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Abstract

A new method of analysis, developed within the framework of nonlinear dynamics, is applied to patient recorded time
series of the occurrence of epileptic seizures. These data exhibit broad band spectra and generally have no obvious
structure. The goal is to detect hidden internal dependencies in the data without making any restrictive assumptions,
such as linearity, about the structure of the underlying system. The basis of our approach is a conditional probabilistic
analysis in a phase space reconstructed from the original data. The data, recorded from patients with intractable
epilepsy over a period of 1-3 years, consist of the times of occurrences of hundreds of partial complex seizures.
Although the epileptic events appear to occur independently, we show that the epileptic process is not consistent with
the rules of a homogeneous Poisson process or generally with a random (ITD) process. More specifically, our analysis
reveals dependencies of the occurrence of seizures on the occurrence of preceding seizures. These dependencies can be
detected in the interseizure interval data sets as well as in the rate of seizures per time period. We modeled patient’s
inaccuracy in recording seizure events by the addition of uniform white noise and found that the detected dependencies
are persistent after addition of noise with standard deviation as great as 1/3 of the standard deviation of the original
data set. A linear autoregressive analysis fails to capture these dependencies or produces spurious ones in most of the
cases.
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1. Introduction

In some patients, seizures appear to occur un-
predictably, with no discernable patterns. In
others, seizures appear to occur in cycles. In some
cases, the cycling patterns have been attributed to
other biological rhythms such as the menstrual
cycle. However, cycling has also been observed in
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males [1]. Clustering patterns, where one seizure
appears to increase or decrease the likelihood of
subsequent seizures, are a common clinical experi-
ence and have been reported in the literature
[2,3,15]. In an article on seizure recurrences [23],
Milton and co-workers concluded that the propor-
tion of patients with seizure cycles and/or clusters
is quite small with respect to the general popula-
tion of patients. Using conventional statistical
tests and assuming that the mean of the seizure
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rate is constant, they found that for most of the
patients with multiple seizures, the pattern of sei-
zure recurrence is random and follows a homoge-
neous Poisson distribution in 50% of the cases. In
the remaining cases, seizures appeared to be ran-
domly distributed but not according to a Poisson
distribution. However, in that study, the number
of seizures per patient was small and the rate of
seizures they analyzed was low (on the average 18
seizures per patient and 1 seizure per 10 days).
Moreover, the methods employed were not sensi-
tive to many potential nonlinear dependencies in
the data.

In patients with intractable partial seizures,
Balish and co-workers [1] found evidence that sei-
zures did not occur randomly in most of the pa-
tients. In that study, they fit the rate of seizure oc-
currences to a quasi-likelihood regression model.
Using this model, they showed deviations from a
homogeneous Poisson process. These deviations
from the Poisson process included linear time trends
and clustering. In addition, they found cycling at
near-monthly intervals in four of their 13 patients.
The cycling effects were detected through the ‘exter-
nal input’ to their semi-linear model (non-autono-
mous time-dependent linear system). However, time
dependencies that are not consistent with their mod-
el (e.g., nonlinearities in the structure of the generat-
ing system and/or cycling produced within the sys-
tem) could be missed or misrepresented.

In recent years, it has become clear that deter-
ministic low-order nonlinear systems can have ex-
tremely complicated, even chaotic behavior
{6,21,26,31]. It has also become clear that stan-
dard methods of time series analysis, such as line-
ar transforms and parametric linear modeling, are
not useful in general for discerning the structure of
such nonlinear systems, and may, in fact, lead to
the erroneous conclusion that most of the signal is
just random noise [29]. Consequently, it is impor-
tant to develop and apply new methods for the
analysis of the output of such systems [24]. Re-
cently, we have applied methods from nonlinear
dynamics to ECoG signals to investigate the tran-
sition from the preictal to the ictal to the postictal
state [14,16-18,28]. These studies support the hy-
pothesis that the occurrence of a seizure has, at
least in part, a deterministic basis and is not

merely a random process.

In this study, we analyze long-term seizure pat-
terns in five adults with refractory complex partial
seizures. Seizures diaries are used to generate two
data sets per patient. The first data set is a time
series in which each point represents the time in-
terval between consecutive seizures. The second
data set is a time series of the rate of seizure occur-
rence within consecutive prespecified time inter-
vals. For statistical comparisons, each data set is
shuffled to eliminate time dependencies. Thus,
measures of time dependencies in the original
data sets are compared with the measures in the
shuffled (random) data sets. Because previous in-
vestigators [1.23] have emphasized the Poisson dis-
tribution, we also compare the original data sets
to Poisson distributed data sets with the same
mean as the original data sets.

