Mechanical Systems and Signal Processing (1994) 8(1), 1-19

MODELING AND IDENTIFICATION OF THE
COMBUSTION PRESSURE PROCESS IN
INTERNAL COMBUSTION ENGINES

FranCIS T. CONNOLLY AND ANDREW E. YAGLE

Department of Electrical Engineering and Computer Science, 1301 Beal Avenue,
The University of Michigan, Ann Arbor, MI 48109-2122, U.5.A.

{Received 15 January 1992, accepted 10 September 1992)

We present a new model relating cylinder combustion pressure to crankshaft angular
velocity in an internal combustion engine. There are three aspects to this model. First, by
changing the independent variable from time to crankshaft angle, a non-linear differential
equation model becomes a linear first-order differential equation. Second, a new stochastic
model for combustion pressure uses the sum of a deterministic waveform and a raised
cosine window amplitude-modulated by a Bernoulli-Gaussian random sequence, parame-
trising the pressure by the sample modulating sequence. This results in a state equation for
the square of angular velocity sampled every combustion, with the modulating sequence
as input. Third, the inverse problem of reconstructing pressure from noisy angular velocity
measurements can now be formulated as a state-space deconvolution problem, and solved
using a Kalman-filter-based deconvolution algorithm. Simulation results show that the
parametrised pressure can be deconvolved at low noise levels, and combustion misfires
detected, all in real time. Supporting experimental results are referenced in companion
papers.

1. INTRODUCTION

Automobile spark-ignited internal combustion (SI-IC) engines must satisfy increasingly
stringent requirements on the reduction of exhaust gas emissions. This motivates more
sophisticated analysis and modeling of 1C engine operation and dynamics. Cne measure
of the operation of an IC engine is the combustion pressure produced in the cylinders, since
cyclic variation in combustion is a limitation of IC engine operation. This cycle-to-cycle
variation becomes more significant as the air-io-fuel ratio becomes more efficient, i.e., is
increased or leaned from the normal stoichiometric ratio used in present day SI-IC engines
[1-71.

This motivates the work presented here, which has three major features: (1) reformula-
tion of a non-linear differential equation relating the combustion pressure (P) to engine
crankshaft angular velocity (denoted omega, Q) into a linear first-order differential
equation relating P to the square of the angular velocity 23%; (2) a new stochastic model
for the combustion pressure P; and (3) application of signal processing system identifi-
cation techniques to solve the inverse problem of determining the stochastic part of P from
noisy observations of Q. A limitation of our results so far is that they must be applied at
steady-state operation (constant engine rotation speed and load torque).

The novelty of the work lies in the development of a new stochastic model of the
combustion pressure P. P is modeled as a known deterministic waveform plus a stochastic
part which is a Bernoulli-Gaussian sequence indexed by combustion number. Here
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Bernoulli-Gaussian refers to a Gaussian-amplitude-modulated Bernoulli process. This
allows stochastic deconvolution methods [8—10], which have been widely applied to seismic
signal processing inverse problems, to be used to reconstruct P from observations of Q.
This is an improvement over previcus methods, which attempt only a deterministic
reconstruction of the P waveform while neglecting the stochastic nature ¢of the combustion
process, and for the most part neglect measurement noise [11-14]. It is the intent of the
method presented in this paper to determing this stochastic part of combustion, in the form
of estimation of a sequence parametrising cyclic combustion pressure variability. In the
method proposed here, measurement noise is explicitly included in the inverse problem
formulation,

Novel aspects of the work presented in the paper include: (1) using engine crankshaft
angle (denoted @) rather than time as the independent wvariable; (2) using a
Bernoulli-Gaussian random sequence to model the stochastic part of combustion pressure
P; (3) a recursive combustion-to-combustion model for the P — @ relationship; and (4)
application of signal processing and stochastic identification techniques to IC engine
modeling, to reconstruct the combustion pressure P.

This paper is organized as follows: Section 2 states the problem and its relevance, and
briefly reviews previous research in this area; Section 3 describes the new stochastic model
of the combustion pressure P to angular velocity @ relationship; Section 4 discusses
methods for identification of the stochastic pressure sequence; Section 5 presents simu-
lation results (experimental results are referenced in companion papers); and Section 6
concludes by summarising the results and discussing further work.

2. PROBLEM STATEMENT

The IC engine is a complex, non-linecar mechanical system that is difficult to characterise
completely over its wide operating region (usually given as a load torque or intake
manifold pressure vs engine speed operating point plane). However, it is possible to
characterise and model in a steady staie condition a given specific subfunction or
subsystem of engine operation.

