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Abstract." It is shown that a maximally robust state-feedback 
controller for a plant with normalized right coprime factor 
uncertainty is given by the solution to a standard linear quad- 
ratic regulator problem. 

Keywords." Robust stabilization; linear-quadratic regulator; 
state-feedback. 

1. Introduction 

It is well known that the linear quadratic state- 
feedback regulator enjoys remarkable robustness 
properties [3, 5]. In this paper, we consider the 
state-feedback version of the problem of robust 
stabilization of a plant subject to perturbations in 
the normalized right coprime factors. Robust 
stabilization of plants with (not necessarily nor- 
malized) coprime factor uncertainty was first 
studied by Vidyasagar and Kimura  [7]. Glover and 
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McFarlane [2, 4] have given a complete solution to 
this problem in the output feedback case. This 
problem is also related to the problem of robust 
stabilization in the gap metric as in the work of 
Georgiou and Smith [1]. In this paper, we formu- 
late a state-feedback version of the problem of 
finding maximally robust controllers for a plant 
with normalized right coprime factor uncertainty. 
(See the next section for details.) We show that 

a maximally robust state-feedback controller for  sta- 
bilization o f  a plant subject to uncertainty in its 
normalized right coprime factors  is 9iven by a linear 
quadratic regulator (LQR) gain. Thus, this paper 
shows that the LQR gain enjoys an additional 
robustness property. This result is really an obser- 
vation as it is quite easy to prove; however, it 
appears to not have been noticed in the existing 
literature. 

The notation is quite standard. The transpose of 
a matrix A is denoted by A' and G*(s):= G ' ( - s ) .  
The maximum eigenvalue of a real symmetric 
matrix A is denoted by 2max(A). The normed linear 
space of proper stable real rational functions with 
the o ~  norm is denoted by ~Oeg~o. A transfer 
matrix in terms of state-space data is denoted by 

[ A A ~ - ~ ]  := C(sI  - A ) -  ~ B + D. 
L~ lUJ 

2. Main result 

Consider the (nominal) system Z: 

2c = A x  + Bu, 

v = Cx  + Du, 

y = x .  

(2.1) 

(2.2) 

(2.3) 
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Note that we are assuming that the measured out- 
put for the nominal plant model is y = x the state 
of the nominal model. After we introduce plant 
uncertainty, the measured output y = x will be 
affected by the uncertainty as will be discussed 
later. 

Next we will describe how the uncertainty enters 
this nominal model by introducing perturbations in 
a normalized coprime factorization of transfer 
function G~. := D + C(sl - A)-  1 B. For simplicity, 
we will assume that the triple (A, B, C) is minimal. 
Consider the algebraic Riccati equation (ARE) 

( A - B S  ~D'C)'X + X ( A - B S - I D ' C )  

system 2;. Consider the perturbed system 2p: 

A x + [ - - B  0 ] [  w ' ]  = + Bu, 
W2 

y = x .  

- X B S - ~ B ' X  + C ' R - 1 C  = 0, (2.4) 

where S := I + D'D, R := I + DD'. Since (A, B, C) is 
minimal, it follows that there exists a unique sym- 
metric positive definite solution X to (2.4). The 
following state-space construction for the nor- 
malized right coprime factorizations was given by 
Vidyasagar [6]. 

Lemma 2.1. Consider the system S, and assume 
(A,B,C) is minimal. Let X be the (unique) sym- 
metric positive definite solution to (2.4), and 
F:=  - S - I ( D ' C  + B'X).  Define 

A + BF BS-1/2] 
M:-- F S -1/2 ] '  

N=[C+ B F  BS -1/2 ] 
+ DF DS-  1/2_]' 

Here AM, AN are stable unknown transfer functions 
which represent the uncertainty in the nominal 
plant model. An easy calculation shows that for the 
perturbed system, 

Gv, = (N + AN)(M + AM) 1 

A block diagram showing this interconnection is 
shown in Figure 1. Note that for the above open 
loop uncertain system to be proper (and well- 
posed), (I + M -  ~ AM) should be invertible and the 
inverse should be proper. 

The state-feedback assumption thus amounts to 
assumin 9 that the state of the above perturbed plant 
is available for feedback. As we have seen above, it 
represents the state of the nominal system plus the 
effect of the plant perturbations. Also note that 
only wl affects x but not w2. This is simply a conse- 
quence of the way normalized right coprime factor 
perturbations enter the system. 

A controller K is said to be admissible if it inter- 
nally stabilizes the nominal plant 2;. For  a given 

Then G~u = N M - 1  is a normalized riqht coprime 
factorization of the transfer function matrix Gv,, i.e. 
N , M  are in ~iqrgo~, they are right coprime, and 
M* M + N* N = I. 

