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Abstract

We consider the optimal stochastic scheduling of a two-stage tandem queue with two
parallel servers. The servers can serve either queue at any point in time and the
objective is to minimize the total holding costs incurred until all jobs leave the system.
We characterize sufficient and necessary conditions under which it is optimal to
allocate both servers to the upstream or downstream queue. We then conduct a
numerical study to investigate whether the results shown for the static case also hold
for the dynamic case. Finally, we provide a numerical study that explores the benefits
of having two flexible parallel servers which can work at either queue versus servers
dedicated to each queue. We discuss the results” implications for cross-training workers

to perform multiple tasks.

1. Introduction

In this paper, we consider stochastic scheduling of a two-stage tandem queueing system with two parallel
servers. The objective is to minimize the sum of the holding costs incurred until all jobs in the system at time
zero are processed and leave the system. Despite the fact that tandem queueing systems are prevalent in many
manufacturing, and communications systems, there have been few papers focusing on the analysis and control

of these systems. In manufacturing, these systems arise in a variety of practical situations including
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worksharing systems with fewer servers than machines, (e.g., Bartholdi et al. 1995, McClain et al. 1997).

However, very little is known about the optimal control of tandem queueing systems with multiple servesrs.

Among the few works which have considered optimal control of tandem queueuing systems with multiple
servers, Rosberg, Varaiya and Walrand (1982) and Hajek (1984) considered a two station tandem queueing

system with one flexible server (rate ) and one fixed server dedicated to queue 2 (rate u, ). Farrar (1993)

considered the case of a tandem queue with one fixed server for each stage and one flexible extra server which
can be turned on and off. He showed that the control of the extra server can be characterized by a switching
curve. He also showed that the optimal allocation policy of an extra server is transition monotone when

¢, <c,. Pandelis and Teneketzis (1994a) analyzed optimal multi server stochastic scheduling of two

interconnected queues and considered conditions under which exhaustive policy at the first queue is optimal.
They showed that there is a sufficient condition described in terms of holding costs and the stochastic ordering
of the service time distributions. This paper is very similar to ours; however it differs in several key areas: Our
analysis assumes exponential processing times and also we assume that all jobs leaving queue 1 go to queue 2
and therefore our assumptions are less general than theirs; however under our more restrictive assumptions, we
are able to derive sufficient and necessary conditions under which exhaustive policy at either queue by both
servers is optimal, whereas they only derive sufficient conditions under which it is optimal to allocate both
servers to the upstream queue. We further discuss the difference between the results obtained here and in the

Pandelis and Teneketzis paper in the beginning of Section 5.

In other work on tandem queues, which allows for only a single server, Van Oyen and Teneketzis (1994)
considered the control problem of forest networks attended by a single server with switching costs. Iravani et
al. (1995) provided a performance analysis of two stage tandem queueing systems attended by a moving server
with holding and switching costs, and Iravani et al. (1996) extended the analysis to N-stage tandem queues
attended by a moving server. Duenyas et al. (1995) also focused on single flexible server tandem queues and
provided a partial characterization of the optimal control policy and some heuristic control rules. In a different
context, Weber and Stidham (1987) focused on problems where each queue in a tandem queueing system is
allocated a single server but the decision maker can set the optimal service rate (where there is an operating

cost associated with higher service rates).

Although there have been a few studies in optimal control analysis of systems of queues attended by multiple
servers, these studies in general do not focus on tandem queues. Ross (1983) considered the minimization of

makespan in a 2-stage tandem queue with 2 servers. (In contrast, we focus on the total expected cost
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objective). Chang et al. (1991) focused on minimizing the expected weighted total cost of two classes of
exponential jobs on multiple processors. They proved that in the optimal policy, there exists a switching curve

that changes from the cy -rule to the LEPT rule based upon the number of jobs in the system. Kampke (1987,
1989) derived conditions under which priority rules such as the curule and LEPT rule are optimal in

multiserver problems. Other recent references on stochastic scheduling problems (none of which focus on the
scheduling of multiple servers on tandem queues) include Agrawal, Hedge and Teneketzis (1990), Gittins
(1989), Hofri and Ross (1987), Pandelis and Teneketzis (1994b), Pinedo(1995), Stidham and Weber (1993),
Van Oyen and Teneketzis (1992,1996).

The rest of this paper is organized as follows. In Section 2, we provide the problem formulation and show
that the optimal policy can be complex. Section 3 contains our main result; mainly, the necessary and
sufficient conditions under which it would be optimal to allocate both servers to queue 1 or queue 2 under the
assumption of exponential processing times. The analysis in Section 3 is performed under the assumption that
the two servers are never allowed to idle. In section 4, we prove that only non-idling policies can be optimal for
the original problem. Therefore, the results derived in Section 3 also hold for policies where the server 1s
actually allowed to idle. Section 5 is devoted to a numerical study which provides empirical justification for a
conjecture that the results derived in Section 3 (for the static problem where the objective is to minimize the
total expected cost until all jobs clear the system) also hold for the dynamic version of the problem (where the
objective is the minimization of the average cost per unit time). In Section 5, we also focus on the actual
benefits of having two flexible servers rather than one server dedicated to each queue, and show that this

benefit can be large.

2. Problem Formulation

We consider a 2-stage tandem queue where all jobs leaving queue 1 immediately join queue 2. Jobs whose

processing is completed at queue 2 leave the system. Initially, there are »,and », jobs in the upstream and

downstream queues respectively, and we assume that no external arrivals to the system will occur at any time.

The system has two identical servers and the servers can process jobs at either queue at any point in time.

Processing times at queue 1 (2) by either server are assumed to be exponentially distributed with mean ;!

(45"). Once a service begins, it can not be preempted. At any point in time, each one of the servers is either



processing a job from queue 1 (P,), processing a job from queue 2 (P,) or has completed processing a job
from either queue and is ready to process a new job (which, we denote by state R). There is a positive holding
cost A, per job per unit time incurred for holding jobs in queue 1 and a holding cost 4, per job per unit time

incurred for holding jobs at queue 2. The objective is to minimize the expected total holding costs incurred

until the system clears all of the jobs present at time 0, 1.¢., to minimize the expression
E jo (yn, (£) + by, (1) it
where n,(t), i = 1and 2, are the number of stage 7 jobs in the system at time #, and 7,(0)=n,, i=1 and 2.

We will focus on both the non-idling version of the problem where the servers are never allowed to idle
unless they have no jobs to work on and also the version where the servers are allowed to idle. We waill first
focus on the non-idling version of the problem, and then in Section 4, we will show that even when the servers

are allowed to idle, it is in fact never optimal to idle unless the servers have no more jobs to work on.

We first focus on the non-idling version of the problem. Using the fact that neither server will idle unless it
has no more jobs to process, we can formulate the problem of minimizing total expected costs until all jobs
clear the system as a Markovian Decision Process. We let (7,7, X, X,) be the state of the system, where i

denotes the number of jobs in queue 1 and j denotes the number of jobs in queue 2. The vector (X, X))
denotes the status of each machine where X'| X, € {P.P, ,R}. We note that since the machines are identical, we
do not have to distinguish between the machines (i.e., (X,,X,)=(X,,X))).