For the analysis of each data series, we employ
a very recent method. developed within the frame-
work of nonlinear dynamics, for detection of time
dependencies in time series that are not resolved
by conventional signal processing techniques
[14,28]. This method has proven capable of detect-
ing nonlinear dependencies and underlying struc-
ture in finite data series without the need for as-
sumption of a particular model. The precise nat-
ure of the system that produces these dependencies
cannot be determined from the estimated values of
the indices of dependence alone. However, these
indices do give information about which time lags
are most important in the deterministic structure
of the process. The application of the method to
epileptic seizure data promises to shed light on the
question of determinism of the occurrences of par-
tial epileptic seizures.

In addition to the nonlinear analysis of our
data sets, we report two other calculations. First,
in order to measure the effect of possible inaccura-
cies in the reporting of seizures by patients, in each
original data set a considerable amount of noise 1s
added on the reported time of seizure occurrence
and the estimated dependencies from the noise-
free sets are compared to the ones from the noisy
data sets. Finally, to facilitate comparisons with
standard methods, we perform a linear autoregres-
sive analysis on our data sets and we compare
these results to those of our nonlinear analysis.
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2. Methods

2.1. Patient selection

Seizure diaries from five adult patients with par-
tial seizures were analyzed. These patients were se-
lected because they had kept detailed records over
1-3-year periods in which the date and time of each
seizure was recorded. This provides data sets with a
sufficient number of points to characterize the dyna-
mical properties with the techniques employed. In
each case, long-term EEG closed-circuit monitor-
ing or ambulatory EEG cassette recordings con-
firmed that the patient was able to accurately re-
port his or her seizure. The total number of re-
corded seizures is between 650 and 1200 per patient
(see Table 1).

2.2. Generation of data sets

For each original series s(n) of the occurrences
of the epileptic seizures we create two new data
series per patient. The first time series, denoted
by x(n), consists of the length of the interseizure
intervals as a function of time. The second time
series, denoted by y(r) (rate of seizures over
time), consists of the number of seizures that oc-
cur within a specific time interval (usually 1 day to
1 week) as a function of time. To determine the
significance of the time dependence measures ob-
tained from the patient data sets, each data set is
shuffled to eliminate possible dependencies. Va-
lues of the proposed indices of dependence (J°s)
estimated from the original time series are then
compared to the ones from the randomized series
and their significance is thereby determined”.

To allow comparison with previous works,
Poisson distributed data sets §(n) are also gener-
ated so as to have the same mean value as each
patient’s original data set s(n). The correspond-
ing data sets to x(n) and y(n), denoted by X(n)
and y(n), are then generated. The statistical signif-
icance of the estimated dependence indices (&'s)
from the X(n) and y(n) data sets is determined
through the shuffling process as described above.

Table 1

Statistical characteristics for all patients’ x(n), interseizure
intervals, and y(n), seizure rate per T days, where (x, y) are
mean values, (0., 0,) are standard deviations and (V,, N,) are
total number of events

Patient I 11 1 v v
Gender M F F F F
N. 921 776 668 1147 1007

x (days) 0.61 2.93 1.96 3.90 0.92
o, (days) 1.04 3.75 5.52 7.75 1.24
N, 564 567 657 696 924

T (days) 1 4 2 7 1

¥ (# seizures/day) 1.63 1.37 1.90 1.81 1.10
g, (# seizures/day) 2.10 1.80 5.1 2.52 1.28

Finally, uniform white noise N(n) is also added
to each data point s(n) to compensate for possible
inaccuracies on the recorded times of the seizures
by the patients. We repeat the search for time de-
pendencies in the thus resulted noisy data sets
xn(n) and yy(n).

2.3. Review of the proposed method of analysis

Here we give a brief review of the proposed
method of analysis for the time series of seizures
(further details can be found in Savit and Green
[28]). The initial step is to embed the one dimen-
sional data in a higher dimensional space. To this
end, one defines a p-dimensional vector X,, whose
elements are taken from the original time series
with a time lag 7 (method of delays [32,34]). That
1s, given a time series x(n ), where n=1,...,.N and N
is the total number of data points available, vec-
tors X,(i) are constructed in a p-dimensional
phase space by:

X,(i)={x(i—(k—1)xt):;k=1,..p} (1)

with 7 being the time lag used for the embedding
and i=p x 1,...,N. Now consider two of these vec-
tors X,(i) and X,(j) constructed from the time
series. The probability P that the two vectors

* Logically, comparisons with shuffled data sets amounts to a test against the null hypothesis that the sequence of numbers being tested
is random in the sense of IID (independent and identically distributed). The shuffling procedure which produces the null set is an

application of the statistical technique of bootstrapping [9).
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have all their cartesian components within a dis-
tance ¢ of each other respectively can be approxi-
mated by [12,13]

v

Cyle)= m Z Z 9(::~HXp(i)—Xp(j)“)(2)

Tooprt

where @ equals 1 for positive and 0 for negative
arguments and || H represents the max norm, that
is the maximum of the distances between the com-
ponents of any two vectors X,(i) and X, (). Cy(e)
is called the correlation integral.