2.1, INTRODUCTION

One such subfunction is the relationship between the combustions (and their resulting
pressures) and the angular velocity of the engine, or more specifically, between the
combustion variability and the small fluctuations of the angular velocity about its average
(slowly-varying) value. The essence of the problem is that these fluctuations occur
essentially on a combustion-to-combustion basis and contain information related to the
combustion pressures that produced the torque which accelerates the crankshaft (other
effects, such as the reciprocating motion of the piston assembly, can be accurately
modeled). Figure 1 shows actual combustion pressure and angular velocity, respectively,
both recorded simultaneously from an engine mounted in an automobile. Note the
combustion-to-combustion cyclic variation in pressure (around the peak region), and the
stmilar variation in the angular velocity waveform.

Our first goal is to model the relationship between the pressure fluctuations and the
velocity fluctuations. If all the combustion pressures are the same, then the velocity
variations will be periodic, while random fluctuations in velocity are caused in large part
by the random pressure variation from combustion to combustion, Our first goal is to
model the Q resulting from a given combustion pressure P. Our second goal is then to solve
the inverse problem of identifying P from Q.
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Engine models (at least for control and diagnostic purposes) generally fit into two
categories: (1) models dealing with average behaviour over several or many engine cycles
(such as present day control models); and (2) models dealing with more short-term
behaviour, such as thermodynamic combustion models. The significance is that more
effective engine operation and control may be achieved by modeling and controlling the
engine on a combustion-to-combustion basis. The proposed model is of the second type,
modeling the combustion-to-combustion fluctnations in Q.

2.2. ENGINE TORQUES

The concepts underlying the engine model will now be explained. The model is based
on a straightforward representation of the geometry of a single cylinder in an internal
combustion (IC) engine, as shown in Fig. 2, and models for the individual torques acting
on the crankshaft and piston. The geometry model reflects standard practice used in IC
enging modeling [15, 16]; it depicts the cylinder walls, piston, crankshaft torque arm,
connecting rod, and piston center axis line. Model parameters are listed in Table 1.

The torque applied to the crankshaft by the engine is composed of five major parts: (1)
indicated torque T;(8); (2) reciprocating torque 7,(#); (3) friction and pumping loss torque
1'},,(9); (4} load torque T, (6); and (5) other less-significant fluctuating torques T, (6). The
latter torques, T,{#), may be modecled as being insignificant compared to the first four
terms [17].

T.(8) is due to the force generated by the combustion gas pressure P(f). The equivalent
mass of the piston assembly M (mass of piston, wrist pin, piston rings, and the small end
of the connecting rod) is subjected to accelerations during the engine cycle, due to its
reciprocating motion, and as a result the reciprocating force F.(8) is generated along the
direction of the piston axis. F,(#) produced no net encrgy in the system, but can cause
significant fluctuations at the combustion frequency in the net torque 7,(#) applied to the
crankshaft. These fluctuations are approximately quadratically proportional to engine
angular velocity. T,(#} is purely deterministic and completely described by engine
geometry. T,(f) represents energy loss due to friction and the pumping action
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Figure [. {a) Combustion pressure # and (b) corresponding angular velocity 2 measured from a six-cylinder
* - engine for three engine cycles.
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Figure 2. Cylinder geometry model.

(air/fuel/exhaust) of the engine. The instantaneous value of F, (¢} during combustion
proves to be difficult to measure, although the average value may be approximated via
engine motoring tests (spinning of an engine without combustion, in a test stand or
dynamometer) and its effect lumped in with 7,(6). The fluctuating part of £ #) is
impulsive around the piston ‘dead centres’ (cither end of the piston stroke) where the piston
reverses direction, which is where the geometry function which transforms force in the
piston axis direction to torque on the crank arm passes through zero.
The net result of these torques is expressed as

T.(0)=T(0)+ T,(0) + T, (0) + T, (6) + T, () (1)

where T,(8) denotes the net torque acting on the engine. This equation reflects the effect

TasLE 1
Parameters used in the P — § 1C engine model

s piston displacement from TDC
r crank radius
! connecting rod length
A, piston face area
B con rod angle from piston axis
# crank position angle
Q(ry=d@/dr crankshaft angular velocity
M,, equivalent mass of reciprocating parts
F(#) force due to combustion pressure
F.(8) force due to reciprocating mass
F,{0) net force applied to crankshaft torque arm
F,(8) force due to friction and pumping
T.() rF,, net torque applied to crankshaft
T{#) indicated torque
T.{0) reciprocating torque
T, () friction and pumping loss torque
T, (8) load torque
T,(8) other (less-significant) torques
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of a single cylinder. The torque produced in a multi-cylinder engine can be described by
summing an appropriate number of similar equations with correct cylinder phasing,
assuming a stiff crankshaft. A model with a flexible crankshaft would include additional
complexity to incorporate the flex between cylinders, yet the torque effect of each cylinder
is essentially the same.

