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Abstract 

This work continues our previous studies of algorithms for accelerating the convergence of pseudospectral derivative series in 
order to obtain new differentiation schemes which have the sparsity and low cost of finite differences but the accuracy of spectral 
methods. We develop a general theoretical framework for difference schemes. Finite differences are close to optimum, but can be 
bettered by a new scheme we have dubbed 'sech-weighted' differences. Through numerical examaples, we show that sech-weighted 
differences are effective. In contrast, non-linear accelerations like Pad4 approximants and the Levin u-transform, so popular in 
other applications, are inferior for approximating derivatives to linear accelerations like finite differences, sech-weighted 
differences and the Euler method. 

I. Introduction 

The goal of this work is to hybridize pseudospectral and finite difference algorithms in order to 
combine the best advantages of both. In earlier articles [1,2], we have shown how pseudospectral 
derivative series can be accelerated to produce a difference scheme which is spectrally accurate, but has 
the low cost and matrix bandwidth of a finite difference method. In this paper, we describe a couple of 
additional variations on this theme. 

For simplicity, we consider an evenly spaced infinite grid and assume that our solution u(x)  decays 
exponentially as Ixl--> oo. This eliminates boundary effects. For the infinite interval, a good basis is 

Cj(x ; h)  =- sinc([x - x / ] / h ) ,  

x / - j h , j = 0 , - + l , - + 2 , - + . - - ,  

sinc(x) - sin(~rx)/(~rx). 

(1.11 

(1.2) 

(1.3) 

Sinc methods are described in [1,3] and especially [4]. As clearly illustrated in [2], however, sum 
acceleration ideas apply equally well to Chebyshev and Fourier pseudospectral methods. 

If we define the scaled differential operator 

d m 
D,,, - i - " h  m dx,----~ (1.4) 

and a centered difference approximation to D m by 

D~,,P, Pu(x) =- ~ 6~")u(x  + j h ) ,  (1.51 
j =  --n 
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and introduce the scaled wavenumber 

K=--kh , (1.6) 

so that 

D,,, e ikx --- K "  e ikx , (1.7) 

then 

,1 ~2m+l/--lapp eikx =-- 2 -ia t2"+1) sin(jK e ikx (1.8) 

D app e i k x 2 . ,  ~ {8 co''~ + 2 ~ -  i =1 3j(2n ' )COs(jK)}eikX . (1.9) 

Here ,  we have used the fact that exp(ikx) is an eigenfunction of the translation operator  E with 
eigenfunction exp(ikh) where the translation operator  is defined by Eu(x)=-u(x + h). 

The set {exp(ikx), k real) is a complete basis for the infinite interval. Therefore ,  the difference 
formulas will accurately approximate the derivatives of a function only to the extent that the sums in 
braces in Eqs. (1.8) and (1.9) approximate K "  for all K. 

One species of error is unavoidable, independent of the difference weights 8~". Because the Fourier 
series in (1.8) and (1.9) are periodic with period 2rr in K, whereas the powers of K are non-periodic 
and unbounded,  it follows that a wavenumber K such that IKI > ~ will be differentiated as if it were the 
wavenumber K'  = K - 2~rp where p is an integer such that IK'I ~ ~. This apparent shift of wavenumber  
is called 'aliasing', so we will refer to this error as the aliasing error. 

There is no way to control or reduce aliasing error except by decreasing the grid spacing h. All 
wavenumbers above the 'aliasing limit' 

Klimi ̀  ~ ' r r  ¢::) klimi t - ~ / h  , (1.10) 

are still aliased, but decreasing h increases klimi t. If u(x) is analytic for real x and decays exponentially 
as Ig loo ,  then its Fourier transform will decay exponentially for Ikl'> 1. This in turn implies an 
exponentially fast decrease of aliasing error with 1/h.  

Our focus is the second source of error: how accurately the truncated Fourier series approximate the 
powers of K for wavenumbers within the aliasing limit. This error is controlled by the difference 
weights. 

