1989; Zuker & Somorjai, 1989,
Vriend & Sander, 1991; Aleksandrov et al., 1992).

While distance RMSD is easy to calculate, it fails
to distinguish between mirror images. Coordinate
RMSD distinguishes mirror images, but the calcula-
tions are more complicated because first, both strue-
tures are translated so that their centroids are at the
origin, and then one is rotated so that the squared
deviation in corresponding ecoordinates is mini-
mized. A number of different algorithms have been
developed to carry out this optimal rigid body
superposition of pairs or groups of structures
(McLachlan, 1972, 1979, 1982; Diamond, 1976,
1988, 1992; Kabsch, 1976, 1978, Lesk, 1986:
Mackay, 1984; Zuker & Somorjai, 1989; Kearsley,
1988, 1990, KenKnight, 1984; Gerber & Muller,
1987; Suteliff ef al., 1987; Shapiro ef al., 1992). In
what follows, we shall refer to coordinate RMSD as
simply RMSD.

In order to decide whether two structures are
similar, most investigators have simply chosen an
arbitrary RMSD cutoff value, such as 3 A. A few
have constructed a population of alternative struc-
tures, observed the frequency distribution of RMSD
among them, fitted the distribution usually to a
Gaussian curve, and developed a statistically signifi-
cant cutoff depending on = and the structural class
of the protein (Cohen & Sternberg, 1980,
McLachlan, 1979, 1984; Remington & Matthews,
1978, 1980; Aleksandrov et al., 1992). Here, we
develop an intrinsic RMSD cutoff for similarity that
is not arbitrary or statistically based, but rather
depends on special consequences of globular strue-
tures that have so far not been clearly recognized.

2. Methods

In order to understand the special properties of the
RMSD for globular structures, we must first review
McLachlan’s  analysis of optimal superposition
(McLachlan, 1979). Given two structures A and B, each
consisting of = points, first translate both of them so that
their respective centroids are the origin of the coordinate
gystem. Then we want to rotate the coordinate vectors a,
of A onto the corresponding coordinate vectors b, of B by
some proper rotation matrix R chosen to make the least-
squares superposition:

D*(A, B) = (1/n) ¥, (Ra,—b,)%, (2)
k=1
which defines the coordinate RMSD, D(A, B). One can
express this in terms of the radii of gyration {for co-
ordinates referred to their centroid, K =(l/n)Y7_,aZ,
and similarly for B, independent of rotation) as:

DA, By = RL 4 RZ—2v, (3)

where # 2 () is the optimal rotation correction. In terms of
the original coordinates, the correlation matrix, U = (U,),

is defined by:
Uy={ljn} ¥, aghy, i,j=12,3, {4)
k=1

which has & =sign (det(U))=+1. In what follows, we
shall refer to the sign of the correlation matrix deter-
minant, (CMD). It turns out that the correction v from
eqn (3) may be expressed as;

v=Ay+4,+84,, (5)
in terms of the eigenvalues A, > 4, > 4, of U. The worst
case superposition occurs when » =0 and, hence, D? =
R+ Ri, but for globular structures, the radii of gyration
are relatively small, and the distribution of D has a small
upper bound.

The optimal rotation in the superposition procedure is a
proper one, but sometimes mirror inverting one of the
structures can lead to a lower RMSD. (See, for example,
Kabsch, 1978; McLachlan, 1979; Tamond, 1990.) Denote
by IXA, B) (the “conjugated RMSD”) the RMSD when
either A or B is reflected. Then:

D~ D* =484, (6)

which is positive, negative or zero, depending on the CMD
(Diamond, 1990).

3. Self-avoiding Configurations on a Simple
Cubic Lattice

We have seen how D depends strongly on R, and
Ry, but we want to study the consequences of
globularity on RMSD comparisons. An easy model
system is the set of all configurations of a self-
avoiding 27-center chain on a 3x 3 x 3 simple cubic
lattice. Clearly, this is only the crudest approxima-
tion to real protein folds, but since the chain fills the
whole space, every configuration has exaetly the
same radius of gyration, is roughly spherical and is
very compact. Just to give it a little resemblance to
proteins, we took the lattice spacing to be 3-8 A,
Because we can explicitly enumerate all 103,346
different configurations (excluding enantiomers)
(Shakhnovich & Gutin, 1990), cur sampling of con-
formation space is perfect. That means there are
over 10° pairwise comparisons, so for that purpose,
we used only every tenth configuration. The
following results are unaffected by random choice
and sample size.

