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ABSTRACT

The damping theory, which includes the decay of quantum states,

is developed in terms of the projection operators. The concept of
.probability that a transition from a given initial state will be
towards a specified final state 1s introduced, and the probability

is calculated by using the damping theory. . When the decay of the
final state is neglected, this probability reduces to the condi-
tional probability, introduced by Heitler, that the system will be
found in a specified final state after a transition from the given
initial state has definitely taken place. With this new probability
concept, an approximate expression is obtained for the transition
probability per unit time from the initial to the final state. This
expression is the starting point of the present line shape theory,
which is applicable to both neutron and photon spectra. In this work,
only the scattering of slow neutrons by an anharmonic crystal is con-
sidered. However, the differential scattering cross section formulsa
is obtained first for an arbitrary macroscopic medium, and then ap-
plied to a crystal. The cross section formula in the harmonic approx-
imation follows from the present cross section formula when the width
and shift of lines are neglected. The novel feature of this deriva-
tion is that it does not use Bloch's theorem. Explicit formulas for
the width and the shift of the observed peaks in the energy spectrum
of the inelastically scattered slow neutrons by crystals are obtained,
and compared in the case of a single-phonon event to those by Maradudin
and Fein. It is found that the shift formulas agree exactly at all
temperatures, whereas the width formulas agree ohly in the zero temper-
ature limit. The discrepancy in the width formulas at finite tempera-
tures is discussed in terms of the concept of phonon lifetime. The
application of the present line shape theory to the interpretation of
the optical experiments is also discussed.







CHAPTER I

INTRODUCT ION

In recent years the scattering of slow neutrons by macroscopic sys-
tems has received increasing attention as a research tool, providing in-
formation about the dynamical conditions of the scattering medium, in
addition to the determination of nuclear scattering lengths of the con-
stituent atoms. For example, the scattering of slow neutrons by crystals
provides a useful complement to other techniques for the determination
of the energy levels of the crystal. The general theory of neutron
scattering by macroscopic systems, in terms of the time-relaxed space
correlation function, provides a convenient computétional tool when the
energy eigenstates of the scatterer are known. However, except for
some special physical systems, e.g., an ideal gas, the eigenfunctions
of the Hamiltonian H® of the scatterer are not available. In such
cases thé evaluation of the thermal averages appearing in the cross
section formula have to be performed in'a different complete set gen-
erated .by a certain Hamiltonian }(s, The latter is chosen as a part

of H?, viz.,
4) S
B - A +m , (1.1)
for which the eigenvalue problem

(ﬂS-En)ln> = 0 (1.2)



can be solved. In some applications, it may be a good approximation to
replace i by }(S, thereby ignoring H' completely, in order to explain
the dominant aspects of a certain scattering experiment. However, in-
terpretation of the detalls of the recent neutron scattering experiments
requires a more refined analysis than that obtained by ignoring H' com-
pletely. As an example,. consider again the scattering of slow neutrons
by crystals, which will be our main concern in the subsequent chapters.
Here, H' is taken to be the cubic and the higher order terms in the
Taylor expansion of the crystal's potential energy. The harmonic approx-
imation which corresponds to ignoring H' predicts sharp lines in the en-
ergy spectrum of neutrons scattered inelastically by the crystal, and
fails to yield any information about the structure of the observed peaks.
Since the width of these peaks can be measured by present-day experi-
mental techniques,l the need for a refined theory of neutron scattering
by crystals, one which is capable of predicting the observed width and
shift, 1s apparent. Valuable information about the nature of anhar-
monic forces in crystals can’be.gained by comparing the éxperimental
and computed widths once a reliable theory is available. The study of
neutron line shape may also prove to be a very suitable microscopic
probe in the exploration of intermolecular forces in liquids.

Several theoretical studies of the neutron scattering by anharmonic
crystals have appeared in the literature in recent years,2—6 The most
recent one, by Maradudin and Fein,6 contains a brief survey of the pre-

ceding works as well as a comparison between theoretical and experi-



mental results for the width of one phonon line in lead. The agreement
is reported to‘be only in the order of magnitude. As the authors point
out, however, this discrepancy may be due éither to the computational
techniques used to represent & function, or to the simple crystal model
used to describe lead, rather than to the approximation made in the
derivations. 1In this regard, an independent formulation‘of the theory
of neutron line shape would be very desirable.

The potential of the study of the optical line shape as a non-
interferiﬁg diagnostic tool for investigation of the physical properties
of the surrounding of an emitting étom has long been recognized and
used in astronomical observations. In the past fifteen years, the op-
tical line width techniques have found application also in high temper-
ature plasma experiments as a probe for measuring temperatures and ion
concentrations within a plasma, where the use of material probes is
ruled out because of the high temperatures involved. Consequently, the
optical line shape theory has enjoyed rapid progress in recent years.
Accuracies bétter than 20% in determining the ion density with the line
width technique have been reported.* 1In spite of this numerical suc-
cess, however, the existing line shape theory contains some intuitive
arguments, such as the folding of Doppler and pressure effects, as well
as some gaps. It treats the effect of ions in the quasi-static limit by

assuming the ions to be at rest, whereas it treats electron effects

*A list of the original papers and several excellent review articles can
be found in Ref. 7.



with the impact approximation. It does not offer any good treatment for
the intermediate region, where neither of these two limiting approxima-
tions is valid (see p. 504 of Ref. 7). The starting point of the exist-
ing theory is the quantum mechanical Fourier inﬁegral formula which ex-
presses the optical spectrum as the Fourier transform of the autocorrela-
tion function of the time-dependent dipole operator.

In the present work, an attempt.has been made to develop a line
shape theory that can be applied to both optical and neutron spectra.
This theory involves approximations of a general nature in contrast to
the previogs optical and neutron line shape theories, which involve ap-
proximations appropriate to specific physical systems, e.g., plasma and
crystals, and therefore have a limited range of applicability. The
present theory provides a general line shape: formula for arbitrary media,
i.e., the surrounding of the emitting atom in the photon case and the
macroscopic scatterer in the neutron case, which reduces the line shape
calculations immediately to a computational form. The nature of the
physical system under consideration first enters at this computational
stage,

The present formulation of line shape is based on an entirely dif-
ferent approach than the correlation formalism used by the existing
line shape theories for both neutrons and photons. This approach uses
the damping theory originally due to HEitler,8)9 and is essentially a
perturbation approach which includes the decay With time of the quantum

states of the system. This approach was chosen for the present study



because, as will be demonstrated by two spegific applications, it pro-
vides a computational framework which is more systematic or more inter-
pretable physically than any used in similar applications, and which
can be applied directly to any line shape problem without approximations
of the physical nature appropriate to a particular system. 1In the case
of the study of optical line shape, the present theory illuminates the
manner in which the various simultaneous contributions to a line shape,
i.e., Doppler effect, natural broadening, and pressure broadening, arise
and are combined; and it provides a method of computation which may im-
prove upon existing approximations, i.e., quasi-static and impact ap-
proximation, in the intermediate range mentioned above. In the case of
the study of line shape in the energy spectrum of inelastically scat-
tered neutrons by an anharmonic crystal, the present approach yields, in
a simpler and moré interpretable way, formulas for the width and shift
of the lines in the zero temperature limit which are identical to those

6

presented by Maradudin and Fein. However, the present line width
formula at finite temperatures differs from theirs, and predicts a
larger width., This discrepancy, if it does not arise from an arith-
metical error, may improve the order of magnitude agreement reported
by Maradudin and Fein.

In Chapter II, the damping theory is developed and extended by in-
troducing the concept of probability that the transition from an ini-

tial state will be toward a specified final state; this is valid even

if the decay of the final state is not negligible, as is the case in



crystals., The remaining chapters contain the application of the basic
formula derived in Chapter IT for the transition probability per unit
time, to the scattering of slow neutrons by an anharmonic crystal. The
application of the present theory to the study of optical line shape is
not included in this work because it has been presented as a separate
report.lo

It 1s hoped that the present work will contribute to the theoretical
understanding of line broadening and line shift phenomena in general.
Such understanding is essential for the success of the line shape studies

as a convenient probe to explore intermolecular forces in a macroscopic

medium.



CHAPTER II

DAMPING THEORY

The interpretation of almost any experiment can be reduced in quan-
tum mechanics, without introducing any serious approximation, to evlua-

tion of the quantity

Wy = |Upn(t) |3/t (2.1)

where the numerator is the probability of finding the system under con-
sideration in the state [m > at time t, knowing that it was in the
state |n > at the initial'time t = 0. The purpose of this chapter 1is
to derive an expression for Wy, which 1s suitable to the study of line
shape problems in general. Such an expression can be obtained by using
the damping.theory, which, in contrast to the conventional perturbation
theory, takes into account the decay in time of the quantum states. Al-
though.the first attempt to include the finite lifetime of the states

in the perturbation theory was made by Weisskopf and Wig;ner,ll the first
systematic development of the damping theory is due to HEitler,879 The
present derivation differs from Heitler's original derivation in two
respects: First, it is developed in terms of the projection opérator,
and second, it emplqys a different iteration procedure. Although the
results are essentially the same as those obtained by Heitler, the pres-
ent approach has several appealing features. It is an extention of the

quantum treatment of the evolution of a decaying state presented by

7



A. Messiah.12

A. BASIC THEORY
The temporal development of a quantum mechanical system is deter-

mined by the "time-evolution" operator U(t):
t> = U(t)|o >,

where [0 > and [t > are the state vectors at t = O and &t time . When
the Hamiltonian H of the system is not an explicit function of time,

U(t) is given by
U(t) = e itE | (2.2)

where the units are chosen so that A = 1. Assume that H can be split

into two parts as

H = H, +V (2.3)

in such a way that the eigenvalue problem

(Hy=Ep) [n > = © (2.4)

can be solved. The eigenvectors |n > are assumed to be complete and
orthonormal, and thus provide a basis for the physical problem under
consideration. The eigenvalues E,, which may be discrete or continuous,
are allowed to be degenerate. We want to calculate the matrix elements

Upn(t) and Upp(t) for t > 0. However, we shall first consider the



operators PnU(t)P, and PyU(t)Pp, where Pn and P, are projection operators
on the subspaces gin and Ezn spanned by the eigenvectors belonging to
the eigenvalues E, and Ej respectively. The projection on the comple-
mentary subspace of éin will be denoted by Q,. The following relations

are immediate consequences of the preceding definitions:

P, = E: |lnv > < nv| , }; P, = 1, (2.5)

v n

P H, = EPy = HPy (2.6)

Pp+Qy = 1, @QpHy = Ho@p . (2.7)

In (2.5), the symbol v indicates the multiplicity of the eigenvalue Ej.
2,13

Similar relations hold also for Pp. We may recalll ? that any hermi-

tian operator satisfying the relation
PP =P (2.8)

is a projection operator. It will be apparent at the end that P, and
P, can be defined as projections on some subspaces of the subspaces
é?n and ﬁ:n respectively. In particular, they can be chosen as the
projectors on the initial and final state vectors. In this case, and
also when the eigenvalues are non-degenerate, the present approach re-
duces to that of Heitler's except for the iteration procedure.

