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I. INTRODUCTION

Spectral lines of an atom are shifted and broadened when the atom inter-
acts with its surroundings. The structure of the perturbed lines can be
studied in the first approximation in terms of (a) the motion of the emitting
atom (Doppler effect), (b) the finite life-time of the atomic excited states
due to the light emission (natural broadening), and (c) the perturbation in
the internal states of the radiating atom by the other particles of the me-
dium (pressure effect). The physical properties of the medium are reflected
in the line structure because of (a) and (c). Thus, the study of the photon
line shape of a radiating atom can convey significant information about some
of the physical properties of the surrounding medium. The success of this
method as a noninterfering diagnostic tool certainly depends on one's theo-
retical understanding of the line broadening and the liﬁe shift phenomena.
Line shape theory has received increasing attention in recent years with the
start of high temperature plasma experiments. The optical line shape is re-
garded as a probe for measuring temperatures and ion concentrations within a
plasma, where the use of material probes is ruled out because of the high
temperature involved. Consequently, the line shape theory has enjoyed rapid
progress in the past 15 years. Accuracies better than 20% in determining
the ion density with the line width technique have been reported.l

No attempt will be made in this work to review the present state of line

shape theory and calculations, because several review articles are available



in the literature. The most recent one, by M. Baranger,l contains the latest
theoretical and experimental advances and will be the main reference for this
work.

The present work proposes a new approach to the line broadening and line
shift phenomena. It was motivated by a need for a more systematic and com-
prehensive theory of line shape, which could be applied to neutron scattering
experiments as well as to photon experiments. Furthermore, the existing
theory of line shape, in spite of its numerical success as noted above, con-
tains some intuitive arguments, such as the folding of Doppler and pressure
effects, as well as some gaps. It treats the effect of ions in the quasi-
static limit by assuming the ions to be at rest, whereas it treats the elec-
tron effects with the impact approximation. It does not offer any good treat-
ment for the intermediate region, where neither of these two limiting approx-
imations is valid (see p. 504 of Ref. 1).

The line shape theory presented in this study is based on an entirely
different approach and involves approximations of a different nature. This
approach was chosen because it illuminates the manner in which the various
simultaneous contributions to a line shape arise and are combined, and because
it provides a calculational framework within which one may improve upon exist-
ing approximations. This framework, which is damping theory as discussed by
He:i.'t:ler,g’5 appears to provide a more systematic and interpretable method than
any employed previously. When applied to the line shape of an atom in a
plasma, it provides a unified treatment of electrons and ions. 1In the quasi-

static limit, it gives the Holtsmark theory. The dominant features of the



electron impact theory can be obtained from the present approach with use of
the ergodic theorem.

The present theory of line shape has been developed in the case of a
neutral atom to the point where numerical calculations are imperative for
further progress. Extension of the theory to the case of an emitting ion ap-
pears to be straightforward.

It is hoped that the present work will contribute to a better under-

standing of the mechanism of line broadening and line shift.






IT. DAMPING THEORY

A. INTRODUCTION

The present study of line shape is based* on Heitler's damping theory.g'u
Therefore this chapter will be devoted to a brief discussion of the funda-
mental aspects of the damping theory from the standpoint of its present ap-

plication. Section II.B follows essentially Heitler's presentation, and cer-

tain details are elaborated in Sections II.C and II.D.

B. BASIC THEORY
The temporal development of a quantum-mechanical system is determined

by the "time-evolution" operator U(t):
[t > = Uu(t) o>, (2.1)

where |0 > and |t > are the state vectors at t = O and at time t. When the

Hamiltonian H of the system is not an explicit function of t, U(t) is given

by
U(t) o ItH/A (2.2)
Assume that H can be split into two parts as

H = B +vV

*The use of the damping theory in line shape calculations has been also sug-
gested by O. Rourke (cf. Ref. L4).



in such a way that the eigenvalue problem
H°n > = E |n>

can be solved. The eigenvectors |n > are assumed to be complete and ortho-
normal, and thus to provide a basis for the physical problem under considera-
tion. To avoid complications associated with the continuous spectrum, the
calculations will be performed first in a large box of volume Q, and then in
the limit as Q + .