We can view the total RMSD distribution {Fig. 1,
golid line) as the sum of two skewed, equally popu-
lated distributions, corresponding to positive and
negative CMDs, neglecting the 0-029, of the com-
parisons having zero CMD. This is in contrast to the
usual assumed Gaussian shape {(Remington &
Mathews, 1978, 1980; Cohen & Sternberg, 1980) or
the skew toward low BMSD for random, freely-
jointed chains (McLachlan, 1984). The skew toward
high RMSD may be a characteristic feature of com-
parison of compact, globular structures. The other
important general features are: there is a minimal
D =D, =147 A > 0 that occurs strictly for positive
CMD; only at a considerably higher D =D, =447 A
can there be negative CMD comparisons; and both
distributions terminate at about the same D= D,
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Figure 1. RMSD frequency distributions for 53,411,280
pairwise comparisons of 10,336 27-point self-avoiding con-
figurations on a 3x 3 x3 cubic lattice: total distribution
(solid line) and two subdistributions corresponding to
positive (left dotted) and negative (right dotted) CMD.

(727 A for positive CMD and 7-36 A for negative)
because all configurations have the same small
radius of gyration.

The conformational implications of D, are parti-
cularly important. For these lattice walks, this
occurs when the two ends of the chain cooperatively
exchange places, as in Figure 2. A smaller D could
be achieved by moving just one end (necessarily
outside the 3 x 3 x 3 box), but these conformations
are constrained to be extremely compact. The equi-
valent event in realistic protein structures would be
for the N and C-terminal helices to be of similar
length and lying next to each other in antiparallel
orientation, so that they could exchange places
without expanding the globule or significantly
disturbing the rest of the chain.

Another nseful way to display these cutoffs is to
plot the conjugated RMSD wversus RMSD, referred
to as the D/D diagram, as in Figure 3. Because of
the large number of points corresponding to
53,411,280 comparisons, we show only the envelope
of minimal and maximal values of D for each D.
Because we excluded enantiomers in our exhaustive
list. of configurations, we must conclude that the
extreme symmetry of the Figure is due to our
uniform coverage of the set of all comparisons. The
angularity arises from the restriction to extra-
ordinarily compact configurations having exactly
the same radius of gyration. As a next step toward

Figure 2. Example pair of 27-point self-avoiding cubic
lattice configurations with smallest attainable RMSD for
a 3x3x3 lattice RMSD, 147 A. The only difference
between these configurations is the arrangement of the
terminal segments 1 to 2 and 26 to 27.

conjugated RMSD, A
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Figure 3. D/D diagram for 27-point self-avoiding con-
figurations on the 3x3x3 cubic lattice. Every 10th
lattice configuration out of the exhaustive enumeration is
included (10,336 configurations in the sample), resulting
in 53,411,280 comparisons. Daoatted lines mark the
diagonal fi= D, as well as Dy, D, and D,

real proteins, we sampled 1336 configurations of
27-point, self-avoiding chains on a 4 x4 x4 simple
cubic lattice. As seen in Figure 4, the less uniform
sampling of comparisons produces an agymmetrie
diagram, and the variation in radius of gyration
rounds the corners. D, hag increased because of the
greater allowed radius of gyration, but D, remains
the same. Although not clearly shown in the Figure,
Dy is decreased, because in some configurations the
tail has room to be moved without affecting the rest
of the chain.

