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Abstract-A mechanical model is described for the problem of buckling of unilaterally constrained, 
finite, rectangular plates. Due to the nature of the imposed constraint on the plate’s lateral deflection, 
w, solving for the buckling load required the solution of a nonlinear partial differential equation in 
w. While the plates were modeled along the lines of classical plate theory, the nonlinearity arose 
from the fact that the plates were attached to nonlinear elastic foundations exhibiting a deformation 
sign dependent force-displacement relationship. This feature was introduced to model the unilateral 
constraint. The influence of different boundary conditions, material orthotropy and transverse load 
distributions was investigated. For each case, the weak form of the governing differential equation 
was solved via the Galerkin’s method. Investigations of the buckling loads of rectangular plates 
attached to such foundations and subjected to a uniform inplane stress field showed the validity of 
this approach for the cases investigated and compared to some previous exact results reported in 
the literature. 

NOMENCLATURE 

generalized displacement (Galerkin’s) coefficients (also denoted A) 
generalized displacement coefficients at I = 0 and Q(x, y) # 0 
@ate-bending stiffnesses 
D,lD, I 
foundation force 
pre-buckling inplane loads 
q(-%9))b4/6,h 
strain energy density of the elastic foundation 
plate’s dimension in the &direction 
plate’s dimension in the jjdirection 
displacement function that characterizes the foundation model 
plate’s thickness 
stiffness parameter 
transverse load 
length coordinate E [0, a] 

-Vb E 10, <I 
width coordinate E [0, b] 

i/b E P, 11 
plate out-of-plane deformation 
G/h 
total potential energy 
fIb*/6,,h2 
kinematically admissible displacement functions in x and y 
kb4/n46,, 
foundation attachment coefficient > 0 
N,,IN, I 
NzJN, I 
N, , b2/n28,, (inplane load parameter) 
critical value oft (buckling load parameter) 
lower bound on & 
upper bound on I,, 
a/b (plate’s aspect ratio) 
kinematically admissible displacement functions in x 
kinematically admissible displacement functions in y. 

INTRODUCTION 

In this paper we consider a mechanical model and an appropriate solution method for the 
critical loading conditions of a finite, rectangular and linear elastic plate that is unilaterally 
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Fig. 1. Thin elastic plate constrained by a rigid surface and under the action of an applied inplane 
uniform load. 

constrained by the presence of a rigid surface parallel to the plate’s undeformed middle 
plane as shown in Fig. 1. The distance between the rigid surface and the plate’s middle 
plane is taken to be half the plate’s thickness, implying that a gap does not exist. The plate 
is subjected to transverse distributed loading as well as a uniform inplane stress field. The 
plate is modeled along the lines of classical plate theory employing the Kirchhoff-Love 
hypothesis. 

The model description in the preceding paragraph is characteristic of a variety of 
practical situations. For example, consider the problem of near-surface delamination (dis- 
bond) buckling in laminated composite plates. Due to the out-of-plane thickness ratio of 
the delamination (thin plate) to that of the sublaminate (parent substrate), the sublaminate 
essentially acts like a rigid surface constraining the plate’s out-of-plane deformations to be 
of one sign. This constraint is usually avoided indirectly by either modeling the thin plate 
as a wide column or as an axisymmetric circular plate or annulus (Chai et al., 1981; Bottega 
and Maewal, 1983 ; Sallam and Simitses, 1985 ; Bruno and Grimaldi, 1990 ; Barber0 and 
Reddy, 1991), which are essentially one-dimensional models. However, it is to be noted 
that except for certain inner/outer radii ratios, annuli can exhibit a nonaxisymmetric 
behavior (Majumdar, 1971; Fu and Waas, 1992). By resorting to one-dimensional models, 
the governing partial differential equations are reduced to ordinary differential equations. 
This implies that the eigenmode corresponding to the lowest eigenvalue is of one sign, 
hence, no contact occurs (within the boundaries) between the delamination and the sub- 
laminate. An analysis of the one-dimensional case (Chai et al., 198 1) where the sublaminate 
has some finite bending rigidity, reveals that certain buckling configurations exist in which 
contact conditions occur. The axisymmetric upheaval buckling of a heavy plate in unilateral 
contact with a rigid subgrade was presented in Hobbs (1990). 