If x(n) is an 1ID (independent and identically
distributed) random process then C,(e)=C\’(¢)
[28]. A test against the null hypothesis of IID can
be constructed by defining

Co(e)—Cile)_, @)
Cale) C(e)

so that d,(¢) = O for I1ID. The extent to which
0,#0 is an indication of some structural depen-
dence on the first lag in the time series.

Similarly, we can define, for k=2....,p—1

0,(8)= (3)

Cr (&) x Gy +4(8)

op=1— S
* Ci ()

4)

The extent to which J,#0 is a measure of exis-
tence of dependence in the time series on the kth
lag, given that we have used the information of the
previous (k—1) lags. If there is no additional de-
pendence on the kth lag, aside from that induced
by the Ist, 2nd,...,(k—1)th lags, then d,=0. In
particular, for an infinitely long IID series, ¢, =0
for all £’s.

Values of d,(¢)’s are calculated after choosing a
tolerance ¢. Typically ¢ is chosen as some moder-
ate fraction of the standard deviation of the data
set [14,28]. Non-zero values, that are also statisti-
cally significant (see the ‘statistical significance’
section), indicate which time lags contain determi-
nistic information at a given value of ¢. in the
sense described above.

Like all statistical methods, the calculation of
the J.(e) is subject to a number of empirical ca-
veats. The simplest interpretation of the J.(¢)’s
follows from application to a stationary time ser-
ies. In addition, as k increases, so do the data re-
quirements. For example, with a time series of

about 500 points and an ¢ of 1/2 the standard
deviation of the values of the data set. d.'s for
k=S are generally not statistically significant.
The power of the method lies in the fact that non-
linear effects in the time series that are missed by
standard statistical techniques are often uncov-
ered, and that the method uses the data in a very
efficient way (more details can be found in Savit
and Green [28] and Wu et al. [35]).

2.4. Linear autoregressive modeling

The AR model is a popular model for modeling
linear systems. A p-th order linear autoregressive
(AR) model is given by the equation

s(n) :ﬁa,xs(n—i) (5)

[

The estimation of the prediction coefficients ¢;’s is
based on the minimization of the prediction error.
The coefficients «; reflect not only the explicit de-
pendencies in the series but the implicit ones too.
As a result, the estimated values of the 4;'s depend
on the order of the AR model used. The reflection
coefficients k,'s, quantities that relate to the a/s,
do not depend on the order of the AR model [27].
If there exists a low order linear dependence in the
data, it will affect only the corresponding low or-
der k; reflection coefficient. Therefore, the reflec-
tion coefficients k;'s were estimated in this study.
Burg’s algorithm is used for the estimation of the
a’s and ks [5,20,22]. The limitations of the AR
modeling of nonlinear systems are demonstrated
by a simulation example (see the ‘Results’ section).

2.5. Statistical hypothesis testing

The null hypothesis 1s that the time series under
investigation is [ID. If the null hypothesis is true,
then the estimated indices of dependence d;'s for
the original data should take values very close to
zero. But for any finite data set the d,’s will not be
exactly zero. To assess their significance we use the
method of bootstrapping, and repeatedly shuffle
the original time series to produce a set of new
time series all of which have the same overall
probability distribution of values as the original
time series, but which are 11D [8,9]. The value of
Oy for the original time series is compared with the
distribution of values of §; for the set of rando-
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mized series. If the original J; is significantly lar-
ger than the mean & for the randomized set, then
we say that this J, is statistically significant. Typi-
cally, the ‘'set of &;’s from shuffled series form a
bell-like distribution of values. Along the lines of
the r-test [33], we define as a measure of the statis-
tical significance of the original J;, the absolute
difference of &, from the mean value 8, normal-
ized by the standard deviation ¢ of the d,’s of the
shuffled series. Then, the statistical significance
level (SS) of a §; is given by

SS= erf('éka_—gk' / J2) (6)

where erf is the error function, well tabulated in
statistics literature. As a result, the null hypoth-
esis will be rejected at the L% confidence level,
and &, will be considered statistically significant
at the L% level, if SS is greater than L (we will
use a L=95 confidence level, unless otherwise
noted). If the value of the original , differs from
8, by more than 2.5 times the standard deviation
of the distribution of the values of §; from the
shuffled series, we may be confident at the 95%
level that this J; is significant. This statistical
treatment is adequate for our semi-quantitative
purposes here. However, because the 6;’s of 1ID
data do not necessarily have a precisely normal
distribution, the estimates of statistical signifi-
cance used may not be precise (see Wu et al. [35]
for details).