10

8
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Figure 4. D/D diagram for 27-point self-avoiding con-
figurations on 4 x4 x4 lattice. Since their total number is
so large that exhaustive enumeration can hardly be done
in a reasonable time, only a limited sample of 1336 were
used for the illustration, resulting in 891,780 comparisons.
Dotted lines give the symmetrization by reflecting the
upper half about the diagonal. For reference, the Dy, D)
and D, values for Fig. 3 are marked.
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4. Comparisons of Protein Structures

The next question is whether we can clearly iden-
tify Dy, D; and D, in real protein structures. First,
we note that unless we restrict our survey to poly-
peptide eonformations that are always so compact
that the radius of gyration is small, ), will be large,
and maximal dissimilarity is of limited interest in
any event. Secondly, we want to determine D, as a
function of the number of residues, n, so as to
establish a general standard for “‘substantial dis-
similarity” in protein conformational comparisons.
Thirdly, since protein C* coordinates are not
confined to discrete lattice points, Dy is nearly zero
for very similar structures. We will show, however,
there is a nontrivial minimal rearrangement thregs-
hold observed in comparisons of dissimilar proteins.

The total set of protein crystal structures we
considered were taken from PDB (Abola et al,
1987). We considered only the C* coordinates of
those proteins having resolution better than 3 A,
and without obvious chain breaks in the middle
{Table 1}. Disordered or unresolved residues at the
N and/or C termini were not included in the poly-
peptide chains we consider here. For brevity, we
refer to these chains by their PDB code and the
chain identifier in the PDB file (e.g. 2pab.A is the A
chain of prealbumin).

In order to determine Dy and D, we carried out
an “all-by-all” comparison, as in Remington &
Matthews (1978, 1980), where all possible consecu-
tive fragments consisting of L amino acid residues in
one protein are compared to all those in the second
by optimal superposition, resulting in (¥ —L+1) x
(N,— L+ 1) comparison, where N, and N, are the
numbers of residues in the proteins, with the
obvious assumption that the probe length L <
N,, N,. This procedure iz performed for all pairs of

Table 1
List of the proteins used in the work, sorted by
PDB code
PDB codet
155¢ labp Ibjl1 1bjl.2
leeh leer lese. lese. E
letf lets leed lest
11x1 Lhip Thmg. B Thmg A
lhmg. A thoe 1hvp A 11h4
liyz 11z1 Imba Imbd
1paz 1pfk.A lpyp Irei,A
Irhd 1sn3 1tim. A Iwrp.R
lyce 2abx. A Zact 2alp
2aza. A 2hbe 2c2¢ 2cab
2edv Zeyp 2fb4.L 2gnb
2ig2.L 2hhg A 2hhb.B 2lhb
2lzm 2pab.A 2pka.A 2pka.B
2rhe 2sga 2sod 2gsi
2stv 2taa.A 35le Jadk
3ebx 3fab.L 3ab.H 3fxe
3fxn 3gap.A 3gpd.G Jich
3pgk 3rp2.A dape 4dfr. A
4mdh. A 4rhv.3 4rhv.1 4tin
Scpa Sepv Seyt.R 6ldh
Tapi. A Sadh Ypap

1 In the case of more than one chain in a PDB file, the chain
identifiers are given as a suffix.

protein structures having adequate length. Only
those segments passing our previously established
criteria for compactness (Maicrov & Crippen, 1992}
were included in the comparisons.

Since I}y is anticipated to depend on the simi-
larity of the proteins, we drew up a list of 66
“dissimilar protein pairs” (Table 2), based on the
recommendations of Sander (Hobohm et al., 1992;
Holm et al., 1992). In addition, we deleted the pairs
of atructures from apparent representatives of

Table 2
Protein structure pairs between which no observable structural similarities occur (“dissimilar protein pairs”)
Protein 1 Protein 2 Protein 1 Protein 2 Protein 1 Protein 2

1 leer 4ape 23 2act 2eyp 45 2stv 3pgk

2 leer 4tln 24 2act 3pek 44 sty {ape

3 leer Tapi.A 25 Zalp lhmg.A 47 3ble 5cpa

4 lese.d Irei. A 26 2Zalp Irhd 48 351c Tapi.A
5 lesel 3fxn 27 2alp 1tim. A 49 3adk lest