We define V(i,7,X,,X,) as the minimal expected total cost incurred until the system is emptied, and let
V(0,0,X,,X,) = 0. Since only nonpreemptive policies are allowed, at any point in time (except time zero), we
only need to make allocation decisions (of allocating a machine to queue 1 or queue 2) for at most one
machine. Thus for 0<7<n,0< j<n, +n, —i,the value function, V' (7, /,X,,X,) satisfies the following
dynamic programming equation.

SN | 4 (W ¥ D
V(z,J,R,R)-V(z,J,R,R)—mm{V(i, jp.p) T
V(iaerI?P?.)

v jp,.py) or 12hiz2

Vi,jPR)=V(i, R P,)= min{

V(0.B.R)=V(i.0R.P)=V(0.,P) for 122,j=0
V(ilP,,R)=V(i,LR,P)=V(ilP,P) for i21j=1
V(Lj,P.R)=V(L P, R)=V(LLE.P)  for i=lj2]

V(0,7,P,,R)=V(0,j,R,P)=V(0,j,P,,P) for i=0,j22
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V(i,j,R,R)=“—2—’—Z-+V(i—1,j+1,R,R)

1

h, + jh
BT B yo1 4P R + 2V, j-LP,R)

V(i:j:P1>P2):
#1+/’l2 /‘ll+/‘l2 /‘l1+/’l2

o ih, + jh
V(15]>P27P2):12—2

2

(@i, j-LP,R)

h h
V(LO: Pl >R) = _1 + V(0717 P2 7R)> V(Oala PZ 5 R) = _2

1 H
At time zero, we assume that we can choose the allocation for both machines, and we have
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Figure 1. An example of the optimal policy.

In general, the optimal policy for this problem does not have a simple form. In particular, the allocation of
machines to queues depends on the actual number of jobs at each queue. To illustrate how complicated the
optimal policy can be, consider the following example with x4, =, =1, h, =1 and h =1.995. The optimal
policy when there are two servers available is shown in Figure 1. As the figure indicates, the policy is rather
complicated and can be unintuitive. For example, in state (6,2), it is optimal to allocate one server to each
queue; however, when the number of jobs in queue 1 increases to 7; (i.e., in state (7,2)), it in fact becomes

optimal to allocate both servers to queue 2. However, intuition suggests that if the holding cost for holding jobs



in queue 1 is sufficiently higher than the holding cost for holding jobs in queue 2, it would be optimal to
allocate both servers to queue 1 and vice versa. In the next section, we present the main result of the paper
which state the necessary and sufficient conditions for the optimality of allocating both servers to queue 1 or

queue 2.

3. The Main Result

The main result of the paper is expressed in the following Theorem which states the necessary and
sufficient conditions for the optimality of exhaustive service, by both servers at either the upstream or

downstrearn queue.

Theorem 1:

(A) The optimal policy always allocates both servers to queue 2 as long as there exist unserved jobs at

queue 2 at all states (i,j) if and only if h, < [1 s th-
#l +/‘l2

(B) The optimal policy always allocates both servers to queue 1 as long as there exist unserved jobs at

queue | at all states (i,j) if and only if h > [1 +ﬁ3—Jh2 .

H

Proof: We give the detailed proofs for the sufficiency and necessity conditions of part (A). For part (B), only
the necessity part is shown in detail, since the proof for the sufficiency condition is similar to the proof used in

part (A). We provide the proof for part (A) in Section 3.1 and the proof for part (B) in Section 3.2.
3.1 Proof of Theorem 1 part (A).

In this subsection, we will prove that if and only if the condition, A, <(1+ 4, /(1, + 1, ))h,. which we will

refer to as condition (A), holds then it is optimal to allocate both servers to the downstream queue (queue 2).
We will use induction and direct evaluation of the value function at the boundaries to prove sufficiency. We
will first prove two technical propositions and then use these propositions to prove sufficiency. Necessity will

be shown by contradiction.



Proposition _1.Under condition (4), V(,j,P,,R)=min{/' (1, j,P,,P,),V(1,j,P,,P,)}=V(1,},P,.P,) and
Zl(la]) :V(17j>})1 >P2) _V(la.].:Pth)—V(laj_l:Pl:R)+V(15j—1>P27R)ZO forall .] 2 2

Proof: The result will be shown by induction. First let j=2. For the induction basis of the first claim, it
suffices to show that V(1,2,P,,P,) >V (1,2, P,, P,) since V(1,2,P,,R) =min{V'(1,2,P,, P,),V (1,2, P,, P,)}.

Using the fact that V(0,3,P,,R)=3h,/(2u,)+V(0,2,P,,R)and V(LL,P,R)=V(LP,,R)=V(LLP,P,), we
get

l (lvly‘ 713) ] (13131 2,13)
1

h +2h2 ~ by +2h, .

VA2,P,Py)-V(12.Py,Py) =
(.2.R.5)-V(1.2.F,F) P T

al [V(0,3,P2,R) - V(1,1,P2,R)]+
+ /‘2

2y 2y [3hy Iy | _hyQ@uy + )= Iy + 1) vo
bty 21y ) |_2#2 H 2pn (1 + 1y)

where the last inequality follows directly from condition (A).

For the induction basis for the second claim, using the fact that V'(1,1, 2,,R) =V (L, P,,R)=V (L}, P,,P,) and
the fact (shown above) that V' (1,2, P, P,) -V (1,2, P,, P,) is nonnegative, we have
Z,(12)=V(1,2,P,P)-V({12,P,,P,)-V(LL,P,R)+V(L1,P,,R)>0.

Now to continue the induction, suppose that V(1,;',P,,R)=V(l,;,P,,P,) and Z,(1,;)>0 for all j'<;.
Then at (1,j+1), using the fact that V(0,7+2,P,,R)=(j+2)h,/2u, +V(0,7 +1,P,,R) and using the
induction hypothesis V(1,j,P,P,)-V(,/,P,,P,) >0 give us,

VQ,j+LP,P)-V(,j+LP,P)

h i +Dh, h '+ DA
A UDR WrGRDR B o e b Ry- PR —P L PR - V(L P, R)

My + 1y 24, My + 1y M+ 1y
_hAGEDh i+ GaDh op [u»z)m_hmhz]

Hy + 24, Bty [ 2 2p, G.1.1)
P[0, j+ L2, R -V, j~LP R+ —22 V(1 j,P,R) - V(L /P, R)]

1+1u2 ﬂl lul

It also follows from the induction hypothesis that

& [, +1,P,R) -V -LP,R)]
H iy (3.12)

h h, h h
SV AT L M (LB R) -V (L -LP R+ V(P P) -V (L j.P,.P,)
R T P T

After substituting (3.1.2) into (3.1.1), we have



V(Lj+1LPLPy) -V (Lj+1,Py, Py)

Hahy + (g — hy)

WV, j, P, Py) =V, j, Py, P)) + V(L j =1L Py, R) = V(L j - L P, R)]+

=V(,j,P,R)-V(,j,Pp,R) +
My + Hy 2y (y +1p)

Hyhy + py(hy = hy)

Hy
=V(Lj,P,R)-V(,j,Py,R) + —— Zi(L)) + " )
Mt Ho (py + 1y

> V(L,j,P,R) - V(L,j,P.R)

= V(Lj,P,P) -V, ), Py, P) 20

where the last inequality follows from condition (A) and the induction hypothesis that Z, (1, ) is nonnegative.

