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Abstract-h this paper we derive optimal state feedback laws for end-point optimization of a dynamic 
system where the final time is free and the system has a scalar inequality constraint. The existence of 
a singular region as well as the nuture of the state feedback law (static or dynamic) is completely 
characterized in terms of the system dynamics. Explicit synthesis formulae for the state feedback laws are 
presented. Once the state feedback laws for end-point optimization have been derived, issues on how these 
laws can be implemented as part of a closed-loop scheme are discussed. As illustrative examples of 
application of the proposed methodology, several end-point optimization problems in batch chemical 
reactors are considered. 

INTRODUCTION 

Batch and semi-batch processes are of great import- 
ance to the chemical industry. A wide variety of speci- 
ality chemicals such as antibiotics and polymers are 
produced in batch reactors. Since batch reactors pro- 
duce low-volume, high value products, optimal opera- 
tion is very important. In a previous paper (Palanki et 
al., 1!293), we had synthesized optimal feedback laws 
for end-point optimization of batch processes with 
fixed final time. In this paper we will study the general 
problem of synthesizing optimal state feedback laws 
which guarantee optimality when the system has 
a state inequality constraint and the final time of the 
batch is left free. 

State inequality constraints are usually physical 
constraints to the system. For example, in a semi- 
batch reactor one can feed only a finite amount of 
substrate due to a volume constraint on the reactor. 
Similarly, one may not want to operate a reactor 
beyond a certain maximum temperature for safety 
reasons. In a fed-batch bioreactor there could be 
constraints on the cell mass concentration (beyond 
which oxygen transfer is limited) or the substrate 
concentration (beyond which undesirable side reac- 
tions occur). Due to batch-to-batch variation in yield, 
the final time may not be fixed a priori. The reactor 
operation is stopped when the optimum yield is 
achieved. Thus, it is important to consider yield op- 
timization problems with state inequality constraints 
and free terminal time. The purpose of this paper is to 
develop state feedback laws for such optimization 
problems. 

+Present address: Department of Chemical Engineering, 
Florida A & M University/Florida State University, College 
of Engineering, Tallahassee, FL 32316, U.S.A. Author to 
whom correspondence should be addressed. 

FORMULATION OF THE END-POINT OPTlMIZATION 

PROBLEM: THE CLASSICAL OPTIMAL CONTROL 
PERSPECTIVE 

The end-point optimization problem can be math 
ematically formulated as follows: 

Minimize the performance index, 

J = W(tl), C/) (1 

subject to the dynamics 

i =.f(x) + 57(X)% 0 d t B tl Gin < u G u,.. 

and the scalar state inequality constraint: 

C(x) < 0. (3) 

In this formulation II is the scalar manipulated input 

bounded by umin and u,,., x is the n-vector of states, 

t/ is the free final time, f(x) and g(x) are smooth 
vector functions and I#+) is a smooth scalar function 
such that 

g(x) # coo.. .O] 

a4 dx#[OO...O] 

for all x. 

The part of the optimal solution where the state 
constraint is hit (C(x) = 0) is called the constrained arc 
or the boundary arc. The part of the solution where 
C(x) < 0 is called the unconstrained arc or the interior 
arc. 

Necessary conditions for optimality on an uncon- 
strained arc 

By Pontryagin’s Principle, the minimization prob- 
lem (1) is equivalent to minimizing the Hamiltonian: 

H(x, 1, u) = nTf(x) + ITg(x)u (5) 
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where 1 is the solution of 

a= = af - n=-(x) - a Tg a 
ax -(x)11 ax 

(6) 
a&, t/1 

W,) = -gy . 
1=*, 

The coefficient of u in eq. (S), ATg(x), is called the 
switching function. When the switching function is 
negative, u = u,, and when the switching function is 
positive, u = u,,,~,,_ The region where the switching 
function vanishes is called the singular region. In the 
singular region, 

A’s(x) = 0. (7) 

Therefore its successive time derivatives are also zero. 
Thus, we have: 

$(~=gw) = 0 

-$(a’g(x)) = 0. 

This sequence of differentiations is performed until 
u appears explicitly. The resulting expression can then 
be solved for u in terms of x and 1. Furthermore, since 
the final time is free (Bryson and Ho, 1975) 

a4 ( > at+H = 0. 
1=*, 

When the objective function 4 is not an explicit func- 
tion of the final time tf, we obtain 

(H),=,, = 0. (10) 

Furthermore, since the functions f and g are not 
explicit functions of time, the Hamiltonian N is con- 
stant on the optimal trajectory (Bryson and Ho, 
1975). Thus, 

H = (H),=, = 0. (11) 

Since, ATg(x) = 0 in the singular region, we have, from 
equation (1 l), 

ATf(x) = 0 (12) 

in the singular region. This can be used as an extra 
first-order necessary condition for optimality when 
the objective function 4 is not an explicit function of 
the final time tl. 

Necessary conditions for optimality on a constrained 
arc 

On the constrained arc 

C(x) = 0. 