One common simplification when addressing these types of problems is the assumption 
that the medium, being a beam or a plate, is infinite. The buckling of a unilaterally 
constrained infinite beam (thin strip) was addressed by many investigators (Allan, 1968 ; 
Anderson, 1972 ; Yun and Kyriakides, 1983 ; Wang, 1984a,b ; Hobbs, 1985 ; Roorda, 1988 ; 
Plaut and Mroz, 1992), and it was shown that such a system is completely imperfection- 
sensitive, with theoretically infinite buckling load in the absence of imperfections or weight- 
lessness. An analysis to extend the classic variational theory for eigenvalue problems so as 
to define the Euler critical load of a unilaterally constrained beam is presented in Villaggio 
(1979). The variational formulation also provided a method of bounding the buckling load 
by comparison, and a few important theorems and remarks were stated. Using an elastica 
approach, Soong and Choi (1986) derived equations for continuous contact between a 
beam and its boundary, as well as multiple discrete point contacts. They presented examples 
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in which the elastica curvature assumes values which are less than the curvature of the 
restraining boundary, thus resulting in line contact. A finite element solution was used by 
Stein and Wriggers (1984) with an updated Lagrangean formulation to investigate the 
stability of rods with unilateral constraints. These authors showed good agreement in 
comparing their solutions to those available in the literature. 

Similar issues relating to the behavior of unilaterally constrained plates have been 
considered by other researchers in different contexts. Motivated by a problem that arises 
in magnetic tape recording, Benson (1991) used classical plate theory to study plate tenting 
with one-sided constraint using an energy minimization formulation. A more indepth study 
on unilateral boundary value problems as related to the nonlinear theory of plates was 
reported in Naumann (1975, 1977). This author presents a variational formulation along 
with an existence theorem and a uniqueness result for a variational solution for thin plates 
under normal load. The existence of equilibrium states of such plates is also studied. 

The buckling behavior of an infinitely long, simply-supported isotropic plate is pre- 
sented in Seide (1958). Attaching the plate to a tensionless foundation and subjecting it to 
a far field uniaxial compressive load, he presented results for the buckling load as well as 
the buckling wave length. Using a limiting process, the solution for a unilaterally constrained 
simply-supported infinite plate was recovered from the exact solutions of the governing 
differential equations. Such a solution showed a 33% increase in the buckling load when 
the plate was unilaterally constrained. Using a similar formulation, Shahwan and Waas 
(1991), obtained similar results for specially orthotropic plates as well as approximate 
results for plates that have clamped-free boundary conditions on their unloaded edges. 
They reported values for the % increase in the buckling load for four types of specially 
orthotropic plates. 

One of the earliest works that addressed the issue of unilateral constraints as related 
to the problem of two-dimensional delamination buckling was reported by Chai and 
Babcock (1985). Modeling the delamination as a thin elliptic plate, and based on a rather 
limited number of assumed admissible Rayleigh-Ritz displacement terms, they studied the 
dependence of overlap conditions on ellipse aspect ratio and load level. More recently, the 
buckling and post-buckling of elliptical delaminations was investigated by Chai (1990a,b), 
who carried out a simplified contact analysis by limiting the contact regions to isolated 
points. Although such an assumption resulted in an accuracy within f 30%, it would not 
hold in cases where the geometry, boundary conditions and loading are of a more com- 
plicated nature so that surface rather than point contact would dominate the response. 

The buckling of thin plates using von Karman plate theory in a variational inequality 
formulation was presented in Do (1976, 1977) and Kubrusly and Oden (1981). Using a 
variational principle with penalty in a finite element formulation, Ohtake et al. (1980a,b) 
provided a more convenient basis for computational methods by introducing a penalty 
term and adding it to the potential energy. In effect, this term is identically zero whenever 
the plate’s deformation w is not in contact with the rigid constraint, and greater than zero 
otherwise. 