This completes the proof of the first part of the proposition.

To show Z,(1,7+1) >0, note that in the last argument we also showed (in the last inequality above)
that V(L j+LP,P)-V(,j+LP, P)>V(j,P,P)~V(lj,P,P). It therefore follows that Z, (1+ j +1)

1s nonnegative as well.

Proposition 2: Under Condition (A), forall i>2, and all j>2, the following are true:
ia) V(i,j-LP,R)=V(i,j-1LP,P) and
b) Z,Gi,j-D)=V(i,j-LP,P)-V(i,j-LP,P)+V(i-1j,P,,R)-V(i-1j,P,R)>0.
itya) V(i,j,P,,R)=V(,j,P, P,) and
b) Z,(,j)=V(,j,P.P)-V(i,jP,P)-V(i,j-LP,R)+V(i,j-1,P,,R)20.

Proof: ~ We will show these results by the induction on both iand j. We separate the proof into four parts.
We first prove the results for (7, j) = (2,2) . Then we prove that the results hold for i =2 and all j>2 . Then,

we prove that the results hold at state (i,2) for all i>2. And finally we prove that the results hold for all

(,7).

Part1(i=2,j=2):
To provide the induction basis, let us start with(i,7)=(2,2). To show i.a), we note

V(2,LP,R) =min{'(21,P,P,) V(2P P,) andwe have,

+h

2h1 +h2 . 2h Ho

[V(I,Z, P.R)-V(2,0,P,, R)]

17" A
+ [V(I,Z,PI,R)—V(1,2,P2,R)]+
2p HytHy HytHy Myt Ky
_2h1+h2_2h1+h Ho

VQLPLP)-V@LPL Py =

2, [V(1,2, P,R)-V(12,P, ,R)]+ [V(1,2, Py, R)-V(2,0,P, ,R)] (3.13)

L Kyt Hy Hy+Hy



Noting the fact that ¥'(2,0,P,,R) = 2h, /21, + V(L1 P, R) , and V(12,P,,R)=(h, +2h,)[Qp1,) +V(LLP,,R)

(from Proposition 1), after substitutions, we get

VQ2LP,R)-V(2LP,P)
btk Dtk [hl+2h2_2h1]

2, ity it 24 24

s [paLP, R -VALP,R)]+ 2P, R)-V(2,P,,R)]
Byt Hy

Note that V (L1, P,,R) =V (L1, P,,R) =V(LL,P,, P,) .Thus, we have the following;
VQLP,P)-VQLP,P)

_Haby + (y 1) + V2,P,R) -V (1,2,P,,R)]
2/‘1 (/‘1 + /12)
>[Va2,P,R) -V(12,P,,R)] = V(L2,P,,P,)-V(2,P,,P,)>0.

From (3.1.4), we also get
VQLP,P)-V(2LP,P)+V(12,P,,R)-V(L,2,P,R)=Z,(2]))20.
which also proves i.b) .
To prove ii.a) , we first note that

V(2.2,P,P)-V(2,2,P, P,)
2+ 22,

Hy + Hy 2,  HtH, Hyt iy
2042k A2y [

M+ 1y 2y, B tH,

From condition i.a), we have

[2h1 +hz]+ H
Hy + Hy Mt 1,y M+l

VQLP,R)=VQ2LP,P)=

Also from Proposition 1,
V(13,P,,R)=V(13,P,P)= [hl +3h, ]/(2;12 )+V(1,2,P,,R).
Substituting (3.1.6) and (3.1.7) into (3.1.5), we get

V(2,2,P,P,)-V(2.2,P, P,
42k, 2m A2k {hl +3h, 2h, +h2}
Hy T Hy 2u, Moty | 20, M+ Hy

s B pan,p, R)-VQ0,P R+ Q2L P,R) -V(2LP,,R)]

bty By T,
Then by using the fact from (3.1.3) that

2h +h, 2h +h
= [V(l’z’PbR)—V(2,0,P1,R)]—- Lt 2 2hTh
Myt Uy M+, 2u,
= [V(Z,I,PL,PI)—V(Z’I’PI’PZ)+V(172,P29R)'_V(I,Z;Pl,R)]z Z2 (2,1) ZO

V(3,P,,R)-V(2LP, R+ (2LP,R) -V (2,,P,R)}

V(12 R)+ —2—V(2,0,P,R).

(3.1.4)

[Va3,p,,R)-V(2LP, R)]+ A V@LP,R)-V(2LP,R)

(3.15)

(3.1.6)

(3.1.7)

(3.1.8)



and substituting this identity into (3.1.5), we get
V(2.2,P,P,)-V(22P, P)
=.Uzh2 +u(h, —h) 4 H

20, (1 + 4,) Byt iy
>V 2L P, R -V(@2]LP,R)]=V(Q2LP,P,)-V(2LP,P)=0.

Z,2)+[V@2LP,R)-V(2]1P, R)

To prove that Z (2,2) > 0, from the last inequality, we have
V(2,.2,P,P)-V(22,P,,P)-V(2LP,R)+V(2LP,R)=2,(2,2)20

which is the desired result.

Part2. (i=2,all j)

In Part 1, we showed that the results in Proposition 2 hold for (i =2, j =2). We now use the induction to
show that Proposition 2 holds for i =2 and all values of j . Assume that the proposition holds for 7 = 2and for
allj, < j, we now show that it must also hold for i =2 and j, = j +1. (We only show the proof for part i) as

the proof for part i) is identical). We first note that

V(2 j.P.P)-V(2 )P, P,)
2h + k. 2h +jh
AT WA B [y e, PLR)-V (A, j+L P R —2— [ (L j+1, P, R) -V (2, j-1,P,R)]
2u, Bt iy Bt oty

b +jh, 2k +jh
S M L B [y, i+, P, R)-V(2, -1 P, RV, j+1LP R -V (L j+LP,R)]  (3.19)
2u, Mot iy i,

From the induction hypothesis, we have

V(Q2,j-LB,R) = Qh+(=Dh) [t + p) + i [y + )V (1, J, PR+ [t + )V (2, j = 2,F,R). (3.1.10)
and from Proposition 1, we have

VL j+LPLR) =l +(+ Db JQu)+ VAL J. P R) (3.111)
After substituting (3.1.10) and (3.1.11) into (3.1.9), we get