The Hamiltonian H is defined as 

H = A=f(x) + A’g(x)u + &)C(X) 

where 

/J(t) 2 0 

(13) 

(14) 

(15) 

and the adjoint states are defined as (Bryson et al., 
1963) 

dA= V(x) _=_-_C-_- 
dt ax 

AT as(x) ax” - p(t) 
[ 1 F . (16) 

On the constraint boundary, p(t) is so chosen that 

aH 
- = fzTg(x) = 0. 
au (17) 

Thus, the boundary arc is a singular arc in the sense of 
the minimum principle (Maurer, 1977). 

Solution of optimization problem 
There are 2n + 2 equations [n state equations, n ad- 

joint equations, eq. (9), and eq. (17)] and 2n + 2 vari- 
ables [n state variables, n adjoint variables, the final 
time t, and the parameter p(t)]. However, the bound- 
ary conditions for the state and adjoint equations are 
split, i.e. the initial conditions of the state equations 
and the terminal conditions of the adjoint equations 
are known. Thus, we have a two point boundary value 
problem which can be computationally quite ex- 
pensive to solve. Furthermore, in this formulation, the 
numerical problem has to he solved separately every 
time there is a change in initial conditions or model 
parameters. The optimal solution has to be imple- 
mented in an open-loop fashion and so uncertainties 
and disturbances to the process are not attenuated. 
These problems can be alleviated if the optimal solu- 
tion is derived as a state feedback law. 

END-POINT OPTIMIZATION OF FREE TIME PROBLEMSt 

A GEOMETRIC PERSPE(-TIVE 

The previous sub-section gave an overview of the 
classical optimal control formulation. In the present 
subsection it will be seen that geometric tools can be 
used to obtain a more concrete and transparent rep- 
resentation of the necessary conditions for optimality. 
These results will be used to develop a general frame- 
work for end-point optimal state feedback synthesis. 

Throughout this section, we will make the stand- 
ing assumption that g(x), &g(x), . . . , ad;-- ’ g(x) are 
linearly independent almost everywhere in x, where 
adLJg(x) is the system Lie bracket of order k. This 
assumption guarantees local controllability of the sys- 
tem almost everywhere (Hunt, 1982) and is equivalent 
to 

det [g(x) i ad$g(x) i _ . i ad?- ‘g(x)] f 0. (18) 

Optimal state feedback laws on unconstrained arcs 

Definition 1 (Krener, 1977; Palanki et al., 1993): The 
system governed by eq. (2) has afinite degree of singu- 
larity s if 

Cs, ad;sl(~)~span(dx), ad)&), . . _, 4&J) 
for all v G s - 1 (19) 

Cs, adb/sl (x) 4 van {g(x), &Hx), . . . , ari;s(x)j. 

(20) 
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The system governed by equation (2) has M infinite ries corresponding to a singular extremal evolve on the 
degree of singularity (s = 0~) if surface given by 

Cg. 4sl(x)Espan{g(x), &g(x), . . . , ad;&)) S(x) = 
for all Y 3 0. (21) det [j(x) ig(x) judjg(x) i . . _ iad;-*g(x)] = 0. 

Since g(x), ud;g(x), . . . , adi- ‘g(x) are assumed to 
be linearly independent, it follows from the definition (25) 

that lgs<(n-2)ors=cc. 
The following proposition is a rather straightfor- (ii) Zj f(x) is linearly dependent on g(x), 

ward consequence of known results (see Gabasov and ad:g(x),. . ., ad?-* g(x) or the perJormance index de- 

Kirillova, 1972). pends explicitly on the freeJina1 time, then the optimal 
static statefeedback is given by 

det [g(x) jadjg(x) i . . . iad-‘g(x)] 

u = - det [g(x) j&g(x) I.. . [ad”,-‘g(x) i[g, ad?-*g](x)]’ (26) 

Proposition 1: Consider a system governed by eq. (2) 
with finite degree of singularity s. Then s is odd and the 
first-order necessary conditions for optimality for a sin- 
gular extremal can be written as follows: 

ATadFg(x)=O k=0,1,2 ,..., s 

Fad;+ is(x) + n’[g, ad;g] (x)u = 0. 
(22) 

Proof: See Appendix B. 0 

Theorem 3: Consider a system oftheform ofeq. (2)with 
degree of singularity s = n - 3. (i) If f(x) is linearly 
independent of g(x), ad:g(x), . . ., adi’-*g(x) and the 
performance index does not depend explicitly on the 
free$nal time, then the optimal static state feedback is 
given by 

det [j(x) ig(x) I adjg(x) : . . . i +- *a(x)1 
’ = - det[f(x) ig(x) jad$g(x) i . . . iudT-3g(x) i[g, &r-3g](x)]’ 

(27) 

Furthermore, the second-order necessary condition for 
optimality in the singular region takes the form 

st1 
( - lP-ITCg, a&Z1 (x) 3 0. (23) 

ljeq. (2) has an infinite degree of singularity, then the 
first-order necessary conditions for optimality take the 
form Pad;g(x) = 0 for all v 2 0. 