We now introduce the resolvent of H, i.e.,

oz = =, (2.9)
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where z is a complex number. Since the eigenvalues of H are real and
positive, the singularities of G{z) all lie on the positive real axis.
The discrete and continuous portions of the spectrum of H give rise to
simple poles and branch cuts on the real axis., The evolution operator

U(t) can be expressed in terms of G(z) as

cotie

_'t
U(t) = —éf-' dz & z)e e , €>0, (2.10)
enl ¥ e
or
1 +00 .
U(t) == == f axla(x) - o{x") Je”1¥t (2.11)
25l J
where
G( y - . 1 _ 1 = . '
x¥) = lim —=— = PP — + imd(x-H) . (2.12)
€0 x-Htie x-H

In the last expression PP denotes the principal part.

It may be noted in passing that the contribution of the second term

in (2.11) vanishes for t > 0, since G(z) is analytic in the entire lower

half plane as well as upper half plane,

Qur problem is now reduced to calculating

%n( z) = P,Hz)P,, (?/mn( z) = Pu6(z)P, . (2.1L)

Following Messiah,* we introduce

*See p. 994, Vol. 2 (second printing in English)of Ref, 12.



where H' and H" are defined by
H = PyHP, + Qy, HQy = Hy + PpVPy + QpVQy , (2.14a)
H' = PpHQ, + QuHPy = PpVQy + QuVPp . (2.1kb)

The following relations can be verified by using the foregoing defini-

tions:

[Pn;H‘] 0, [Qn)H'] = 0, (2.15a)

Il

PnH" - H"Q,n) QnHlt

H'P,, P H"P, = QuH'Q, = 0.
(2.15Db)

The following operator identities will be needed:

1o L,l,1 - 11,1
5 - 2731%Es T imBziti v (2.16)
1 _ P 1
. = = RP = 2al
PZ-R z-R z-PR ’ &,P] 0 (2.17)

where A and B are two arbitrary operators, P is any projection operator,
i.e., hermitian and P2 = P, and R is any operator commuting with P. The
proof of these identities is straightforward.

Using (2.16), one can write G(z) from (2.9) as follows:

« 2) Z%H, + -Z—;— 1" 2) (2.18a)

I

1 1
= o T z=m

1 1 (U 1 "
7-H! + Z-H° H" T H G'(Z) o (2.18b)

H z-H
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We can now compute géhn(z) by operating on both sides of (2.18b) by Py,
noting that the second term vanishes by (2.15b), and by using (2.17).

The result is

1
zZ = ———— 2.1
Ill'l( ) Z'En’rnn( Z) 5 ( 9)
where the symbol T, (z) is defined by
Tpn(z) = Pulv + V(z-QuHan) “*VIP, . (2.20)

We now attempt to compute %%;nn(z)° It proves more convenient to compute

first Q,G(z)Pn, and then to obtain %m( z) by multiplying the latter from

the left by Pp. Thus, using (2.18a) for G(z), one finds:

%2hn(z) = Pm(Z“QnHQn)_lQnV ﬁ%n(z) . (2.21)

Noting that

one rewrites (2.21) as follows:

?'mn( z) = Py(z-QuHQp) ‘1va %m( z) + Pp( 2-QnHan) ~*B,V %n( z)
pF ,m (2022)

Tt is noted that all the foregoing results are exact. However, they

still contain the operator (Z=QnHQn)'l, which can not be calculated
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exactly.* At this point, one resorts to an iteration procedure which

consists of applying the foregoing analysis to (z-QuHan) ~* by defining

ﬂ QnHen , % = g’go + U% (2.23a)
_,H

L}

N R VN (2.230)
and noting that
Pmﬁo = P HQ, = Efp = }(OPm. (2.24)

jz -1 ; . @, .
Thus, Pp(z-H) Py in (2.22), which can be labelled as g%hm(z) according

to (2.13), can be readily obtained from (2.19) by replacing Hoy and V by

j(o and Zﬁ?

! 1
%%hm(z) = B ri(2) (2.25)
where
Tim(2) = PylVv + V( 2-Qp@nHanQm) ~ "V 1Py . (2.26)

The calculation of Pm(z-QnHQn)'lPu appearing in (2.22) requires closer
attention, because of the order of Pp and P,. We note that in this
operator, P, denotes the initial subspace whereas in (2.13) it denotes

the final subspace. Therefore, the ordef of the initial and final sub-

*Messiah approximates this operator by (z-Hy) % by ignoring the QnVen
in QuHQn = Ho + QuVQn [cf. (2.1ka) ], and thus obtains a closed form for
=n(2) from (2.21). But this approximation excludes automatically the

width and shift of the final state |m > as will be apparent presently
[ef. (2.28)].



1h

spaces in &u(z) = Pm(z-QnHiQn)'lPH is reversed as compared with that
in g%th); To avoid any confusion, one can start with the second op-
erator identity in (2.16) to compute %u(z). The result can be easily

seen to be

4.2 = Fu Vo o) e, (2.27)

The result of the first iteration can now be obtained by substituting
(2.26) and (2.27) into (2.22). The resulting formula will contain op-

Hop)
erator (z-Qyd1Q,) ~, which can be iterated once more. (We shall give
the result after the second iteration.) Omitting the arguments (z) for
typographical simplicity, one finds:

1 i 1"
%;/ = §%9 vj?‘ + %%, vé%» ' + e (2.28)
mn mm nn mm (b nn
U-f‘[m_':n '

where

" l
féhn TEor (2.29)
z-By-Tuy

= BV + V( 2-Q Qm@nHAnQn@y,) V1B, . (2.30)

It is observed that (2.28) represents formally an expansion in powers
of V. The first term corresponds to the direct transitions from the
initial subspace to the final subspace; the second term represents the
transitions via an intermediate subspace; and so on. In the present
analysis of line shape, we shall consider only direct transitions, and

hence only the first term in (2.28).
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T Fau, etc., one may approximate

In evaluating the operators T .,

the operators (z-QnHQn), (2-Qn@nHonqm) , (Z’QuQanHQanQu); etc., appear-

ing in their expressions, by replacing H by Hy. Thus, I'yn and Pﬁm‘become
-1
Tpn(z) = PV + vQu(z-Hy) VIR, , (2.31)

il 2)

1l

PolV + VQuQn(z-Hy) “*VIP, . (2.32)

The approximate expressions for PHM’ etec., can be obtained in a similar
way.

When the eigenvalues Ep, Ey, E,, etc., are all non-degenerate, or
when the ope#ators Pny Pps Py ete., are defined as the projectors on
the individual eigenvectors, the operators g%ﬁn = PGPy, @;ﬁn = PpGPp,
etc., can be replaced by their matrix elements with respect to the
eigenvectors vln >, |m >, ete.:

- (D) = [eByeTpn(2)17, Gy(2) = le-BnTm(2) )7
(2.33)

I'yn ® Von n§: Ivﬁn|2(Z'En)-l) Fﬁm(z) = Vy * Ez |th|2(z-Em)‘l
pn uFa,m (2.34)

G - & (v, G () . (2.39)

The foregoing results are identical to those obtained by Heitler's
methodlo of iteration except for the fact that the quantity Ijy, in
(2.34), which will be interpreted below as the width and shift function

of the final state, éxcludes the transition back to the initial state
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as well as the transition into itself, However, this difference does
not seem to be of any significance in the applications we shall be con-
cerned with.

When the eigenvalues are degenerate, the above formulas, i.e.,
(2,33), (2.34), and (2.35), can still be used, as we shall do in the
subsequent analysis. However, when the damping theory is formulated in
terms of the projection operators and the projection operators are de-
fined as the projectors on the entire subspaces spanned by degenerate
eigenvectors, there are new possibilities in the case of degenerate eigen-
values. Although we are not going to explore or make use of these pos-
sibilities, it may still be worthwhile to discuss briefly some of the
relevant aspects. Let the degenerate states be labelled as |n>=|Bo>

and |m >= |Ef > . The matrix element of i?;n = P, &(2)P, follows from

(2.28) as
< BBl 2) |Bpot > =
(2.36)
) <m0 B> < B [V]B 00> < Byt [ (4) 5>
al,B'

Suppose that the operators %%ém(z) and ﬁ%;h(z) can be diagonalized

with respect to the degenerate states. Then, (2.36) reduces to

< EpplG(2) [Bpa > = < Emsl%m(z) |Epp > < Epp|V|Eo > < Enal%n(z) |Bpor >
(2.37)
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The first and the third terms on the right hand side of this equation
are simply the eigenvalues of the non-hermitian operators fégm(z) and
g%;h(z) respectively. It follows from (2.25) and (2.19) that one has
to diagonalize the operators Fﬁm(z) and an(z) to obtain the foregoing
eigenvalues. To carry the discussion, consider an(z), which is de-

fined by (2.20). We are interested in the behavior of this operator in

the neighborhood of branch cuts [cf. (2.12) ]:

Tan(xtie) = 84(x) %5 7(%) , (2.38)

where
Sn(x) = PylV + VPP(x-QuHQy,) ~*VIP, , (2.39)
7o(%) = 2xPpVB(x-QnHQn) VPy . (2.40)

Note that both Sp(x) and y,(x) are hermitian operators. The non-
hermitian operator an(xi) can be diagonalized if it is normal, i.e.,
if Sp and y, commute, in the case of degeneracies of finite order. 1In
some applications, such as those involving photon emission, the sub-
space gn can be written as the tensor product of two spaces énf and
g?n"’ where é?n' is a finite dimensional space and §fn" is a continuum,
The former represents the degeneracies of the discrete energy levels of
the emitting atom and tﬁe latter corresponds to the continuous energy
spectrum of the surrounding medium. In such cases, the non-hermitian

operstor Pnn(xi) can be diagonalized; in the subspace é%g,. The ad-

1See the footnote on p. 996 of Ref. 12.-
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vantage of this diagonalization procedure can be appreciated only when
one actually performs the summations and averages on the final and ini-
tial states in the interpretation of a given experiment. Some of these
points are discussed in Ref., 10; we shall not dwell on the matter be-

cause in the present application, i.e., scattering of neutrons by crys-

tals, the formulas (2.33), (2.34), and (2.35) prove to be sufficient.