Issues pertaining to the equilibrium and stability of discrete one-way structural systems 
were dealt with in a general manner by Burgess (1971a). This author also presented an 
analysis that showed that the discrete method converges to the continuum solution by 
studying a radially constrained imperfect ring (Burgess, 1971b). In these works the notion 
of a critical state is classified and the evaluation of the buckling load was carried out in the 
context of a postbuckling analysis. 

In the present work, the problem of unilateral constraint is modeled by introducing a 
nonlinear elastic foundation that influences the plate’s out-of-plane deformation as shown 
in Fig. 2. This is a feature of the modeling that is introduced and not necessarily of the 
problem at hand. Indeed, from this point of view, the present work is similar in spirit to 
the approach adopted in Seide (1958). 

PROBLEM FORMULATION 

In order to account for the physical constraint imposed on the plate’s buckling dis- 
placements, a nonlinear elastic foundation model that exhibits a deformation sign dependent 
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Fig. 2. Modeling the rigid surface constraint as a nonlinear elastic foundation (springs). 

force-displacement relationship was implemented. Such types of nonlinearities present 
analytical difficulties in that an exact closed-form solution cannot be easily obtained if at 
all. As such, an approximate method of solution must be followed to formulate the equations 
governing the plate’s response. From the expression of the total potential energy (l), one 
can operate either on its functional form directly (e.g. the Rayleigh-Ritz method), or on 
its first variation form (e.g. the Galerkin method) : 

The elastic foundation’s strain energy density functional, Wf, is defined as, 

Wf = 
s 

PI!(~) dti. (2) 

In the case of a linear elastic foundation, ‘I’($) = $, and hence Wr = jkti*, where k is the 
linear foundation stiffness. Nondimensionalizing (1) will result in the following expression 
for the total potential energy : 

+ 4D,5,w,‘,] dx dv - ; 

- Q<x,Y>~ dx dy+ I’ j)mz4( I’I’(w)dw)dxdy. (3) 
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Calculating the first variation of II and applying the divergence theorem yields the 
following variational equation : 

- s ’ (M,,6w,,+M 6 xy w,,, - ?‘,Gw):I$, dv- (4) 
0 s 

’ (M,y6w,, + Myy8w,y - v,Sw);~; dx, 
0 

where M,,, M,,, MX,,, V, and Vy are the nondimensional moments and shear forces at the 
plate’s boundary and in terms of w(x, v) are given in the following equations : 

Mxx = -(w,,,+DI~w,~~+~D,~w,~~), 

M,y = -(D~zw,xx+D2zw,yy+2D2~w,xy), 

Mxy = -(D,6w,xx+D26~,~~+2Ds6w,x~), 

vx = -[W,~,+3D16w,,,,+(D,2+2D66)W,, 

+D26w.yyy+iln.2(w,~+~,2w,)l, 

vy = -[D16w,,,+(D,2+2~66)~,,,y 

+~~26~~yY+~22w,yyy+~~2~~,2~,,+~22~g~~. (5) 

Investigations of equilibrium states requires, the necessary and sufficient condition that the 
total potential energy II be stationary, hence, the vanishing of its first variation, 

6rI=O. (6) 

From (4), (5) and (6) the governing nonlinear differential equation can be extracted along 
with the boundary conditions. A closed-form solution of the differential equation is highly 
dependent on the form of Y (w). While for nonlinear Y(w) such a solution is near impossible, 
it is easily obtainable if Y(w) is linear in w and if the boundary conditions are of a certain 
type and combination. Hence, for nonlinear Y(w), one has to resort to approximate 
methods such as the finite element method, the Rayleigh-Ritz method, or Galerkin’s 
method, to mention a few. In this study it was decided to employ Galerkin’s method, and 
in order to carry out the solution procedure, kinematically admissible global displacement 
functions must be assumed. It is important to note that although the plate is unilaterally 
constrained, such a constraint does not play any role in choosing these functions and as 
mentioned earlier, this constraint condition will be accounted for indirectly via the non- 
linearity of the elastic foundation model. Further, the out-of-plane displacement field w can 
be assumed to be of a separable form where shape functions in x are multiplied by those 
in y. These functions can be chosen to be the buckling and/or free vibrational eigenmodes 
of beams and/or plates having the same kinematic boundary conditions. In the forthcoming 
analysis, the out-of-plane displacement functions w(x, y) were chosen to have the following 
form : 

