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Abstract 

Isotonic smoothing splines are introduced as a natural extension of ordinary isotonic estimates in the 

estimation of a regression function p(x)=E{ YIX=x}. A constructive characterization for the isotonic 

smoothing splines is given. Conditions are given for consistency under sequential designs, where the 

observation points are random and the experimenter after observing X, may choose to observe or to skip 

observing Yx. 
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1. Introduction 

Since they are necessarily step functions, isotonic regression estimates are not 

entirely satisfactory when the experimenter is confident that the underlying regression 

function is smooth. Neither can they provide good interpolations between observa- 

tion points. A brief literature survey of approaches to resolve these difficulties may be 

found in Chapter 9 of Robertson et al. (1988). These include the ideas of using moving 

averages by Friedman and Tibshirani (1984) and of using kernel estimators by 

Mukerjee (1988). But the method that seems most natural is the smoothing splines. 

Isotonic smoothing splines can be viewed as a generalization of the isotonic estimates. 

The isotonic estimates, step functions, may be regarded as isotonic smoothing splines 

of the first order. But the problem of isotonic smoothing splines or restricted splines in 

general is nonlinear and is difficult to solve. Utreras (1986) gives the existence, 
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characterization and convergence rates for isotonic smoothing splines. But a satisfac- 

tory algorithm to construct them is yet to be found. In this study, we will investigate 

the simplest case: isotonic smoothing splines which are piecewise linear, seeking for 

improvement over the method of ordinary isotonic estimates. 

The estimators are presented in Section 2. The algorithm leaves one (real) variable 

to be found numerically, but is otherwise explicit. The consistency of the estimators is 

studied in Section 3 for the case in which data are gathered according to a sequential 

design. The class of designs considered is motivated by the work of Sarkar(1991) and 

Woodroofe (1979) on the one-armed bandit problem with covariates. For a detailed 

study of these models, using ordinary isotonic estimators, see Tantiyaswasdikul 

(1992). 

2. Derivation 

A Sobolev space. Let C = C[a, b] denote the space of continuous functions on 

[a, b] endowed with the sup norm /I . II m; let L, = L, [a, b] denote the space of 

(Lebesgue) square integrable functions, endowed with its usual norm (1 . II 2 and inner 

product ( . , . )2; let H = H [a, b] denote the space of all absolutely continuous functions 

f: [a, b] w R for which f ‘eLz, endowed with the norm 

II f II i = Cf(41’ + II f’ II 2” 

and inner product 

CL sh=f(aMa)+(f’, s')2. 

Let H+ = { f~ H: f’20 a.e.}. Then H is a Banach space and H+ is a weakly closed 

convex cone in H. 
The criterion function. Let o #O be a finite measure on the Bore1 sets of [a, b]. For 

a given a>0 and geL,(w), let 

MI)= (f-s)‘dw+a 
s s 

‘(.f.‘)‘dx, 
(I 

for allfEH. The problem is to find a functionfEH.+ which minimizes IJ in H+ ; that is, 

WI = min ICI(h). 
heH+ 

Such an f is called an isotonic smoothing spline. 

The existence of anfeH+ which minimizes 1c/ may be easily verified by checking that 

$ is weakly lower semi continuous and that {h : $(h) < Ii/(O)) is (norm) bounded and, 

therefore, weakly compact. Existence then follows since lower semi-continuous 

functions attain their minima on compact sets (cf. Wegman, 1984). 
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Characterization. The algorithm is based on the following three elementary 

lemmas. 

Lemma 1. Zff; h EH, then 

Il/(f+~~)-w-)=2~~1(f, h)+O(Ez), 

as E + 0, where 

til(f, h)= 
s 

b (f-g)h do+cc ‘j-9 dx. 
(2 s 0 

(1) 

(2) 

Proof. For f, heH+ , 

w+~ww)=wl(f, h)+c2 {~;h’d~+c$b(h.)‘dx}. 0 

For each fsH+ , let 

H/=(hEH:f+hEH+}={hEH:h’~ -f’}. 

Lemma 2. f EH+ minimizes t+G on H+ if, and only if 

$1(_6 h)30 VheH/, (3) 

Proof. Iffminimizes Ic/ on H + then (3) follows since $(f+ sh) - 1+9(f) 2 0 for all h E H, 
and O<E-C~. 