B. EVALUATION OF THE INVERSION INTEGRALS
We are now in a position to compute the matrix elements of the
evolution operator U(t), viz., Upp(t), and Uy,(t), by substituting

rln(z) from (2.33%) and %%En(z) from (2.35) into either (2.10) or (2.11).

First consider the diagonal element Upn(t). By combining (2.38), (2.33),
and (2.11) one obtains the following integrations:

Up(t) = Ep(t) = = | axe ™ . Tn P ,,
o0 [x-En-Sn(x) I~ + T 7a(x)
(2.41)

We have introduced the symboi F (t) for a later use. We shall evaluate
this integral approximately by treating Sp(x) and y,(x) as a constant.
This is justified because Sp(x) and y,(x) are slowly varying in the
vicinity of the point x = E, where the integrand attains its maximum,
and because the dominant contribution to the integral comes from this
region, Taking the constant values of Sp(x) and y,(x) as Sp(En) and

yn(Ep) , one finds from (2.41) the following:

Fp(t) =~ expl- % 7ot ] expl-1Et] (2.42)
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where

1]

By, = Ep + 8y, 8y Sn(En) s 7y = 7a(En) - (2.43)

Now consider the off-diagonal matrix element of U(t), which can be

written as

wt+ig . . g
Upn(t) = WA dz e 12t %%hm(z)Vﬁn ~o(2z) o (2.4ka)
2

This inversion integral can be expressed as the convolution of F (t)

and Fy(t), which are approximately given by (2.42):

t
Upg(t) = Vi f F,(t-7) Fy(m)dr . (2.144b)
(@]

The latter can be evaluated immediately. Since we are interested in
the probabilities rather than in the matrix elements, only ]U’mn(t)l2

will be given:

2 _ ok _ ""—-_t
IUmn(t)l2 =S | Vi | S Bomt_ -2t eil(En Ep)
(En-En) #+H1/4) (ym-m) ©

C. TRANSITION PROBABILITY PER UNIT TIME

This section is devoted to the discussion of the behavior of

|Upn(t) | in different time intervals by using (2.45).

1. 7t << 1, 7t <1, t>1/|En-Fn|

For such an interval of time to exist, |f5—§m| must be much greater
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2
than both y_ and y . The behavior of |Upp(t) | in this interval can be
obtained by setting y, = %, = O and taking the limit t > w in (2.45).

Noting also that

1 -ixt 2
lim 11-e 777 2md(x)

to x2t,

one obtains the well known first order perturbation result, i.e.,
2 2 —
[Ugn(t) | = 2wt |V |7 8(Ep-By) (2.46)

It is noted that in this time interval, the meaningful concept appears
to be the transition probability per unit time, i.e., |Upy(t)|Z/t,
rather than the probability of finding the system in the state ]m > at

time t.

2. oyt >1, 7t <<1 (or vice versa)
This time interval exists when y >> y or vice versa. In this

interval, (2.45) reduces to

? - V| : (2.47)
( Em-En-Snm) 2+(1/4) 73

where S, is defined by

Sun = Sp - Sp - (2.48)

Note that in obtaining (2.47), 7y, has been neglected as compared with y,
in the denominator of (2.45) so that the equation will be consistent

with the condition ¥, >> 7.
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14

Tt may be pointed out here that (2.47) rigorously follows™ from
(2.44) if Ipy(z) = 0. This can be seen as follows: When Ipp(z) = O,

Fp(t) can be evaluated rigorously [cf. (2.41)] as

-1kt
Fy(t) = e Fi , t>0.

Substituting this into (2.4LDb) gives
t iF, 2
2 18T
|Umn(t) |© = u/‘ aT e Fo(D| . (2.49)

To obtain the behavior of |Umn(t)|2 for large times, i.e., y,t >> 1, one
has to consider fhe 1imit of (2.49) as t > ». In this limit, the inte-
gral involved in (2.49) defines the Laplace transform Of‘Fh(T), which is
6?;5(2) given by (2.33). Thus, replacing z by Ey in %?;n(z) immediately
gives (2.47). waever there is a slight difference between (2.47) and
the résult obtained with the figorous derivation. The S, and Yy are
evaluated at x = E, in (2.47), whereas they are evaluated at x = Ep in
the latter case. But since the difference between E, and Ep is of the
order of a line width, and furthermore since Sp(x) and y,(x) are slowly
varying functions of x, no distinction will be made between y,(E,) and
¥n(Ey) or between Sp(Ep) and Sp(Ep) .

In conclusion, one may state that when the widths of both initial
and final states are much smaller than the transition frequency (En'Em%
the transitiop probability per unit time appears to be a meaningful con-
cept. On the other hend, when y, >> 7,, the meaningful qoncept is the

conditional probability of finding the system in the state Im > after it
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is certain that a transition from the initial state |n > to any other

state has taken place (7t >> 1).

5¢ "m ™~ "n

When y, and 9, are comparable, there is no time interval in which
|Ugn(£) |5/t or |Upn(t) |? can be approximated by a time-independent quent-
ity. The conditional probability defined above becomes time-dependent
because the decay of the final state cannot be ignored when Ym is of the
same order of magnitude as Tn® However, there 1s a probability concept
which can be defined and computed unambigiously in all the above three
cases. This is the probability jE;n that a transition from the initial
state |n > will be into the final state |lm >. To compute g%nn’ one
first observgs that‘the approximation of constant y, and Y implies that
the states decay exponentially at all times. This can be seen from

(2.42), which can also be written as
(2.50)

Using this information and the probability gamn’ one can calculate
|Upn(t) |Z in an alternative way:
2 gt LT -Ym(t=t")
IUmn(t) 12 = | e 7,4t ?mn e (2.51)
0

or

Y =Yt - 7
Un(®) 12 = 22 (7 L P (2.52)

= "m
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In (2.51), the factor exp(-y,t')y,dt' is the probability that a transi-
tion will occur in dt' about t', Sznn is the probability that this
transition will be into |m >, and the last factor is the probability
that the system will remain in |m > in the time interval (t-t'). Note
that gzgn may be a function of t'. In obtaining (2.52), it is explic-
itly assumed, as an additional approximation, that Gamn is independent
of time. We shall now compare (2.52) with (2.45), which is obtained
directly by the damping theory. For the sake of definiteness we assume
that 7, > 7,. When (7n-7m)t >> 1, the foregoing comparison yields the

following expression for 65£n:

- _2___ 2 7mn 2,
G?;n 70 |an| GAERTES (2.53)

where we have introduced

Yan = |7a-7ml/2 - (2.54)

Tt is noted that gamn reduces to (2.47) when 7 << Y

The expression (2.53) of gamn suggests that 7nf§;n be interpreted
as the transition probability per unit time, Wy,, from |n > into [m >,
because y, is the probability of decay of the initial state per unit

time [cf. (2.50) ]:

4 7.
Won = 7n£§%n = glvmn|2 = E@?2+72 . (2.55)
~Sn. mn

It is again observed that W reduces to the conventional form (2.41)

when y << (E,-Ep) . The crux of the matter appears to be that the en-
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ergy conserving delta function in the conventional form of the transi-
tion probability per unit time is replaced in (2.55) by the last factor,
which is a peaked function.

Equation (2.55) is the starting point in the present theory of
line shape. The subsequent chapters will illustrate its application to
the study of line shape in neutron spectrum. In view of its importance
in the present work, we shall give an alternative derivation for (2.55)
with the hope that it may reflect more clearly the nature of the approx-
imation inherent in (2.55). We start with Wy, = |Umn(t)|2/t, which ap-
pears directly in the interpretation of many experiments in quantum
mechanics. Since U(t) is unitary, one has j{:'Umn(t)Ig = 1. Using

m
this relation, and multiplying the numerator and the denominator by
[Unn‘Ummlz; one can write Wp, as follows:

U 2 N U 2 U 2
Wﬁn = | mnl }2 | n;n’ _ }: [ n;ml ] (2,56)

2
lUnn"Umml n'#n n'#m

We have omitted the arguments of Uyn(t) in (2.56); the equation is of
course exact. We introduce the first approximation by evaluating the
first term, in the time interval |y -7,|t >> 1, using (2.45) and (2.50).
This approximation implies also retaining only the first term in the
expansion of i%ﬁn [cf. (2.28) ], and assuming that 7, and 7, are slowly
varying. To approximete the second factor in (2.56), we first let y,
and 7y, tend to zero and then let |E,-E;|t be large. In this approxima-

tion, the second factor is equal to |y,-7m|, as can be seen from (2.Lk4a)
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and (2.40). With the foregoing approximations, (2.56) reduces to (2.55).
The justification and the implication of these approximations are be-
yond our reach. Therefore, the validity of the basic formula (2.55)

will have to be demonstrated by its success in various applications.



CHAPTER ITIT

GENERAL FORMULATTION OF NEUTRON SCATITER:

BY MACROSCOPIC SYSTEMS

The expected number of neutrons having a momentum ﬁgf and spin Tg

in a system composed of neutrons and the scattering medium is given by

X(lif:'rf) = Tr[p(l_&’:Tf)D] ) (3.1)

where p is the number operator for neutrons of the specified kind, and
D is the usual density operator. The Hamiltonian H of the system con-
sists of the kinetic energy of neutrons, Hp, the Hamiltonian H® of the

scatterer, and the interaction potential V" between the two, viz.,
H = B + 5+ v, (3.2)

The interaction between neutrons is neglected. Let H° and V denote the
unperturbed Hamiltonian and the perturbation respectively, and let them

be chosen as

° = HP+m (3.3a)

B
i

v+, (3.3Db)

Where~j{=3 and H' are defined by (1.1). By computing the trace in (3.1)
in a representation {|n > } where H°, p, and the projection of the spin

of neutron are diagonal, one can expresslo’l5 the rate of change in the

26
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neutron number of the given kind as follows:

.