V(zrj:PpPl)_V(zsjaPlaPz)
2+ gy 2Ry {hl +(j+Dh, 2h +(-Dh,
2y, T P R T 2u, My + My

2
+( - ] [V(lyj’P27R)_V(2=j_2’P]aR)]+[V(1>.j+15P1’R)—V(1’JA+I’P2’R)]
M+ Hy

Noting from (3.1.9) for j -1 that
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[y, R)-V(2j-2,P,R)]

)
2 GO I GUDh yy i1 p, )=V (2 j-LBB) + V(L J. B R) V(L JBLR)
H +./u2 2"{1
2 GoOh 2+ G=Dh oy (3.112)
bt i, 2#1
we get,

V(2,j,P.P)-V(2J,P,P)

h h, —h

b mh) B g i )i, 4P, R) -V (L +L P, R)]
2,u1 (/‘1 +luz) MK+ H,y

SV(Lj+LP,R)-V(, j+L P, R)20.

where the first inequality follows from the induction assumption and the second inequality follows from
Proposition 1. We have thus shown 7.a) and we note that i.b) also follows since the equation above implies
V(za ]af)bf)l) ~V(2’]7[)17P2) - V(17]+1a1)1>R) +V(1>] +1>P2>R) =ZZ(23.])2 0

The proof for part i) is similar and is omitted.

Part3. (All i ,j=2)

We showed in Part 1 that Proposition 2 holds for i =2, j=2. Suppose that it is in fact optimal to allocate
both servers to queue 2 (when queue 2 has 2 or more jobs) for all #, <i,j =2. Here we prove that the result
still holds at (i +1,2) . We again only show the proof for part 1), as the proof for ii) is identical.

For part i), we need to evaluate V(i +LLP,P)-V(i+LLP,P,),

V(@i+11,P,P)-V(i+L,P,P)
_((+Dh +hy (i+Dh +h Lt
2 e VR

i+Dh +h i +1)h, +h
_ 1 Hh 4Dk +hy +[VG.2, B, R -V(.2, P, R+ —2—[V(,2, P, R -V (i +10, P, R)]
2 Ly + iy

Hy
ot

[V, P R) -V 2, Py R+ [Vi.2, P R)-V(i+10,P,R)]
I H

ih, + 2h,

First, note that V(i +1,0,P,,R) = (i + DA 2,4+ V (i1, P,,R). Also, we have V(i2,P,,R)= +V(@i),P,,R)

H,

from the induction hypothesis on i . Thus,
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V(i+LLP,P)-V(i+LLP,P,)
_G@+Dh+h, (+Dh+R {ihl+2h2 (i+1)hl}

2, Botiy a2 24
+ H ;‘:‘2/1 [V(lgl, Pz 5 R) - V(l,l, Pl 5 R)] + [V(l’z’ Pl ’ R) - V(1’2’ PZ ’ R)]
1 2

Note that V(i,1,P,,R)=V (i, P,R)=V(i,l,P,, P,), because of the induction hypothesis on i . Then,
V(i+LLP,P)-V(i+LLP,P,)

ol (= h) [V(i.2,P,R) -V(i,2,P,,R)>[V(i,2,B,R) -V (i,2, P, R)]20.
2;“1 (/‘1 +H, )

To prove Z, (i +1,1) 2 0, using the inequality in the last equation,

Vi+LLP,P)-V(i+LLP, P)+V(i2,P,R) V(2 P,R) =Z3+11)>0.
Part 4. (All i and j)

We showed in parts 1, 2 and 3 that the result holds for (i=2 and all j) and (j=2 and all 7). To complete the
induction argument, now suppose that the proposition holds for (i, <7, all j>2), and also for (i, =i +1 and
J, £J), we now show that it also holds for (i + 1, +1), and therefore by induction holds for all 7 and ;. We

once again omit the argument for i7) as it is similar to that of 7). To show 7) we again note that

V(l + 1’]71317})1)_1/(1 +19j:})1:P2)

_+Dh gk DB+ h A [y i) P RY-VG,j+L PR —E G, j + LER) -V (i +1,j - LB.R))

2y, bt i, bt i bt
i+ Dh + jh j ]
_UtDAtjhG+Dh+ hy + G+ LB R -V (i, j+ LR R+ —E2—[ G, j + LB, R) -V (i+1,j-LB,R)]  (3.1.13)
2u, i, )

From the induction hypothesis, we have
Vi, j+1.Py,R) =lihy +(j +Dh, 1/(2;12 +V G, j, Py, R), (3.1.14)

VG+1,j=1LP,R) = (G + Dy + G - Dhy) [y +,u2)+,u1/(,ul + ) WG, . Py R) o [y +p WG +1j-2,P,R). (3.115)

After substituting (3.1.14) and (3.1.15) into (3.1.13), we get

V(i+1$./.?Pl’Pl)~V(i+1’j’P1:P2)
DRty DR+ {ihl +(j+Dh, (i+Dh +(-Dh,
24 MtHy, i, 24, Hy + by

2

o =2 PG, P, R) -V (i+1, j -2, P, R)|+[V G,/ +1, B, R) =V (i, j+1 P, R)

'u+‘u (9.17 2 ) ( J N ) ) (.] 1 ) .] 2
1 2
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Then using the fact (from (3.13) by replacing ; by j-1) that,

%1 [vG,j,P, R)-V(i+1,j-2,P, R)

Kt i,
i+1Dh, +(j-Dh i+Dh +(j-Dh
_O G Dh CDM GO Gy BBV 4L, -1 B, By +V G, Py, R) -V G, . P R)
Kyt Hy 2,
:(I+l)hl +(]--1)h2 _ (I+l)h1 +(j—1)h2 +Zz(i+l,j—1) (3.116)
Kyt iy 2u
we get

Vi+L,j,A,R)-V(i+Lj,P.P)

h h, —h

kst th) |y o, B RY V4L =L B, P +V (i PRV G, B R)
20, (py + ) M+ Hy

+[VG,j+1LP,R)-V(i,j+1P,,R)|

h h, -

_ oty =h) o Z,G+Lj-D)+[VG,j +1, P, R)-V (i, j +1,P,,R)]
2#1 (,Ul +1u2) Mt H,

> V(i,j+LP,R)-V(i,j+1P,,R)20.

To show Z, (i +1, j) 20, from the last inequality,
V(i+1>j:P15P1)_V(i+1>j>P17P2)+V(i:j+15P2’R)—V(i>j+17Pl>R):Zz(i+1:.j)203

and therefore we have shown Proposition 2.