Conversely, suppose $r(f; h)30 VkHf. Iff,EH+, then h=f,-~EH, and 

W1)-U-)=Y(l)-Y(O), 

where Y(E) = II/( f+ sh) VO < E < 1. Here Y is a convex function for which 

by Lemma 1 and the assumption. So Y’(E+)> Y’(O+) 20, VO de< 1 and therefore 

$(fi)>$(f). That is,f minimizes $ on H+. 0 

Letting h = + 1 in (2) and appealing to Lemma 2 shows that if f minimizes $ on H + , 

then 

s 
b(j--g)dw=O. (4) 

For adx<b let 

F(x)= Xf(y)w(dy) 
s 

X 
and G(x)= 

s 
s(y) m(dy) 

a II 
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Lemma 3. 1ff~H satisfies (4), then for all keH, 

t+bl(f, k)= 
j 

’ [af’-(F-G)]k’dx 
(I 

Proof. Iff satisfies (4) then for all kEH, 

$I(J; k)= ; U(x)-g(x)1 [k(x)-k(k)lo(dx)+m j/h.dx 
j (I 

= - 
j 

b [,f(x)-g(x)] 
j 

b k’(y)dyo(dx)+a 
j 

hf.‘k’dx 
(I 

b 

j is 
’ =- 

u a 

[j(x)-g(:)]..,x)}kQ)dy +: j;j’k’dx 

= b [gf’-(F-G)]k’dx. 0 
j (I 

Theorem 1. Necessary and suficient conditions for feH + to minimize $ on H + are that 

(4) holds and 

af’=(F-G)+ a.e., (5) 

where (F-G), =max{O, F-G). 

Proof. That (4) is necessary has already been observed. Iff minimizes $ on H + , then 

by Lemmas 2 and 3 

O<$,(f; k)= 
s 

b [af’-(F-G)]k’dx, VkGH,, 
(I 

and, since k’ may be any nonnegative square integrable function, it follows that 

af’-(F-G)>0 a.e. (by letting k’ be the indicator of the set where af’ -(F-G)<O). 

Since f’ 30 a.e., it follows that af’ a(F- G), a.e. So, it suffices to show that 

xf’<(F-G)+a.e. For this, let 

B={x~[a,b]: Ef’(x)>[F(x)-G(x)]+}. 

Then f’ >O and Mf ‘-(F- G)> 0 a.e. on B. As above, there is an kE H, for which 

k’= -&f/I,. Then 

j 

b 

O<rl/l(f; k)< [orf’-(F-G)]k’dx 
0 

= -3 
s 

B Cuff-(F-G)]f’dx, 

which is negative, unless B is of measure 0. 
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Conversely, suppose (4) and (5) are satisfied. Then 

$r(f, h)= 
s 

* [a$‘-(F-G),h’dx>O WEH~, 
0 

using Lemma 3 for the equality and (5) for the inequality. It follows from 

Lemma 2 that f Minimizes $ on H + . 0 

A special case. Let a=~,, <x1 < .+. <x,<x,+ 1 = b; and suppose that w is the 

counting measure on {x1, . . . . x,}. Then, letting 

and 
fk =ftXkh gk =dxk), 

Fk=fr+ “’ +fk, G,‘=gr+ ... +gk 

for all k =O, . . ., n, where an empty sum is to be interpreted as zero (so that 

F0 = G,, =O), one finds that F(x)- G(x)=F,- Gk for all x,, <x <x~+~ and for all 

k=O, . . . . n. Thus, for the minimizing f 

ccf’(X)=(Fk-Gk)+ tlXk<X<Xk+l t’k=O, . . ..a 

So, f’ iS COrMant on each of the intervals [xk, xk+ l), k = 0, . . . , n. Let 

f;=f’(&+) Vk=O, . . ..n. 
Then 

fk=fk_1+f;-1.(Xk-Xk-1) Vk=l,...,n, 

and 

C&k=(Fk-Gk)+ Vk=O, . . ..Fl. 

In particular, fb = 0, so that fr =fO. This determines fr , . . . , fn in terms of fO; and 

f0 may be determined from 

F,=f,+...+f,= *f.dW= *gdo=q,+~~~+g~=G,. 
s s L1 (I 

(6) 

Lemma 4. 

Proof. LffO<minIGk,, Gk/k,thenFI=fI=fO<GI,sothatf;=(F,-G,)+/U=Oand, 

therefore, F, =fi +f2 = 2fo < G,. Continuing, one finds that F, = nf,, < G, contradic- 

ting (6). Therefore 

Gk 
fO>/ min -. 

l<k<n k 

Conversely, if f0 > G,/n, then F, =fi + . . . +fn 3 nfo > G,, again contradicting (6). 0 
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Let& be a guess for the value off0 and let 

f^ -I_ +(Fk-l-Gk-l)+ (xk_xk_l) 
k-k 1 

a 

for k=l,..., n, where F,=O and kk=fI+...+i, k=l,..., n. 