X = z Pni(nf'ni)wnfni ° (5‘)4')
ni,nf

In this equation, |nj > and |nf > are the initial and final states of

the system; Pni’ nf, and n4 are the diagonal elements of the density

matrix and the number operator, viz.,

Pos = Dngng » M1 = Pngng » NF = Pngnp s
i ini il fuf

and, finally, Wﬁfni

is defined by
Wneng = (1/8) | < nglexp( -1t /8) [ny >| . (3.5)

The eigenstates |n; > and |np > are labelled in detail as follows:

|ng > |Tli >ty > 1>,

1

Ing > Ing >|1p > |£ >,

where |7; > and |Tp > denote the spin states of neutrons, and |1 > and
;{s
If > are the eigenstates of including the spin states of the

scatterer, i.,e.,

(H-m)lu> = 0, (n=1,1) . (5.6)

The occupation numbers for neutrons are either zero or one. Hence,
(ng=ny) in (3.4) is either +1 or -1. The terms with positive sign cor-

respond to the scattering of neutrons into the momentum state ﬁgf and
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and spin state Tes whereas those with negative sign correspond to the
scattering out of the state (Ef,Tf). In a scattering experiment with a
monoenergetic beam of neutrons, the initial occupation numbers are

given by

1, for k = k., T =T{ ,

=
[ary
)
ta
e
3
SN
i

0, otherwise.

Henceforth, the spatial part of neutron states will be denoted by IE >,
The rate of change in the expected number of neutrons having a

momentum in 433%ke about fike can be computed from (3.4) as

Nea%s = (1/2) Z ) n ) W s (5D)

ed ke 4,74 f,7r

where Pni has been approximated by PiPTiPEi' Furthermore, PEi has been
replaced by unity since the neutrons are prepared in 'Ei > initially,
and PTi has been set equal to (1/2), assuming that the initial beam is
unpolarized.

The differential cross section per particle for scattering of neu-

trons from k ks

into de about e = (kp/kp) 5 d€ about é ﬁzkf/2m) is
obtained from (3.7) by dividing both sides by the initial neutron cur-

rent (fk;/mQ) as well as by the number of particles N:

b

02 £
o E.,8 = 5 ——%1— Z Pi Wy + (3.8)
(2Trh) . (i: fJTf)Ti)

=

n (3.8), O is the volume of normalization and m is the neutron mass.
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Except for writing Pni as the product of PiRTiPEi and neglecting the
off-diagonal matrix element of the density matrix, (3.8) does not con-
tain any approximation. The main approximation will be made at this
stage by substituting anni from (2.55), which is provided by the damp-
ing theory. In this approximation, anni is proportional to

|< ne |VR+H' |ng >|2, as can be seen from (2.55). Since H' does not de-
pend on neutron coordinates, and since the initial and final neutron
states are not identical, < nf]H'lni > = 0. Thus, one has only to
evaluate < ng|V(r,R) |n; >, where r is the position of the neutron and
R denotes the totality of the positions of the particles in the scat-
terer. To evaluate this matrix element, one may approximate V2 by the

Fermi-pseudopotential,l6 i.e.,
N

Vo= (Qnﬁa/m) Z azﬁ(_l:-ﬁg) ’ (3.9)

=1

where a;, is the scattering length of the [th nucleus. In general, this

scattering length is spin-dependent:

&, = A)e +B£(§_' )

where s and S are respectively the neutron and nuclear spin, and A and
B are nuclear constants. Use of the Fefmi—pseudopotential restricts the
following analysis to the scattering of slow neutrons (ei £ ev) whose
wavelength is large compared with the range of nuclear forces.

With the foregoing remarks, the differential cross section can be

obtained from (3.8) as follows:
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ik-R, . 2
|< frel j{:afe = =L|ity >| Tneng

(E8 - —L ) ) e " ,
1

2
Ti,Tf 1,° (Bs-Ee+E-Snpny) +78eng (3.10)
where
E = puiety ¥ - _lif )
- 2
gi,f = (“f12/2m) ki,f 3
£ - qgi - gf )
= lim - L1l
= lim -
ynfni - IIn[e-:-O'l' [an Fni I:I ’ (B»J.lb)
n |< n|V*+E' |ng >|2
Tp. = <ng|V+H'|ng > - . (3.12)
i CE 4
n%ni En Enl 1€

Equation (3.10) is the desired differential cross section formula
for the scattering of slow neutrons by an arbitrary macroscopic system.
The matrix elements appearing in this formula are expressed in the repre-
sentation generated by‘7(s. If the latter is chosen as H?, i.e., the
Hamiltonian of the scattering medium rather than a part of it, then the
shift and the width in (3.10) are caused solely by the neutron irterac-
tion. They can then be ignored when the intensity of the incident neu-
tron beam is not too high. Hence, in the representation generated by
Hs, one may take the limit Yafni 0 and obtain the conventional scat-

tering formula.
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When the eigenfunctions of H®° are not available, (3.10) offers an
approximation which is sufficiently accurate to include the broadening
and the shift of the lines which may be present in the energy spectrum
of the inelastically scattered neutrons. Whether such spectral lines
exist or not depends, of course, on the natureof the scatterer. If the
energy spectrum of the latter has discrete portions, then the neutron
spectrum has a line structure., Howéver, these lines may not be recog-
nizeble in the actual spectrum as a result of the broadening and over-
lapping of the adjacent lines. At any rate, (3.10) will be valid. The
subsequent chapter contains the application of (3.10) to the neutron

scattering from crystals.



CHAPTER IV

LATTICE DYNAMICS*

We shall give in this chapter a brief review of crystal dynamics.
The purpose of this review is to presenf those aspects of crystal dy-
namics that are relevant to the subsequent analysis of neutron scatter-
ing. To simplify the presentation, we shall consider a monatomic simple
lattice with one atom in each unit cell (Bravais Lattice). The gen-

eralization to polyatomic crystals is straightforward.

The Hamiltonian of a crystal can be written as follows:

KoL ) e k)
= oM Pia t 2 X atVsa, 2t 0
I

la’llal (LI'.J.)
R & R O R
where
1
H(B) = g—'- Z XzaXl'a'inanUza,l,a.’zvlalt , ()4..2)
Doyt Lo
—
(1 _ 1 o
H = -LT.'— XZOfxl'_O!'XKHO!”XI'”Of”' la,l'a',f”a",f'”am.
o, Lal
'enan;ln,av,n (h.B)

*For detailed discussion, see Refs. 18-20.
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In these expressions, M is the atomic mass, ‘fﬁa is the ath Cartesian
component of the momentum of the fth atom, X, is the qth Cartesian com-
ponent of the displacement from equilibrium of the [th atom and

Uﬂa,ﬂ'a' are the partial derivatives of the crystal’s potential energy,

viz.,

>*U

—_— . (L.4)
axwaxl ok X£=O

Uga, 1!

The meaning of the remaining symbols are self explanatory. The H(B)

and H(u)

are the cubic and quartic anharmonic potentials. The displace-
ments are measured from the equilibrium positions denoted by L. The

latter is given in terms of the lattice vectors aj as
L = &1ly t a2l + 83ls , (4.5)

where [, L2, and [g are integers known as the lattice indices. We
shall always denote them by a single letter [ for simplicity. The phys-
ical interpretation of U, 110! is apparent from (L4.1). It is the vec-
tor force acting on the atom located at [ when the atom at f' is dis-
placed by an amount 5%'. Since a homogeneous displacement of all atoms
in any direction causes no net force, the following condition should
hold:

ZUzoz,z'oc' =0 .

Ix

By considering a uniform expansion which does not destroy the transla-
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tional invariance of the crystal, one finds* that

z U,@O{,,@'Oﬁ',ﬂ"@” = 0 ’ (4.6)
z"

and Uﬂa,l'a',l"a" depend on (£'-4) and (£"-1) because of the transla-
tional invariance of the lattice.

We shall now express the crystal Hamiltonian in terms of phonon
creation and destruction operators. For this purpose, one first expands

x, and Zﬁ into normal modes as

)
Xp = Z \jﬁ/2MNW>\1 E)\ elg - (a-_l_%j'a}\,) ()4‘»7)
A

and
-ig- 4
£ = }: NI\ M/2N g; e e (a{fa_x) . (4.8)
A

In these expressions, N is the number of atoms within the periodic
boundaries. The running index A\ denotes the pair (g,j), where g 1s

one of the N allowable wave vectors and J 1s the polarization index
which takes the values j = 1,2,3, in a Bravais lattice. Note that

-» = (-9,J), and indicates a plane wave traveling in the opposite direc-
tion to that corresponding to A. The frequency of the normal mode
described by A is denoted by w). Since wé allow negative as well as

positive values of g, w) is always positive and satisfies w) = w_,.

The latter condition will be used very frequently in the followilng

*See p, 3% of Ref. 17 or Ref. 6.
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+
analysis without being pointed out. Finally, 8, and a, in (4.7) and
(4.8) are phonon creation and destruction operators* which satisfy the

known commutation relations
[ak,awl = 0 P [ak,a}tu] = 5}\,}\,! o ()-#.9)

It is straightforward to verify that the commutation relation
[ng,7aglal] = iﬁ5££|ﬁau| is satisfied owing to the following orthog-
onality relations:
Ze*~e. = 8 (4.10)
gJa g'-Ja! Oug o oL\
J
and

Z (L) N, - (4.11)
q

Substitution of (L4.7) and (4.8) into (4.1), (4.2), and (4.3) yields

e = z ’hwx(a{ék + %’-) , (L4.12)
y

3

(3) 1 Z T( +

H = 5"5— G>\‘l>‘°2>\'3 ( a_%ﬁi+a>\i) P ( ll'o 15)
N1y he,hs i=1

L
Y _ 1 C oot |
#Y = Z Cadehara J( (Bagterg) - (hd)

>\al,>\o2,>\.3,>\.4 i:l

*The symbol a was also used for the scattering length a; in (3.9). The
» different subscripts will distinguish between these two usages.



36

Tn these expressions, the symbol G is defined by

1 ANY? 8(g,a1+aetas)

Ghlkehe = SMN dp~—————-—
A1 A2 A

}2 e'i(g2~21+gs.22)

hyhp
(w|a”)

Uoot, hyo' bt SAq08A0 Eaga” (L.15)

The definition of (}T%‘gl}\ekax‘4 is similar to that of Gk1k2K3° The explicit
form Gy aphgh, WLl DOt be needed. The symbol 5(_,9__l+c_3_2+%_3) in (4.15)
is a kronecker delta expressing the conservation of the wave vectors in
phonon-phonon interactions. The vector g is a lattice vector in the
reciprocal lattice.