where @ij(X, y) has the following separable form : 
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@ijCx2Y) = +i(x)VjPj(Y)3 (8) 

&(x) and cpj(~) must satisfy their corresponding plate’s kinematic boundary conditions. 
The first variation of w(x,y) with respect to the generalized displacement coefficients A, is, 

dW(X,y) = 2 2 6Aij@ij(X,y)* (9) 
i= I j=) 

Substituting (9) in (4) and in conjunction with the statement of stationary total potential 
energy (6) one arrives at the following set of A4 x N algebraic equations in the M x N 
unknowns A, : 

For a prescribed Y(w), one can determine the buckling load parameter A,, as well as the 
generalized displacements A, using an incremental load approach. The solution algorithm 
increments the inplane load parameter 1 and monitors the determinant of the incremental 
stiffness matrix. ACT was obtained when the incremental stiffness matrix became singular (or 
near singular). Such an approach is used frequently in the analysis of nonlinear problems. 

The type of foundation model needed to incorporate the physics of unilaterally con- 
strained plates should exhibit a forcedisplacement relationship that is deformation sign 
dependent, hence, the foundation was modeled as extensional springs having such a relation- 
ship. Such models have been considered by many investigators in the treatment of beams 
and plates resting on nonlinear foundations (Tsai and Westmann, 1967 ; Farshad and 
Shahinpoor, 1972; Celep, 1988). In these studies, the sgn, Dirac delta as well as Heaviside step 
functions were used to describe the bimodulus nature of the elastic foundation (bimodulus 
in the sense that compression stiffness is different than that for tension). In this study, a 
model that utilizes the switching property of the tanh function was used. The force- 
displacement relationship for this model is given below as, 

F = d’(w), 01) 

where 

Y(w) = w[l(l -tanh(/?w))], (12) 

c1 is a nondimensional stiffness parameter, w is the normalized deformation, /3 is a spring 
(foundation) attachment coefficient that is >O. The foundation attachment can be con- 
trolled by changing the value of the parameter b. Large values of /I imply less attachment 



A mechanical model for the buckling of plates 

0.6 - 

Fig. 3. Displacement function that characterizes the foundation model Y(w) as a function of w for 
different values of 8. 

81 

as shown in Fig. 3. Theoretically, p = co implies that the foundation is fully unattached 
(tensionless), while B = 0 implies the foundation is fully attached (note that if B = 0 the 3 
factor in (12) should be replaced by 1 in order to recover the linear case where Y = w). 
Furthermore, while foundation stiffness can be increased to larger values by increasing a, 

increasing /I will result in a decrease in the ratio of the tension/compression stiffnesses. 
It is worthwhile noting that although the nonlinearity in the physical problem is 

geometric, arising from the constraints imposed on the plate’s behavior, the nonlinearity in 
the governing equations arises from the elastic foundation’s constitutive model. Notice that 
this is a feature of the mechanical model that is employed in the present work. 

The type of nonlinearity in the physical problem invalidates any linearization procedure 
of the governing equations about the trivial state. As such, the fully nonlinear equations 
must be solved which introduces complications that are associated with the foundation’s 
force-displacement relationships (11) and (12) where linearization of tanh (Bw) for large B 
does not reflect the intended physical situation. The inability to linearize the governing 
equations without substantially changing the physics of the problem is a distinguishing 
feature of this class of problems. 