Lemma 5. IffO<fO then gn<G,, and $fo>fo then iF’,>G,. 

Proof. Similar to that of Lemma 4. 0 

Lemma 4 provides lower and upper bounds for the value of f0 and 

Lemma 5 provides and indication of whether an estimate off0 is too low or too high. 

The two lemmas justify a simple bisection method for determining the value off,. 

Example. Consider the model 

*-- 

Fig. 1. The isotonic estimator. 
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Fig. 2. An isotonic smoothing spline. 

where X,, k = 1, 2, . . . , are independent and uniformly distributed over (- 1, l), 

sk, k= 1, 2, . . . . are independent standard normal random variables, and 

n(x)=$x-$x3, -l<x<l. 

This function was chosen to be nearly flat near the endpoints of the interval. The 

unsmoothed isotonic estimator has difficulty with such functions. 

The unsmoothed isotonic estimator (a = 0) and the isotonic smoothing spline with 

CI = 1 are compared in Figures 1 and 2. 

Just a little smoothing (IX= 1) has a dramatic effect on the estimators. 

3. Consistency under sequential designs 

A COUariate model. Let (xk, Yk), k = 1, 2, . . . , be a sequence of independent bivariate 

random variables identically distributed as (X, Y) where 

1. X has a known distribution F with support [a, b], 

2. the conditional distribution of Y given X=x has mean p(x) = E ( Y ( X=x) and 

variance a2(~)=E([Y-p(x)]2)X=~}, 
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3. p is continuous and nondecreasing on [a, b]. 

Suppose that after observing Xk, we may choose to observe or not to observe Yk for 

all k= 1,2, . . . . This model is closely related to ones considered by Sarkar (1991) and 

Woodroofe (1979) in their study of one-armed bandit problems with covariates. 

By a decision rule, we mean a sequence of binary-valued functions 

6={&,k=l,2,...$ h w ere & = 0 or 1 corresponds to the choice of not observing or 

observing Yk, as a function of information available at stage k, i.e., 

and the value of X,. An interesting class of decision rules are naturally those based on 

the estimates of p constructed from the information contained in 9 i_ 1. 

For a fixed decision rule 6 = { &, k = 1,2, . . . }, define the isotonic smoothing spline 

for each yt= 1,2, . . . as the function m,EH+ which minimizes 

$n(S)= f: &Cf(X,)- yJZ+KI 
s 

6 

Cf’(x)12 dx 
k=l a 

= z Cf(xn,j)-Yn,j12+~n 
j= 1 s 

b Cf’(x)12dx, 
a 

where X .,I<...6 X,& denote the ordered values of Xi, . . . . X,,, Y,,, i, . . . . Yn,K, 

denote the concomitant order statistics, and M, > 0. For n d x < b, let 

G,(x)= i &Ykl{Xk<x}, 
k=l 

Mn(x)= f 6kdxk)z{xkdx). 
k=l 

Proposition 1. Suppose that Ji a2(x)dF(x)< co. If 6 is a decision rule, then 

as n +E for all fl>O. 

(7) 

Proof. See Tantiyaswasdikul (1992). 0 

In the following theorem, 0, denotes exact order. 

Theorem 2. Let PE H + ; suppose that st a2(x)dF(x)< ~13; and let 6 be a fixed decision 

rule. If there are p > i, and 1 - p < q <p for which K, > np for almost every n w.p.1 and 

an=Oe(n4) as n -+oc, then 

$, 2 Gk[mn(Xk)-dXk)12 “Is’ o asn-ta. 
k=l 
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Proof. Since m, minimizes $,, over H + and ALE H + , 

k=l 

i Mm,(X,) - Y,l’ + a,, 
s 

ab CMx)12 dx 

G i sk[/dxk)- yk12+an 

b 

b’(x)12 dx. 
k=l 

By simple rearrangements 

s a 

i: sk[mn(Xk)-~(Xk)12+h 6 C4b)12dx 
k=l s 

G2 i sk[mn(xk)-/dxk)l [yk-/dxk)l+a. 