6 lotf Ipfk.A 28 Zedv 4tin 50 Jadk 2act

7 letf 3gap.A 29 Zedv 6ldh 51 3adk 4tin

8 Lhip lcse E 30 2gn5 lest 52 3ebx 2sga

9 lhip 4tln 31 Zonh 3pgk 53 3ebx 3fxe
10 lhoe lpaz 32 2pab.A labp 54 3fab.L labp
11 thoe 2alp 33 2pab A 1pfk.A 6o 3fab.L 3pgk
12 Ihvp.A  S3gap.A 34 2pab.A  3pgk 56 3fab L 8adh
13 l1hvp.A 4fdr A 35 2pka.A japi.A 57 Hxe labp
14 Irei. A tpaz 36 2pka.A Radh 58 3fxe 1z1
15 Irei.A Ipfk.A 37 2sga. lhmg A 59 3ich lhmqg. A
16 1sn3 2aza. A 38 2spa Itim. A 60 3icb Llyz
17 1sn3 3fab.H 39 2aga 3pgk a1 Sepy 4ape
18 lwrp.R 2lhb 40 23 1p¥p 62 hepv 4tin
19 twrp R 2sga 41 288l Zeyp 63 Scpv Tapi.A
20 2abx.A 2eyp 42 28si 3adk 64 Opap lhmg. A
21 2abx. A 2taa. A 43 2ssi 4rhv.3 65 Spap Irhd
22 2act Irhd 44 2stiv Z2eab 66 9pap 4mdh A
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Table 3
Protein structure pairs between most of which signrificant structural similarities occur
{ “stmilar protein pairs’’)
Protein 1 Protein 2 Protein 1 Protein 2 Protein 1 Protein 2

1 lcer 2¢2e 23 2act Jrp2.A 45 2sga lcse.E
2 lecd 1th4 24 2act 4ape 46 2sga 2act

3 leed Imba 25 2alp 2act 47 2sga 2alp

4 lecd lmbd 26 Zalp 3rp2.A 48 2sga, 3rp2.A
5 lecd 2hhb. B 27 2alp 4tin 49 2sga 4tln

6 lecd 2lhb 28 Zalp 9pap 50 2sga 9pap
7 1fx1 Itim. A 29 2aza.A 2s0d.O0 51 35lc leed

8 1fx1 4mdh.A 30 2bhe leer 52 3fab.L 2fh4.1,
9 Ifx1 6ldh 31 2h5ce Seyt. R 33 3fxn 1x1
10 11h4 Imbd 32 2cc 155¢ 54 3fxn 1tim. A
11 1lyz 1ota a3 2{bs L 3fab H 55 3fxn 6ldh
12 llyz Hzl 34 Zhhb.A 11h4 o6 3rp2. A lese B
13 Imba 1lh4 35 2hhb.A Imba 57 3rp2.A lest
14 Imba Imhd 36 2hhb.A Imbd 58 3rp2.A 4tln

15 Imba 2hhb.B 37 2hbh.A 2Ihb 59 3rp2.A Sep
16 Imba 2lhb 38 2hhb.B 11h4 60 4dfr. A 8adh
17 Ipaz Z2aza.A 39 2hbb.B Tmhd 61 4shv. A 4rhv.1
18 Ipaz 3gpd .G 40 Zhhh. B 2ihb 62 aevt.R 155¢
19 Ipaz Sadh 41 2pka. A 3rp2.A 63 Sext. R lecr
20 Irei A 2{fha. L 42 2pka.B lest 64 seyt.R 262c
21 lrei.A 2rhe 43 2rhe 2rh4.L 65 pap 2act
22 Irei. A 3fab.H 44 2rhe 3fab H 66 Ipap 3rp2 A

different structural/functional (super)families, to
avoid already known cases of spatial similarity
between sequentially distant proteins (Holm ef al.,
1992). Table 3, on the other hand, is a list of
spatially similar pairs of structures. Here, we relied
mainly on commonly accepted structural resem-
blance (in both sequence and 3D structure), which is
certainly the case if the candidate proteing are
either homologous or representatives of the same
structural/functional (super)family. Sufficient arbi-
trarily chosen similar protein pairs were added to
Table 3 to make it approximately as large as
Table 2, R

Figure 5 is a typical D/D diagram for L =60,
involving 133,676 comparisons between compact
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Figure 5. Typical D/D diagram for the comparison of
60 residue segments from dissimilar proteins. D, and D,
cutoffs are marked.