If C#J is independent of the final time tf, then an 
additional necessary condition for optimality in the 
singular region is 

(ii) If f(x) is linearly dependent on g(x), ad: g(x), 
* ad;-*g(x) or the performance index depends ex- ..-> 

plicitly on the freefinal time, then the optimal dynamic 
state feedback is given by 

dTj(x) = 0. 

where @ is an algebraic function. This is obtained by 
setting the determinant of 

g(x) 

&g(x) 

Theorem 1: Consider a system of the form of eq. (2) with 
degree of singularity s = az _ Zf f(x) is linearly dependent 
on g(x), ad:g(x),. . . , ad;-*g(x) almost everywhere or 
the performance index depends explicitly on the free 
final time, then the state trajectories corresponding to 
a singular extrental evolve on the following surface: 

ad;- 3g(x) 

ad7-*g(x) f Lg. ~~-3gl(x)u(t) 

ad;-‘&) + Cs. ad;-*gl(x)u(t) 

+ z$ _ af(x) 8g(x) 
dr ax axU(O (Ccl, +-3g](X)u(t)) 

S(x) = det [g(x) jud:g(x) i . . . iad-‘g(x)] = 0. equal to zero. 

(24) In the above equations, Z is the identity matrix and 

d(.). 
Proof: See Appendix A. cl 

Theorem 2: Consider a system ojthe form of eq. (2) with 
degree of singularity s = n - 2. (i) Zf f(x) is iinearly 
independent of g(x), adfg(x), . . . , ad;-*g(x) almost 
everywhere and the performance index does not depend 
explicitly on thefieefinal time, then the stute trajecto- 

~ IS the total time derivative operator, 
dt 

d(.) 
dt = [f(x) + g(x) u(t)] !&) + $$ 

Theorem 1: Consider a system ofthe form of eq. (2)with 
degree of singularity s < n - 4. (i) Zf f(x) is linearly 

CES 49x1-G 

0 x.u.g =o ( > 

(29) 
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independent of g(x), ad/g(x), . . . , adrm2g(x) and the 
performance index does not depend explicitly on the 

freefinal time, then the optimal dynamic statefeedback 
is given by 

where @ is an algebraic function. This is obtained by 
setting the determinant of 

f(x) 

g(x) 

ad;g(x) 

ad;- ‘g(x) 

ad;&) + Cs, ad;-‘gl tx) u(t) 

ad?+ ‘g(x) + Cg, adjgl (x) u(t) 

(30) 

+ Id _ a.04 Wx) 
dt dx 

- - xn(r) (Es, ~4-‘gl(xb(~)~ 

n-s-3 

ad;-‘g(x) + C 
af (x) 

L=O 
I-$-, 

84(x) 
- axu(t) ‘(Cg. adi-k-3glWW) 

equal to zero. 

(ii) If f(x) is linearly dependent on g(x), 
ad/g(x),. _ _, ad:- 2g(x) or the performance index de- 
pends explicitly on the free final time, then the optimal 
dynamic state feedback is given by 

where # is an algebraic function. This is obtained by 
setting the determinant of 

g(x) 

ad:g(x) 

@h(x) 

ad;+ ‘g(x) + Cs, ad;sl tx) u(r) 

ads;‘g(x) + [g. ad>+‘g](x)u(t) 
(31) 

+ Id _ 3f(x) 8g(x) 
dt dx 

- - ax n(r) (Cs, a&g 1 tx)u(t)) 

n-s-2 

ad'j- ‘g(x) + C 
k=O 

&J(x) 
- +yU(t) 

> 
*tCg, ad;--‘-zg](x)u(t)) 

equal to zero. 

Proof: See Appendix D. 0 

Optimal state feedback laws on constrained arcs 
On the constrained arc, the optimization problem is 

reduced to the following regulation problem: 
Regulate the output 

Y = C(x) 

with zero set point subject to dynamics: 

(32) 

i =f(x) + g(x)u. (33) 

At the point where the system enters or leaves a con- 
strained arc, a feasible unconstrained arc passing 
through this point must satisfy certain tangency con- 
ditions, namely, this arc must have zero values of the 
state variable constraint and all its time derivatives 
that do not involve the control variable (Speyer and 
Bryson, 1968). Thus, if the relative order of the system 
(33) is r, then at the entry point, exit point and on the 
constrained arc, the following tangency conditions 
must be satisfied: 

C(x) = LYC(x) = 0 

dctx) ~ = LjC(x) = 0 
dt -_ 

(34) 

d’- r C(x) 

dt’- 1 
= rf-‘c(x) = 0. 

If the system possesses a finite relative order, a state 
feedback for this regulation problem can be found by 
standard techniques. For instance (Kravaris and 
Chung, 1987) the state transformation, 

(35) 

transforms the system (33) into an input/output linear 
system of the form 

(36) 

where PO. fir, _ . . ,B, are completely arbitrary. When 
the poles of the v-y system are appropriately placed 
“far left” in the complex plane, one can use an external 
linear controller to force the system output y(t) to 
zero. 