3. Results

3.1. A simulation example: the logistic map

For pedagogical purposes, we review here the
application of the method to the logistic map, a
simple chaotic map. We shall see that our method
correctly indicates structure in this system even
when linear methods fail. The equation of the lo-
gistic map

sn)y=axs(n—1)x[l—s(n—1)] @)

is used with a=4, so that the system is in the
chaotic regime [7,10,19], s(/)=0.1 and n=2,...,N,
where N=1000. It is obvious that, even in the
chaotic regime, a one-step time dependence exists

1.00

0.50

s{n)

0 500

n (# of iterations)
Fig. 1. Logistic map data s(n) from the chaotic regime (a=4,
s(1)=0.1, N=1000, 6,=0.35, s=0.51). The temporal pattern
appears to be random even though it is generated by a purely
deterministic model.

in s(n), created by the one-step explicit time de-
pendence in the system that produces s(n) (see
Eq. 7). The raw data s(n) are given in Fig. 1 for
1000 iterations of the map. It is clear from this
figure that there is no obvious temporal structure
in the series s(n).

The (¢)’s for s(n) are estimated using t=1 (to
capture the highest frequency present in the data)
and o, for k=1,2,3 are shown in Fig. 2(a). From
Fig. 2(a) one can see that the absolute value of §,
is about an order of magnitude larger than either
d, or 83, over the whole range of ¢ This result
strongly suggests that a one-step time dependence
exists in the data (but see Savit and Green [28] for
a technical caveat). To check for statistical signifi-
cance, 100 shuffled data sets were produced from
the original data set s(n) (for the production of
the first shuffled data set, the original data were
shuffled 15 times. Subsequent (15 times) reshuf-
fling of each generated shuffled data is used to
produce a total of 100 shuffled data sets in addi-
tion to the original data set). The d(¢)’s of the
shuffled data sets are estimated using the same t.
The J,(¢) of both the original and the shuffled data
sets is plotted in Fig. 2(b). From Fig. 2(b), it is
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Fig. 2. (a) 3, 82, 3 versus ¢ for the logistic data s(nj. As ex-
pected, &, is large whereas &, d3 are near 0. (b) d, versus ¢ for
the logistic data s(n) (solid line) and for the shuffled versions of
s(n) (100 scattered points at each value of ¢). The statistical
significance of ; is thus established.

clear that &, is statistically significant, since for
small values of &, &, of the unshuffled data is
more than 5 standard deviations from the mean
&, of the shuffled data sets. For large ¢, the toler-
ance with which the data are being examined is

sufficiently crude that none of the structure with-
in the sequence is discernible, and so, at this level,
the logistic data look random. Thus, for large ¢, o,
is not statistically significant. Finally we remark
that if uniform white noise is added to the output
of the logistic map data (up to 10 dB signal to
noise ratio, that is, addition of noise having stan-
dard deviation equal to half of the standard devia-
tion of the original data), J, is still much larger
than the rest of the 6’s and is also statistically sig-
nificant [28]. This suggests that the proposed in-
dices of dependencies are quite robust, at least for
systems as complex as the chaotic logistic map.
To compare the efficacy of this method with
linear methods we attempt to fit the logistic map
time series with a 3rd order linear autoregressive
model after subtraction of the mean value of the
data from the data series. The shuffled data sets of
s(n) are also fitted with a 3rd order AR model.
The values of k; to ki, from the original logistic
data and shuffled versions of the data were esti-
mated and k; and &, were not found to be statisti-
cally significant (k;=+0.02; S$S=42.93 and
kr= +0.01; S§=15.12). Moreover, k3 is margin-
ally statistically significant at confidence level
82.25% (k3= —0.05; SS=82.25) and thus consti-
tutes a spurious dependence, which is created by
the AR modeling and does not exist in the origi-
nal data. This is in disagreement with the explicit
one-step dependence of the logistic equation. The
prediction error, illustrated in Fig. 3, shows that
almost no improvement in our predictability can
be achieved by fitting the data with a 3rd order
AR model, and the prediction error of the model
almost equals the standard deviation of the data.
Moreover, any higher order AR will also fail to
capture the one-step dependence, because, as ex-
plained above, the lower order k’s maintain their
values as we increase the order of the model and
thus they remain insignificant. Therefore, it is
clear that the statistical methods described in the
Methods section can reveal nonlinear structures to
which ordinary linear methods are insensitive.

3.2. Interseizure intervals
The interseizure interval data x(n) are gener-
ated from the original data s(»n) by:
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Fig. 3. Prediction error from the 3rd order AR fit to the logistic
map (solid line) and to the shuffled versions of it (scattered
points). The prediction error is statistically insignificant.

x(n)=s(n)—s(n—1) (8)

In Fig. 4(a) and 4(b), the interseizure intervals
x(n) from patient I, and the interarrival intervals
of a Poisson process created with the same mean
value as X(n), are shown.