fragments of dissimilar protein pairs. Dy =6 A is the
smallest (positive CMD)} observed D, which shows
that the minimal rearrangement required to convert
one compact conformation into what is generally
viewed as a completely different one, is actually
larger than is commonly believed. D, the smallest
observed D having negative CMD, is only 15 A
larger. The analogous diagram for similar protein
pairs, geen in Figure 6, shows a much amaller D, as
expected, but a comparable D|. From an analysis of
similar diagrams for L =27, 40, 60, 80, ..., 180 we
fit the observed D, and D), values by linear regres-
sion to:

Dculoﬂ' = a+b(Nres)U3' (7)

10 12 14 16 18 20

§

conjugated RM S D, A
§

z 14

A

_,;3'3 h1
b 2 a4 & 8
RMSD, A

10 12 14 18 18 20

Figure 6. Same as in Fig. 5, but the list of similar
protein pairs {Table 3) was used to collect 187,696
COMpAarisons.
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Figure 7. Plots of RMSD cutoffs versus number of
residues in protein fragments compared. Dependencies of
Dy, D, and that for the 19 level, versus probe length for
dissimilar protein pairs (Table 2) fitted by linear regres-
sion to eqn (7). Filled circles and continuous curve repre-
sent the [y cutoff dependence. Open circles and dashed
line represent I} cutoff data. The dotted line shows the
curve for the RMSD cutoff from statistical estimation of
similarity significance at the 1%, level, ag in McLachlan
(1979) and Aleksandrov et al. (1992).

In addition, we also derived the 19 level RMSD
cutoff dependence as a reference to compare with
the results of other authors. The resulting curves are
shown in Figures 7 and 8, and the regression para-
meters (intercepts, slopes and correlation coeffi-
cients) are listed in Table 4. The fitting for
dissimilar proteins is particularly accurate. The D,
curve runs consistently about 1 A above Dy and
close to the 1% cutoff, which is, in turn, in good
agreement with the results of Aleksandrov ef al
(1992}. For similar protein pairs, the ), curve, of
course, runs much lower because it simply signifies
minor perturbations in structure, rather than
substantial rearrangements. The greater scatter
only reflects exactly how close a match between
segments could be found, given that the proteins are
generally rather similar in structure. As can be seen
tfrom Table 4 and Figure 9, D; depends on
comparing compact structures of a given chain
length, independent of whether they arise from
similar or dissimilar proteins. A fit of D, for the

o
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'3 . o .
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o _,// .
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20 40 80 80 1 1k 1k e b0
Number of residues

Figure 8. Same as Fig. 7, except for similar protein
pairs (Table 3).

combined similar and dissimilar comparisons has a
root-mean-square fitting deviation of 0-38 A, which
one could view as the accuracy. Correspondingly,
Dy for dissimilar proteins only, has an RMS fitting
deviation of only (-18 A.

There are two remarkable features of comparisons
having D} < D), that are revealed when one compact,
native, “‘reference” protein structure is compared to
many, not necessarily compact segments of the
same length taken from larger, similar and dis-
similar proteins. For example, in Figure 10 we see
that below I}, the radius of gyration of the
segments is essentially equal (£59) to that of the
reference, while simultaneously the coordinate and
distance RMS8Ds are linearly related. These rela-
tions hold for all eight reference proteins we con-
sidered (Table 5). In the eight fits of Dy, =a+bD,
we find @ ranges from 0-03 A to 0-63 A, and b ranges
from 0-62 to (0-81, which is in reasonable agreement
with figures reported by Levitt (1978} (0-00 A, 0-82)
and Cohen & Sternberg (1980) (0194, 075).
Furthermore, the D < D, comparisons are always
due to homologous proteins, as listed in the Table.
The vast majority of the 51,482 comparisons for all
eight reference structures fall above Dy, and are due
to both similar and dissimilar proteins, The only
clear regularities seen for large D are the tracks in
Figure 10 due to the small and coherent changes in

Table 4
Linear regression parameters for dependencies of RMSD cutoffs against number of residues (probe length) for
comparisons among dissimilar and similar pairs of proteins (eqn (7))}

Type of input data RMSD cutofft

Intercept +error (A)