Implementation 
In the previous section, state feedback laws have 

been derived for the unconstrained as well as the 
constrained regions. To implement the optimal state 
feedback laws as a closed-loop scheme, the sequence 
in which singular, nonsingular and constrained arcs 
appear should be known a priori. Furthermore, the 
switching times between singular, non-singular and 
constrained arcs is required. The switch to a con- 
strained arc from an unconstrained arc occurs when 
the system reaches the constraint boundary. The 
switch to a singular arc can be calculated analytically 



Optimal feedback control of batch reactors 89 

for a restricted class of systems [for example, for 
systems where a switching surface such as eqs (24) and 
(25) can be calculated]. In most practical situations, 
these have to be computed numerically. From the 
off-line solution of the first-order necessary conditions 
of optimality, the switching times and the values of the 
system states at the junctions between singular and 
non-singular regions are known. This information can 
be used to set up on-line criteria for the onset of the 
singular region in terms of the system states (Modak, 
1988). Alternatively, one can use the 4 priori cal- 
culated switching times determined from the off-line 
analysis. When the state feedback law is dynamic, we 

The forward reaction is second order with respect to 
the concentration of species A while the reverse reac- 
tion is first order with respect to the concentration of 
species B. It is desired to find the optimal temperature 
profile to minimize the following objective function: 

J = - (C, - Et,). (38) 

There is a constraint on the maximum allowable reac- 
tor temperature 

T - T,,, G 0. (39) 

The manipulated input is the cooling rate of the 
reactor. The mass and energy balance for this system 
are as follows. 

also need initial conditions for the dynamic state 
where 

feedback law. These initial conditions have to be set 
up in a similar fashion as the switching times. If the 
model parameters are known a priori, the feedback 
laws derived in the previous sections can be used in 

- E2 
k2 = kzoexp - 

[ 1 . 
conjunction with state estimators. Such an implemen- 

RT 

tation can attenuate errors in the initial conditions This system is of the form (2) with 

(41) 

x=[cT*], “‘)_li_4”;‘(~1~:+~z~~(~..-c~l 
__ (kl(T)C:, - k2(T)CA0 + k2(T)Cj* g(x)=[$-j]. (42) 

L\ P‘P / 

and process disturbances. If some of the model para- 
meters are not accurately known a priori, these need 
to be estimated on-line. In this situation, a parameter 
estimation algorithm is also required_ 

If one uses a priori determined switching times and 
model parameters, a successful feedback implementa- 
tion of the optimal feedback law depends on how 
sensitive the final performance index is to errors in the 
switching times. In the absence of rigorous robustness 
proofs, one resorts to numerical simulations to define 
a region in the parameter space where the feedback 
implementation is successful. 

The final time can be calculated on-line as follows. 
Using eqs (5) and (6). it can be shown that 

Substituting the right-hand side of the above equation 
in (9). we obtain 

The stopping condition is obtained at the point where 
the performance index reaches its optimum value. 

ILLUSTRATWE EXAMPLES 

Example 1: The following exothermic reversible reac- 
tion is taking place in a batch reactor: 

A+B. 

It can be easily shown that n = 2, s = CO and g(x) and 
&g(x) are linearly independent almost everywhere 
in x. 

Unconstrained arc 
Equation (38) depends explicitly on the final time 

and so eq. (24) is valid in the singular region. Using eq. 
(24) we obtain 

S(CA, T) = det [g(x) &ffg(x)] = ElkI (T)C: 

+ &kz(T)CA - Ezkz(T)Cx, = 0. (43) 

Thus, the optimization problem reduces to regulating 
the function S(C,, , T) to zero where the system states 
CA and Tare described by eq. (40). It can be easily 
verified that the relative order for this regulation 
problem is unity. Thus, an appropriate nonlinear feed- 
back law for this problem is (see Kravaris and Chung, 
1987) 

(44 

where x, f(x) and g(x) are given by eq. (421, the 
expression for S is given by eq. (43) and B1 is an 
adjustable parameter. Substituting for X&C), g(x)and 
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S, we obtain 

;( --k, Ct; + k,(C,, - 
u=- * 

(k,Cfi - k,C,o + k,C,) + 1,s 
> 

* (45) 

Constrained arc 
On the constraint boundary the control objective is 

to keep the system at C(T) = T - T,,,,, = 0. It can be 
easily verified that for this system the relative order is 
unity. Thus, we derive a nonlinear feedback law sim- 
ilar to eq. (44) to obtain 

where fi2 is an adjustable parameter. 
Figure 1 shows the optimal temperature profile for 

the system parameters given in Table 1 and the initial 
conditions given in Table 2. It was found through 
numerical simulations that B1 = 1 and Bz = 1 were 
appropriate for this system. Figure 2 shows the opti- 
mal cooling rate of the reactor. Since the reactant is 
cold at t = 0, there is an initial nonsingular region 
where u = 0. Since the reaction is exothermic, the 
temperature rises till it hits the constraint T,,,,, at time 
t = ta. In the constraint boundary eq. (46) is used. At 
t = t., the singular region is hit and eq. (45) is used. 