The above torque balance equation provides the basis for P-Q models. The models differ
in the degree of complexity the modeler is willing to impart to the physical configuration
of the engine (e.g., flexible or stiff crankshaft, accessory and valve-train torques), the detail
of the individual torque models, and the operating conditions under which the model is
intended to reasonably reflect the e¢ngine dynamics.

2.3. PREVIOUS WORK

Several previous attempts have been made to reconstruct combustion pressure wave-
forms. The most common approach is estimation of the combustion pressure torque from
measurements of the engine angular velocity, using an engine model such as the one in
this paper [11, 12}. Another approach is measuring vibration acceleration at a point on the
engine block (part of which is presumed to be caused by the combustions) and use of an
appropriately identified transfer function or parametric model to compute the pressure
waveform from a filtered vibration acceleration trace [13, 14]. A third approach involves
using pattern recoguition techniques on speed fluctuation waveforms [18].

Fehrenbach {11] uses a torque balance equation model, differing from that used in this
paper by the addition of terms to include friction and valve train torque. The model uses
only one cylinder and a stiff crankshaft is assumed. An inverse equation is derived by
algebraically solving the torque balance equation for the combustion pressure, and then
computing it through this inverse equation from filtered angular velocity measurements,
One drawback of this method is the ‘blank spots’ in the pressure estimation at the
cylinder’s top dead centre (TDC) and bottom dead centre (BDC) during the engine cycle.
This is due to the geometry function relating the combustion force to torque acting on the
crank arm having value zero at top dead centre (TDC) and bottom dead centre (BDC).
Since this function appears in the denominator of the inverse equation, no solution is
possible at TDC and BDC,

Citron et al. [12] also use a model-based approach, with a more complex 4 dof model
with an elastic crankshaft. They reconstruct the pressure using a method analogous to
Fehrenbach’s, utilising a portion of their inverse system, and are hence subject to the same
‘dead spot’ drawback. They also use @ as the independent variable, yet use Fourier series
based on time as the inverse domain.

The second approach, used by Azzoni et al. [13, 14], employs measurements of engine
block vibration acceleration and filtering to reconstruct the combustion pressure wave-
form. Cepstral filtering of the vibration acceleration (inspired by work in acoustics) is used
to obtain a signal which is surmised to be highly correlated with the pressure signal,
enabling estimation of the pressure signal via filtering. The filter is based on a transfer
function model identified from measurements of the filiered vibration acceleration and
combuciizn pressure.

The third approach by Brown and Neill [18] uses pattern recognition. A database of
anaular velocity waveforms is developed to which unknown waveforms may be matched
to determine the corresponding peak combustion pressure.

The previous work discussed above all attempt to recover the continuous combustion
piessure waveform(s), at least in the combustion region near the cylinder TDCs. None of
e methods explicitly considers cyclic variability in their formulation. An advantage of
I methods is that they are straightforward. However, their applicability is limited, since
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none of the methods appears to be implementable in real time. The methods do not have
any stochastic features, and reduce measurement noise by low pass filtering.

This paper differs from the above work in that a stochastic model is used for part of
the combustion pressure, and stochastic identification algorithms are used to derive a
method for reconstructing the cyclic variation in the combustion pressure. Thus a
stochastic characterisation of both the pressure process and the measurement noise is
explicitly included in the model.

3. STOCHASTIC PRESSURE-ANGULAR VELOCITY MODEL

We first derive a model for the engine pressure to angular velocity relationship, starting
from existing engine models [12, 15-17, 19, 20]. We start with a torque balance eguation
model, using well known engine modeling concepts. This is then developed into a
differential equation model of the P —Q relationship using crank angle ¢ as the
independent variable. This model, in conjunction with a new stochastic combustion
pressure model based on work in [20], is used to obtain a new recursive model indexed
on a combustion-by-combustion basis. The recursive model is put into state-space form,
permitting use of identification techniques such as Kalman-fiiter-based deconvoifution
algorithms to estimate the stochastic pressure process driving the recursive model.