It is desired to compute the probability of finding the system in an
eigenstate |m > at time t, knowing that it was in the eigenstate |n > at
t = 0. This probability is equal to |Umn(t)'2: where Uy, is the matrix ele-
ment of the time-evolution operator. Damping theory provides a method for
computing {Uﬁn(t)|2.

Let G(z) denote the resolvent* of H, which is defined by

oz = = (2.3)
z-H

where z is a complex number. The evolution operator is the inverse Laplace

transform of G(z), i.e.,

+oo+ie . -
ult) = —=— f az ofz) o 1t/ , e>0. (2.1

271'1 -°°+i€

One can verify that

*See for example Ref. 5, p. 609, vol. II (French edition).
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n = ) lv><u (2.5)
M,V Z'g

V)

where Iuv > are the eigenvectors of H corresponding to the energy gk“ i.e.,
(H—gﬂ)luv > = 0. The quantum number v indicates the degeneracy of the en-
ergy eigenvalues. The < pv| is the Hermitian conjugate of luv >, and
}: luv > <§uv1 is the projection operator on the subspace spanned by the eigen-
v
vectors Ipl >, |u2 > e |uv > +++ . BSince the energy eigenvalues are real
and positive, the singularities of G(z) all lie on the positive real axis.
In fact, G(z) has branch cuts on the positive real axis corresponding to the
continuous portion of the spectrum é;u in the limit as Q + ». The foregoing
argument indicates that the path of integration in (2.4) can be shifted to-
wards the real axis by letting € > O tend to zero in rerforming the inversion
integral.

The problem thus reduces to finding the matrix elements of G(z) in the

representation {HO}. For this, one introduces two new operators, N and Q,

such that
G = N+ NQN . (2.6)

To determine N and Q uniquely, one imposes the condition that in the repre-
sentation {H°}, they be diagonal and nondiagonal respectively. Thus, N and
NQN are the diagonal and nondiagonal parts of G in {E°}. The reason for in-
troducing these two operators becomes apparent if one considers the expansion

of G in powers V, viz.,



z-H-V 1-G,V

where

z-H°
The conventional perturbation theory is obtained by truncating this series
after a finite number of terms. The validity of this approximation is re-
stricted to the small values of t such that the decay of the initial state is
negligible. This can be seen by considering the probability of finding the
system in the initial state |n > at time t, viz., |Unn(t)]2. The latter can
be obtained as the magnitude square of the inverse Laplace transform of
Gnn(z) = Nnn(z)' Retaining the first two terms in the foregoing expansion,

one finds that
2
[Unn(£) [ = 1+ |vpul” 42,

which exceeds unity. This result is not correct even qualitatively. Similar
unrealistic results are obtained even if one retains more than two terms in
the expansion of G. It follows that the power series expansion is not ade-
quate to investigate the variation of |Unn(t)|2 with time, which plays a
fundamental role in the theory of line shape. In the damping theory, one
tries to sum the infinite series representing N and NQN, viz.,

}: Go [(VEo) g (2.7)

n=0

=
1]}

and



QN Z Gol(Vao) ™1, g (2.8)

n=0

by solving certain integral equations by iteration. This procedure yields
an approximation which is sufficiently accurate to take into account the
variations of |Uy,(t) |Z.

An integral equation for N and Q can be obtained by rewriting (2.3) as
(z-E°-V)&¢ = 1,

substituting G from (2.6), and equating the diagonal and nondiagonal operators

on both sides. The result is

Q = Vg *+ [VgMal 4 - [(WQ)sNQ] 4, (2.9)

where
N = [z-EO-(8/2)T(z) 1 ", (2.10)

where
(B/2)r(z) = (V+WNQ)q . (2.11)

The subscripts d and nd indicate respectively the diagonal and nondiagonal
parts of the operators they qualify. Treating N in (2.9) as independent of

Q, one obtains by iteration an expansion of Q in powers of V:

Q = Vnd + VndNVnd + oo °© (2. 12)

Only the first term in (2.12) need be kept in order to discuss the dominant

features of the line shape. Thus, the off-diagonal matrix elements of ¢{z)



will be approximated by

v
(z) = mn . 2.13
mn (2-En-(R/2) Iym 1 [2-E -(B/2) T'pp (: )

The diagonal elements are of course given by Ny, i.e.,

Gnn(z) = [z-By-(B/2)r 17" . (2.1k)

The expansion for I'(z) can be obtained by inserting (2.12) into (2.11) and re-
placing N by (z-H°) ~"*. The result is

—

(B/2)T = Vg + Ly

%ﬂd+.” . (2.15)

Z-
The first two terms will be retained in the present treatment of the line
shape theory.