Slope +error Correlation coefficient

Dissimilar pairs b, —10-824+0-37 4-31 +0-08 0-997
D, —961+0-72 4384016 0-996
19, — 756084 399+ (18 0993
Dyt —4-54 +0-37 2:36 £ 0-07 0-938
Similar pairs Dy —574+ 185 1-66 +0+40 0-842
D, — 1096 +0-66 4-63 +0-14 0-997
19 —B32+322 3354070 0874

t Rows marked by 7y and 3| represent the data for dependences of the lowest observed RMSD and those for comparisons with
negative CMD), respectively. 1%, marks the data for dependence of a statistically estimated RMSD cutoff (see the text).
I This entry is obtained for distance RMSD by linear regression to eqn (7) for comparisons of dissimilar protein structures.
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o function of polypeptide chain length:
| E-“""E.‘f_ ’ DdisO = f4-54+2'36(Nres}U3: (8)
< ‘_‘._-::—"'9" with a correlation coefficient of 0938 (Table 4).
22 T Thus, in spite of the inability of distance RMSD to
gwﬁ e distinguish enantiomers, it can be applied to iden-
2@ e tify the rearrangement threshold marking signifi-

« o cant similarity of protein structures.
M v As an example of a practical application of Dy,
o consider the problem of caleulating an ensemble of
o structures for a protein, given interatomic distance

26 d0 60 g0 10 120 a0 10 1d0

Number of residues
Figure 9. Comparison of the 3| curves from dissimilar

(Fig. 7, filled circles) and similar (Fig. 8. open circles}
protein comparisons.

the plotted wvariables when the reference is
compared to overlapping segments taken from
larger protein structures. For very large D), the
observed asymptotically linear dependence of K and
Dg;. arise from the overwhelming contribution of the
larger of the two radii of gyration in equation (3).
(Giiven the linear relationship between Dy, and D
for low values of D, we c¢an derive the distance
RMSD equivalent to Dy for dissimilar proteins as a

constraints from NMR experiments. If there are
many constraints affecting all parts of the chain, or
it the procedure for generating conformations
subject to these constraints fails to sample widely,
then the ensemble will be a cluster of minor varia-
tions on a basic conformation. RMSD values
exceeding Dy constitute ohjective evidence that
significantly different classes of conformations have
been sampled. Alternatively, diseovering that all
RMBD values are below D, shows that only minor
variations have been sampled but, of course, it does
not reveal which of the two reasons is behind it,
Note that according to equation (7) and Table 4, D
has a traditionally acceptable value of 2 A for a 26
residue chain, but for 100 residues, RMSD values
less than 9-2 A indicate clustering.

Table 5
Eight reference protein structures having at least some D < Dy, in comparisons with segments taken from
{stmilar} counterpart protein structures. For these close comparisons, we give the parameters for linear
regression of distance RMSD to coordinate RMSD, Dy, =a+bD

Number of

comparisons with  the

PDRB codes of

respective

PDB code of Number of amino  RMSD below the COMPArison’s Linear regression Linear regression  Correlation
relerence structure acid residues Dy cutoff counterpartst intercept a {(A) slope, & coefficient
heyt. R 103 16 2c2e 023 0-62 0-995
lyce
Irei A i07 8 2ig2.L 0-06 0-80 0-999
2rhe
2rhe 114 9 2ig2.L 003 0-81 0997
3fab.H
leed 136 61 imba 057 0-63 0-993
Imbd
2hhb A
2hhb.B
2lhb
11h4
2hhb.A 141 42 Imba G20 0-66 0980
Imbd
2hhb.B
2lhb
1lh4
Zhhb.B 146 18 Imba 0-33 0-68 0991
Imbd
2lhb
11h4
2sga 181 11 2alp 063 063 0-982
9pap 212 2act 019 072 0993
pti 58 000 082 0-99
pti§ 58 — - 19 075 0-99

T Shown in this column are PDB codes and chain identifiers (if any) for those protein structures whose fragments have RMSD values

below the Dy threshold.
1 According te Levitt (1976).
§ According to Cohen & Sternberg (1980).
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protein structure: 1ecd, 6544 comparisons
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Figure 10. Plots of the radius of gyration {left) and distance RMSD (right) versus coordinate RMSD resulting from
comparisons between reference protein leed {deoxyerythrocruorin) and all segments of the same length taken from all
larger proteins listed in Table 1. Dy and D, are marked by vertical dotted lines. The positions of the reference structures
on the ordinate axes are marked by dotted horizontal lines. On the plot of distance RMSD wersus coordinate RMSD, the
linear regression approximation (dotted line) for the range of coordinate RMSD below the threshold Dy is shown. All
counterparts to the reference structure with RMSD below D, belong to homologous proteins (Table 5).