Enormous typographical simplification can be achieved if we agree
to drop A.in the subscripts whenever no confusion arises. According

to this convention, we have the following abbreviations:

W)\qi = Wy, G>\«17\2>\8 = Gl;2,3 5 a)\’i = a3 , a_)bi = a_i .

The following symmetry properties of Gi, 2,3 , which play an im-
portant role in the subsequent analyéis, can be proved directly from

(4.15) and the translational invariance of Uza,z'a',z”a"=*

Gi,2,3 = Gz2,1,8 = 0(1,3,2 - (L.16)

*See p. 304 of Ref. 18,
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Tt also follows readily from (L4.15) with &N T e that

*

G-1,-2,-3 = Gi,2,3 - (k.17)
The special case of Gy,2,-2 will be encountered very often. According
to (4.15) it is proportional to

. \' _igseh
§: expl-iga-(b1-h2) WUoy 1 o1 hoa = j{: e = = j{: Uoa", bt ,htar
hyho h X

The summation on h' vanishes as a consequence of the condition (L4.6).

Thus, one obtains the important result*
Gr,2,-2 = O . (1.18)

We now return to H(B) as defined by (L4.13). The eight terms con-
taining the combinations of three phonon creation and destruction op-
erators can be arranged, by virtue of the foregoing symmetry properties
of Gi,2,3 , as follows:

1
53) - 5 G1,2,3l(atafzatsta az8) + 3(a,atsagtatiagats) ] .
1,2, (4.19)
The derivation of (4.19) is given in the Appendix.

The relative magnitudes of the various anharmonic potentials, in

particular those of the cubic and gquartic anharmonic potentials, will be

*See for example p. 57, second footnote of Ref. 17, or footnote 22 of
Ref, 6.
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needed for a consistent scheme of approximations. Van Hove* has pointed
out that the expectation values of H(n) decrease very rapidly with in-
creasing n at temperatures which are low compared with melting point.

In fact, he has given the order of magnitude of the expected value of

the nth order anharmonic potential as
-2
ﬁw(u/ro)n

per unit volume for n 2 2, Here, w is some mean vibrational frequency
of the crystal, u is an averaged atomic displacement at a given temper-
ature, and ry is the nearest-neighbor separation in the lattice. As
pointed out also by Maradudin and Fein,6 the anharmonic Hamiltonian

can be written schematically as
SO o) B> € BN (14.20)

where p = (u/rg) .

To complete these introductory remarks, it may be mentioned that
the eigenstates of g?sj which form the basic set in the present form-
ulation, can be labelled most conveniently in terms of the phonon oc-

cupation numbers., Thus, an eigenstate [u > can be specified as
o> = |oh,nf, ...n0f, ..>, (4.21)

where n& is the number of phonons described by A\ = (g,j). The mean

*See p. 11 of Ref. 21.
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energy in this state 1is

\ 1
EU« = z 'hw;\( nst + §' ) .
A

Since all the operators in the cross section formula (3.10) can be ex-
pressed in terms of the creation and destruction operators, it is suf-
ficient to note the following relations to evaluate all the relevant

matrix elements:

+
gy lny, «ooomy, o> Nop+l |ny, ..oomy +1, oo, (h.22a)

ay [Ny, ooo My, Lo Noy o |ny, .oy -1, s> . (B.220)



CHAPTER V

DIFFERENTTIAL CROSS SECTION FOR SCATTERING OF SLOW

NEUTRONS BY AN ANHARMONIC CRYSTAL

A, CROSS SECTION FORMULA

We are now in a position to write down the neutron cross section
formuls for a Bravais crystal. Substituting R, = f+x, in (3.10), as-
suming that the spin and spatial states of the scatterer are separable,
and denoting the spin states by |s; >, |s¢ > and spatial states by
|1 >, |f > [note that |i > and |f > in (3.10) include both spatial and

spin states], one obtains

ke ir-(£-4") 1 * *

2L 51,8¢ i,f
Ti,Tf
anni
X (5.1)
Kgé £ 2+ 2
- WAL~ eny Tneng
N
where
Aﬂ = < TfolalelSiTi >, (5°2)
iKeX
1, = <fle=Hi>, (5.3)

In this expression, m) denotes the difference between the final and ini-

tial occupation numbers, viz.,

Lo
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Henceforth we shall specify the final states in terms of m, rather than
in terms of niu Then, the superscript i on ni becomes redundant and
hence will be omitted. Note that the summation on the final spin states
appearing in (5.1) cannot be performed because the width Tneng and the
shift Snfni are also spin-dependent. However, when the width and the
shift due to the neutron interaction are neglected, then the last factor
in (5.1) becomes spin-independent, and the summation on spin states re-
duces to

1
5 z < si'ri|aza'£, lSiTi >, (5.”)

Si,T3

The foregoing discussion indicates that the spin dependence of the neu-
tron-nucleus interaction does not affect the shape of the lines. (This
point will be more apparent in the subsequent section.) Therefore, we
shall ignore spin effects and replace the average in (5.4) by a®. The

cross section formula (5.1) then reads

kra? \ ' ik.(£-£") \ Yneng
A f LA A2 . n
of€.,8) - e Z e Py I,I} LS
T i,f €. frym- 2
) WA Snfni neng
A

(5.5)

Our next task will be to compute the Iy, Ynfng? and Sﬂfni appearing in

the cross section formula.
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B. COMPUTATION OF MATRIX ELEMENTS OF exp(iffzi)
This section is devoted to the computation of I, defined by (5.3).

Using the expansion (4.7), one can write X, also in the following form:

Xy = z (cigey + apgey) (5.6)
A
where
- 1/2 .
oy = (B/2MNy) M3 (e, k) exp(ig-a) (5.7)
The matrix element to be computed is
I = <7 { exp[i(o&la;: +ay,e) 11>,
Using the operator identity

AB a3 ~(1/2)[4,B]

) (5.8)

where A and B are operators satisfying [A,[A,B]] = [B,[4,B]] = 0, and
expressing the initial and final states in terms of occupation numbers,

one gets:

_ 5 . +
I, = ;the XA/ < my+n |elaifa elakzaln >, (5.9)
i x AN A

where Xk denotes
X)\» = lOf)\me'z = ('fl/EMNWK) I_e_}\"’ﬁlz o (5.10)

Note that Xy 1s independent of f. To compute the matrix element in

(5.9), one uses the following relations:



n
ioa (i0)® n!
e n> = — Tooe)T |n-s >, (5.11)
S=
o0
t
s Ko+ — - 1 10y%
% s > = }: ’(?nfs;{. (l%,) |n-s+t> . (5.12)
t=0
The result is
. t [
T _ -X>\/2 ( 1OC}J) ( laiﬂ) I].}\'.. ( II}\‘—S‘HJ) !
)5 - ! Bn}\"‘m}\‘, n}\'—S‘l‘t
t=0 s=0 | (ny-s) !
or
n, .
-X\/2 m -X
I, = )‘ e >“/ (ia M K\/ H(nytmy) ! Z (-%))
A , <=0 s!(ny-s) !(my+s) !
(5.13)

The last expression can be written in a compact way by recalling the

definition of associate Laguerre polynomials, viz.,

n

) ol (0
o (n-s) !(n+s) ! s!

i

Lp( %)
as

m i
I, = ,TE e~%)/2 (10F,) ™ [ Pac an?z(xk) ;o (5.1h)
A (Il)\"*-m}\)ﬁ

which is the desired formula.

The product Illy, which appears in (5.3) follows from (5.1k) as

imyg-(£'-4)
I,@Il* = ):\oE ¢ - g(ﬂpmpxy\) b (5v15)
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where

Doz = a0 B o ()12 . (5.16)

(n+m) !

We shall now calculate the thermal average of €7knk,mx,xx) with

respect to the initial occupation numbers, i.e.,

il

( l‘Yi) z Yink g( DMy X}\) ’ (5. 17)
n>\=O

< g (nx,m;\.,xk)>

where

e-(‘ﬁwk/2kT)

y, = (5.18)

Dropping the subscripts and arguments, and combining (5.16) and (5.17),

one finds
o> = (1-y?)xex Zyzn 2 ()
0 (n+m) !

To compute the summation in the last expression, one may use the follow-

ing expansion, given by Magnus (p. 85, Ref. 22):

R 28 +
nd [I%(X) ]2 _ Z 2 I;ln_is(g}() . (5°l9)
(n+m) ! s!(mts) !
s=0
The result is
’ 28 \
<527> = (1-y®)x"e™® }j _TE_——-T EJ Iﬁtis(gx)yzn .
= st(m+s) ! s (5.20)

The summation on n can be performed by using the generating function for

the associated Laguerre polynomials (p. 84, Ref. 22), viz.,
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-xt/(1-t) 2
S - ) e

(1-t)
n=0

as follows:

o0}

-2xy2/(1-y@
z mzs ) e | es e y2/(1-y3) (.21
=7 m+2s+1 ’
(1-y3)

n=0

Inserting the last formula into (5.20), one finally obtains*
«J> - ym e X(147%) /(1) 2Xy> (5.22)

where Ip(x) is the modified Bessel function of the first kind. This
formula will be used in Section D when we are discussing the cross sec-

tion formula.

C. WIDTH AND SHIFT FORMULAS
In this section, we compute 7nfni and Snfni' They are defined by
(3.11) and (3.12). It is observed from the latter that they involve

the matrix element |< n|V™+H'|n; >|%, which can be written as follows:

L < ulf™® 11> + 5 2Rel < u|O(0) |1 > < ulm |1 >] 8(k,ky)
+l<plE | >% (k) (5.23)
where 0@ E s the Fourier transform of Vn, i.e.,
n 1 iKer o2\ iK.R
dQ'(_) = g b/‘ a°r "= = Vn(g) = 0 j{l ag e ==L,
L (5.2L)

*¥An alternative derivation of (5.22) was also given by O. Ruehr, the
Radiation Laboratory, The University of Michigan (private communica-
tion).
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and where K = 51-5. It follows from (5.24) that L}p(o) is independent
of the atomic coordinates El; thus the matrix element < u|L}p(O)|i >
is proportional to ;. The second term in (5.23) is then nonvanish-
ing only for n = ns. Since the summation in (3.12) excludes the case

n = ni, there is no contribution from this term to the width and shift.