Since previous authors have discussed the pos-
sibility that seizure occurrences are Poisson dis-
tributed, we compare quantitatively the deviation
of the data from the corresponding homogeneous
Poisson process in terms of the estimated §’s for
both processes. In Table 2, we list the values of J,
and their statistical significance (SS) vs. ¢ for pa-
tient I, with =1, for both of the above data sets
x(n) and x(n). We first cite the values of éd,, next
their statistical significance.

The §’s are calculated according to Eq. 4, for
different values of the tolerance ¢ (¢ from ¢/5 to
2x 0, where ¢ is the standard deviation of the
data under consideration). It is clear that the va-
lues of §, for the interseizure intervals in this pa-
tient are considerably larger than the ones for the
Poisson interarrival intervals, over almost the en-
tire ¢ domain, which implies an overall dependence
of each interseizure interval on the 2nd previous

9 . (a)
8 | .
® 7
[
2 > 6
£3 5
f £ 4
5¢
N 3
8 2
[]
= 1
0
0 500 1000
Number of interseizure
interval (n)
@ 3.50 (b)
[
; 3.00
-
£ , 250
3
E ° 2.00
c £
& — 1.50
- O
€% 400
c .
2 050
& 0.00

0 500 1000

Number of interarrival
interval (n)

Fig. 4. For patient I: (a) Interseizure intervals x(n) (N=921,
x=0.61 days, o=1.04 days). (b) Interarrival intervals from a
homogeneous Poisson process x(n) (N=921, x=0.61 days,
¢ =0.62 days). Visual inspection of the above graphs reveals
no discernible temporal pattern in either data set.

one in this patient. Larger dependencies, as indi-
cated by larger values of the &’s for x(n) than for
X(n) are found for every data set for all five pa-
tients. The d’s estimated from Poisson distribu-
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Table 2

Value of 9, and its statistical significance SS as a function of ¢/o
for the interseizure intervals x(n) of patient 1 and the
corresponding Poisson interarrival intervals xX(n)

Normalized xfn) (3. SS) X(n) (65 SS)
tolerance ¢/a

0.2 (0.10; 99.99) (—0.01; 15.05)
0.4 (0.06; 99.85) ( 0.00; 52.23)
0.6 (0.05; 99.95) ( 0.00; 12.25)
0.8 (0.03: 92.85) ( 0.00; 5.00)
1.0 (0.02; 93.50) ( 0.00; 10.30)
1.2 (0.01; 96.60) ( 0.00; 31.15)
1.4 (0.01; 98.91) ( 0.00; 4.00)
1.6 (0.01; 98.95) ( 0.00; 3.00)
1.8 (0.01; 99.60) ( 0.00; 42.84)
2.0 (0.01; 98.93) ( 0.00; 51.41)
2.2 (0.01; 95.23) (0.00; 22.27)

tions should statistically be equal to zero (since the
interarrival intervals in a Poisson process are 11D
[11,25.30]). And, as we see in Table 2, all values of
&’s from the Poisson data set are found to be zero
to two significant figures.

In order to establish the statistical significance
of the observed dependence against an HD hy-
pothesis, new data sets are created from the origi-
nal x(n) by shuffling. The 4, for both the raw and
shuffled data sets from patient I, for =1, is
plotted as a function of ¢ in Fig. 5(a). The J, with
7= 1, for both the raw and shuffled data sets of the
homogeneous Poisson data xX(n) for patient I, is
plotted as a function of ¢ in Fig. 5(b). The statisti-
cal significance of J, of the x(n) and X(n) data
from patient I is given for successive values of ¢
in Table 2. From this Table, it is clear that d,(¢)
of the original data set is statistically significant
over a large region of ¢. The insignificance of the
J> of the corresponding Poisson data over the
whole range of ¢ is also seen.

Given the existence of these dependencies, it is
natural to ask whether a simple linear AR process
can describe the above series of interseizure inter-
vals. To this end, we employ a 3rd order linear AR
model and proceed as in the logistic map example.
For patient 1, the fitting of the AR to the x(r) and
their shuffled versions, results in (k;= —0.09;
§$5=99.53), (k,=-0.06; S$§5=9523) and
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Fig. 5. (a) 0> (r = 1) as a function of ¢/¢ for the interseizure
intervals x/n) for patient I (solid line) and the shuffled versions
of x(n) (scattered points). (b) As in (a) but for the correspond-
ing homogeneous Poisson intervals X/n) and its shuffled ver-
sions. The &, is statistically significant for the interseizure
intervals but not at all for the Poisson interevent intervals.
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Table 3
The most statistically significant pairs (J, 1), at ¢ = ¢/2 and
confidence level 99%. for the interseizure interval data for all
patients

Patient I Patient I1 Patient [I1  Patient IV Patient V
(@2, = 1) Wnt=1 (@,t=1 (d.1=35) (51 =25
(B, 1 =3) (6,1=15 (51 =23)

@Grnt=4 (@G1=2
@, 1 =95

(k3= —0.05; SS=87.50). We notice that only the
first reflection coefficient of the AR is statistically
significant at the 99% confidence level. The sec-
ond coefficient k; is statistically significant at the
95% confidence level. This is to be compared with
the insignificance of ; for this patient (see Table
3) and the strong significance of 8, for a large
range of ¢ as it was described above. These diver-
gent results call into question the ability of the AR
model to fit these data. Application of the AR
model to x(r) data of the other patients gives
similar results.