In the next two sections, we discuss two alternatives for choosing the weights. The first is to use the 
Fourier series for the powers of K ' .  This gives both the standard sinc pseudospectrai method (in the 
limit n ~ ~) and the ' truncated sinc' method (for finite n). The second option is finite differences, which 
is equivalent to applying a certain sum acceleration method to the classical sinc pseudospectral 
algorithm. 

In Section 4, we explain why neither of these two schemes is entirely satisfactory. We prove an 
elementary theorem which specifies the unique set of expansion weights which is optimum for a given 
function u(x). In brief, the answer is to make (1.8) and (1.9) the weighted least squares expansions of 
K "  with a weight function equal to the square of U(k), the Fourier transform of u(x). 

As it stands, this prescription is useless because we do not know U(k) in advance; if we did, we would 
not need a pseudospectral method! However,  the general form of U(k) for a broad class of functions 
suggests the weight function sech(K~r/2D) where A is an adjustable parameter.  We show that such 
'sech-weighted' differences include both the truncated sinc method and standard finite differences as 
special cases, corresponding to the limits D ~ ~ and D---~ 0, respectively. 

In the next to last section, we illustrate the use of sech-weighted differences in solving differential 
equation boundary value problems. The final section is a summary and prospectus. 
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2 .  T h e  s i n c  p s e u d o s p e c t r a l  m e t h o d  a n d  t r u n c a t i o n  

If the weights ~j(") are chosen so that (1.8) and (1.9) are the usual Fourier expansions of K "  on 
K ~ [-~r, ~r], that is, 

cSJ I) = ( - 1 ) i + l / j ,  j =  1,2 . . . .  (first derivative) (2.1a) 

8c2) = ~r2/3 
0 

c5) 2) = 2 ( - 1 ) J / j  2 , j = 1, 2 . . . .  (second derivative) (2.1b) 

and so on, then (1.8) and (1.9) become, in the limit of infinite n, the usual sinc pseudospectral 
formulas. This is easily verified by comparison of (1.8) and (1.9) with the sinc differentiation formulas 
of [1; 3, p. 722] or [4], noting that D 2 is proportional to the negative of the second derivative. 

Because we have assumed u(x) is exponentially decaying for large Ixl, it follows that the derivative 
sum (1.5) will differ from the infinite series by an amount which decreases exponentially with n for 
n >> 1 since the contributions from u(x +jh) for huge IJ[ will be negligible. Thus, although the infinite 
series must always be truncated to finite n for computational evaluation, we can effectively obtain the 
accuracy of the full infinite series (to within machine roundoff error) if n is sufficiently large. Since the 
Fourier series for K "  are convergent, it follows that in this 'pseudospectral limit' of n >> 1, there is zero 
error in the differentiation formulas for all wavenumbers Ik] <klimi t. Exact differentiation for all 
wavenumbers within the aliasing limit is in fact a generic property of spectral methods [3]. 

Unfortunately, achieving the pseudospectral limit may require summing hundreds of terms. Boyd [1] 
experimented with truncating the sinc derivative series to small and moderate n where 'moderate '  in 
this context means that the u(x +jh) are of the same order of magnitude as u(x) so that the decrease in 
the terms of the series has to come primarily from the decrease of the weights 3) ") with j. 
Unfortunately,  as shown in Fig. 1 of [1], the truncated sinc series converge with unacceptable slowness. 

We can understand why by combining (2.1) with (1.8) and (1.9), the Fourier sine series for K does 

/ 
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Fig. 1. (a). A graph of the 'sawtooth' function, which is defined as the sum of the Fourier series f = 2 E~.~ [(-1)J+'/j] sin(/K). (b) 
Same as (a) hut for the 'cusptooth' function, which is the Fourier series for K 2, that is, the sum of f =  ('~"/3)-4E[., 
1(- 1) '+//"] cos(/K). 