3.1. ENGINE MODEL

The torgue balance equation relating the torques in (1) to the angular acceleration of the
crankshaft is

JO=T,(0)+ T,(0)+ T,(0) 2)

where crankshaft angle 8 26(¢), § = d*0/d?, and J is the effective moment of inertia of
the engine. This equation incorporates the major torques produced by the engine
accelerating the crankshaft. Assumptions are as follows: the crankshaft is infinitely stiff;
the mean of T, (8) is lumped in 7,(8); fluctuations in T,(0) and T, (#) are negligible
compared to the first three terms [this is why T;(0) and T,() are present in (1) but not
(2)]; the engine is operating in a steady-state condition (constant ‘average’ engine speed
over many engine cycles, constant 7, (8), and fully warmed with spark timing and fuej
mixture fixed); and J is the effective moment of inertia of the rotating parts of the caginc
at that operating point.

The first and last assumptions imply that the engine is treated with rigid body mation
A more accurate engine model would include crankshaft and drive-line (i.e. engine
transmission, axles and tyres) elasticity and damping. While this could increase ...t 0.
accuracy, it would also increase model complexity significantly. This would in turn a2
formulation of the pressure identification problem more difficult. For this reason .
engine is modeled simply by a single Jumped inertia.

The model derivation is for an even-firing, four-stroke, six-cylinder engine, although
general any engine configuration may be used. The new model is based on fiweali.o i
(2) into the 6 domain, so that 8 becomes the independent variable instead of ¢, «i. -
8 = 0(¢). This transformation is desirable for two reasons: (1) IC engine data ..., _ [ .
systems sample synchronously with engine position; and (2) the #-domain, as opposed °
the time domain, affords a convenient formulation of the problem into a first-order, tinear
f-varying differential equation in Q%#), the square of the angular velocity. It is ™~
formulation that allows application of the identification algorithms discussed in Section 4
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Detailed models of the torques [15, 16] are substituted into equation (2), which becomes
as 6 6 I3 ..
Jo =3 PO (O ~ o+ 2 M, 16,08 — )+ 8f3(6 — ¢)] + T..(6) (3)
i=1 i=1

where ¢, = (2n/3) (i — 1), P/(9) is pressure in the /th cylinder, and M, is the mass of the
reciprocating parts associated with each cylinder (assumed 1o be the same for all cylinders).
The functions f, (8}, f,(8), and f,(#) are derived from the geometry of the single-cylinder
model shown in Fig. 2 and relate the forces produced in the engine to torque applied on
the crankshaft. Define

2

jW)=$n9+;ﬂnch6 Lfﬁmﬁe @

Then
fi(@)=rA,f(0) (5
ﬁw)=—ﬁ[aﬁe+§msw}ﬂm (6)
_mm=-ﬂ&me+%mﬂﬂﬂm. 7

The engine cycle is 4n radians, or two revolutions for a four-stroke engine, but f,(#) and
Jf1(0) are periodic with pertod 2n radians, so (3) becomes

o= Y POSO ~ ) +2M, THHO )+ HE -4+ TLO. @

The next step is to use the chain rule to find the relation between functions in the time
domain and their values at the sample times in the § domain. Define {X(6) as

O)LDONL = L 0() =00, ©

i.e. €(0) is the same quantity as Q(r) expressed in the & domain. Then

i =300 = ne y) = J56) d6

dQ(H) B ,
g ar B o0y -1 Smowr. (10

T 240

Now substitute for 8(¢} and &(¢) in (8). This gives

336 BOF = 3 (20,0 - )

+2M, Z[[Q(B)lzfz(ﬂ ¢)+ [9(9)]21‘3(9 ¢)]+T(9)- (1Y

2de

Defining

x(8)2 DO (12
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and collecting terms, (11) becomes (in the ¢ domain)
J 3 d 3
[E— VA WACE qb.-)] 5O+ [2M,q IWACE ¢,-)]x(6)
i=1 i=

= E} PO (8 — @)+ T.(0). (13)

Now define the following:

u (6)= [:2' ~ Mo S A6~ qb.-)] (14)
15(0)= 3. [P(0);(6 - 6]+ T.(0 (15
(6) =24 3 10— 8) (16)
A(0) = :Eg; (7
Bo) =23, (1)
Substituting (14)(18) into (13) yields
& (6] — 4©)x(0) = BO). (19

This is a first-order, linear, #-varying differential equation which has a known function
[see (14), (15) and (18)] of combustion pressurc as the forcing function. The solution to
(19) can be written in closed form as