One is now in a position to write an approximate expression for the
matrix elements of the time-evolution operator U(t) by combining (2.15),

(2.13), and (2.4). The off-diagonal elements read as follows:

Foot+ig
-1 V,
Upa(t) = —=— gz o~ib2/B I ,
271 “ogtie [Z-Em-(ﬁ/E)me][Z—En-(ﬁ/Q)an]
(2.16)
where
lvh'nlg
(B/2)Tpp(2) = Vpy + —— . (2.17)
Z-Env
n'#n
The diagonal elements follow from (2.14) as
1 wtig -itz/A
Upn(t) = Fp(t) = — dz S . (2.18)
enl “ootie z-En-(h/2) Ipp( 2)

10



where the symbol F,(t) is introduced for future use.

The quantity (ﬁ/E)Pnn(z), which thus far has served merely as a mathe-
matical symbol, has a physical significance. It will be seen later that the
real and imaginary parts of an(z) at z = E, yield an approximation to the

energy shift and the life-time of the state |n > .

C. EVALUATION OF THE INVERSION INTEGRAL

The inversion integral in (2.16) can be expressed as the convolution of
Fp(t) and Fp(t), which are defined according to (2.18). Thus one has

t t
Upn(t) = f Fu(t-1) Fp(m)dar = f Fp(T) F (t-)ar .
o o (2.19)

To evaluate Fn(t) and hence Upp(t), one has first to investigate the analyt-
icity of the integrand in (2.18), and in particular the analyticity of pn(z).
One can verify from (2.17) that the singularities of the latter are all lo-
cated on the portion of the real axis defined by x > Ey, where Eo is the low-
est eigenvalue of HO. These singularities are all simple poles when the spec-
trum E, is discrete. In the limit Q - o, I'pnp(z) has cuts on the portions of
the real axis that correspond to the continuous portion of the spectrum. As
will be apparent presently, it is convenient to take the limit Q -+ » at this
stage and to assume that Pnn(z) has a cut on the real axis for x > Eg. It is
noted that the following procedure is valid also in the case of a discrete
spectrum. Moreover, it can be verified that Iann(z) and Im z are always of

opposite signs. Hence, the denominator in (2.18), i.e.,

Do(z) = z - Ey - (4/2)Ipy(z)

11



can vanish only on the real axis. Thus, Dﬁl is analytic everywhere except on
the real axis. The path of integration in (2.18) can therefore be shifted
towards the real axis by letting € -+ 07. The behavior of Ppn(x+ie) in this

limit can be obtained using the following relation:

lim —& = PP L7 im(x) ,
e»0 x*ie X

where PP indicates the Cauchy principal part whenever (l/x) is integrand over

a region containing x = 0. Equation (2.17) yields

lim (B/2) Ipp(x+ie) = Sy(x) - i(B/2) y (%) , (2.20)
e~>0
where
7o (x) = (2x/B) V|2 8(x-Ey 1) (2.21)
n'#n
and
_ IVh'n|2
Sn(x) = Vpyn + PP —_— (2.22)
X-E 1
n'#n n

Note that 7n(x) is a sequence of Dirac delta functions located at x = Eg,

and is zero elsewhere when the spectrum E,+ is discrete. 1In the case of a

continuous spectrum, or more explicitly when En i1s a continuous function of
one of the quantum numbers contained in the set of indices (n), 7n(x) is

finite and satisfies the following conditions:

7n(X) = 0 for x<ZE,,

7p(x) > 0 for x>Ej. (2.23)