4 J.P. Boyd / Comput. Methods Appl. Mech. Engrg. 116 (1994) 1-11 

not actually converge to K, but rather to the so-called piecewise-linear 'sawtooth function', which is 
equal to K on the interval K ~ [-'rr, ~r] and is defined by periodicity for all other K (Fig. l(a)). Because 
of the jump discontinuities at K=---~r, the Fourier coefficients decrease only as O(1 / j )  and the 
sawtooth function is widely used in texts as the very paradigm of a slowly converging Fourier series. 

The corresponding function for the second derivative, Fig. l(b), is continuous with first derivative 
discontinuities; we may call it the 'cusptooth' function since it has cusps at K = ---~r. The coefficients 
decrease more rapidly as O(1 / j  2) because the function is continuous in K, but this is still unacceptably 
slow. 

In general, the sinc pseudospectral sum for the mth derivative has terms decreasing as O ( 1 / j ' )  until j 
is sufficiently large so that the exponential decay of u(x) becomes important. Truncating the sinc 
pseudospectrai sums to small or moderate n is a horrible idea because of the huge loss of accuracy thus 
incurred. 

Another perspective is to recall that a Fourier series is a least squares approximation to the function 
being represented, in our case, K ' ,  with equal weight over the whole interval of approximation. For 
approximating derivatives of a function u(x), equal weighting is incorrect because the Fourier transform 
U(k)  will decrease exponentially with k if u(x) has the smoothness and decay properties we have 
assumed. It follows that our goal is not to differentiate all wavenumbers within the aliasing limit with 
equal accuracy. Rather, we want to do especially well for small wavenumbers (where U(k)  is large) and 
can cheerfully accept large errors near the aliasing limit where U(k)  is small. (If U(k)  is not small near 
the aliasing limit, then this implies that aliasing errors from wavenumbers just above the aliasing limit 
will be large.) 

Ordinary finite differences have just the sort of bias towards small k (or K) which is required as we 
explain next. 

3. Finite differences as the acceleration of the sinc pseudospectral method 

If we write the nth order sinc derivative series as 

S,, = ~ a j ,  (3.1) 
j = 0 

where 

a o = 6~")u(x ) ,  (3.2a) 

=6~")u(xj , -jh)+6~')u(xj , + j h )  j = l  (3.2b) a j  _ , , . . . , ] l  , 

where the 6~ m) are the sinc weights defined by (2.1), then the nth order finite difference approximation 
is 

zc 

O r ` ` :  Z (3 3) ,,, w,,ia j , 
j = O  

where the finite difference acceleration weights for both first and second derivatives are 

w , o = - ( 6 / v  2 1 2 , 

w,, i = ( n ! ) 2 / [ ( n - j ) ! ( n + j ) ! ] ,  j = l  . . . . .  n .  (3.4) 

(different weights are needed for the third and higher derivatives). We could, of course, combine (3.4) 
with sinc weights (2.1) to write the finite difference approximation directly in the form of (1.5). 
However, it is more illuminating to show that finite difference methods are the result of applying sum 
acceleration, with a certain set of acceleration weights, to the standard sine pseudospectral method. 

In the language of sum acceleration theory, the weights (3.4) are triangular, positive, regular and 



Toeplitz. 'Triangular' means that the nth order accelerated approximation can be computed using only 
the terms of the series of degree n or less. 'Positive' means that all the weights are of the same sign. 
'Regular '  means that if the acceleration is applied to any convergent series, then in the limit n => ~, the 
accelerated series, which has the form of the right-hand side of (3.3), must also converge, and converge 
to the same sum as the unaccelerated series. For finite differences, which may al.ternatively be derived 
by differentiating the Lagrangian interpolating polynomial through (2n + 1) points, regularity is proved 
by the following. 

F E R R A R ' S  T H E O R E M  [5-7]. In the limit that the number o f  interpolation points tend to infinity, the 
Lagrangian interpolating polynomial converges to the same limit as the sinc series if  the latter is 
convergent for a given function u(x) and grid spacing h. Conversely, if  the polynomial approximation is 
convergent, then the sinc series is summable via the method o f  de la Vallee Poussin to the same sum. 