The normalized coprime factors M, N are unique 
modulo multiplication on the right by a real con- 
stant orthog0nal matrix. This nonuniqueness has 
no effect on the results to follow. 

As in Glover and McFarlane [2], let us consider 
perturbations of M,N, which are normalized co- 
prime factors of G,u. We will first describe this in 
terms of the state-space realization of the nominal 

10 2 

~ x  

Fig. 1. Right coprime factors perturbations. 
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(possibly dynamic) admissible controller K, the 
robust stability margin e(K)  is defined as follows: 

e(K)  := suple: the closed loop system is well-posed 

and asymptotically stable for all 

AM, A N e ~ o ~  with AM ~ -< e " 

The robust stabilization objective is to find a con- 
troller K which maximizes e(K). Note that AN plays 
no role in robust stability in this state-feedback 
case. The next theorem gives a maximally robust 
state-feedback controller. 

Theorem 2.2. Consider the system 27p. Then a state- 
feedback controller which maximizes the stability 
margin e(K)  is the L Q R  9ain K = F := 
-- S -  I (D,C + B ' X  ) and the maximum stability mar- 

gin gmax is (1 + ~.max(D'O))-1/2. 

Proof. Let K be an admissible controller. Let 
T~w denote the closed loop transfer function from 
w to z. It is easy to see that 

T~w = S ' / 2 [ K ( s ) - -  F]Txw + [ - S  1/2 0]. 

As Txw is strictly proper, it follows that 

II Tzw [I ~ -> II rzw(~)[I  = (1 + 2max(O'D)) 1/2. 

NOW by the small gain theorem, we can find 
a stable rational transfer function A such that 
14 A I1~ < ( 1  + 2max(D'D))- 1/2 and the closed loop 
system is either unstable or not well-posed. It fol- 
lows that for any admissible controller, 

e(K)  <_ (1 + 2max(O'O))-1/2. 

Now consider the state-feedback control law 

u = F x  = - S - I ( D ' C  + B ' X ) x .  

This is an admissible controller. The closed loop 
transfer function (with AM = 0, As = 0) from w to 
z is given by Tzw = [ - S  1/2 0] and 

II Tzw II ~ = 1151/2 II = (1 + 2max(D'D)) 1/2. 

Now the perturbed system is well-posed, and by the 
small gain theorem the perturbed closed loop 
system is internally stable provided 

< (1 + 2max(D'D))-1/2. 
AM 

Therefore, 

~:(K : F) -- (1 -I- Amax(D'D))-1/2. [] 

Remark  1. The controller u = F x  = - S -  i (D'C + 
B ' X ) x  given by ARE (2.4) is the solution to the 
following standard LQR problem. Consider the 
system 27: 

= A x  + Bu, v =  Cx + Du. 

Minimize the cost functional: 

: (v' v + u' u)dt. 

It should also be noted that while we are consider- 
ing state-feedback controllers, the output matrices 
which are used in setting up the LQR problem are 
precisely the same as those used in defining the 
uncertainty structure. 

A significant simplification is obtained in the 
case of strictly proper plants, i.e. D = 0. In this case, 
the maximum stability margin is one, the ARE 
simplifies to the familiar LQR algebraic Riccati 
equation, 

A ' X  + X A  - X B B ' X  + C'C = O, 

and a maximally robust state-feedback controller is 
K =  F =  - - B ' X .  

Remark 2. It is not difficult to see for any 
e < (1 + 2max(D'D))-1/2, and a stable perturbation 
A such that II A ]]~ < e, the corresponding pertur- 
bed system Zp is proper (and well-posed). On the 
other hand, suppose that e > (1 + 2max(D'D))-1/2. 
It is easy to see that we can find a real matrix AM 
such that (1 + S-1/2 AM) is singular, while 

PI AM II ~ = II S 1/2 II - 1 = (1 + )~max(D'D))- 1/2 _~ ~. 

With such a choice of AM and AN = 0, the pertur- 
bed system Zp is not proper. Thus, the boundary of 
stabilizability coincides with the possible loss of 
properness of the perturbed system in the state- 
feedback case. 

It is interesting to note that in the output feed- 
back case, the situation is quite different. In this 
case, there may exist coprime factor perturbations 
whose norm is less than the radius of stabilizability 
but the open loop perturbed system Zp is not 
proper. It should be noted that the closed loop 
system is certainly well-posed and proper for 
all perturbations within the guaranteed robust 
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stability radius. Such examples may be obtained by 
taking a nominal SISO plant with a very large 
D term. The reason for this situation is that the 
properness of Sp is not imposed as a constraint on 
the family of perturbed plants. Rather, only the 
well-posedness of the closed loop system consisting 
of the perturbed plant transfer function Gv, (which 
may be improper) and the controller transfer 
function K is required. 
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