Fig. 1. Optimal temperature profile (example 1). 

Table 1. Model parameters 

km 
k 20 
El 
E2 
-AH 

PC, 
E 

r, 
T m.x 

l.0m3 kg-Is-' 
100.0 s-1 
2x104Jmol-‘K-l 
4x104Jmol-‘K-’ 
5x lO”Jrn~l-‘K-~ 
1000.0 J m-3K-’ 
lS~lO-~kgsrn-~ 
15°C 
52°C 

Figure 3 shows the profile of the objective function 
with time. The final time is determined at the point 
when there is no further decrease in the objective 
function. Table 3 shows the various switching times as 
well as the final product concentration. Figure 

(46) 

Table 2. Initial conditions 

CA0 
CBO 
T(O) 

1.0 kgm-” 

0 ,000 2000 JO00 ,000 5000 6000 7000 8' 
Time (s) 

Fig. 2. Optimal cooling rate profile (example 1). 

DO 

4 shows the time profile of the first-order condition 
nTg(x) and it is observed that in the singular region 
l.Tg(x) = 0. It was verified (simulation not shown) 

34 
that indeed x 

( > 
+ H = 0 at the final time. 

The constrained optimization problem was com- 
pared with the case where there is no state constraint 
present. Table 3 shows the results. As expected, the 
objective function takes a longer time to reach its 
optimum value when the state constraint is present. 
The robustness of the control law to errors in the 
kinetic parameters was tested through numerical 
simulations. In the control law, the values of the 
parameters k,, and kzO used were 10% lower than 
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‘I 

o- 
0 2000 4000 6000 1000 

Time (s) 

Fig. 3. Profile of objective function (example 1). 

Table 3. Constrained vs unconstrained optimiza- 
tion 

(Constrained optimization) 
Switching time to constrained arc, 2630 s 
Switching time to singular arc, 5280 s 
Final time, 7 I70 s 
Objective function at final time, -0.629 kg m-3 

(Unconstrained optimization) 
Switching time to singular arc, 4630 s 
Final time, 6750 s 
Objective function at final time, -0.629 kgm 3 

i mbo lob0 3&o 40’00 so’00 60'00 70bO sdoo 
Time (s*c) 

Fig. 4. First-order condition (example 1). 

those of the system parameters shown in Table 1. The 
results are summarized in Table 4. It is observed that 
the performance index is very close to that obtained in 
the nominal case, where the true values of the para- 
meters were used in the control law. Similar simula- 
tions can be performed by perturbing other parameter 
values to define a region in the parameter space where 
the feedback implementation is successful with the 
a priori determined switching times. 

Example 2: We consider a yield optimization prob- 
lem in a semi-batch chemical reactor where the fol- 
lowing reactions are occurring: 

A+B 

B+C 

A-D. 

The reaction from A to B follows the following kin- 
etics: 

k,CACs 
- r = kz + k3CA + kqCj* 

(47) 

All other reactions are first-order reactions. The un- 
steady state mass balance equations are given by 

d(C.4 VI ktCACBV 
-=-k2+k,C,+k,C: dt 

- kDCA V + CAFu 

d(CBV) k,C.aCnV -= 
dt k2 + k3CA + kz+Ci 

- kcCsV (48) 

d(CoV) k c v 

dt= D A 

dV 

dt= lA. 

Furthermore, there is a scalar inequality constraint 

v- v,,,40. (49) 

We will consider two different objective functions. 

Case. I: (Objective function independent of the final 
time) The objective function to be minimized at a free 
final time is 

J = - CBVl,_,, (50) 

Case 11: (Objective function dependent on the final 
time) The objective function to be minimized at a free 

Table 4. Robustness analysis 

Parameters in control law Parameters in process Performance index 

k,, = 1.0, k,, = loo.0 
All other parameter 
values from Table I 

k,, = 1.0, k,, = 100.0 
All other parameter 
values from Table I 

-0.6296 kgmm3 

k,. = 0.9, kzO = 5’0.0 
All other parameter 
values from Table I 

k,. = 1.0, kzO = 100.0 
AH other parameter 
values from Table 1 

-0.6295 kgme3 
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final time is 

J = - [CaV - H/l. 

Define 

xl=c”V 

x2 = csv 

x3 = CoV 

xq = v. 

The model can be put in the form 

kxxx 1124 

kzx: + kJx,x., + k4x: 
- kDX1 

k,x,xzxa 
k2x.f + kJx,xa + k.,x: 

- kcxz 

kDx1 

0 

c AF 

0 
+ II u. 

0 

1 

The system model is of the form 

P =J(x) + y(x)u 

where 

x= 

‘X1 
X2 

X3 

,X4 I 
r k,x ‘1X2x4 

I- 
kzx: + kax,xq + kbx: 

- bxl 

klxix2x4 
f(X) = k 2x: + kax,xq + kz,x: 

- kcxz 

k,x, 

0 

C 1F 

0 
c?(x) = II 0 . 