RESULTS AND DISCUSSION 

While generic buckling curves for uniaxially loaded rectangular plates are available in 
the literature (Gerard and Becker, 1957 ; Brunelle and Oyibo, 1983), such results are non- 
existent for unilaterally constrained plates. Hence, in this study the effort was concentrated 
on trying to generate such curves for plates having different boundary conditions and 
subjected to a uniaxial stress field. For uniaxial loading, qlZ = q22 = 0. In problems of the 
type presented here, it is often easier to obtain the buckling loads by treating a response 
problem and determining the value of the inplane load parameter (1) corresponding to a 
rapid growth in the response. More specifically, the notion of a rapid growth in the context 
of the numerical solution that we have obtained is clearly discussed later on. Thus, values 
of buckling load presented here were obtained, and the term buckling load is used, in this 
context. 

In carrying out the solution process, the value of /? in (12) posed a computational 
drawback. Although large values for a as well as /3 are required in simulating the presence 
of the rigid surface, they cannot be chosen arbitrarily large. It was observed that while 
a = 100 (“high stiffness” foundation) yields adequate and physically admissible results 
independent of w, the value of p was dependent on w so as to maintain the product /?w as 
large as possible for all values of w. Further, assigning a large constant value of /?, led, in 
some cases, to numerical difficulties that were encountered in the incremental method 
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Fig. 4. The influence of the foundation (springs) attachment coefficient b on the value of the buckling 
load parameter & for an isotropic plate with “ccss” boundary conditions. 

algorithm. In these cases, a physically inadmissible result such as plate penetration into the 
foundation was found to exist. An improvement on this foundation model (12) that elim- 
inates such dependency can be achieved by casting (12) in the following form : 

(13) 

Using the above form of Y(w), and after investigating a wide range of problems, it was 
found that /I = 10 is an adequate value for an attachment coefficient representing the 
unattached situation. Figure 4 demonstrates the dependence of &,, on /I as a function of < 
for plates having clamped and simply-supported boundary conditions along their loaded 
and unloaded edges, respectively. Curves for B > 10 are indistinguishable from the fi = 10 
curve. 

A simplification to the solution algorithm rests in the fact that, for a given case where 
a and /I are >O, I,, is bounded from above and below. The lower bound L, corresponds to 
ACT when GI = 0, while the upper bound 1, corresponds to A,, when b = 0. Such bounds were 
used as guides in the incremental method and it was noticed that, in general, for unilaterally 
constrained plates, I,, is closer to I, than 1, indicating that the rigid surface constraint does 
not increase the buckling load significantly (Seide, 1958 ; Shahwan and Waas, 1991). For 
an isotropic, simply-supported (along the unloaded edges) infinite plate, such an increase 
was found to be 33%. 

By using Galerkin’s method the governing nonlinear differential equation was reduced 
to a set of it4 x N nonlinear algebraic equations (10) whose solution was carried out 
iteratively using the Levenberg-Marquardt algorithm (denoted as LMP) as modified by 
Powell (1970). For a system of nonlinear algebraic equations f(A) = 0 the algorithm is 
given by 

A k+, = Ak-[pkI+J:Jkl-‘J~f(Ak), (14) 

where Jk is the Jacobian at the kth iteration given by 

(15) 

and Ak is the current, known, approximate value of the vector of unknowns A and pk is a 
scalar that is selected based on a methodology given in Powell (1970). Although this 
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Fig. 5. Response curves for two different transverse loading Q(x,y) distributions, for an isotropic 
“ccss” plate of aspect ratio { = 3. 

algorithm was the main algorithm used in obtaining solutions for A, for some cases and 
for 1 near A,,, the algorithm didn’t converge and Newton’s method was temporarily 
employed. Such a situation did not occur frequently. In those few instances, we traced the 
reason for this lack of convergence to be associated with the evaluation of the Jacobian. In 
Newton’s method, the Jacobian at the kth iteration (Jk) is evaluated with a pre-assigned 
step size, while, in the LMP method, the Jk is updated automatically with step size that 
depends on AR as well as the change in the Jacobian from the previous two iterations. 