In the PDB there are several examples of
multiple alternative NMR structures deposited for
one protein, but only in the case of the 48 residue
neurotoxin T from sea anemone (Fogh ef al., 1990;
PDB entry 2shl) do two of the structures differ by
so much as 469 A, a value close to Dy =484 A for
this chain length. As can be seen in Figure 11, the
two structures are very similar, except for the loop
containing residues 8 to 16, which occupies two
substantially different positions in order to main-
tain radii of gyration of 922 and 936 A, which are
close to 8-88 A, the minimum value one can expect
to find for such a polypeptide chain. This obviously
resembles the minimal rearrangement threshold

Figure 11. C* tracings of models 2 and 6 of the 8
deposited in PDB file 2shl, NMR structures for neuro-
toxin I from sea anemone (Fogh et al, 1990). Most
features of the fold are closely constrained except for the
residues 8 to 16 loop on the right side.

phenomenon for 3 x3x3 lattice walks, where all
structures were confined to lattice points and had
the same extremely low radius of gyration.
However, because these protein structures are not
confined to lattice points, some of the six others are
only 2 A from these extremes and are clearly minor
variations. In order to fall between the two by
positioning the loop straight out to the right in the
Figure, the structure must violate the compactness
limit otherwise observed and and expand its radius
of gyration to 994 A.

5. Conclusions

The most important thing we have learnt from all
this is that the comparison of protein structures has
some general features arising from the restriction to
compact, globular conformations of the polypeptide
chain. These features are not special to proteins,
since they can also be seen in compact walks on a
cubie lattice, but they correspond closely to other,
very different assessments of conformational simi-
larity. (1) There is a coordinate RMSD
eutoff, D,, above whieh two conformations may or
may not have D < D, but below which one structure
must more closely resemble the other structure than
the other’s mirror image. This is an intrinsic feature
of globular conformations that can be seen in com-
parisons of simple lattice walks, compact fragments
from sequentially dissimilar proteins, and compact
fragments from highly homologous proteins. The
value depends only on chain length and packing
density. (2} D, corresponds to a level of similarity
surpassed by only about 1% of all pairs of random,
compact conformers. (3) There is a second cutoff,
Dy, that falls 1 to 2 A lower. For very compact
globules, this is the least (cooperative) rearrange-
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ment of the chain possible that still maintains the
same very small radius of gyration. (4) When
comparing conformations of contigunous segments
taken from proteins generally considered as sequen-
tiaily and structurally unrelated, D> D), in all
cases. Segments from similar proteins may also fall
in this range. The vaiue of Dy depends very simply
and accurately on the number of residues in the
chain. {5} Only when comparing conformations of
segments taken from proteins generally viewed as
sequentially or structurally very similar, can one
find examples of D< Dy, (6)In this regime of
extreme conformational similarity, the radii of
gyration of the two globular structures must be
nearly equal, and the distance RMSD is propor-
tional to the coordinate RMSD.

In this work we have not addressed the difficult
problem of comparing the structures of two
different proteins while permitting chain insertions
and deletions in the hope of detecting structural
homology and distant evolutionary relations.
However, our insights about intrinsic levels of simi-
larity between pairs of compact conformations for
the same protein may find application in many
fields where optimal superposition is applied: experi-
mental methods of spatial structure determination
{X-ray crystallography and NMR protein spatial
structure determination}, protein structure analysis,
protein database searches and computer modeling
of protein folding.

This work was supported by grants from the National
Institutes of Health (GM37123) and the National
Institute on Drug Abuse (DA06746). We are indebted to
all the crystallographers who deposited their protein
structural data in the Protein Data Bank.
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