Lastly, the 'Toeplitz' property, true also of the Euler acceleration of [1], means that the weights 
satisfy certain additional technical requirements. The collective significance of these four jargon terms is 
that the finite difference sum acceleration defined by the weights (3.4) is extremely robust and well 
behaved. We omit the elementary derivation of (3.4) and the discussion of the Toeplitz property, etc., 
because finite differences are familiar, but these details are given in the technical report [8]. 

By using the standard asymptotic expansion for the gamma function, it is easy to show that 

Wn] = 

. i  

(j2) 
(n!)2 - e x p  ] = 0 ,  1, . ,  n 

(n - j)!(n + j)! (n-+ ½ ) ' "" (3.5) 

--exp (n+!)2 6(n+½)3 • (3.6) 

Fig. 2 compares the lowest order and improved asymptotic approximations, (3.5) and (3.6), respective- 
ly, with the exact weights for j > 0. The agreement is excellent. The graphs confirm that the weights 
decay as a Gaussian of j, but the graphs also show that the decay is faster than Gaussian for large ] as 
expressed (in part) by the correction term in (3.6). Remarkably, at high order, the weights for large j 

+ m we~q~t~ " ~ , ~ i ~  approx, o, ~ ~p==., 
8 
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Fig. 2. (a). Bottom curve (crosses): the finite difference weights w4j versus j. Middle curve (circles): the improved approximation 
(3.6). Top curve (asterisks): Gaussian approximation, w,, ~exp(-j2/(n + 1/2)). (b) Same as (a) for n = 30 (60th order finite 
difference). 
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are so small as to fall below the roundoff  threshold; thus, one obtains (2n)th order  accuracy to machine 
precision with fewer than (2n + 1) points in the derivative series. Thus, if one neglects all terms with 
weights smaller than 10-~0, say, then the n = 30 (60th order) difference sum is truncated to span only 49 
points. 

Fornberg [9-11] has shown that the limit of high order finite differences is the pseudospectral 
method; it is interesting to see that the opposite is also true in the sense that the pseudospectral method 
can generate finite differences via sum acceleration. Nevertheless, one is still left with questions. 

Are finite differences optimum? Or are there better alternatives? Can the truncated-sinc and finite 
difference methods be fitted in a common framework? In the next section, we give affirmative answers 
to both of the last two questions. 

4. Spectrally weighted least squares differences and the optimization theorem 

THEOREM (difference optimization). Define em(x ) to be the error in the approximation of the mth 
derivative of x by a (2n + 1)-point difference formula, i.e. 

d"u  
em(X ) =-i-mh m dx,,~- ~ 3J"')u(x +jh) .  (4.1) 

j =  - n  

For a given function u(x), define the optimum weights ~m) to be those which minimize em(x ) in the least 
squares sense: 

(9 =-- f~  e~(x) dx.  (4.2) 

Then the minimization problem can be expressed in wavenumber space by using the identity 

I f _ :  (_~__) 2 K,,, ~, (m) eiJk 2 (9 =~-  U - _ 6j d K ,  (4.3) 
z¢ j =  --rl  

where, as earlier, K =-kh. 
In words, this means that the optimum weights for a given u(x) are the spectral coefficients of the least 

squares expansion of K m with a weight function equal to the square of the Fourier transform of u(x). 

PROOF.  Define the Fourier transform of e,,(x) as 

1 
E,,(k ) =- ~ ~ em(x ) exp( - ikx)  dx .  (4.4) 

Through elementary transform identities and the definition of e,,(x), 

where U(k) is the Fourier transform of u(x), defined as in (4.4). The Parseval Formula [12] implies 

L e,,~(x) dx = [Em(x)l 2 dx .  (4.6) 

But the left and right sides of (4.6) are merely the two equivalent definitions of 6), the function whose 
minimum defines the optimum weights. [] 