Dependency of A,, on the transverse load Q(x, y) 

In the absence of Q(x, y) and since the trivial solution (w = 0) is an admissible solution 
for all values of A, the solution of the governing equations constitutes the determination of 
the eigenvalues 1,, and their corresponding eigenmodes. But due to the nonlinearity of these 
equations, such a system falls into the category of a nonlinear eigenvalue problem. As a 
simplification to the solution process a transverse load Q(x, y) was added which converts 
the problem from being a nonlinear eigenvalue problem to a nonlinear response problem. 
In order to establish that the results for 1,, are not significantly influenced by the magnitude 
and distribution of Q(x, y), different cases were investigated where the sign and magnitude 
as well as the functional distribution throughout the plate were varied. Although the 
“response curves” (curves representing 1 vs normalized magnitude of the generalized 
displacements vector 11 A I( / IlAo 11) were not significantly influenced by the magnitude of 
Q(x, y), they were dependent on its sign distribution. However, the value of ,4 at which the 
plate response appeared to increase without bound (approaching buckling) was independent 
of Q(x, y) as expected. If Q(x, y) = c, where c is a constant that is c 0 (i.e. Q is pushing the 
plate against the foundation), the value of 1,, was equal to 00. If, on the other hand, c > 0 
(i.e. Q is pulling the plate away from the foundation), the value of Iz,, was finite yielding 
valid results. However, the latter situation has an interesting feature that can be seen in 
Fig. 5. In this figure, the response curves for a plate that is clamped along the loaded edges 
and simply supported otherwise is under the action of two types of transverse loads. One 
curve represents the case where c > 0 while the other represents the case where Q(x, y) is a 
symmetric distribution (symmetry with respect to the center line x = t/2). In the former, a 
decrease and then a sudden increase in the slope at some value of 1~ I, is observed. This 
can be attributed to the plate “touching” the foundation and immediately experiencing 
additional stiffness due to the foundation. On the other hand, in the latter case where the 
transverse load has negative as well as positive distributions, “touching” is already present, 
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Fig. 6. Buckling load parameter &,, as a function of the plate’s aspect ratio r for isotropic plates 
with different boundary conditions on their loaded and unloaded edges. 

prior to the application of the axial load. Hence, this sudden slope increase is not strongly 
present. Further, although such difference between these two curves is strongly present for 
intermediate values of A, it vanishes at the early stages of loading (A) increments as well as 
when 1 approaches the eigenvalue (A,,). From this figure, it is also seen that as the magnitude 
of the normalized generalized displacement vector 11 A )I / 11 A,, 11 tends to large values (exceed- 
ing lo), the slope of the response curves tends to zero. In order to determine II,,, we plotted 
several response curves for each case, and in every case we found all the response curves to 
be within 1% of each other when IIAII/IIAo 11 was, at most, approximately 20. The load 
corresponding to this limit was chosen as &. Clearly, for some plates this limit was reached 
much earlier (IIAII/IIA,, 11 approximately 10). It is worthwhile pointing out that in the 
presence of Q(x, y), the obtained A,, will always be an underestimate of the exact &,, value 
(eigenvalue) that would have been obtained by setting Q&y) = 0, provided a sufficient 
number of Galerkin terms are used. Although this difference should approach 0 as Q(x, y) 
approaches 0, its value was kept to a minimum (i.e. Q(x,y) was never set to 0). 

Dependency of A,, on the plate’s aspect ratio ( 

Figures 6 and 7 show the dependency of &, on the plate’s aspect ratio 5 for different 
types of boundary conditions on the loaded and unloaded edges as well as for different 

12 

Fig. 7. Buckling load parameter I,, as a function of the plate’s aspect ratio 5 for two types of 
orthotropic plates (A and B) with different boundary conditions on their loaded and unloaded 

edges. 
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Table 1. Limiting values of the buckling load parameter (A,,) as r + 
03 for uniaxially loaded isotropic plates 

Boundary conditions? 