Accordingly, one can split Ip, in (3.12) into two parts as

n D
Tpy = Ing 11 (5.25)
where
|Ving |~
o= Voo - Z — (5.26)
i 1 Ep-En;+ie
n#ns 1

= By - Z _‘.}.I_‘l.l_l— . (5.27)

u%i Eu-Ei+ie

The first term, ng, represents the broadening and the shift due to
transitions caused by neutrons. It corresponds to the natural broad-
ening of the optical lines. The second term, P?, is due to transitions
caused by phonon-phonon interactions. In many applications, the neu-
tron width is expected to be small compared with F?; Therefore, only
the latter will be considered in the remaipder of this work. As indi-
cated by the subscript i, FE depends only on the spatial part of the
crystal states provided H' does not include spin dependence.

Now consider (5.27). First note that Htg) has no diagonal matrix

elements since it involves terms containing an odd number of creation
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and destruction operators [cf. (4.19)]. The first term in (5.27) starts
with H(u), Which is second order in u, as indicated by (L4.20). The re-
maining off-diagonal matrix elements in (5.27) start with H(B). But,
they are also of the second order in u because of the square. Hence,

F? can be given, in the lowest order, as

r1i° I G i|H(5)(]€S-Ei+ie)—lH(5)|i >, (5.28)

ii

This is the quantity, provided by the damping theory, which gives the
width and the shift according to (3.11). The shift is related to the
real part of F?. Hence, one finds that the quartic anharmonic potential
contributes only to the shift in the lowest approximation, whereas the
cubic anharménic potential contributes to both the shift and the width.

The remaining task is to compute the matrix elements in (5.28).
First consider Hg?). It is clear from (L4.14) that the nonvanishing

(4)

terms in the expansion of H are those that contain creation and de-

struction operators in pairs. The possible permutations are listed be-

low:
aiag(ala2 + apa,) = 2NNz
afa,atas, + alasaba; = N;(2No+1)
ala,azad + ataqa,ad = 2N;(Np+1)
a,afasad + agajajat = (Wy+1)(2N2+1)
ajasatal + ajasabal = 2(Ny+1) (Not+l)

ajajabas, + apafaba; = Ny(No+l) + (1+N;)No
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where N; is the number operator, i.e., N; = a{ai. We recall that a;

and Nj denote a); and Njy;. Since (L4.14) involves a summation on A,

+ +

and Az, the terms containing aj] and a3 in the reversed sequence should

not be considered separately. Using the invariance of Gi,2,3,4 with

respect to the interchange of the subscripts, one obtains

1
gﬁ) -} j{: Gi,-1,2,-2(ninp+n;+no+3) . (5.29)

;2

L L
As indicated by (3.11), the shift depends on Hgf)-H(-)

15 - The matrix

element in the final state can be obtained easily from (5.29) by re-

placing the occupation numbers nj by nj+m;. Hence,

MO

1
ff = ? z Gl,-l,2,-2 (2n1m2+mlm2+ml) R (5.50)

1,2

We now consider the second term in (5.28). To compute the matrix

element involved, we first calculate H(B)[i >, The use of (4.19) yields:

H(5)li >

| Gi1,2,3 1 /2
2 3! [[( l+n._ 1) ( l+l’1_2) ( l+n-3) ] / ‘n- 1tl,noo+l,n_g+1>
1,2,3

1/2
[ninsns] / In,-1,n5-1,n5-1 >

+

+

1/2
3[ny(1+n.2)ns] Iny-1,n_2+1,n5-1 >

+ 5[(l+n-1)n2(l+n-3)]l/2 In-1+1,n5-1,n-5+1 >’} . (5.31)

s -1
Since the operator (}? -E;+ie) is diagonal in {|i >}, it does not alter
the occupation numbers in the intermediate state H(5)|i >. Therefore,

(3)

the changes in the occupation numbers caused by the first H have to
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be removed by the second H(B). It is convenient to write the latter
by reversing the sign of the subscripts and using G-l,_g,_s = G{’g,s

as follows:

(3)

H = g? }Z Gi,g’3[aia§a§+a_la_2a_3+5(a_laEa_3+a{a_2a§)] .
1,255 (5.32)
Each term in (5.31) has to be matched by the appropriate term in (5.32).
For example, the first term in (5.31), which corresponds to the crea-
tion of three phonons characterized by -A;, -A2, and -\3, will be paired
by the second term in (5.32). However, since two sets of three numbers
can be paired in 3! ways, this term has a factor 3!. Similarly, one
can see that the combinatorial factors for the second, third, and
fourth terms in (5.31) are 3!, 2!, and 2! respectively. With the fore-

going remarks, one finds:

<‘i|1‘{5) (J(S-Ei+ie)-lH(3) Ii S = Z |G1)2;3l2 (l+n-1) (1+n-2) (14n-3)

rzfl .
1,2,% 5 WiHWotWatic
ninen n,(l+n_s)n l+m,)n.o(1l+n
- 1491443 - +5 l( 2) ? +5 ( l) 2( - 3) . (5.55)
WitWotwWag=1€ -WitWo-Watie Wi-Wotwatle

In obtaining (5.33), we have not considered the special cases in which
a phonon is created and absorbed at the same vertex (instantaneous
phonons) , or in which two or three intefmediate phonons are identical.
Instantaneous phonons correspond to those terms in (4.19) in which a
pair of creation and destruction operators belong to the same mode,

viz., N2 = =Ag OF A2 = -A;. Since these terms are multiplied by G; 2,-2,
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they vanish by by virtue of (4.18). Hence, instantaneous phonons do
not occur at three phonon vertices in a Bravais lattice.6 Identical
intermediate phonons arise when two or three creation (or destruction)
operators in (4.19) are of the same kind. As an example, consider the
second term in (L4.19) and assume that Ao = A3. This term would give
rise to
_ni(np-1)no
Wyt2wo-1ie

which is different from the corresponding term in (5.33) obtained by
setting Ao = Az. The appropriate corrections for these special cases
can be included in (5.33). But their contribution can be ignored, as
willl be discussed presently.

The matrix element in the final state can be obtained from (5.33)
again by replacing nj by nja+my. The difference between the two matrix

elements is then found as:

< £ |03 (JP-merie) D) |2 > - < 1|H3) (F5-Byrie) HD) |1 > -

2
z |¢1,2,3]" | 3my(14n0) (1+ng) +3myma( 14ng) 4mymoma

3! Wy Hiatigtie
1,2,3

_ 2myNpohat3mymonastmy Mol

witwotwag-ie

.3 2mq ( 14n-5) ng+m-osn,na+2mM-png+mms( 1+n-o) +m;m-smg

-WitWo-Watile

+ 3 2myn-o( 1+ng) +m-5( 1+n4) (1+ns) +2mim-s( 1+ng) +m;mgn-o+mm-smg

Wy -WotwWwgtie

(5.34)
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The shift and the width can now be obtained by inserting (5.30) and
(5.34) into (3.11):

1 . 1 2
£, = 5 j{: G1,-1,2,-2 ma(2ny+l+mp) - o }Z |Gl,2;3l

1,2 1,2,3

« pp 4 mu(l+nptng) tmyms | 2my(ng-n.p) -m-p(14n;+ng) -2mym- p4mymg

b4

W1+W2+W3 Wo-Wi~Wg
(5.35)
yo. = z }: |Gy 2 3|2 |2m, (na+n-p+2n-_ong) +m-po( 1+n;+nz+2nina)
fi 2{1 l, Py 1 3 2 243 2 1 3 143
1,2,3
+ mym-o( 2ng+l) Hmyms( 2n.o+l) +2mym_omg |8 Wy -watwa) . (5.36)

In the case of creation or annihilation of phonons of one kind, the
above formulas simplify considerably. Then, the final state differs
from the initial state in the occupation number of the excited (or de-

excited) mode only. Let the latter mode be denoted by Ay. Substituting

m\, =My, for \=2Ay,

0, otherwise ,

one obtains the shift and the width in thise case as follows:

D m, m 2
Sfi = §9 E{: Go,-0,1,-1(20,+1) - 5% }Z Go,1,2|
1 1,2

414+ -- +N. -
x PP ling+ns | N-3-No _ l+n.q+n-o
WotW1+Wo Wo-Wi+Wo Wo=Wi1=W2

’ (5.37)
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7%1 = gﬁ |mo|'§z |Go,1,2|2 {:[(l+n—1)(1+n-2)+n—1n—2]5(W0’W1'W2)
1,2
+ 2[(l+n-l)n2+n_1(l+n2)]5(wo—wl+w2i} . (5.38)

Note that we have disregarded the terms containing the product of two
or three my in obtaining (5.37) and (5.38). These terms are nonvanish-
ing only in the special cases discussed previously. Consider the terms,
both in (5.3%5) and (5.36), which contain miym_p. They are nonvanishing
only When M = -M2 = Ao But in that case, G\ .\ is vanishes by (4.18).
The terms containing mjmp (or myms) , which are proportional to Gxokokl’
do not necessarily vanish. Their contribution to the shift and the
width in (5.37) and (5.38), however, may be neglected as compared with
the remaining terms because they involve one more constraint than the
other terms.

Equations (5.37) and (5.38) are the shift and width formulas of
the present theory. The following physical interpretation for the width
seems to be in order. Suppose that a phonon (So:Jo) has been created
by neutron interaction. This phonon is of course indistinguishable
from the already existing phonons in that particular normal mode. In
view of this indistinguishability, the concept of lifetime of the
created phonon requires careful consideration. One can define the life-
time of‘an additional phonon in a given normal mode as the reciprocal
of the absolute value of difference between the widths associated with

two crystal states which differ from each other by 1 in the occupation
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number of the mode described by go’jo' The lifetime defined as above
depends on the initial crystal state. The mean lifetime can be obtained
by taking the thermal average.

According to the foregoing definition, the lifetime of an additional
phonon is determined by the tramsitions involving the normal mode gn,Jq.
There are four types of such transitions if the interaction between
phonons is approximated by the cubic anharmonic potential. These are

shown schematically as

(f_l_o;jo) : (gl;jl) + (g?_;JE) 2 (50593)
(gO,JO) +(q1,d1) = (92,32) . (5.39b)

The first and the third of these transitions correspond to the annihila-
tion, and the remaining two to the creation, of a phonon in the normal
mode under consideration. An inspection of (5.38) reveals that 721 con-
tains Just these four phonon processes with appropriate amplitudes. The
concept of lifetime as introduced above applies equally well to the
annihilation of a phonon.