1 

(51) 

(52) 

(53) 

(54) 

It can be easily shown that for this system n = 4 and 
s= 1. 

Solution for case I: It is observed that I$, f; g are 
independent oft. Furthermore&x), g(x), adjg(x) and 
ad:g(x) are linearly independent. Thus, from eq. (27), 

the optimal static state feedback is given by 

det [f(x) i &) i a4&) i &dx)l 
u = - det [f(x) ig(x) jad)g(x) i[g; ad>g](x)]’ (55) 

Since the reactor starts with a high concentration of 
A and the reaction rate is decreasing function of A we 
expect that there will be an initial nonsingular phase 
which involves feeding of species A. An initial estimate 
of the switching time was found by performing a one 
dimensional numerical search as described by Lim et 
al. (1986). This estimate was further refined till the 
first-order condition nTg(x) = 0 was satisfied on the 
singular region. When the volume constraint is hit, 
u = 0. The final time, t,, is determined when the 
objective function, C$ reaches its optimum value. 

Figures 5 and 6 show the optimal input profile and 
the profile of the objective function for the system 
parameters in Table 5 and the initial conditions in 
Table 6. The various switching times and the objective 
function at the final time are shown in Table 7. Fig- 
ures 7 and 8 depict the corresponding time profiles of 
the switching function Qrg(x)) and the second-order 

-0.5 I 
0 0.5 I 1.5 

Time 
(I$ 2.5 3 

Fig. 5. Optimal input profile (example 2, case. I). 

Fig. 6. Profile of objective function (example 2, case I). 
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Table 5. Model parameters 

k, 
kz 
k3 
k, 
kr 
kl, 
E 

0.530 m3 kmol-’ hh’ 
1.00 
1.00 m’ kmoll i 
l/22 ms kmol - z 
0.01 hh’ 

Y:“,’ h-’ 

Table 6. Initial conditions 

C”(O) 
C.(O) 
CD(O) 
V(O) 

7.5 kgm-s 
8.0 kgm-’ 
0.0 kgmm3 
2.0 x 10m3 m3 

Table 7. Constrained optimization (example 2, case I) 

Switching time to singular arc, 0.793 h 
Switching time to constrained arc, 1.86 h 
Final time, 3.39 h 
Objective function at final time; -44.810 x IO-’ kg 

Fig. 7. First-order condition (example 2, case I). 

I I 
0 0.5 1 1.5 2.5 3 1.5 

Time 
(h$ 

Fig. 8. Second-order condition (example 2, case I). 

condition ( - AT[y, ad:y] (x)). The switching function 
vanishes on the singular time interval and is positive 
everywhere else. The positivity of the switching func- 
tion is consistent with u(c) taking its minimum value 
(U = 0) in the nonsingular interval. Furthermore, the 
second-order condition - Ir [ g. adjg] (x, t) 2= 0 is 
satisfied in the singular region and so the singular 
extremal is indeed optimal. The final time, tf, is deter- 
mined when the objective function 4 reaches its opti- 
mum value. It was verified (simulation not shown) 
that indeed H = 0 everywhere. 

The robustness of the state feedback law with re- 
spect to errors in the system parameter k, was tested 
through numerical simulations. With the switching 
time from the nominal case, the static feedback law 
was implemented using a 13.4% higher k, than its 
true value. The results are summarized in Table 8. It is 
observed that the performance index is very close to 
that obtained in the nominal case. Similar simulations 
can be performed, by perturbing other parameter 
values, to obtain a region in parameter space where 
the feedback implementation is successful with the 
a priori determined switching times. 

The sensitivity of the performance index to errors in 
the switching time to the singular region was checked. 
Assuming various values of the switching time to the 
singular region, the feeding profile was calculated 
using the static state feedback law in the singular 
region. When the volume constraint was hit, u was set 
to zero. The final time t, was determined when the 
objective function 4 reached its optimum value. The 
results are shown in Table 9. It is observed that the 
final performance index is quite robust to errors in the 
assumed switching time. From this study we conclude 
that the performance index is not very sensitive to 
errors in the switching time and so an a priori estimate 
of the switching time can be used in closed-loop im- 
plementation. 

Solution for case II: It can be easily verified that 
the vector fields g(x), adjg(x), &g(x). ad;g(x) are 
linearly independent. Thus the optimal state feedback 
in the singular region will be dynamic. Substituting 
n = 4 and s = I in eq. (28) we obtain a dynamic 
feedback law by setting the determinant of 

u&(x) + Cy. ad;y](x)u 
(56) 

ad;@) + (CC/. 4ylW + IX Cs. 4sllW 

+ Is, Cs, M)~lWW + Cs. ad:slW$ 

equal to zero. 
Figures 9 and 10 show the optimal input profile and 

the profile of the objective function for the system 
parameters in Table 5 and the initial conditions in 
Table 6. The various switching times and the objective 
function at the final time are shown in Table IO. 
Figures 11 and 12 depict the corresponding time pro- 
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Table 8. Robustness analysis 