[ ) o 0
(@) =e |, e j B(x) e~ [, % da + x(0) e, 4 (20)
)]

Analysis of A(f) and u () show that they may be well approximated by trigonometric
functions

A(B8) =~ A, sin (30) 21}

u, (0) =~ ¢, + ¢, cos (38) (22)

where A, = —0-018897, ¢, = 0-040857 and ¢, = 2-4938 x 10~% are constants. The sum of
squared errors for one engine cycle (720 points/cycle) for these A(f) and u,(#) approxi-
mations are, respectively, 362 x 10~ and 2-52 x 10~" using typical engine parameters.
Using the approximations (21) and (22), define g(8) and g(f) as

[ 1)
CJ-D Alw) dp ~ e%(cos(w)-])ég(e); e—J; Alp) dp ~ e'?(ms[w)—l)ég(g) (23)
so that an approximation of (20) is

&
x(8)=8(8) j B(a)g () da + x(0)£(8). (24)
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Figure 3. Stochastic pressure model and raised cosine for one cylinder, cne engine cycle.

This approximation makes numerical computation of x (&) tractable. Next we explain the
stochastic P model, and then show how this model with (19} and (24) yield a recursive
model for the stochastic P — Q process.

3.2. STOCHASTIC PRESSURE MODEL

An analysis of the stochastic nature of the pressure process in an IC engine in a
steady-state operating condition was carried out in [20], from a signal theoretic point of
view. Several significant conclusions were made regarding the random nature of the
combustion-to-combustion variation of the pressure process. First, the random variations
in combustion (departure from mean pressure) occur in a combustion variation region
starting at about TDC for the power stroke and extending for approximately 40 to 60°
of engine revolution. Second, define the sequence of random variables feo(n) as the
combustion pressure sampled as crank angle §, in the nth engine cycle, where 8, is a fixed
crank angle in the combustion variation region. Then the random sequence ¢, (n) is
uncorrelated in #, wide sense stationaty in s, and closely approximated as Gaussian with
mean Py = E{P(0,)}. Third, define the vector random process £(n) = [&;, (1), . .., &, (M)]7
as a vector of samples of cylinder pressure in the nth engine cycle at N different fixed crank
angles 8/, .. ., B, in the combustion variation region. Then the vector random sequence £ (n)
is wide sense stationary in #, and well approximated by a jointly Gaussian vector random
process.

We infer from these conclusions that the pressure process may be modeled as the sum
of a deterministic mean pressure waveform and a Gaussian process correlated within the
region of a particular combustion, but uncorrelated between combustions. Although this
does not follow directly from [20], it seems reasonable in light of the conclusions in [20].
There is evidence to suggest that in certain engine operating conditions (e.g. for lean
air-to-fuel ratios) there is correlation among combustions [21], but for the purposes of this
paper the stochastic nature of combustion is modeled as an uncorrelated process.

A new signal-theoretic stochastic model for combustion pressure is proposed. We model
the combustion pressure as the sum of a mean pressure waveform and a raised cosine
waveform amplitude-modulated by a white Bernoulli-Gaussian random sequence indexed
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by combustion number. This sequence aggregates the effects of all cylinders into a
compact, efficient parametrisation of combustion pressure. This parametrisation is pleas-
ing as the deterministic, Newtonian relationship between combustion pressure and torque
suggests that cyclic variability may be characterised by a single scalar value per
combustion. The raised cosine window models deviation of instantaneous pressure from
the mean pressure waveform, and has support (is non-zero) only during the combustion
variation region. This window was chosen because it visually resembles real, observed
pressure deviations, and also because of its simplicity in analysis and computation.
For a single cylinder, we model combustion pressure P(8) as

P(g)=PO)+ <) (25)
where P(f) is the mean pressure waveform and the stochastic part of combustion is

én%[] —Cos (69)]: [?n » ¥ + ‘Pcomb)
9) = 26
6( ) {0 [’VR+?comb97n+l) ( )

where £, is a Bernoulli-Gaussian random sequence with Bernoulli probability of success
p =1 and Gaussian amplitude .47(0,¢%), n is the combustion-to-combustion index,
v, = ndn /N is the starting crankshaft angle of the nth combustion, y.m, = 47/ is the
angular duration of the combustion event, and N is the number of cylinders. The
parametrising sequence is chosen as Bernoulli-Guassian to emphasise the ‘spiky’ nature
of the sequence, as we are combining a continuous and a discrete model.