In the zero temperature limit, the foregoing definition of phonon
lifetime becomes more concrete. In this case, the width of the initial
state, i.e., the ground state of the crystal, is zero. Since there is
only one phonon in the final state, the lifetime of the latter is actu-

ally equal to the mean decay time of the created phonon.
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D. DISCUSSION OF THE CROSS SECTION FORMULA

We are now in a position to discuss some aspects of the cross sec-
tion formula (5.1). Since we have decided to specify the final state
in terms of my, 1i.e., ni = my+tn), the summation on final states in (5.1)
can be replaced by summation on (ml,mz,...mk,...mBN). The limits of
these summations are -nj) and +w. But, as indicated by (5.15) and (5.16),
the matrix elements of exp(iﬁoﬁﬂ) vanish automatically when my < -1y .
Therefore, one can replace the lower limits by -». Since the limits
then become independent of the initial occupation numbers, the order of
the summations on initial and final states can be interchanged. With
these remarks, the cross section formula takes on the following form:

K AN +00 0
a2
G(W:é) =7 E']f? l:)f z Z (1‘3’%) yan%'F( m}\,:ﬁ)j( m}\,)n}ux}\)

A=Ll myp=-0 n»=0

x [(m,n) , (5.40)

2
w-z‘ wama-S(m,n) | +I®(m,n)
A

where we have introduced

Rm,8) = § z HEmd et (5.41)
L'
v o= (B/2m) (x5-k5) (5.42)
F(m;n) = P(ml;mZ;”°m5N3nl)n2°°°n3N) = (l/’ﬁ)ygl b (51*5)

S(m,n) = S(ml,mg.,omBN;nl,ng...DBN)

(1/8)82; - (5.4h)
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The expression for S%i and 7%1 are to be substituted from (5.35) and
(5.36). All the quantities entering the cross section formula have now
been defined explicitly. The remaining task is to consider the various
limiting cases, such as zero and high temperature limits, and to ex-
tract some information about the shape of the observed peasks in the en-
ergy spectrum of scattered neutrons.

First, we want to show that (5.40) reduces to the cross section
formula for scattering of neutrons by harmonic crystals, when I' and S
tend to zero. Indeed, when I' = § = O the last factor in (5.L40) ap-
proaches a delta function and becomes independent of the initial occupa-
tion numbers. Then the thermal average of~<7QmX,nk,Xk) can be performed

independently, which follows from (5.22) as

00

Z (1-72) 72 Yoy oy %) = 3y &2 Iny (P2) (5.45)
n>\=0

where we have introduced for brevity
2w o= X (1+%) /(1-v5) (5.46)
P, = 2%;/(1-v3) . (5.47)

The factor exp(-2W) is known as the Debye-Waller factor.

With the foregoing remarks, (5.40) reduces to

+°° .
o(w,8) = a®(kp/ks) e }: 8 <r —wa) jtF(mm)y;mK Iy (Py)
N A

m==co
(5.48)
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where m denotes the set (ml,me,oaomBN). This formula is identical to
the differential cross section formula obtained by Zemach and Glauber.*23
The novelty about (5.48) is that it is obtained, without resorting to
Bloch's theorem to perform the thermal averages, by the mathematical
identities proved in Section B. The present derivation seems to be
more straightforward. It might be informative to mention that we could
not use Bloch's theorem in the original cross section formula (5.1) be-
cause of the last factor in the formula which appears as a delta func-
tion in the conventional formulation of the cross section. We could
not perform the summation on final states, and this is needed for the
application of Bloch's theorem.

Second, we investigate the cross section in the zero temperature
limit, where all the occupation numbers are zero. As mentioned pre-
viously, the crystal is in the ground state in this limit. Equation
(5.40) reduces to the following form as T + O:

3N +co
k -
o) = 2L O Df ) R0 (V)
A m>\_=0

X I, 0) , (5.19)

2
W -z wamy~S(m, 0) | +r3(m,0)
A

where we have used

T myp0,5) = NG my)

¥See also ﬁ. 52 of Ref. 2k,
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In the last formula, I'(m,0) and S(m,0) are to be obtained from (5.35)
and (5.36) by set%ing n, = np = ng = 0 everywhere. Tt is noted that
(5.49) contains only the positive values of my as a result of my, in
the denominator. Physically, this implies that the crystal cannot give
energy to neutrons when it is in the ground state, The cross section
for one-phonon excitation, which is probably the most interesting case
from the experimental point of view, can be obtained from (5.49) by

setting

m}\. = l, fOI’ )\. = }\o )
= 0, otherwise.
The result is
o(w,8) = aZh ke (g,k-q.) } |keol® I
’ T 2aM ki 8,2 "Ho -
o Yo (ST (5.50)

where S and T are obtained from (5.37) and (5.38) by substituting

my, = 1 and ny; = O:

1 }: 1 E: 2 1 1
S =— Go, - -1 t — G PP -
L) ooty ) ool r 2 ],

1 1,2
(5.51)

T 2

r = 72 j{: lGo,1,2| B(Wo-Wi-Wz) . (5.52)
1,2

Apart from differences in notations, this formula is identical to that

6

obtained by Maradudin and Fein.
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We now consider the cross section at a finite temperature. Equa-
tion (5.40) expresses the cross section as a welghted superposition of
a sequence of Iorentzian distributions with different widths and shifts.
For each initial and final state there corresponds a Lorentzian distribu-
tion. For a specified final state, the average of the appropriate
Torentzian distributions over initial states gives a peaked. curve which
corresponds to an observed line in the neutron spectrum. Although the
individual distributions have a Lorentzian form, their thermal average
will not in general be a Lorentzian distribution. However, as an ap-
proximation, one may replace the resultant curve by a Lorentzian dis-
tribution with an average width and shift. Denoting the average width
and shift by T(m) and S(m), one obtains the following cross section
formula:

A 82 kK oy \ T(m =1,
O'(W)g) = -T-r-— E;' e i ) . F(mh,_li) y>\ Im}\(PK)
A

=0 w*ZW}JHMS(m) +T%(m) (5.53)
A

The average shift and width are to be obtained from (5.35) and (5.36)
by replacing the occupation numbers n, by their mean values, viz.,

o = yi/(l—yi)o Note that the approximation made in getting (5.53)
from (5.40) is equivalent to replacing the average of a function by
the function of the averaged variables. The croés section for one nor-
mal mode interaction is obtained again by choosing the set

M= My ,Tp. Mgy in (5.53) as m = (0,0,...m,0,...). The result is
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I( |mo|)

[w—mowo—g(mo)]2+T2(|mo|)

th I(Py) (5.54)

Mg

A a2 kr -ow -m
O(Wye) = — ¢ F(mojﬁ)yo © ImO(Po)

where

—_— m, ) - l
S(my) = 5% j{: Go,-0,1,-1 (2n,+1) -z Ez |Go,1’212

1 1,2
% PP l+I’l_l+—I-1-2 + El—Eg _ l+El+Eg i (5055)
- 7 2 - - = =
T |mol) = vl jmo | Z |Go,1,2l [[(lﬂll)(l+n2)+n1n2]5(wo'W1-W2)
12
+ 2[(l+ﬁi)ﬁé+ﬁi(l+ﬁé)]S(WO'W1+W2{} . (5.56)

Equation (5.54) can be further simplified in many applications by using

the asymptotic value of Iy(x) for small arguments, i.e.,

1) ~ (x/2) ™! il
as follows:
A a2 kf oW 1 ’ﬁ 5 lmOl
O(W;@ = 'H—E-l- e F(mo;_ﬁ_) ]moi! {QMNWO [_lf_-goljl
—Bﬁwo(|mo|—mo)/2 -
: I [mo ) (5.57)

X
(l_e-ﬁﬁWO)lmol [w—womo-g(mo)]2+32(|mol)
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In the zero temperature limit, this cross section vanishes when mo_<’0
as a result of the factor exp[-phwy( |mg|-my)/2]. This result is in
agreement with (5.49). As a matter of fact, (5.57) reduces exactly to
(5.49) when the temperature approaches zero, although it involves one
more approximation over (5.49), i.e., replacing the width and the shift
by their mean values. The reason for this is that the latter approxi-
mation becomes exact in the zero temperature limit.

The dependence of the cross section on m,, i.e., the number of
phonons exchanged between the crystal and the neutron, is exhibited by
(5.57). Because of the exponential factor in the numerator, the cross
section for the energy transfer from the neutron to the crystal is
greater than the cross section for an energy transfer to the neutron
byva factor exp[-Bﬁwo|mol]u At high temperatures, both processes be-
come equally probable, The shape of the pegks in the neutron spgctrum
depends on |mg|. Hence, the shape is the same for both the creation
and annihilation of phonons. Furthermore, since the width 1s propor-
tional to |mg|, the peaeks are broadened and reduced in height when the
energy exchange gets larger. The shift of the lines is proportional
to my , and thus depends on the direction of the energy transfer.
There will be two identidal peaks in the neutron spectrum on both sides
of the incident neutron energy, corresponding to the creation and an-
nihilation of equalknumber of phonons.

The cross section formula agrees exacuiy wivu vuacr Uvvaiucu VY

Marsdudin and Fein® except for the value of the width (5.56). The dis-
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agreement lies in the sign of the terms T;T, and I;(1l+mp) in (5.56) .
These two terms arise from the imaginary part of the last term in (5.3L4)
when e+0+. One observes that the real parts of the last two terms which
enter the shift formula are subtracted, whereas the imaginary parts are
added. Since our shift formula agrees exactly with that obtained by
Maradudin and Fein, it is very unlikely that the foregoing discrepancy
in the width formula is Jjust an arithmetical error in the present cal-
culations. Moreover, the terms appearing in the width formula (5.56)
have simple physical interpretation. As mentioned earlier, the first
and third terms correspond to transitions in which a phonon is annihi-
lated, whereas the remaining terms whose sign is the point of disagree-
ment correspond to those transitions where a phonon is created. In
either case the number of phonons in the mode under consideration
changes. It is not clear to us why the transitions corresponding to an
increase in the phonon number should tend to decrease the width, and
thus to prolong the lifetime.