12



Now consider the behavior of Dn(x+ie) as € » O. Let the limit of Dp(x+ie)
be denoted by dp(x), i.e.,
dy(x) = 1lim D(x+ie) = x - Ey - Sp(x) + i(ﬁ/E)yn(x) . (2.24)
€0
In view of (2.23), one finds that d,(x) is nonvanishing for x > E,. Further-
more, if the perturbation energy V is sufficiently small, it is nonvaniShing
also for x < Eg [cf. (2.22)]. It will be assumed in the subsequent analysis

that dp(x) is nonvanishing for all x. This assumption leads to

lim DpY(x+ie) = dpi(x) (2.25)
e~>0

and to
lim Dp(x-ie) = dp(x)* , (2.26)

e>0
where the asterisk denotes complex conjugation.
The conclusion drawn from the foregoing discussion is that the integrand
in (2.18) is analytic in the complex plane cut by Im z = O and Re z > E,.
Thus, the complex integration can be expressed as a real integral by shifting

the path as indicated in Fig. 1. The result is

4y

iE

o

T
.

g X

Eo
Fig. 1. Path of integration.
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(2.27)

F(t) = 1 J/\w o-ixt/A (8/2) yu(x)
T

dx
[x-Ep-8n(x) 1%+(h/2) 2y2(x)

Tt might perhaps be interesting to note, as a digression, that the
integral in (2.27) can be performed rigorously when the spectrum is discrete.
In the latter case 7n(x) is a sequence of delta functions, as mentioned pre-
viously. Since the integrand vanishes when 7n(X) + o, one may delete the
points at which y,(x) # O without affecting the integral. On the other hand,
the integrand reduces to a delta function when 7n(X) > 0, as can be seen from

the following relation:

lim  — = 5(x)
e+0 X“+e
Hence, F (t) can be written as
e}
-ixt/h
Fo(t) = f dx e / 8[x-Ep-Sp(x) 1 .

One notes furthermore that

5[4(x) ] = ZM)—
7 18(xy) |

where x; are the roots of ¢(x) = 0, which are assumed to be single, and b1 (x)
is the derivative of @#(x). With the aid of this formula, Fn(t) can be written
as follows:

Fo(t) = Z e_ixjt/ﬁ____l_____
3 | 1-84(x3) |

1L



One can verify easily that the roots of x-E,-S,(x) = O are all single. This
result can be obtained directly from (2.18) by using the residue theorem.
Thus, by taking the limit Q + « at an earlier stage and hence by using a
branch cut rather than working with the poles, one actually obtains a method
for evaluating the limit of the infinite sum involved in the last expression
as ) > o,

We now turn to the task of evaluating the integral in (2.27) in the case
of a continuous spectrum. Since Sp(x) and y,(x) are small guantities, the
integrand attains its maximum in the vicinity of the point x = E,, and the
dominant contribution to the integral comes from this region. Furthermore,
the functions Sp(x) and y,(x) are slowly varying functions of x, as will be
discussed in Section II.D and thus can be treated as constants in a narrow
region about the point x = E,. Their constant value can be taken as Sp(E,)
and 7,(E ). Finally, one can replace the lower limit of the integral by -«
when Ep >> Ey. With the foregoing assumptions, Fp(t) can be expressed ap-

proximately as follows:

-y t/2 -iEt/A
Fn(t) e 7t/ e B /

) (2.28)
where

By, = EBp + Sn(EBy) - (2.29)

Henceforth, y, and S, will denote y,(E,) and Sp(Ey) . The magnitude of the

error involved in (2.28) can be estimated by

o )
4 dx Ta(x _ Tn

en [x-En-Sn(x) 17+(1/2)%2(x)  (x-Ep) “+(H/2) %2

15



Since this is independent of time, the relative error on Fh(t) will be appre-
ciable for large values of t, i.e., 7nt >> 1, where Fn(t) is small.*

The matrix element Umn(t) can now be evaluated approximately, by sub-
stituting Fp(t) and F (t) from (2.28) into (2.19). Since one is interested
in the probabilities rather than in the matrix elements, only IUmn(t)|2 will

be considered:

v |2 -2yt -3 mt -i(En-En)t/A|
e - € e

(By-Bp) “+(5/2) (- 7) 2

IR

Um(t) |2

(2.30)

The validity of this result is limited by the approximations made in deriving
(2.28). Considering the fact that Uy,(t) involves the convolution of two ap-
proximate functions, one can convince himself that (2.30) is valid when either
7yt << 1 or y,t << 1 holds. When both y,t and y,t are large as compared to
unity, the validity of the equation becomes questionable.

lz

The behavior of lUmn(t) in different time intervals can be discussed

with the aid of (2.30).