The flaw in the theorem is that we normally do not know U(k) in advance, and if we did, we would 
not need difference formulas for the derivatives since these can be computed directly by taking the 
inverse Fourier transform of (ik)"U(k). Nevertheless, we do know that for a smooth function, U(k) 
should decay exponentially with k for sufficiently large Ikl. This knowledge of the qualitative form of 
U(k) suggests the following generalized differences. 
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D E F I N I T I O N  (spectrally weighted least squares differences). SWLS differences are a derivative 
approximation of the form 

Da, PPu(x) ~ ~ ts)m~u(x + j h ) ,  (2.5 bis) 
j = - n  

where the weights are chosen so the truncated Fourier series with coefficients 8~ ") is the usual least 
squares approximation to K m with the weight function co(K), that is, the 8) '~> are chosen to minimize 
the integral I defined by 

I =  oJ(K) K m -  8j~"~ e iik dK.  (4.7) 
"tr j =  - - n  

If we define the inner product, for two arbitrary functions f (K)  and g(K), as 

let 

( f ,  g) = f ( K ) g ( K ) o ( K )  dK,  (4.8) 

~'sin(jK), m odd,  (4.9) 
~,j(K) = I cos( jK) ,  m e v e n ,  

and define the vectors and square matrix 

81/=8~ m), X I j = ( K ' , ¢ i ) ,  Gl,~=0pi,~pi), i , j = 0  . . . . .  n .  (4.10) 

Then weights of the spectrally weighted least squares differences are computed by solving the matrix 
equation 

G6 =X (4.11) 

The Gram matrix G is poorly conditioned, so we solved it via the singular value decomposition 
(SVD) [13]. The definition of SWLS differences employs an integral truncated to the interval 
K E [-'rr, ~r], that is, to wavenumbers within the aliasing limit, for computational convenience. 
However, unless the U(K/h)  decays sufficiently fast that it is negligible for all wavenumbers outside the 
aliasing limit, then aliasing error will destroy the accuracy of the difference approximation. Conse- 
quently, the distinction between the infinite integration limits of the theory and the finite limits of (4.7) 
is meaningless unless the differences themselves are inaccurate. 

The truncation of the sinc pseudospectral method is the special case of SWLS differences: 

oJ-: 1 (truncated-sine). (4.12) 

Finite differences correspond to choosing the weights 8~ "~ so that the Taylor expansion of the 
truncated Fourier series agrees with K m to as high a degree as possible. Since all the stress is on 
emphasising accuracy in the limit K--->0, 

oJ(K) = 8(K) (finite difference), (4.13) 

where 8 is the Dirac delta function [12]. 
The Fourier transform of a typical u(x) is neither infinitely concentrated at the origin nor evenly 

distributed over all wavenumbers inside the aliasing limit. Rather, U(k) resembles the hyperbolic secant 
function. This suggests trying 'sech-weighted' differences, 

oJ(K) =- sech(K.n / (2D )) (sech-weighted), (4.14) 

where D is an adjustable constant. 
The drawback of sech-weighted differences is that one usually does not know a priori how fast U(k) 

will decay. However, one usually does have a desired error tolerance p.(,~l) in mind. If the Fourier 
transform of u(x) does not decay sufficiently fast so that U(k~m, ) ~</~, then the calculation will fail 



8 J.P. Boyd / Comput. Methods Appl. Mech. Engrg. 116 (1994) 1-11 

(smaller grid spacing h is needed). It follows that for a successful calculation, unspoiled by aliasing 
error, we can put an upper bound on D. Using this bound 

D = -~r 2 / (4 log(p.)) (4.15) 

will give a weight function of finite width and should thus improve upon finite differences. 
Of course, if U(k~m, ) is very small in comparison to /z, then (4.15) is not optimum because a 

narrower weight function (smaller D) would better fit the fast decaying U(k). However, this only 
happens when we have chosen a grid spacing h which is smaller than needed to achieve the desired 
error tolerance /z. With such a fine grid spacing, a non-optimum choice of D will not prevent the 
difference formulas from being accurate to within the desired tolerance. Consequently, (4.15) is a safe 
choice for D(/z) whenever the grid spacing is small enough so that an error less than/z  can be achieved. 