Figure 3 exhibits a typical realisation of stochastic pressure for the model devised for
a single cylinder. The amplitude-modulated raised-cosine window added to the mean
pressure waveform during the combustion region is depicted as a dashed line; the mean
waveform P(f) is the solid line, and the two other lines depict typical realisations of the
stochastic pressure model.
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Figure 4. Typical forward simulation results (a) input pressure waveforms; (b) output angular velocity.
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3.3. PRESSURE TO ANGULAR VELOCITY RECURSIVE MODELS

The closed-form solution approximation (24} is now used to develop a recursive P — Q2
model. For a four-stroke cven-firing six-cylinder engine, combustions occur every 4n/6
radians of engine rotation. Let y,=#(2r)/3, n=0,1,2,...,and then set # =y, and
# =1y,,, in (24}. This gives

) = 20) J:" Ba)g(®) do + x(OF () @
XV 1) =8(Wasr) '[:" " Bla)g(a)de + x(0)g (v, . 1) (28)

and since g(y,. ) =g(y,) [see equation (23)] we have
X(ne1) — %) =§(yn)jru+l3(a)g(a)da- {29)

Equations (15), (18), (22) and (25) may be combined into

1 b _
B(0)~ o ¥ o008 36) {El (P + E(ONN(B — )]+ TL(G)} (30)

where ¢, = (2n/3)(i — 1) and { indicates cylinder number. Then

e+ 1 _ Tn 41 g(e) L _
[ por@ra0 = [ ED (3 P06~ 001+ )6

Ta+1 g(g) 6
+L. TF euo0s 38) &, SO0 — ) 6. 31)

The integral of B(6)g(f) can thus be seen to have two parts: a deterministic part [the first
term on the right-hand side of equation (31)), and a stochastic part (the second term on

Input sequence w{k)

5 T T — S—

0 5 10 15 20 25 30
Combustion index, five engine cycles

Figure 5. Input Seciuence used in simulation.
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State x{k)and noisy observation x{k)+ v{k}), SNR =35-5671
& r v T . —

o

0..
-2} R
° o
_4.. ~
o
-6 " N N 4 N
o ] Has 15 20 25 3o

Combustion index k, five cycles
Figure 6. State x(k) (——) and noisy observation x(k)+uv(k) (O).

the right-hand side). Since by assumption the engine is operating in a steady-state condition
{constant T,(#) =T, and average speed], the mean part of the deterministic indicated
torque [the sum involving P.(#)] is opposed and cancelled by the constant load torque 7T,.
The deterministic part of the integral was numerically evaluated for this case using the
mean pressure waveform simulation shown in Fig. 3. This deterministic part is

_ B T 41 1 & _
B25(7,) '{;n 1 6 005 (30) {fz (PO)AO — ¢+ TL(E)} dé. (32)

In steady-state B, = B evaluates to zero.

Estimgtes input sequence; SNR=24-2026 {=1
8 T T T v T

o 5 10 15 20 25 30
Combustion index k, five cycles

Figure 7. Output of optimal smoother, sk |k + 13, (Q) compared with w(k) (—).
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Estimates input sequence; SNR=37-8337 i=1

T

S r—

J rah [1 | LL[J,T
R ]

10 15 20 25 30
Combustion index k, five cycles
Figure 8. Ouiput of optimal smoother, wik |k + 1), () compared with wik} {(—).

(=)
b

In the stochastic part of the integral, it should be noticed that the raised cosines weighted
by the Bernoulli-Gaussian sequence are independent from combustion to combustion.
This means that for an integration over a combustion starting at a particular y,

; E(0)11(6 — &) = {0110 — ) = &[T —cos (6(0 — p A @B —&,)  (33)

where ¢, = (2n/3)(m — 1), m = (n mod 6) + | is the index of the cylinder firing at y,, and
n is the combustion index. This relation holds only where the raised cosine has support,

Estimates input sequence; SNR=23-7959 [(=¢
5 v T v

—

o] 5 10 15 20 25
Combustion indax k, five cycles

Figure 9. Qutput of optimal smoother, Ww{k |k 4 6), {O) compatred with wik) (—.
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that is, in the combustion region for that combustion [(see equation (26)]; the quantity on
the far left of equation (33) is thus zero outside this region. Thus the stochastic part of
the integral is a constant b weighted by the combustion-to-combustion random sequence
Eat

&b = éné(v»«)r Lo l[' —c0s (6(6 — ¢ f1(0 — ¢n)dO. (34)

€1+ Cac0s(30)2

Note that b is independent of #, since the integrand above and g(f) are periodic in the
combustion interval. The quantity b was numerically computed and found to be 0-0024205.
Then '

f " Bloyg(x) do = B, + B, (35)

and substituting B,(=B =0 at steady statc), b, and replacing n -y, in (29) yields
x(n + 1) =x(n)+b&, (36)

which is the discrete recursive formulation of the P — 2 process, in terms of squated
angular velocity x(n) [see equation (12)] as a function of combustion index .