(1) 7t << 1, 7t << 1, t > B/ |Ey-Ey|

For such an interval of time to exist, Iﬁh'ﬁml must be much greater than
both Hy, and By . The behavior of ’Uﬁn(t)|2 in this interval can be obtained
by setting 7, = 7, = O and taking the limit t > = in (2.30). Noting also

that

1 -ixt 2
1im e 1T 2m(x) ,

100 x2t

*See p. 860 of Ref. 5.

16



one obtains the well-known first order perturbation result, i.e.,

25

lu () 12 = . t V|~ B(E,-Ey) (2.31)

It is noted that, in this time interval, the meaningful concept appears to
be the transition probability per unit time, i.e., lUmn(t)lz/t, rather than

the probability of finding the system in the state Im > at time t.

(ii) Yot > 1, 7,t << 1 (or vice versa)
This time interval exists when Ty > Yy OF Vice versa. In this interval,

(2.30) reduces to

| Vigr |
U] = s (2.32)
(ByBq-San) “+(4/2) %7,
where S,y is defined by
Sam = Sp - Sy - (2.33)

Note that in obtaining (2.32), 7, s been neglected as compared to 7, in the
denominator of (2.30) so that the equation will be consistent with the condi-
tion y, >> Ym+ 1t will be seen later (cf. Section IV.G) that Yy and Sm re-
present the effect on the line shape of the interaction of the emitter with
its surroundings, when the emitter is in its lower state. That Ym does not
appear in (2.3%2) indicates that the lower state interaction affects the line
shape mainly through the shift in the energy of the lower state. The effect
of finite life-time of the lower state seems to be a secondary effect. It is

tempting to retain y, in (2.32) as a correction, and to replace (2.32) by

17



2 |an|2
Oma ™ = . - (2.322)
(EBp-En-Snm) ~+(B/2) "7

where

Ynm o= Ym - (2.33a)

Although (2.32a) has the attractive feature of containing the shift and the
width of both the initial and final states in a symmetric way, (2.32) will be
used in the present study for the sake of a consistent and systematic theory.
Tt may be pointed out here that (2.32) rigorously followsh from (2.16) or
from (2.19) if Iyn(z) = 0. This can be seen as follows: When [yy(z) = O,

Fp(t) can be evaluated rigorously [cf. (2.18)] as

Fu(t) = édaﬁﬁi.

Substituting this into (2.19) gives

1. t 2
|Upn(t) |Z = u/\ ar eiEmT/ﬁ Fp(T) . (2.34)

e}

T

To obtain the behavior of J.mn('t)|2 for large times, i.e., y,t >> 1, one has

to consider the limit of (2.34) as t + o. In this limit, the integral in-
volved in (2.34) defines the Laplace transform of F,(T), which is given by
(2.14). Thus, replacing z by By in (2.14) immediately gives (2.32). How-
ever there is a slight difference between (2.32) and the result obtained with
the rigorous derivation. The S, and y, are evaluated at x = E, in (2.32),
whereas they are evaluated at x = E, in the latter case. But since the dif-

ference between Ep and E, is of the order of a line width, and furthermore

18



since Sp(x) and 7n(x) are slowly varying functions of x, no distinction will
be made between y,(E,) and y,(E,) or between Sp(Ep) and Sp(Ey) .

In conclusion, one may state that when the widths of both initial and
final states are much smaller than the transition frequency (En-Ey) /A, the
transition probability per unit time appears to be a meaningful concept. On
the other hand, when 7y, >> 7., the meaninful concept is the conditional prob-
ability of finding the system in the state |m > after it is certain that a
transition from the initial state ln > to any other state has taken place
(ynt >> 1). The only requirement for this concept to be meaningful is that
the life-time of the final state be much longer than that of the initial state.
It is important to note that the widths of the initial and final states need
not be small as compared to IEn-Eml/h, as was required in the previous case.
It is this feature of the damping theory, i.e., the case (ii), which makes
it suitable to the treatment of the line shift and line broadening phenomena.
Moreover, the conditional probability of finding the system in a given state
after a transition has occurred enables one to write the frequency distribu-

tion of a photon emitted in this transition.