5. Numerical examples 

To test different algorithms, we solved two differential equations, both with a grid spacing h = 3/10 
and a grid of 201 evenly spaced points spanning the interval x E [ - 3 0 ,  30]. The solutions decay 
exponentially so that the error in approximating the infinite interval by a finite interval is negligible. 
The differential equations are 

uxx-u---2sech3(x), u(x)=sech(x) (Case I) (5.1) 

u(x) = sech( / )cos ( [ -~h  Jx  ) " (Case II) (5.2) 

{ 2 }cos il   u,x -u= -2sech3(x)-~h-Tsech(x ) ~ x +~-sech(x) tanh(x)s in  ~ x ) .  

Case I is chosen so that its solution has a Fourier spectrum U(k) which is concentrated near k = 0, as 
true of most randomly selected functions. Case II was chosen so that the cos([*r/2h]x) factor would 
produce a spectrum with peaks at wavenumber k = +-kumi,/2 where kj~m~ , ( = w / h )  is the aliasing limit 
for the given grid. This Fourier spectrum is typical of a wave packet where sech(x) is the 'modulation'  
or 'envelope' and the rapidly varying oscillatory factor cos(0.5 kum . x) is the 'carrier wave'. 

In making comparisons, we used a number of alternative algorithms besides those described earlier. 
The 'truncated-sinc' method of [1] simply chops off the usual pseudospectral derivative sums to include 
only (2n + 1) terms centered on the point where the derivative is to be evaluated. The 'Euler- 
accelerated sine' not only truncates the sums, but multiplies them by the weights of the Euler 
acceleration method as described in [1]. The 'Padd-accelerated sinc' multiplies the terms of the 
truncated-sine series by z j, forms Pad6 approximants in z as described in [14], and then evaluates the 
result at z = 1. The 'Levin u-transform' is a nonqinear acceleration scheme which was found by Smith 
and Ford to be the best general purpose acceleration [15-17]. 

Fig. 3(a) shows that the truncated-sinc method, as expected, is terrible. The sech-weighted difference 
scheme with D = 0.15 is best followed by finite differences and the Euler acceleration. The difference 
between the sech-weighted differences and standard finite differences is only little more than a factor of 
2 for most n~ but this still confirms the analysis in Section 4. 

The Fourier transform for sech(x) is 

U2(K/h)=-~sech ~ , ~ - - ) - ' r r e x p  ~ , K>>h, (5.4) 

which shows that analytically, the optimum width parameter in the sech-weighting for u = sech(x) is 
D = h/2, as used in Fig. 3(a). 

If we choose the error tolerance/z to equal U(kum,), which is the smallest the error can be for a given 
choice of grid spacing h, then (4.15) also suggests D = h/2. 

Fig. 3(b) compares the truncated-sinc and finite difference schemes, already shown in Fig. 3(a), with 
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Fig. 3. (a). Solutions to Case l, exact solution u = sech(x), using various methods. Top curve (plus signs): t runcated sinc. Second 
from top (asterisks): Euler-accelerated sinc. Second from bottom (circles): finite difference. Bot tom (crosses): sech-weighted 
differences, D = 0.15. (b) same as (a) except two of the four methods are different. Top curve (plus signs): t runcated sinc. Second 
from top (crosses): Pad6-sinc. Second from bot tom (circles): Levin u-transform. Bot tom (asterisks): finite difference. 

the two non-linear accelerations. It is clear that while both Pad6 approximants and the Levin 
u-transform are better  than truncation, both are much worse than finite differences or indeed any of the 
three linear accelerations shown in Fig. 3(a). 

The reasons for the failure of the non-linear schemes, so highly praised in the sum acceleration 
literature [15-18], are discussed in [2], but the key issue is uniformity. An effective derivative 
approximation must be accurate for a broad range of wavenumbers. The u-transform and Pad6 schemes 
are too non-uniform in wavenumber to be effective. 