The failure of the AR to fit the data may be
attributed to the existence of possible nonlinear
relations between the various data samples. This
interpretation is supported by the results of the
AR analysis in the logistic map, where even a 3rd
order AR could not detect the presence of a Ist
order (one-step) nonlinear dependence. One could
argue that the order of the AR model may be too
small to capture any structures in the data. How-
ever, since there are statistically significant low
order dependencies in our data that can be de-
tected through the &’s, a very high order AR is
likely to only introduce spurious higher order de-
pendencies. :

Another drawback in the use of an AR occurs
when missing data (i.e., no recording of the time
of a seizure) exist in the middle of a record. This
affects considerably the estimation process be-
cause of errors that are produced during the se-
quential estimation of the covariance matrices.
However, a small number of missing data does
not seem to present a serious problem in the esti-
mation of §’s because of the global nonsequential
nature of the statistics. For example, one can com-
pensate for the missing part of the data set by

omitting any vector that contain missing data va-
lues in its components in the reconstruction of the
phase space.

An attempt to investigate the persistence of the
detected dependencies (i.e., in the case of inaccu-
rate recording of the time of seizures) is made by
the addition of white uniform noise N(n) to x(n)
and subsequent estimation of the §’s. When the
standard deviation of the noise exceeds about 1/3
of the standard deviation, g, of the data x(n), the
dependencies in the data begin to be obscured (see
Fig. 6). Longer data sets are necessary to reveal
dependencies in a complex system with a signal to
noise ratio much less than 1 (see Savit and Green
[28] for more details).

Thus, the seizures of this patient do not seem to
occur independently or according to a homoge-
neous Poisson process. Similar strong low order
dependencies were observed in the interseizure in-
terval data sets in four out of the five patients we
analyzed (for example, see Fig. 7 for d; of patient
III). For e=¢/2, and for 1 <k<5and 1<7t<5, we
have listed in Table 3, the pairs (d;, t) which show
statistical significance at the 99% confidence level
for all patients. Patient V exhibited only a margin-
al 6, at =1, at small values of ¢, but did show
strong long-term dependencies for 7 =25.

3.3. Rate of seizures data

The rate of seizures, y(n), is constructed from
each original data set s(n) and consists of the
number of seizures that occurred within a specific
period T (i.e., period of 1 day up to 1 week). T'is
selected such that the resulting data set, y(n), pro-
duces enough vectors for a reasonable higher di-
mensional analysis and relatively small quantiza-
tion error in the estimation of &’s (very small 7'
produces low seizure rates over time and one
would need a very small ¢ to discern any structure
in the data; very large T smooths the seizure rate
and obscures any structure in the data). A low
multiple of the mean of the seizure rate constitu-
tes a reasonable choice for 7. The statistically sig-
nificant pairs (, 7) for all patients’ rate of seizures
are given in Table 4.

The rate of seizure over time data for patient I
is given in Fig. 8(a) for 7=1 day. In Fig. 8(b), the
interarrival intervals X(n) of a Poisson process
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created with the same mean value as y(n) are
shown. Only ¢, is found to be statistically signifi-
cant for this patient, which means that the number
of seizures of patient I that occur in one day de-
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Fig. 6. §, (t=1) as a function of ¢/o, for the interseizure inter-
vals x(n) of patient 1 (solid line) and the shuffled versions of
x(n) (scattered points), when uniform white noise is added to
the times of seizure occurrences s/n) with standard deviation
(a) oy=0.3xa, (b) oy=1.0x06. The J, is statistically signifi-
cant with addition of noise up to ay=03xo=+8 h.
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Fig. 7. 6, (1=1) as a function of ¢/a, with ¢ =15.52 days, for the
interseizure intervals x(n) of patient III (solid line) and the
shuffled versions of x(n) (scattered points). This dependence
is more statistically significant than the one in patient I (see
Fig. S5).
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pends on the number of seizures that occurs dur-
ing the previous day. The estimated 0,(g) of y(n)
from patient I (7= 1 day) is given in Fig. 9(a) and
the corresponding d;(¢) for Poisson data in Fig.
9(b) (the identical value of 4, for sequential va-
lues of ¢ in these graphs is a simple discrete bin-
ning effect). Since the mean number of seizures per
day for this patient is 7= 1.63, this result suggests
the existence of a relationship over approximately
3 (~2x7) successive seizures. It is noteworthy
that (d>, T=1) was found to be the most signifi-
cant pair from the analysis of the interseizure in-
tervals x(n) for this patient (see Fig. 5, Table 3),
which implied a dependence of one interseizure
interval on the previous second interval, that is