4. IDENTIFICATION

Three different methods were evaluated for estimating the combustion pressure from
angular velocity measurements. The methods are briefly reviewed in this section, and
simulation results presented in the next.

The first method was adaptive recursive least squares (RLS). Equation (3) was
manipulated so that the unknown parameters, including the combustion pressures P,(8),
appear in a lincar regression, whose parameters are time varying. In this way simultaneous

Estimates input sequence; SNR =32-9472 [=6
5 T —_— v .

O,Ignh 1 | H_”o} J

-2 L : o

o 8 10 15 20 25
Combustion index k, five cycles

Figure 10. Qutput of optimal smoother, Wik |k + 6), (Q) compared with w{k) (——).
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Figure 11. Error variance a3(k |k + 1) vs combustion index.

recovery of the complete combustion pressure waveform for each cylinder was attempted.
Several variations of adaptive RLS all proved unstable, as indicated by failure of the

regressors to meet the persistent excitation condition for RLS. Consequently this method
was abandoned.

The second method was Kalman-filter-based deconvolution. Equation (36) may be
combined with an equation of noisy observations to give

x(n+1)=x(m)+bw(n); y(n)=x(n)+uv(n) (37)
where x(n) is the square of angular velocity [see equations (12) and (27)], & is defined by
equation (34), w(n) = £, is the Bernoulli-Gaussian white driving sequence [which specifies
the stochastic cyclic combustion variability—see equation (26)], and y(n) is the noisy
observation of the square of the angular velocity.

The formulation in equation (37) may be used in deconvolution methods [8] for optimal
estimation of the driving sequence w{n). In general, consider the multi-variable system

x(n + 1) =dmx(n) + F)wln), ym)=H@)xn)+ov@n) (38)

where x eR", y e R™, we RY, v e R™; @, I', and H are of proper dimension; and w(n) and
v(n) are uncorrelated zero mean random sequences for which

E{w(n)w'()} = 0Q(n)d, (39)
E{v(n)T(1)} = R(n)5,,. (40)

Note that w and v may be non-stationary. The single-stage optimal estimate w(n |n 4 1)
of w(n) and error covariance ¥ (n|n + 1) of w(n|n + 1) can be computed using [8]

wnin+1)=QI "P~(n + 1|n}K(n + 1)F(n + 1in) 41)
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Y.(nln+1)=0—QIr"H[HP(n+ 1ImH"+ RI"'HIQ (42)

where the following Kalman filter equations are used:

Xn+1|n)=dx(n|n) (43)

P(n + l|n) = ®P(n|m®T+ IOI'7 (44)
K(n+1)=P(n + 1|m)HTHP(1 + 1|n)HT + R]"! (45)
Fin+1n)y=yn+1)— Hi(n + Llin) (46)

Fr 4 n+ D) =20+ 1|n)+ K@+ Djn + 1n) @7
Pn+n+ ) =[— K@ + DHIP(n + 1|n). (48)

Equations (38)-{48) may be applied directly to the present problem by setting ¢(n) =1,
T'(ny=>5, Hn)=1, w(n)=¢£,, v(n) as the observation noise, and # as the combustion
index, The /-stage estimate w(r|n + ) and its error covariance ¥ (s |n + [) may also be
computed.

The third method was adaptive deconvelution. In [9] an adaptive estimation algorithm
was coupled to a deconvolution algorithm. Lainiotis et al. demonstrated the ability of
adaptive deconvolution to handle situations of model uncertainty. The method was
investigated, but not simulated for the present problem, and is mentioned further in
Section 6.

5. SIMULATION RESULTS

This section presents simulation results for the forward continuous stochastic P —
engine model, and for deconvolution of the white sequence driving the pressure process
in the model. Figure 4 shows typical forward simulation waveforms for two engine cycles.