To complete the proof of Theorem 1 part (A) we note that the sufficiency directly follows from Propositions 1

and 2. We prove necessity by contradiction. Suppose that it is in fact optimal to allocate both servers to queue

2 but that 2 >(1+ o )h, . Consider a problem instance where i =1, j =2, one server is working on a job
Hyt Hy

from queue 2 and the other server is ready for service. At this point, if we compare the value of assigning the
second server to queue 2 as well versus assigning it to queue 1, we get (by simple algebra),

hz(z,uz +,ul)_h1(ﬂ1 +/‘2)

VQz2,A,P)-V(Q12,P,P)= 20+ 11)
1 2

<0. However, this contradicts the fact that assigning

both servers to queue 2 is optimal and therefore the necessity is shown as well. ¢

3.2 Proof of Theorem 1 part (B).

In this section, we provide the proof for part (B) of Theorem 1. Since the proof of sufficiency is very similar
to that of part (A), we provide a summary of the proof. We give the full details for necessity. The sufficiency

proof hinges on the following three propositions which are entirely analogous to Propositions 1 and 2.

13



Proposition 3: Under condition (B), the following are true:

V(laj)PpPZ) _

i V(l,j,P,R)=min{ . =V(Q,j,P,P) forall j>2 .
et V. j,P ) wh) foral

i)V(2,j,P,R)=min{y (2,j,P,P).V(2j,P.P)}=V2,j,P,P)and
Z,2,)=V(2,j,P,P) -V(Q,j,P,P)+V(,j+LP,R)-V(j+LP,R)<0 forall j21.

Proposition 4: Under condition (B), the following are true for i,j22:
) VG, j, P, R)=min{V G, . B, P,V G, ), Py, P)}=V (G, ,P, Py)
”) a) V(l + 19] - 131)17R) = V(l + 19.] _I:P]:Pl)

b)ZZ(i+1:j_1)=V(i+lsj—laP1:])1)—V(i+lrj—la})laPz)+V(i7j,P29R)_V(i,j:PpR)SO

Proof:_ The proofs of Propositions 3 and 4 are virtually identical to those of Propositions 1 and 2 and are

omitted in the interest of space. ¢

The sufficiency in part (B) of Theorem 1 follows directly from Propositions 3 and 4. We now provide the
proof of necessity in detail. We will again prove this by contradiction. That is, suppose that an optimal policy

allocates servers to queue 1 as long as there are unserved jobs at queue 1 but that A, <(1+ u, / u,)h,. Now,
from Theorem 1 part (A) which was shown above, we already know that when A, < (1+ i, /(4, + #,))h, , it is

in fact optimal to allocate both servers to queue 2 and therefore in that case the result follows by contradiction

immediately. We therefore need to focus only in the region (1+ u, /(u, + u,)) <h <(1 +u,/ ﬂl)hz- Now,
consider the case with n =1. The optimality of the exhaustive policy at queue 1
mpliesV(1, 7,P,,R)=V(,j,P,P)<V({,j,P,P,) forall j22.

Then, pick n, such that

- J-1
n, = min ]’6N;£1i+h—2 1—(’”/ ) >0,
2, 24, (1 + 1y)

The existence of a finite n,>2 is shown easily. We note that », can not be 1 since for j=1, the expression

above yields (h, —h,)/2u, which is negative since A, >(1+ 4, /(1, + p,))h, > h,. Similarly, when j=2, the

expression above yields *, _’;‘)(/: 1+ 44) ;h’” 2 which is again negative because A, > (1+ u, /(u, + 4,))h,.On
My + 1y

the other hand, since My [y + )<l hm, (4, /(1 + ,)) =0 We  note that

(r, -h)@Qu,) +h, [, )[1— (u, /(1 +,u2))"1] is increasing in j and converges to
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[tohy + 2, (hy = 1)) (24a,12,)>0 which s strictly positive because of b < (1+ u, /i, )h,. Therefore, a finite
value of n, >2 exists.

We now focus on the difference of V(1,»,,P,,P,) and V(l,n,,P,,P,) and we have
V(,n,,P,P,)-V(in,,P, P,)

rmhy hAmb B yon 1P R+ —PV(n, ~LP R)-V(n, -LP,R).  (21)
ot iy 21 My iy

We also note that V(1,n, -1,P,R)=V(L,n, -1, P,,P,), and V(0,n, +1,P,,R) =

(—”22—+%+V(0,n2,P2,R).

Hy
Also, since allocating servers to unserved jobs at queue 1 is optimal, we have

h1+(n2 _l)hz + H, VO,n ’P’R + Ha V(l,n —2,PR)
VERK' 2 L

Viln,-LP,,R)=V(,n, -1LP,,P))=
M+ U, M+ U, M+l

which after substitutions yields;
V(l,nz,R’Pz)_V(lﬁn2>P2>P2)
_htmhy h+nmhy o

[V(©0,n, +1,P,,R)-V(,n, -1,P,,R)]
Mt iy 24, ) ’ i i i

htmhy oty g [u Db A, -Dh ] m

' [V©,n,,P,,R)-V(,n, -2,P,,R)]
Mty 2u, Mty 24, M+l Myt iy Byt H,

(3.2.2)

Substituting the expression
M hl +(n2 - l)h2 h1 +(n2 —l)h2
[V(O,nz,Pz,R)—V(l,nz —2,P2,R)]= V(Lny =1,P,Py)-V(Lny -1,P,, Py )- +
Hy + Hy Hy gy 2py

(which follows from the optimality of assigning servers to queue 1 as long as there exist unserved jobs in

queuel) into (3.2.2), we get

Hy Fohy +#y(hy —h))
V(Lny P Py (Any Py P)) == (Ln, =L PP )~V(in) 1P, P)]+
Hy*H, 2pay (Hy + Hy)

(3.2.3)

By recursively applying (3.2.3)to V(1,n, -1 P,P,)-V(Ln, -LP,,P,), V(L,n, -2,P,,P,) -
V(Ln,-2,P,,P,), and so on, we get

V(l,n,,P,P,)-V(,n,, P, P)

hy —h,) % T sy (- h
b K = ] Va2,R,P)-v (2, B, P At )1)2( “ } }L““““(? )

#1 +,u2 H +/‘2 2/12 (,ul +/-12 k=1 lul +.u2 2;“2 (/ll +ﬂz)

ny -3 ny- k-1
__H [ ot J A + tohty + 14, (hy = ) z[ Hy ] + oy + 14y (hy ~ hy) )
bt |\t 1 20, (1 + 1) 2, (i + 1) S\ 20, (py + 1)
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After a lot of algebra, this simplifies to

hz —hl hz H, "
V(l,nZ,Pl,P2)—V(l,nz,Pz,P2) = ]| . (3.2.4)
24, 24 Byt iy

However, we note that the right hand side of (3.2.4) is strictly greater than zero from the definition of n,.
However, this implies that V(1,n,,P,,P,)>V(1,n,,P,,P,), which contradicts the fact that it is optimal to

allocate servers to queue 1 when there exist unserved jobs at queue 1. We therefore have also shown the

necessity result. ¢
4. Optimality of Non-Idling Policies

In the previous section, we assumed that the servers are never allowed to idle. The only way a server can
idle is if there are no more jobs for the server to serve. Unenforced idling is not permitted. In this section, we
prove that even when unenforced idling is permitted, it is in fact never optimal for the servers to idle, and thus
the optimality results in Theorem 1 extend to policies where idling is permitted. This is stated in the next

theorem.