D. WIDTH AND SHIFT FUNCTIONS
In this section, the width and shift functioms, i.e., y,(x) and S, (x),
will be discussed in some detail. It will be seen later that the basic set

{|n >} could be written as

n> = |oM >y >, (2.35)

19



where the eigenvectors |aM > span a finite dimensional space and ]Bv > span

a continuous space. The energy E, of a state |n > now has the following form:
E, = EJ+EB’ where B is a continuous index. The symbols M and v describe de-
generate states corresponding to the energies E@ and EB respectively. One
recalls that the eigenvectors ]n > are generated by HQ; they are not spec-
ified otherwise. 1In dealing with the degenerate levels E,, it proves to be
convenient to choose the base vectors to diagonalize the operator RaVPa as
well as HO. Here, Ru denotes the projection operator on the subspace spanned

by the vectors IQM > belonging to the energy eigenvalue E,, i.e.,

Py = ZIaM><Mx|.
M

More explicitly, one has
< aM|V]eM' > = < aM|V|oM By (2.36)
o4

To convert a summation over a continuous index to an integral, one de-
fines a density function as follows:

p(B) v)dp dv = .
(B, v) € dpdv

With the foregoing definition in mind, one writes 7n(x) from (2.21) as

follows:
7n(xj = £ EZ U/AB'S(X'EQ"EB')ZE:&/\dV'D(B';V')’ < n'|V|ni>|2
h Ol';éot M

+fd6’6(X—EO!-Eﬁ') dv'p(ﬁ',’v') I <n' IV}I’I >|2 . (2-37)

VBTV
20



It is noted that the restriction n' # n in (2.21) now reduces to vé # vy in
the integration on v' in (2.37). Since the latter restriction corresponds
to deleting a point in an integration, one can drop it out without affecting
the value of the integral. A remark of caution is due here. The foregoing
conclusion does not hold when the eigenvectors IBV > diagonalize V as well

as H°, i.e., when

1 t =
<B'W'|V|py > = < Bv|V|RY > Bgr, g Oy, y -
In this case, y (x) takes the following form:
n
2 2
m(x) = z < By | V]pvod >|” 8(x-Ey)

M
o'k
This equation indicates that yn(x) = 0 in the neighborhood of the point x = By
even in the limit as Q + «». This special case will be encountered when the
quasi-static approximation is made (cf. Section V.B).
When the restriction vé # Vg is omitted in (2.37), y,(x) can be written
as follows:

yn(x) = f_l_ﬂ z de'S(x_Ea!—an) Zfdv'p(ﬁ',v')l <n' |Vln >|2 .
' M! (2.38)

Similarly, the shift function can be obtained from (2.22) as

}Z dev'p(ﬁ’,v')| < n'|V|n >|2
Sp(x) = <n|Vin>+ z PP fdv' M
al

B' (2.39)
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The variation of y,(x) and S,(x) with x in the neighborhood of the point
x = E, can now be seen more clearly. Equation (2.38) indicates that y,(x)

is proportional to

}: JF dv'p(B',v' E%ﬁl | <n'|V|n >|2 s (2.540)

Mo B

which is evaluated at Exy = x-E.,. One may argue on physical grounds that
B
(2.40) is a smooth and slowly varying function of Eﬁ' and thus of x. Similar

arguments can also be given for S,(x) .
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III. EMISSION SPECTRUM

A. INTRODUCTION

In this section, we attempt to obtain an expression for the spectrum of
energy radiated by a finite aggregate of particles. The system is assumed
to be optically thin so that the emitted photons escape the system without
interacting with the particles. This assumption simplifies the analysis by
eliminating the problems connected with photon transport in the system.6 The
temperature of the system is kept constant by heating the container walls
externally. Thus the energy carried away by emitted photons is made up
through the collisions of the particles with the heated walls.