Table 4

The most statistically significant pairs (d, 1), at ¢ = ¢/2 and
confidence level 99%, for the rate of seizures data (number of
seizures per T days) of Table 1 for all patients

Patient | Patient I1 Patient 111 Patient IV Patient V

0.t = 1 (&, =1) Bt =1y Byt =1) (Yat=1

(0.t = 1) (BT = 1) (ST = I} marginal}
(s, 7 = 1)
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consistent with an interrelation over three succes-
sive seizures. As expected, no statistically signifi-
cant J; is found by the analysis of y(n) of the
corresponding homogeneous Poisson process.

For patient 11, strong dependencies are found
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Fig. 8. For patient I: (a) Number of seizures per day over time
(v(n}) (N=559, ¢,=2.10, y = 1.63). (b) Number of seizures per
day over time for the corresponding Poisson process y(n)
(N=3559, ¢,=1.32, y=1.64). Visual inspection of the above
graphs reveals no discernible temporal pattern in either data
set.
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Fig. 9. (a) 3, for the rate of seizures data y(n) (T=1 day) as a
function of ¢/o for patient I (solid line) and the shuffled ver-
sions of y(n) (scattered points). (b} As in {a) but for the corre-
sponding homogeneous Poisson rate data. The &, is clearly
statistically significant.

in the y(n) data for one lag with T=1 day, for
three lags with T=2 days, and for one and two
lags with T=4 days. These results are also in qua-
litative agreement with the large scale dependen-
cies found among the interseizure intervals for
this patient (see Table 3).

For the y(n) data from patient II1, the most
significant pair is found to be the (§;, t=1) using
T=2 days (see Fig. 10). Noting that in this patient
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Fig. 10. 4, as a function of &/g, with ¢ =15.11 days, for the rate
of seizures data y(n) per 2 days for patient 111 (solid line) and
the shuffled versions of y(n) (scattered points). The 4§, is
clearly statistically significant.

¥=1.00 seizure per 2 days, and following the same
logic as in the previous cases, we see that the de-
tected dependence in the rate of seizures data y(n)
is also consistent with the (6;, 7=1) dependence
implied by the analysis of the interseizure inter-
vals x(n) of this patient as shown in Table 3.

For patient 1V, even longer seizure rate depen-
dencies are observed in y(n); with T=1 week, (9,
t=1) and (d3, T=1) are the most statistically sig-
nificant pairs. Since this patient had a mean of
1.57 seizures per week, (43, T= 1) suggests an inter-
dependence over five seizures, which again is in
qualitative agreement with the significant pairs
(8, T=15) and (95, T=23) from the interseizure data.

For patient V, the values of §’s are all small and
not strongly statistically significant except for
marginal dependence for (d,, t=1). The existing
evidence for this patient’s seizures is that they ori-
ginate from a cortical lesion caused by trauma.
The epileptogenic focus is not in the temporal
lobe, as in the rest of the patients, but in the occi-
pital lobe. Hence, anatomical differences may
have had an important impact upon the low level
of detected dependencies.

4. Discussion

This study indicates that partial complex sei-
zures are not Poisson or independent and identi-
cally distributed (IID) in time. The Poisson as-
sumption was not valid in any of our patient data
sets. The presence of time dependencies in our
data indicates that the occurrence of seizures can-
not be explained solely on the basis of an 1ID ran-
dom process. The seizure occurrences exhibited
strong nonrandom structures in each of the five
patients we examined. In patients with seizures of
mesial temporal lobe origin (four out of five pa-
tients) the patterns of time dependencies were qua-
litatively similar. In the fifth patient, with seizures
of occipital lobe origin, the nonrandom structure
was qualitatively different than in the other four
patients.

Time dependencies were detected in the seizure
interval analysis as well as in the analysis of sei-
zure rate. The exact pattern of time dependencies
was unique to each patient. For each case, time
dependencies in the seizure rate data were seen
more clearly, that is, with a higher level of statisti-
cal significance than in the seizure interval data
(e.g., compare Fig. 5(a) with Fig. 9(a)). A possible
explanation of this observation is that it is the
seizure rate that is slowly modulated over time.
Such slow modulation could result from intrinsic
or extrinsic factors such as changing concentra-
tions of anticonvulsant drugs or hormonal varia-
tions. Modulation of the neuronal generator with-
in a homeostatic environment is also a possibility.
The effects of some of these factors on seizure
recurrences have been reported in the literature
[1-3].