Theorem 2: The optimal policy for the problem where idling is permitted is a non-idling policy and the
results in Theorem 1 hold when idling is permitted.

Proof: 1t is very straightforward (through a very simple interchange argument) to show that it can never be
optimal to have both servers idling at the same time so we only focus on the case where one server is working
on a job from either queue and the other one is either ready to start a new job or to idle. We divide the proof

into two cases (4, 2h,and b, <h,):

Casei) (h, 2 h,)
We will prove the result in this case through an interchange argument. In order to set up the interchange

argument, we let J, , be the type (i.e., job from queue 1 or queue 2) of the m-th job processed by server /. For

example, if J,, =1, this means that m-th job server / processes is in queue 1. The processing time of the job

J

. 1s denoted as P, Also, we let C T(s), 520, be the holding cost rate at time s under the policy ITand

I.m

yi= _[:C“(s) dsbe the expected total cost under the policy I1. Consider a policy I where one of the

servers 1s working on a job, and the other server is ready to process a job. Under this policy, the second server
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idles. We will assume, without loss of generality, that the second server idles for a duration of time /, which is
no longer than the remaining processing time of the job the first server is processing which we will denote
by P, (0). (We note that the second server could idle for a longer duration, in which case, we could make the
same argument by dividing the idling periods into two periods I, and I, ,and repeating the same argument
for both periods (see Figure 2.) We therefore assume without loss of generality that 7 < P, (0). Our proof
shows that 1 can not be optimal by constructing a policy IT where the idling is postponed to the future. But,

since the same argument can be repeated at all times, this means that it is never optimal to idle except when

there are no jobs to serve.

Now, we show that policy IT can not be optimal. We divide the proof into 4 cases depending on which

jobs the first server serves at time zero and the second server serves after the completion of its idling period

under policy .

P, (0)

Server 1 Ji Jis Jis

Server 2 Jai Jas

Figure 2. 1> P,,(0)
Case1.(J,,=2)
Suppose that at time zero, the first server was busy serving a job from queue 2 (ie., J;; =2 ) and
server 2 1idles as in Figure 3.a) under policy i1 even though there exist other jobs it can process. We compare
this policy with another policy IT where server 2 first process J,, (where this job can be from either queue)

and then idles as in Figure 3.b) (i.e., the idling period is shifted). The two policies are completely identical

except for this shift of the idling period and the serving of job J,, by server 2. We denote the time at which

the two situations become identical by time ¢ where 1=1+PF,
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Server 1
Jl 1 ‘]1,2 Jl 3
Server 2 ! Ja, J2s a) Policy 1
Server 1 Ji Jia Jis
Server 2 Jo u a2 b) Policy 1
0
P; | y

Figure 3. Case 1,2 and 3

Since the two policies are identical after time ¢, we have, C''(s)= Cﬁ(s), s>t . And also cost rates are
identical before time P,,(C"(s)=C (s), s< P,|). But, in the time between P, and ¢, clearly
C”(s)<Cﬁ(s),P2,1 <s<t.So we have

If J,, =2 then,

vR-pm [ Ch s - [T shds= [ (€(s)- ™ (s)is = J, huds >0
If J,, = 1then, since 4, >h, we have

yo_pno =J:°Cﬁ(s)ds -L”C“(s)ds{m (h, —h,)ds >0

So the policy IT is better than the policy IT, but this is a contradiction since [T was presumed optimal.

Case 2. (J,, =1,J,, =1): The analysis in this case is identical to Case 1 and is omitted.

Case 3. (J,; =1,J,,=2) and J,is available for processing at time 0 (i.e. n,(0)>1). The analysis in this

case 1s 1dentical to Case 1 and is therefore omitted.

Case 4. J,; =1,J,, =2, and J,, =21is not available at time 0. (i.e. n,(0)=0, and the job that server 1 is

processing in queue 1 will be the first job that will be processed by server 2 in queue 2 under policy 1. The
choice at time 0 for server 2 here was between idling and serving a job from queue 1 since jobs from queue 2

were not available). In this case, =P, since Server 2 is idling to serve the job that Server 1 is going to finish

processing. Now consider an alternative policy IT where the second server processes J;, (which would have
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been processed by server 1 after it finished J,, under I1). and under this revised policy. the server 1 processes
the job at queue 2 that will be available when it finishes processing the job at queue | (instead of handing it
over to server 2 as in I1). Server 2 idles after finishing processing J 12 After time 7 =P, , +1 . the two policies
are identical (except that server 2 becomes server 1 and vice versa, but that does not change anything since the

servers are identical). The system under policy 1. and under policy IT is shown in Figure 4.

Server 1 ']u =1 JL: =1 Ju
1

Server 2 > Jy, =2 J, Policy T1

J,=1 Jz, =2 Jlg Policy I1
Server 1 L ] y

1
Server 2 Jy, =1 " Jis
Pl | Pl 2 Pl.z +1

Figure 4. Interchange argument for Casc 4

Then the difference of costs under the two policies will be

- v w Pyl
Pyt [ M s = [TC(s)ds = (hy ~hyds 20 from By 2, .

1.2

Thus. we have shown in cach case that a policy I where one of the servers idles at a given time can not be
optimal by shifting the idling period to the future. The same argument can be repeated so that the only time

idling can occur is when one of the servers has no more jobs to process.

ity h, >h,
In this case. the argument is more complicated. We first note that it is obvious that when n, +n, <2. (ic.

there are onlv two or fewer jobs left in the system). it can not be optimal to idle. So we only need to focus on
cascs with more than 2 jobs in the system. (It is also obvious that in states (0, /). it can not be optimal to idle).
Also. we can use the fact that the optimal policy is Markovian (which directly follows from finite state and
action spaces). and the obvious fact that it can not be optimal for both servers to be idlc at any point in time.
We will prove the result by induction on all of the states to show that it can not be optimal to idle in any statc.

We divide the proof into three parts:

19



Part 1.