1 

6 

b’(x)l* dx. (8) 
k=l 

Summation by parts yields 

i sk[~“(Xk)-~(Xk)l[Yk-~(xk)l= z ~m~(x~,j)-~L(X~,j)~~Y~,j-~(Xn,j)l 

k=l j= 1 

=A,+&, 

where 

Let 

D,= SUP I&(x)-M,(x)l. 
acx<b 

By Lemma 4, WI,,(X,,,)<$~ Y”,j/K,; and since p is nondecreasing, 

P(X,,KJ~C~: 1 PL(Xn,j)IKn, ~0 that 

Therefore, 

<f [G,(b)-M,(b)] ~2. 
” ” 

%(Xn&)-P(X”,Kn) ~m.(X.;,~i-m”(X”.l)+~, 
n 
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and 

s b 

=D, Dl 
a mb(x)dX+F. " 

Also 

IB,I~D,C~L(X,,K,)-~(X,,~)+~~(X~,K,)-~~(X~,~)I 

So, 

G-f fabp’(x)dx+{ab mb(x)dx,. 

i Gk[mn(Xk)-dXk)l [ yk-/dxk)l 
k=l 

Therefore 

f sk[m.(Xk)-~(~k)12+% b C4,12dx 
k=l s a 

Rewrite the above inequality as 

L2i4,b-a4 
n’ &i 

(L+Kl)+R,Z, 

where 

and 

L,2= 2 sk[%(xk)-~(Xk)12+& b [rn;]* dx, 
k=l s a 

s b 

R,Z=a, 
a 

[p’,“dx+4?. 
n 



C. Tantiyaswasdikul, MB. Woodroofe/lsotonic smoothing splines 

One finds that 

L <G-=.+R 
“‘A n 

or since (x + y)’ < 2x2 + 2y2 

85 

That is 

iktl bk ~mn(X,)-p(x,)]2~32(~-n~‘D~+~ j-’ [$]‘dx+-8 -$ 
n (I ” 

32(h-u)D,~+ 2 

= 0(&q) s 

b 

O(nP_4) (I 
[@,2dx+8 & 

n 

by the proposition above. 0 

Uniform consistency. We can improve the results of the previous theorem to 
uniform consistency of the isotonic splines, if the observation points become suffi- 
ciently dense in [a, b] as n -+I. 

Let s=(&k>l) b e a fixed decision rule. For each n = 1,2, . . . , define for a < x <b, 

K,(x)=Ki(x)= i 6,Z{X,,(x) 
k=l 

and 

K,=K,6=K:(b). 

For notational simplicity, we will assume 6 as given and omit the superscript 6. K,( .) 
is a step function with jumps of magnitude 1 at X,,j,j= 1, . . . . K,. Of course, if F is 
continuous, then there is strict inequality with probability one. K,( .) is also used to 
denote the counting measure on the set {A?,,,, j= 1, . . . . Knj. 

Theorem 3. Let ~EH+ and j,b6’(x)dF(x) < co; and let 6 be a decision rule. Suppose that 
there are p > f and 1 - p < q < p for which cl, = O,(nq) and 

lim inf !+!$> 0 a.~., 
n-m 

for any nondegenerate compact subinterval J of [a, b]. Then for any c, d : a < c <d -C b, 

a..%. 
sup ImAx)-Ax)1 -+ 0, 

cix$d 
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Proof. From Theorem 2, we know that 

f 
s 

b [m,(x)-~(x)]2dK,(x) “20, 
u 

(9) 

as n-m. 

For a fixed xO:a<xo< b, suppose (9) holds but m,(xo) fails to converge to p(xO). 

Then there are E>O and a subsequence N, c { 1,2, . . . } such that for all nENo 

Fl(xo)-P(x0)>2~. 

By continuity of p, there exists q > 0 such that for all x : x0 -q 6 x < x0 + q 

IP(X)-P@o)I~~. 

Consequently, for all x : x0 < x d x0 + ty and for all nc No 

m,(x)-~L(x)~m.(xo)-~U(xo)-& 

> e. 

But then 

1 I 
XO+g 

Cm,(x) -&)I’ dUx) > E* &(Cxo, xo+r?l) 
np np : 

x0 

for all HEN,. Therefore 

1 
-s 

XO+V 

MP x0 
CM4-Ax)12 dK(x) 

is bounded away from 0 as n +x through N, contradicting (9). Therefore for all 

x:acxcb 

lim sup m,(x)---(x)<0 as. 
“+cO 

Similarly, one can verify that for all x: a < x <h, lim inf,, m [m.(x) -p(x)] 3 0 a.s. That 

is for all x: a<x<b 

lim jm,(x)--p(x)/ =0 a.s. 
n4n 

Uniform convergence in any compact subinterval of [a, b] is provided by the mono- 

tonicity and continuity of p (see Breiman, 1968, p. 160). 0 
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