Parameters in control law Parameters in process 

k, = 0.530 kI = 0.530 
All other parameter All other parameter 
values from Table 5 vaIues from Table 5 

k, = 0.400 k, = 0.530 
All other parameter All other parameter 
values from Table 5 values from Table 5 

Performance index 

-44.810~ 10-s kg 

-44.718x 10-s kg 

Final time 

3.39h-’ 

3.39 h ’ 

Table 9. Sensitivity of error in switching time on per- 
formance index 

Assumed switching Performance Final 
time (h) index (kg) time (h) 

0.75 - 44.676 x lo-” 3.31 
0.791 - 44.810 x 10-j 3.39 
0.85 - 44.760 x 10-J 3.39 
0.90 - 44.720 x 1O-3 3.39 

Fig. 9. Optical input profile (example 2, case II). 

i lo-' 

Table 10. Constrained optimization (example 2, case II) 

Switching time to singular arc, 0.793 h 
Switching time to constrained arc, 1.86 h 
Final time, 3.19 h 
Objective function at final time, - 38.3 x lo-’ kg 

J_____ 
0.5 1 1.5 

Time (I-+$ 
2.5 3 

Fig. 11. First-order condition (example 2, case II). 

-1 I 
0 0.5 1 1.5 2.5 3 

Time 
(I?; 

Fig. 12. Second-order condition (example 2, case II). 

5 

Table 1 I. Sensitivity of error in initial con- 
dition of u(t) on performance index 

Assumed initial 
condition of u(t) 

Performance 
index (kg) 

0.60 -38.3 x 10-s 
0.75 -38.3 x 10m3 
0.90 -38.3 x 1O-3 

Fig. 10. Profile of objective function (example 2, case II). 
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Table 12. Robustness analysis 

Parameters in control law Parameters in process Performance index 

k, = 0.530 
All other parameter 
values from Table 5 

k, = 0.530 
All other parameter 
values from Table 5 

-38.3 x 1O-3 kg 

k, = 0.56 
All other parameter 
values from Table 5 

k, = 0.530 
All other parameter 
values from Table 5 

-38.3 x 1O-3 kg 

k, = 0.59 
All other parameter 
values from Table 5 

k, = 0.530 
All other parameter 
values from Table 5 

-38.3 x lo-‘kg 

files of the switching function (n’g(x)) and the second- 
order condition ( - IT[g, ad)g](x)). The switching 
function vanishes on the singular time interval 
and is positive everywhere else. The positivity of the 
switching function is consistent with u(t) taking 
its minimum value (u = 0) in the nonsingular interval. 
Furthermore, the second-order condition 
- I’[g. adjg] (x, t) 2 0 is satisfied in the singular 

region and so the singular extremal is indeed optimal. 
The final time tf is determined when the objective 
function 4 reaches its optimum value. It was verified 

(simulation not shown) that indeed a4 

( > 
at+H =Oat 

the final time. 
Since the optimal state feedback is dynamic, we 

need the initial condition of u to implement the state 
feedback law. The effect of error in the initial condi- 
tion of u on the final performance index was studied. 
The results are shown in Table 11. It is observed that 
the final performance index is very robust to errors in 
the assumed initial condition for u(t). 

From this study we conclude that the performance 
index is not sensitive at all to errors in the initial 
condition for u(t) in the range of initial conditions 
considered and so an a priori estimate of the initial 
condition for u(t) can be used in closed-loop imple- 
mentation. 

The robustness of the dynamic state feedback law 
with respect to errors in the system parameter k, was 
tested. The results are summarized in Table 12. It is 
observed that the performance index is very close to 
that obtained in the nominal case. Similar simulations 
can be performed by perturbing other parameter 
values to determine the region in parameter space 
where the feedback implementation is successful. 
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NOTATION 

CA 
C “F 
CE 
Cc 
CD 

concentration of species A, kg m-’ 
concentration of species A in feed, kg rnb3 
concentration of species B, kg mm3 
concentration of species C, kg mm 3 
concentration of species D, kg m- 3 

co 
El, E2 
H 
H” 

H.. 

I 

J 

ke 
GC(x) 
T 
V 
&7(x) 
&g(x) 
det 
f 

f I 

kz 
k3 
k, 
kc 
kD 
n 

specific heat, J kg- ’ K- ’ 
activation energies, J mol- ’ K - ’ 
Hamiltonian 
first derivative of Hamiltonian with respect 
to u 
second derivative of Hamiltonian with re- 
spect to u 
identity matrix 
performance index 
kinetic rate constant of reaction A -+ B, h ’ 
kth Lie derivative off(x) and C(x) 
temperature, K 
volume, m3 
Lie bracket { [I, g] (x)} 
Lie bracket of order k {[A ad?- ‘g] (x)} 
determinant 
vector function in dynamic model 
vector function in dynamic model 
kinetic rate constant 
kinetic rate constant 
kinetic rate constant 
kinetic rate constant 
kinetic rate constant of reaction B 4 C, h - ’ 
kinetic rate constant of reaction A + D, h 1 
number of state equations (dimension of 
state vector x) 
degree of singularity 
time 
final time 
manipulated input 
vector of system states 
output 

Greek symbols 

B adjustable parameter 

G 
vector of adjoint states 
scalar function expressing the performance 
index in terms of the system states 

P density, kg me3 
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APPENDIX A: PROOF OF THEOREM 1 

The first-order necessary conditions on the singular ex- 
tremal are as follows: 

E.Tg(x) = 0 

i.rad+g(x) = 0 

i.‘-ud;g(x) = 0 

i~ad~-~g(x) = 0 

i?-ad~- 1 g(x) = 0. 