We first note that it is not optimal to idle in states (0, j,P,,R). We will show that it is not optimal to idle
in states (1,7,P,,R). First, we note that it is easy to check that the non-idling policy is optimal in state,
(LL,P,,R). To proceed the induction on j, we suppose that the claim above is true for j<j,,j, 21. In the
next step, we show that the claim must also hold at (1, j, +1,P,R). Let I1 be a policy that idles in the state
(1,7, +LP,,R)and let VL, , + 1, P,, 1) be the value function associated with this policy. The policy [T assigns
the server to queue 2 in that state and both policies follow the optimal policy in all other states. Note that

because of the induction assumption and Theorem 1, this implies that there will be no idling in all other states

under both policies and the servers will be assigned to queue 2 when possible. Thus, we have,

7, j, +LP, R)=[h, + 1, (G, + D]/, +7 0, j, + 2R, R) = [h, + by (j, + D]/, +V (0, j, + 2, P, R),

h +h,j, +h
Tt + H V(0,j, + 2,P,,R)+ at V(lajl:PI’R)'
Mty it iy Rl

V(Q,j, +LP,R) =

Then we have

- h +h (7 +1
V(l,fl+1,P1,R>—V(1,J;+1,11,R>=”2["“ AURL) N v,/ +2,2,R) -V(, j,,P.R)]
,Ul(,ul +,£12) M+ U,

4.1.1)
Since a non-idling policy is optimal in state (0, j, + 2, P,,R) and in state (1, j,P,,R), we have
V(O0,j, + 2, P, R) = b, (jy + 2)/2u,) +V (0, /, + L P,,R) (4.12)
~ h + jh h +j.h
va, P RSP, . PR =2 Ly i LR R) =2 (0, ), +1,P,,R) (4.13)

M, Hy

Substituting (4.1.2) and (4.1.3) into (4.1.1), we have

- h +h(j +1
V() +1P,D)-V({,j, +1,P1,R)=#2[ A )]= Y v, ), +2,P,R)-V(L,,P.R)]
#1(,“1 +/12) Kt Uy

Z#Z[hl +h,(J, +1)]+ H, h,(j, +2) +V(0,7, +1,P,,R) -
(1) Bt Hy 2p, &

h + j,h,

- V(O>.]1 + 1: P2 >R)}

i GAD] e hthg o RGHD
H(fy + 1) R I Mot iy 20,

From the last inequality, we have shown that idling can not be optimal in state (1, j, +1, P, R)as well.

Part 2.
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We now show that if a nonidling policy is optimal for all states (i, j,,P,R) and (i, -1 j,,P,,R) for all
states ((i, <i,Vj,) and (i21,j, <j)), then nonidling is also optimal in states (i,j+LP,R) and
(G-1,j+LP,R). We let [1 be a policy under which idles at the state (i-1,7+LP,,R)and let
V-1, j+1,P,, R)be the value function associated with this policy. Once again, V" denotes the value function

for a policy which does not idle but assign the server to queue 2. We then have

hl(z—1)+h2(]+1)”7(1__1,J.’R’R)=h1(1—1)+h2(1+1)
Ha Ha

The last equality directly follows from the induction hypothesis. ( i.e., the optimal policy is a non-idling policy

Vi-1j+1P, R)= +V(i-1j,P,,R).
at (i1 j,P,,R), < j,.) We compare this with the value function obtained by the non-idling policy I, which
1S

VG-17+LP,R) =V(i-1j+LP, P)=[hG-1)+h(+D)Qu,)+V(i-Lj,P,R).

Then we have

F-L)+ L R)-V(-1j+ 1P, R) = =D+ R U +]) G ‘1); BU*D o
H, My

Thus, we have shown that idling can not be optimal in state (i—1,j+1P,,R) as well. The argument for

(1, + 1P, R) is identical and is omitted.

Part 3.

Finally, to complete the induction argument, assuming that the result holds for
(G, <i,Yj,,P,R) and (i, <i —1,Y},,P,,R)), we show that it also holds for (i +10,7,R) and (i, P,,R). The
argument for this part is exactly the same as parts 1 and 2 and we omit the details. We have thus shown that

idling can not be optimal in any state. ¢

5. Discussion and Extensions

In this section, we discuss the differences between the results obtained here and in Pandehis and
Teneketzis, and then discuss some possible extensions that can be considered by future research. As described
in the introduction, the paper by Pandelis and Teneketzis considers a similar problem. However, they assume
general and not exponential processing times, and in their model jobs leaving queue 1 go to queue 2 with

probability p and leave the system with probability 1- p . Denote the processing time at queue 1 by the
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random variable X, and the processing time at queue 2 by the random variable X, Then their main result is

stated in the following

Theorem 3 (Pandelis and Teneketzis, 1994) Suppose that X, <, X,, X, has nondecreasing likelihood ratio
and h, - ph, > h,, then the policy which allocates both servers to queue 1 (as long as there are jobs to be

served in queue 1) is optimal.

We now note that when the processing times are exponential and p =1, as in this paper, this result implies the

following

Corollary 1 (Pandelis and Teneketzis, 1994) If 1, > u,, and h, > 2h, then the strategy which allocates both

servers to queue 1 is optimal.

It is straightforward to note that our result, using the exponential assumption, provides a more complete
characterization of when it is optimal to allocate both servers to queue 1, and provides the sufficient as well as
necessary conditions under which allocating servers to queue 1 or queue 2 is optimal, and is therefore

significantly different than the result by Pandelis and Teneketzis.

Having described the difference between the results in this paper and in previous literature, we now
discuss possible extensions and conjectures. In section 3, we showed the conditions under which it is optimal
to allocate both servers to queue 1 or queue 2. However, the results also implied that when
(I+ g, [, + g,y <hy <(1+ u, / u,)h, , the optimal policy does not necessarily allocate both servers to one
of the queues. An interesting question is whether allocating one server to queue 1 and one server to queue 2
under these conditions (at least until one of the queues gets exhausted after which both servers would serve the
other queue) is a policy that would perform well. In general, our numerical studies indicate that in these middle
cases, the optimal allocation policy actually depends on how many jobs are in queue 1 and queue 2. However,
to get a sense of how well simpler policies would perform, we tested two simple heuristic policies in the

situations where (14 g, /(u, + i,))hy <h, <(U+ u, / p)h,. The first heuristic (which we denote by
H(P,,P,)) allocates one server to each queue so long as both queues have jobs to serve. In cases, where one

of the queues has zero jobs, then both servers serve the other queue. We compare this policy against the policy
of allocating both servers to queue 2 so long as queue 2 has jobs and only serving queue 1 when one of the

servers runs out of jobs to serve at queue 2. (We denote this policy by H(P,,P,)).
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We tested these two heuristics against the optimal policy. Since we know the exact policy except when

(1 + 1, I, + 1y, < <(U+ p, / py)h,, we are only interested in values of 4, which fall in this interval for
given values of u,, u,,h, . Therefore, for each combination of x,, 4,,h,, we chose values of 4, which were
5%, 30%, 50%, 70% and 95% of the spread between (1+px,/u,)h, and (1+u, /(4 +1,) )h,, plus
(1+ 4, /(, + ,) )b, . For any given choice of A, we picked 16 values of (n,,n,), n,n, € {3,15,3,60}to

calculate the average sub-optimality of each heuristic.