Error variance, six-stoge cutput sequence

01 :
008l _ SNR=238 :
0-06}F | 4
0:04f ]
0-02r SNR=32-9 7

_____________________________________________________ SNR=35-4
0-oF SNR=42.5 !
=002 : N " . 2
o 5 10 15 20 25 30

Combustion index, five enging cycles

Figure 12. Error variance 62(k |k + 6) vs combustion index.
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Figure 13. Output of optimal smoother, w(k |k + 1), {Q) compared with w{k) (——) with one misfiring
cylinder.

The upper plot shows six pressure waveforms used as the driving functions in the forward
continuous simulation of equation (19). Note the variation in peak combustion pressure
caused by the Bernoulli-Gaussian input sequence £,. The corresponding output angular
velocity waveform is shown on the lower plot. Note the variation in the speed fluctuations
resulting from the variation in peak combustion pressure. Forward simulation waveforms
exhibit visual qualitative behaviour very similar to that of typical observed engine speed
waveforms. For example, compare the simulated speed waveform on Fig, 4 to the
measured speed waveform on Fig. 1.

The goal is to estimate the combustion pressure variation from noisy measurements of
angular velocity. The parametrised inverse problem is to estimate the Bernoulli-Gaussian
white sequence £, modulating the raised cosine window in the stochastic pressure model,
from one sampie of angular velocity from each combustion interval {2n/3 rad of crankshaft
rotation). Figure 5 shows the input sequence used in the simulation; variations in the peak
combustion pressures depicted in Fig. 4 correspond to variations in this input sequence.
Figure 6 depicts the state x(k) and noisy observations y{k) = x(k) + v(k) for a typical
signal-to-noise ratio (SNR), The SNR is computed as

o' x()

SNR =10 log =&=———
Moot o)

{49)

where the sums are taken over the actual sample values used in a length N simulation.

Results are shown in Figs 7 to 10, which depict deconvolutions of the white sequence
as outputs of the single- and /-stage optimal smoothers of [8] for several different
conditions. Figure 11 shows the error variance ¢, (k) and Fig. 12 shows the error
variance @y, 6 (k) for various SNRs. The results demonstrate that for low to moderate
noise levels the optimal smoother performs a reasonably good deconvolution of the white
sequence driving the stochastic combustion variability. The six-stage smoother appears to
only give a moderate improvement over the one-stage smoother.
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There is considerable interest in on-line detection of misfiring cylinders in automobile
engines, especially in light of the proposed requirement [22] of an on-board diagnostic
system capable of detecting a misfire rate above some predetermined threshold. The work
presented here may be applicable to detection of misfires. Figure 13 shows a deconvolution
wherein a misfiring cylinder is simulated by replacing one point in the driving
Bernoulli-Gaussian sequence &, with a large negative outlier, the effect of which is to
significantly reduce the pressure in one cylinder during the corresponding combustion
region (around the peak pressure). For the SNR shown, the deconvolution is able to detect
this outlier, indicating that the method may be useful for detection of misfire.

Although only simulation results are shown in this paper, supporting experimental
results may be found in [23, 25). These experimental results indicate that the stochastic
deconvolution is able to reasonably identify cyclic combustion pressure variation from real
engine data, including the case of a misfiring cylinder.

6. CONCLUSION

A non-linear differential equation model of the combustion pressure to angular velocity
relationship in an internal combustion engine was manipulated into a linear, first-order,
¢-varying differential equation model (8, the crankshaft angle, becomes the independent
variable). This differential equation model was used to derive a novel discrete crank-angle
recursion relating samples of engine angular velocity every combustion interval tc a white
Bernoulli-Gaussian sequence, which is a new model for cyclic combustion variability
inherent in the combustion process. The recursion permits a state-space formulation with
the white cyclic variability sequence as the input, to which stochastic state-space
deconvolution methods for estimation of the input sequence may be applied. Simulations
indicate that for low to moderate noise levels a reasonable deconvolution may be achieved.
Experimental results supporting the theoretical developments are referenced in companion
papers. These results indicate the feasibility and promise of measuring cyclic combustion
pressure variability on-line using the deconvolution method, as the deconvolution estima-
tor is scalar and simple to implement.

Topics for further study arise: (1) the use of multiple angular velocity observations per
combustion {(only one observation per combustion is utilised in the method developed in
this paper); (2) combination of the stochastic deconvolution with a model adaptive
procedure, forming an adaptive deconvolution [9]; (3) study of the application of the
deconvolution method to the detection of combustion misfires (see Section 5); and (4) study
of the random nature of the combustion pressure process, to the end of developing a more
accurate stochastic cyclic combustion pressure model.
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