Eliminating the n-vector of adjoint states, we obtain the 
singular surface (24) on which the state trajectories corres- 
ponding to the singular extremal evolve. 

APPENDIX B: PROOF OF THEOREM 2 
Proof for (i): The first-order necessary conditions are given 

by 

i.Tf(x) = 0 

i.‘g(x) = 0 

i.rad)g(x) = 0 

i.rad:g(x) = 0 
(58) 

Pad:- Zg(x) = 0. 

Eliminating the n adjoint states from the above n inde- 
pendent equations, we obtain the singular surface (25) on 
which the state tajectories corresponding to the singular 
extremal evolve. 

Proof for (ii): The first-order necessary conditions are given 
by 

l’g(x) = 0 

rl’adig(x) = 0 

Iraflf-‘g(x) = 0 

I’adj-‘g(x) + 1’[g, adym2g](x)u = 0. 

Since these are n equations in R adjoint states, we can 
eliminate the adjoint states AT = [& &. . . i.] to obtain the 
static feedback represented by eq. (26). 

APPENDIX C: PROOF OF THEOREM 3 
Proof for (i): The first-order necessary conditions for 
s=n-- 3 can be written as 

iff(x) = 0 

i’g(x) = 0 

ATad:g(x) = 0 
W) 

irad;-3g(x) = 0 

L’ad~-2g(x) + 1’[g. ad;-“g J(x)u = 0. 

Since these are n equations in n adjoint states. we can 
eliminate the adjoint states i.T = CL,, i., . . . Am] to obtain the 
static state feedback represented by eq. (27). 

Proof for (ii): From proposition 2, the first-order necessary 
conditions for singular extremal are 

i’s(x) = 0 

i.=ad;g(x) = 0 

i.Tady- 3 g(x) = 0 

iTad;-‘g(x) + i.r[g, adi-3g](x)u(t) = 0. 

which constitute n - 1 equations in n adjoint states. Differ- 
entiating the last equation once we obtain an additional 
equation 

ad?-‘&) + Cg. adj-‘sJ(x)u(r) 

+ _____ (Cs.ad;-“sl(xbW)). 

(62) 
The above equations constitute a set of n equations in 
n adjoint variables which can be eliminated to give the 
dynamic state feedback law. This is obtained by setting the 
determinant of the vector fields in eq. (29) equal to zero. 

APPENDIX D: PROOF OF THEOREM 4 
Proof for (i): The first-order necessary conditions for singu- 
lar extremal are 

irJ(x) = 0 

iTg(Jr) = 0 

iTadjg(x) = 0 

E.radd,-‘g(x) = 0 

2.‘adtg(x) + i’[g, adi- ’ g](x) u(t) = 0 

which constitute s + 2 equations in n adjoint states. Differen- 
tiating the last equation (n - s - 3) times we obtain 
(n - s - 3) more equations: 

j.r &‘g(x) + [a, ~rsI(x)W 

41) ) thud;-‘g]Wutt)) 
> 

= 0 

a.’ ad:+‘(g(x)) + Cg,ad”/+‘g](x)u(r) 

,A _ al(x) a&) 
dt ax - - dxW (Cs. adisIW4~)) 



x([g, odj-‘- 3 sXx)u(t)) 
> 

= 0 

The above equations constitute a set of n equations in 
n adjoint variables which can be eliminated to give the 
dynamic state feedback law. This is obtained by setting the 
determinant of the vector fields in eq. (30) equal to zero. 

Proof for (ii): The first order necessary conditions for singu- 
lar extremal are 

LTg(x) = 0 

ATad)-g(x) = 0 
(65) 

ATad;g(x) = 0 

i.‘adj+ ’ g(x) + AT[g, adTg](x) u(r) = 0. 

which constitutes + 2 equations in n adjoint states. Differen- 
tiatine the last eauation (n - s - 2) times we obtain 
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(n - s - 2) more equations: 

AT ++%(x) + [g. d;“gI(x)u(t) 

1’ ad>+3(g(x)) + Cg. ad”;‘elWW 

( 
n-s- 2 

AT udj-'g(x) + c 
Lz=o 

,$ - ?!g - !E$,,)) 

x(Cs od;--k-Zc/l(xMt)) l 

> 
= 0. 

The above equations constitute a set of n equations in 
n adjoint variables which can be eliminated to give the . oynamlc state feedback law. This is obtained by setting the . 
determmant of the vector fields in eq. (31) equal to zero. 