Case 1. p, =L, =2,h, =1

h, Avg. % Suboptimality (Max) of | Avg. % Suboptimality (Max) of
H(P,P) H(P,,P)

1.73333 (5%) | 10.565 (23.934) 0.004 (0.040)

2.06667 (30%) | 6.859 (15.966) 0.021 (0.211)

2.33333 (50%) | 4.443 (10.590) 0.033 (0.320)

2.6 (70%) | 2.435 (5.920) 0.092 (0.895)

2.93333 (95%) | 0.456 (1.711) 0.314 (3.079)

Case2. pu, =2,4,=1h, =1

h, Avg. Suboptimality (Max) of Avg. Suboptimality (Max) of
HP,P) (%) H(P,,P,) (%)

1.341667 (5%) | 4.758 (6.765) 0.002 (0.018)

1.38333 (30%) | 3.418 (4.862) 0.010 (0.107)

1.41666 (50%)

2.388 (3.406)

0.016 (0.176)

145 (70%)

1.396 (2.004)

0.025 (0.266)

1.49166 (95%)

0.221 (0.326)

0.054 (0.576)

Case3. u, =L pu,=2,h, =1

h

1

Avg. Suboptimality (Max) of
H(P,P) (%)

Avg. Suboptimality (Max) of
H(P,,P,) (%)

1525  (5%)

8.369 (13.913)

0.003 (0.032)

165  (30%)

5.797 ( 9.704)

0.017 (0.183)

175 (50%)

3.935 ( 6.646)

0.028 (0.293)

185 (70%)

2242 ( 3.828)

0.057 (0.594)

1.975  (95%)

0.357 (0.606)

0.143 (1.505)

Table 1: Results for performance of heuristics when (1+ 4, (1, + £,))h, <hy <(1+ 1, / p,)h,

In Table 1, we present the results comparing heuristics H(P,,P,), H(P,,P,)to the optimal solution. For
each value of y,,u,,h, and h,, we give the average percentage suboptimality of each heuristic over the 16

cases considered. (We also provide the maximum suboptimality over the 16 problems in parentheses). We note
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that it is very interesting that in these cases the heuristic H(P,,P,), (i.. exhaustive service at queue 2 when
possible) performs much better than the heuristic H(P,, P,), and is in fact very close to optimal. We note that
despite the fact that in the region of values considered in this experiment, 4, is always greater than 4, , it is
still much better to allocate both servers to queue 2 rather than queue 1. The average suboptimality of
H(P,,P,) over all the cases considered was 0.05% and a maximum suboptimality was 0.31% versus an
average of 3.84% and a maximum of 10.57% of H(P,,P,). Especially when 4, is not significantly greater
than (1+ 4, / u,)h,, the performance of heuristic H (P,, P,) is very close to the optimal policy, as one would

expect.

Therefore, we can conclude that in general the simple policy of allocating both servers to queue 2
exhaustively whenever A, <(1+ 4, / 4,)h, and allocating both servers to queue 1 exhaustively otherwise will
work extremely well. Notice that one way to rewrite this inequality is to rewrite it as u,h, >y, (b, —h,). One
way to interpret the left side is that this is the rate with which rewards are earned (or costs are reduced) when a
server is working in queue 2, similarly the right side is the rate with which costs are reduced (so long as
h, > h,) when the server is working in queue 1. We would like to note that as Theorem 1 indicates this simple
intuition does not lead to this policy being optimal in this whole region.. However, as Table 1 indicates, the

policy performs extremely well.

A second interesting question is whether Theorem 1 remains true if arrivals to queue 1 are
introduced and the objective changed to minimizing that of the average cost per unit time. We
conjecture that this result carries over to the case with dynamic Poisson arrivals. However, we have
not to date been able to prove this result. Our extensive numerical tests yielded no cases where
Theorem 1 did not hold in the dynamic case with the average cost minimization objective. In Tables
2 and 3, we provide some of the empirical evidence that we have observed. Table 2 includes the
cases where we would expect exhaustive allocation of servers to queue 2 would be optimal since we
have h =a(l+u, /(1, + 1,))h,, where @ =1,0.75and 0.5, and therefore Theorem 1 (if it held under
these assumptions) would indicate optimality of this policy. (Note that A denotes the arrival rate of
jobs to queue 1. Similarly, in Table 3, we would expect optimality of exhaustive allocation of servers
to queue 1 (since we have A =a(l+ 4, /u, h,,a =1, 1.5, and 2) and in fact this is the case.

The final column in Tables 2 and 3 illustrates the benefits of having flexible servers rather than dedicated

servers. We note that even when a policy as in Theorem 1 which requires the servers to serve queue 1 or 2

24



exhaustively is implemented, the servers still need to be flexible (or cross trained) since when one queue is

exhausted, the server switches to the other queue. Compare this to the case where each server or worker is

trained for only one task, which we call the fixed tandem policy. In this case, the server only serves the

queue that it is assigned to and idles if it has no jobs to work on. The results in Tables 2 and 3 indicate the

benefits of a flexible work force as the fixed tandem policy results in costs which are on average 50%

higher.
Aoy | oy A 1+ J7A i h, | Optimal policy | Optimal cost | Fixed tandem
oy + 1, 2 per unit time | (suboptimality in % )
45 |1 2 1 5/3 5/3 | Exhaustive at 2. | 1.091 1.654 (51.632)
45 |1 2 1 5/3 5/4 | Exhaustive at 2. | 0.875 1.313 (50.090)
45 |1 2 1 5/3 5/6 | Exhaustive at 2. | 0.659 0.972 (47.627)
45 |2 1 1 4/3 4/3 | Exhaustive at 2. | 0.843 1.205 (42.964)
45 |2 1 1 4/3 1 | Exhaustiveat 2. | 0.745 1.109 (48.735)
45 |2 1 1 4/3 2/3 | Exhaustive at 2. | 0.647 1.012 (56.380)
45 |1 1 1 312 3/2 | Exhaustiveat 2. | 1.388 2.045 (47.336)
45 |1 1 1 3/2 9/8 | Exhaustiveat2. | 1.154 1.739 (50.607)
45 |1 1 1 312 3/4 | Exhaustiveat2. | 0.919 1.432 (55.718)
Table 2. Results for dynamic cases when A, <(1+ —'u’—)h2 .
M T iy
Ay | hy, | +u,/p)h, | A Optimal policy | Optimal cost | Fixed tandem
per unit time | (suboptimality in %)

45 |1 2 1 3 3 Exhaustiveat 1. | 1.772 2.745 (54.906)
45 |1 2 1 3 4.5 Exhaustive at 1. | 2.505 3.972 (58.584)
45 11 2 1 3 6.0 | Exhaustiveat 1. |3.239 4.381 (60.525)
45 12 1 1 1.5 1.5 | Exhaustiveat 1. | 0.890 1.254 (40.896)
45 12 1 1 1.5 2.25 | Exhaustiveat 1. | 1.084 1.471 (35.707)
45 2 1 1 1.5 3.0 | Exhaustiveat1. | 1.280 1.689 (31.984)
45 11 1 1 2 2 Exhaustive at 1. | 1.691 2.455 (45.157)
45 11 1 1 2 3 Exhaustive at 1. | 2.223 3.273 (47.210)
45 |1 1 1 2 4 Exhaustive at 1. | 2.754 4.091 (48.519)

Table 3. Results for dynamic cases when A, > (1+ g, / u)h,

Further research is needed to prove the conjectures presented in this section and to develop results for

tandem queues with a larger number of jobs and servers.
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