As a result of the foregoing discrepancy, the temperature de-
pendence of the width at high temperatures is quadratic in our case,
whereas it i1s linear according to the result obtained by Maradudin and
Fein. The expression for the shift and width in the high temperature
limit is obtained by replacing the mean occupation numbers in (5.55)

and (5.56) by kT/fw). Hence, one obtains



62

[ 2 .
- m - - G
S(m,) = 2hg KT 12 j{; Go,-0,1,-1 _ }Z | Ozlz2|
I Wi 1,0 hw,Wo
% PP WytwWo + Wo=Wiy _ WitWo , (5 . 58)
WotWytWo Wo-WytwWa Wo=W1-Wo

T( |mg|) = w|mg] (}g—g)g Z —lG—sz—Eﬁ—li [8(wo-wy-wo) +8(Wo-wy+wo) ] .
10 2 (5.59)
As a final remark we note that the cross section formula at a

finite temperature, i.e., (5.53), was obtained from (5.40) by replacing
the width and the shift by their mean values. As discussed in Ref. 10,
this appfoximation is Justified when the width of the individual
Lorentzian diétributions corresponding to different initial states is
large compared with their shift. If this is not the case, the observed
width.will be dominated by the statistical spread in the locations of
the narrow Lorentzian distributions. A measure of this statistical

spread is the standard deviation of S(m,n) defined by (5.4k4), viz.,
r’(m) = 82 -§ . (5.60)

As discussed in Chapter IV-D of Ref, 10, I'5(m) may be added to I'2(m),
as a first approximation, in order to include the statistical broad-

ening in (5.54). The relative magnitudes of Ia(m) and T5(m) will de-
pend on temperature. We shall not attempt here to write down the ex-

pression for the statistical broadening because it is rather long and
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not very informative. However, it is straightforward to calculate Fg(m)
from (5.44). We only note that it is a linear, homogeneous function of

the variance ci of the occupation numbers, i.e.,

— o BIw),

0?\ = ni— ny = —_—___(l_e_ﬁhw%-)z . (5.61)
At zero temperature all oi are zero, indicating that the statistical
broadening, as expected, is not present. At high temperatures, ai and
thus Fé(m) are proportional to T2, whereas according to (5.59), T'2(m)
is proportional to T4, Therefore, it may be expected that the statis-
tical broadening will not be significant at any temperature in a crys-
tal, It is interesting to recall that the width of the optical lines
from a plasma is determined by the statistical broadening in the quasi-
static limit, i.e., when the motion of the perturbers is sufficiently
slow. In the impact limit, the width is determined by the finite life-
time of the emitter states., It thus appears that the width of the ob-
served peaks in the neutron spectrum is caused primarily by the finite
lifetime of the crystal states rather than by the statistical spread

of the lines.



CHAPTER VI

SUMMARY AND CONCLUSIONS

In this work, a general theory of line shape which is applicable to

the study of both neutron and photon spectra has been developed and used

to investigate the scattering of slow neutrons by an anharmonic crystal.

The starting point of the present theory is (2.55), viz.,

[Unn(t) 12 2 | 707l
Wmn = -5 [anl .

[(Bp+Sy) -(En+Sp) 15+(6/2) (7p-7m) Z

This formula reduces to the conventional expression of the transition
probability per unit time from the initial state In > into the final

state |m >, i.e.,

wmn = % ,anlz 6(Em']i:n) P)

when the states are sharp. Equation (2.55) is an extension of

4
Wmn = |an|2 - p)

(Ey-En-Sg) “+(/2) 72

which has been obtained by Heitler? to investigate the natural broad-
ening of the optical lines. The latter follows from (2.55) by setting
Sm = Yy = 0, and thus applies only to the cases where the width and
shift of the final state is negligible. In the study of the optical
lines, the interaction of the emitting atom with its surrounding in

the final state can often be neglected since the atom is more tightly

6k
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bound in the final state, which has a lower| energy, This is particularly
true if the final state is a ground state of the atom. 1In such appli-
cations, the neglect of Sy and y, is justified. However, in the study
of line shape in the neutron spectrum, or in the study of optical line
shape involving transitions between two excited levels, the decay of
the final state cannot generally be ignored. In such applications, the
use of (2.55) is imperative.

When applied to the scattering of slow neutrons by an anharmonic
crystal, the pregent theory ylelds, in the lowest approximation, the
following expressions for the width F and the shift S of the observed

peaks [cf. (5.28) and (3.11) ]:

< Tnllin (rf,-rffi))] >p s

T =
e+0
S = < Rel[lim (F?-F?)] S5

e€+0

where

e i|<H(u) ORI H(a)) >
: J’(—Ei+ie :

where the final state differs from the initial state by 1 in the number
of the occupation number of the normal mode under consideration, and
where the symbol <°"">T denotes the thermal average., At :any temper-
ature, the shift S calculated by the foregoing formulas agrees exactly,
apart from differences in notations, with the shift formula given by
Maradudin and Fein.6 However, the width formulas agree exactly only

in the zero temperature limit. At finite temperature, the width
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formula (5.56) differs from (5.5b) of Ref. 6 in the sign of the second
and fourth terms., The present theory predicts a larger width than that
predicted by Maradudin and Fein. Fufthermore; the temperature depend-
ence of the width at high temperatures is quadratic according to (5.59)
of the present work, whereas it is linear in Ref. 6. The present width
formula may yield a better agreement with the experimental data than
the agreement reported by Maradudin and Fein, because their calculated
values seem to be smaller than the experimental values obtained by
Brockhouse et g;.l

When applied to the study of the optical lines,lo the present the-
ory yields a line shape formula which contains the two limiting approx-
imations, i.e., quasi-static and impact approximations, as special
cases. It treats the electrons and ions on the same basis, thereby in-
cluding the motion of ions in the calculations.

It may be concluded in general that the present theory of line
Shapé is more systematic, simp;er, and more interpretable than the
existing line shaﬁe theories both for neutrons and photons. The theory
can now be applied with reasonable confidence to the intefpretation of

a variety of experiments involving photons and neutrons, e.g., lasers

and scattering of neutrons by liquids.



APPENDIX

SIMPLIFICATION OF CUBIC ANHARMONIC POTENTIAL

Write (4.13) explicitly:

(3) + + 4 + + +
H ~ G123 (a-18-p8-3ta808g+a- 8 p83+8-1828-3
1)235
+ ajaisalata,asats+a atsagtal azas) . (A.1)

Consider the third term, and observe the following identities:

: + o+ +_ ot
}: G123 &-18-283 }: G1’2)8 a-18-382

1’2}5 1)2)5

1]

+ + +
}Z G1,2,3 8-18p823 * j{: Gi1,2,3 at,[als,az] .

l).2?5 1)2)5 (A 2)

Note that the first term of the last line in (A.2) is identical to the
fourth term in (A.1l). Repeat the same procedure for the fifth, siXth,
and eighth terms in (A.1l), and get

H(B) ~ j{; G1’2,3[(aflafgaf3+ala2a3) + 3(at,azatstajatsaz) |
1,2,3

+ }Z Gl’g’s{%il[atg,ag] + [ag,afl]afs + ajlag,afs] + [afg,al]a%},
1,2,3 (4.3)
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The second summation in (A.3) vanishes owing to the commutation rela-

tions (4.9), viz.,
+ + + +
(a¥5,82 = -82,-3 ,[az2,8%1] = 8-1,2 ,las,8l2] = 8g,-2 ,[alz,8,] = -8 ,-2

Using these in (A.3), one finds

}j ['Gl,-s,z 8.1 *G1,-1,2 8-2 *G1,2,-2 81 -G-1,1,2 az] ,
1,2

which vanishes as a result of the invariance of Gl,z,s under the inter-
change of the subscripts. The same result follows also from (L4.18),
which indicates that the individual terms in the last expression are

Zero.



l‘

10.

11.

12.

13.

1k,

15.

REFERENCES

B. N. Brockhouse, T. Arase, G. Caglioti, M. Sakamoto, R. N. Sin-
clair, and A.D.B. Woods, Inelastic Scattering of Neutrons in
Solids and Iiquids, p. 531, International Atomic Energy Agency,
Vienna (1961).

L. van Hove, N. M. Hugenholtz, and L. P. Howland, Quantum Theory
of Many Particle Systems, Benjamin, New York (1961).

J. Krieger, Phys. Rev. 121, 1388‘(1961)°

J. Kbkkedéé, Physica 28, 37k (1962).

G. Baym, Phys. Rev. 121, 74l (1961).

A. A, Maradudin and A. E. Fein, Phys. Rev. 128, 2589 (1962).

M. Baranger, "Spectral Line Broadening in Plasmas," p. 1493, Vol.

13 in the series Pure and Applied Physics, ed. by D. R. Bates,
Academic Press, New York (1962).

E. Arnous and W. Heitler, "Theory of Line-Breadth Phenomena," Proc.
Royal Soc., Series A; Math. and Phys. Sciences, 220-11hk2, p. 290-

310 (1953) .

W, Heitler, Quantum Theory of Radiation, 3rd ed., Oxford (195k).

A, Ziya Akcasu, "A Study of Line Shape with Heitler's Damping
Theory," Technical Report O04L836-1-T, The University of Michigan,
April, 1963,

V. Weisskopf and E. Wigner, Zeit. f. Phys. 63, 54 and 65, 18 (1930).

A. Messiah, Quantum Mechanics, Vols. 1 and 2, Interscience, New

York (1963).

Py R. Halmos, Hilbert Space, Chelsea, New York (1957).

R. C. O'Rourke, "Damping Theory," NRL-5315 (1959).

R. K. Osborn and E. H. Klevans, "Photon Transport Theory," Annals
of Phys 15, 105 (1961).

69



70

REFERENCES (Concluded)

16. E. Fermi, Ricerca Sci. 7, 13 (1936); English translation, USAEC
Rept. NP-2385.

17. R. E. Peirls, Quantum Theory of Solids, Oxford (1955) .

18. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford
(1954) .

19. J. M. Ziman, Electrons and Phonons, Oxford (1960) .

20. A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lat-
tice Dynamics in the Harmonic Approximation, Academic Press, New

York (1963).

2l. L. van Hove, Phys. Rev. 95, 249 (195k).

22. W. Magnus and F. Oberhettinger, Formulas and Theorems for the
Functions of Mathematical Physics, Chelsea, New York (1949) .

23. A. C. Zemach and R. J. Glauber, Phys. Rev. 101, 118 (1956).

2k. 8. Yip, R. K. Osborn, and C. Kikuchi, Neutron Acoustodynamics,
Univ. of Mich., Industry Program of the College of Engineering,
Ann Arbor, unpublished (1961).