A Poisson process as an explanation for the
seizure occurrences was rejected by our study as
well as by that of Balish and co-workers [1]. How-
ever, it cannot be assumed that the time dependen-
cies found in our patients would be detected by the
quasi-likelihood model they employed. The Savit-
Green method we applied is sensitive to both line-
ar and nonlinear time dependencies and is a model
free procedure. Most of the detected time depen-
dencies are statistically significant even with an
uncertainty in the recording of a seizure equal to
one third of the standard deviation between sei-
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Zures.

The results of our study as well as those of
Balish and co-workers [1] appear to contradict
the findings of Milton and co-workers [23]. Mil-
ton et al., using traditional statistical methods,
found no evidence for nonrandom seizure occur-
rences in most of their patients. The occurrences
were consistent with a homogeneous Poisson pro-
cess in approximately 50% of their patients. There
are several possible explanations for the discrepan-
cies among the studies. For example, Milton’s
group included patients with both generalized
and partial seizures. The study by Balish et al.,
like the present study, included only patients with
partial seizures. Since the underlying mechanism
and pathophysiology differ for generalized and
partial epilepsy, it is reasonable to postulate that
these different mechanisms generate seizures with
different temporal patterns. This idea is supported
by the observation in our study that the seizures in
patient V demonstrated much weaker short-term
structure than the rest of our patients. The sei-
zures in this patient originated from the occipital
lobe, whereas in the rest of the patients from the
temporal lobe.

A second factor that may have contributed to
the differences among the studies is that Milton’s
group analyzed 5-76 seizures, Balish’s group 30—
576 seizures and our group 668-1147 seizures per
patient. Analysis of short data segments weakens
the statistical significance of deviations from a
random distribution, especially when undersam-
pling, nonstationarities or long-term dependencies
exist in the data. Finally, each of these studies
employed different statistical methods. In Mil-
ton’s study classical statistical methods were em-
ployed. These methods assume a constant mean
seizure rate over the time period of observation.
However, the period of observation per patient
was too short to support such an assumption.
They also pointed out that their results could not
exclude the possibility of a nonlinear deterministic
process generating similar patterns to the ones
they found in their patients. On the other hand,
the statistical methods in the Balish’s study in-
volved fitting the data with a predetermined deter-
ministic semi-linear model. Their approach might
miss any dependence that differs from the ones

that are included in its structure. The statistical
methods employed in this study are sensitive to
both linear and nonlinear dependencies in a data
series. The method does require a relatively large
amount of data to reveal accurately the underlying
dependencies. For a simple interpretation, it also
assumes stationarity of the data within the ana-
lyzed segment. This stationarity assumption is
shared by almost every nonparametric statistical
approach in time series analysis.

This study has implications for the selection of
mathematical models for the study of seizure oc-
currences in epileptic patients. Clearly, the use of
linear models has limited application and could
result in erroneous conclusions. The AR model is
a popular model for analyzing linear systems. The
limitations of the AR model were demonstrated in
this study. For example, it was not possible
through AR modeling to detect known time de-
pendencies in the data segments generated by the
nonlinear logistic equation. Given the limitations
of our understanding of the mechanisms underly-
ing the generation and timing of seizures, specific
model fitting in occurrences of seizures may be
premature. Although it is not necessary to em-
ploy any model in order to further understand
the dynamical processes underlying complex non-
linear processes [21,24,29], using the dependencies
revealed by our analysis one could define the time
lags that should be included in a prospective non-
linear model.

By having analyzed the interseizure intervals
and extracted hidden dependencies among the in-
tervals, one may be able to predict the occurrence
of the next seizure within a tolerance, ¢. Given the
conditional probabilistic nature of the statistics of
the method we propose for the analysis of the sei-
zure series data, it should be possible to develop a
predictive algorithm of upcoming seizures given
sufficient knowledge of the previous seizures. The
ability to predict seizures has important therapeu-
tic implications. For example, it may be possible
to modify pharmacotherapy to provide more pro-
tection during time intervals when seizures are
more likely to occur.

The prospect that seizures occur in a probabil-
istically deterministic nonlinear fashion also has
implications for the design of clinical trials of anti-
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epileptic drugs. Currently, statistical analysis of
clinical trial data assumes that seizures occur ran-
domly in any given time interval. The results of
this study indicate that this assumption is false.
Thus, alternative statistical methods to evaluate
drug efficacy should be considered. We believe
that the information provided by the J profiles
will eventually be useful in the construction of
pertinent schemas for the evaluation of drugs dur-
ing experimental treatments of epileptic patients,
as well as a better characterization and under-
standing of the mechanism of generation and tim-
ing of epileptic seizures.
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