Fig. 4(a) shows that for Case II, the advantages of sech-weighted differences (with D = 1/4) over 
finite differences are much more pronounced: roughly a factor of 10. The Fourier transform of the 
wave-packet-like function u(x) is peaked at k = +--ktimit/2, so both the cS-function weighting of finite 
differences and the sech-weighting, which decay from peaks at k = 0, are very different in shape from 
U2(K/h). However ,  both accelerations converge anyway. Because of the finite width of its weighting 
function, the sech-weighted differences are much more effective at differentiating the higher wavenum- 
bers than finite differences. 

Fig. 4(b) shows that even the lowly and ancient Euler acceleration is better than finite differences for 
almost all n. (Although not shown in Fig. 4(a), the Euler method is better than finite differences for 
Case I, too, but only for n > 10.). Because the Fourier spectrum of u(x) is broad, the truncated-sinc 
method compares much more favorably with the accelerated schemes than was true for Case I. 

6. Summary 

The optimum difference scheme for approximating the mth derivative of a function u(x) is one whose 
weights are chosen to be those of a least-squares approximation of K m by a Fourier series in 
wavenumber  with a weight function equal to the square of U(K/h) where U(k) is the Fourier transform 
transform of u(x). In practical applications, U(k) is not known a priori. Nevertheless, it is possible to 
exploit knowledge about the qualitative shape of U(k) to produce a more effective scheme than classical 
finite differences. Our numerical examples show that 'sech-weighted' differences work very well for 
problems whose solution has a Fourier transform that decays geometrically with wavenumber.  

We also experimented with a wide variety of non-linear accelerations, that is, acceleration methods 
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Fig. 4. (a). Solutions to Case II where u(x)= sech(x)cos((k,,.,,,/2)x) where kh,,, = Ir/h is the aliasing limit. Top curve (plus 
signs): finite difference. Bottom curve (asterisks): sech-weighted differences with D = I/4. (b) Same as (a) except for different 
methods. Top curve (plus signs): truncated-sinc. Middle curve (circles): finite difference. Bottom curve (asterisks): Euler- 
accelerated sinc. 

for  which the answer  is a non- l inea r  funct ion of  the te rms  of  the or ig inal  p s e u d o s p e c t r a l  ser ies .  Pad6  
a p p r o x i m a n t s  and  the Levin  u - t r ans fo rm bo th  were  much infe r ior  to all the  l inear  a c c e l e r a t i ons  we 
t r ied .  Bo th  are  p r o b a b l y  be t t e r  than  the a l t e rna t ives  for  small  w a v e n u m b e r  [2}, but  the i r  e x t r e m e  
non -un i fo rmi ty  in k gene ra t e s  much la rger  e r rors  for  the spec t rum as a whole .  

• • -3/2 • • k-5/6 T u r b u l e n t  flows have a m p h t u d e s  whtch decay  as k ( two d tmens tons)  or  as ( th ree  
d imens ions ) .  It fol lows that  the  F o u r i e r  spec t ra  for  t u rbu len t  flows are  very b r o a d ,  and  finite d i f f e rences  
pa r t i cu la r ly  i napp rop r i a t e .  It s eems  l ikely that  spec t ra l ly  we igh ted  least  squares  d i f fe rences ,  using a 
we igh t ing  w ( K )  which decays  a lgebra ica l ly  ra the r  than  exponen t i a l l y  with K, wou ld  be grea t ly  s u p e r i o r  
to s t a n d a r d  finite d i f ferences .  ( H o w e v e r ,  P. Moin  has no ted  in his address  at I C O S A H A M  '92 tha t  
w a v e n u m b e r s  nea r  the  al ias ing l imit  may  be so c o r r u p t e d  by non - l i nea r  a l ias ing tha t  accura te  
d i f f e ren t i a t ion  of  these  c o m p o n e n t s  is not  i m p o r t a n t ) .  A test  of  a lgebra ica l ly  we igh t ed  d i f fe rences  in 
t u rbu l ence  mode l l i ng  is left for the future .  
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