85 

Loaded edges1 cc or ss 

Unloaded edges$ cc cs ss cf 

4, 9.30 7.22 5.25 11 1.75 

t c = clamped, f = free, s = simple. 
$ Loaded edges are in the short Q-direction. 
4 Unloaded edges are in the long (x)-direction. 
11 Exact value = 5.33. 

types of materials. As expected, the dependence of A,, on [ diminished for large values of 
< and beyond a certain value of 5, the value of &, becomes independent of the boundary 
conditions on the loaded edges and depends only on the boundary conditions on the 
unloaded edges. The prediction of this independence of AC,, at large 5 added confidence to 
the numerical procedures adopted in the present work, Table 1 summarizes the limiting 
values of A,, as the plate’s aspect ratio [ + cc for the case of an isotropic material. 

An interesting feature of the buckling behavior of this problem is its symmetry. For a 
unilaterally constrained plate having homogeneous boundary conditions, the out-of-plane 
buckling deformation field W(X, y) is a symmetric function with respect to the center line 
x = ~32. This feature aids in the selection of the admissible displacement functions in (8) 
such that only the symmetric ones are retained and all others discarded due to their vanishing 
contribution to the governing equations. 

Since the formulation covers material models other than isotropic, example problems 
for two types of specially orthotropic materials (designated A and B) were also studied. 
The properties of these materials are tabulated in Table 2. The results obtained via the 
present formulation for unilateral buckling of plates made of these materials are summarized 
in Fig. 7. For large aspect ratios the results for buckling loads are seen to converge to 
certain fixed values and when compared to previous results (Shahwan and Waas, 1991), 
are found to be in very good agreement. 

In Fig. 8, we show typical plots for the evolution of the buckle displacements as a 
function of applied load for an isotropic plate of aspect ratio three. In the case, the plate 
was subjected to a uniformly distributed positive transverse pressure loading. Thus, at zero 
axial load, the plate deformation is the linear response to the pressure load. 

CONCLUSIONS 

The problem of buckling of unilaterally constrained, finite, rectangular plates was 
investigated. The plates were modeled along the lines of classical plate theory employing 
the Kirchhoff-Love hypothesis. The presence of a unilateral constraint was accounted for 
through the use of a nonlinear elastic foundation model that exhibits a deformation sign 
dependent force-displacement relation. Using Galerkin’s method, the resulting system 
of governing nonlinear algebraic equations was solved iteratively. Different boundary 
conditions were considered and the results for some boundary conditions were compared 
and shown to be in good agreement with “exact” results available in the literature (Seide, 
1958 ; Shahwan and Waas, 1991). The effect of the presence of a transvere load Q was 
investigated and it was found that the plate’s load-displacement (A- ( IIAII/I(AO II)) curve 

Table 2. Normalized bending properties for the three types of materials used 
in this study 

Material D,2 D,, D22 026 D,, 

Isotropic 0.33 0.00 1.00 0.00 0.33 
Orthotropic (A) 0.26 0.00 0.38 0.00 0.27 
Orthotropic (B) 0.67 0.00 2.61 0.00 0.70 
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Fig. 8. Deformation of a “ccss” isotropic plate of aspect ratio r = 3, under a uniform positive 
transverse loading and at different levels of inplane loading. The deformations are exaggerated for 

clarity. 

can depend on the sign and distribution of Q, while the buckling load parameter (A,,) was 
found to be independent of Q. Different material orthotropy was also investigated and 
results for the buckling load were presented and were found to compare favorably with 
results reported previously. The present study has demonstrated the validity of using such 
foundation models in the buckling analysis of unilaterally constrained rectangular plates. 
Since the formulation is quite general, extensions to study the unilaterally constrained 
buckling problem of thin film delaminations of arbitrary planform shape in compressively 
loaded laminates is currently being pursued. Obtaining a solution to this latter problem 
was our initial motivation for developing the methodology presented here. 
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