The following derivation differs from the standard derivation of the

emission spectrum’’® in the treatment of |Ugn(t) |5 /4.

B. BASIC THEORY

The Hamiltonian of the system can be written as
Ho= B +° +7, (5.1)

where H° and HY are the Hamiltonians of the particle system and of the radia-
tion field respectively, and V¥ is the interaction energy between the two.
We split H as H = HO+V where the unperturbed Hamiltonian H® and the perturba-

tion energy V are given by
H° = HS + HY ,
v o= v . (3.2)
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The set of base vectors generated by H° are labelled as |nn > = |n >ln >,

where In > are the eigenvectors of the particle system, i.e.,
(B-Ep) [n> = o, (3.3)
and |n > are the eigenvectors appropriate to the radiation field, i.e.,
(F-E) > = 0. (5.1

We shall assume that in the representation (3.4) the photon number operator

px(g) for photons of momentum ¥k and polarization e (k) is diagonal, i.e.,

<n'loy(K) In > = (B8, oy (3.5)

where nK(E) is the number of photons of the specified type when the system
is in the state |n > .

The expected number of photons of a given kind is known to be6
(k) = Trlp,(k) D] (3.6)
where D is the density matrix which is governed by
inD = [ED], (3.7)

where the dot indicates differentiation with respect to time. Since H is
not an explicit function of time, the solution of (3.7) can be expressed in

terms of the time-evolution operator [cf. (2.2)] as

D(t+s) = U(s) D(t) U*(s) . (3.8)
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The rate of change in the photon number is obtained from (3.6) as

ink) = Trle,(k) D]
Expressing D(t) as
D(t) = § [D(t+s) - D(t)] ,
one obtains
(k) = %Tr {Dk(_lg) [D(t+s) - D(t) ]} . (3.9)

Substituting D(t+s) from (3.8) gives
LK) = 3 {pk@) [u(e) D(t) U(s) - D(t) 1} . (3.10)

Expressing the trace in the representation {[nn >} which diagonalizes the
photon number operator, and neglecting the off-diagonal matrix elements of
D, one obtains

(0 = = z lu 2 p - z ' D
X)\_ - s 1 nn,n'n' nlnr’nlnl T n'T]',l’l'T]'.:’( ll)
nn,n'n’ n'n' 2

where U and D are to be evaluated at s and t respectively. Since U is a
unitary matrix, one has

2
Z [Upn,ninel” = 1 . (3.12)
nn

Multiplying the last term in (3.11) by (3.12), which is unity, one finds for

(3.11) :

25



Lk = Z (0" =MWy iov ng Dag,nn 2 (3.13)
n'n',nn

where

[Unrg . an(8) 12

S

W, (3.14)

'T].',HT](S‘)

The difference J = (n'-n) in (3.13) is an integer, and denotes the change in
the number of photons in the transition In > > |n' >. The summation over n'

in (3.13) can be replaced by a summation over j:

Rk = Z J Wnt(n+g),nn Pon,mm
nn,n'J
where j = *1, #2, ... . The negative and positive terms correspond to ab-

sorption and emission respectively. Since the system is assumed to be opti-
cally thin, the absorption terms can be disregarded. Furthermore, the contri-
bution of the transitions involving more than one photon, i.e., j > 1, can be

ignored as a first approximation. Then, the last equation takes the follow-

ing form:
(k) = j{: wn'(n+l),nn Don,nn
nn'n
where n = 0,1,2,... . Henceforth, we shall confine ourselves to the spon-

taneous emission by assuming that the radiation is not present in the ini-
tial state, i.e., n = 0. This simplifying assumption is realistic for emis-
sion experiments involving an optically thin system where the emitted photons

can be assumed to leave the system instantaneously. However, the effect of
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the induced emission can also be included in the present analysis if the
experimental conditions (e.g., those for laser experiments) so require. The
foregoing assumptions imply that the state vector of the whole system re-
mains, during its evolution with time, in the subspace spanned by the eigen-
vectors with n = 1 (one-photon states) and n = O (zero-photon states). Hence-

forth we shall denote one-photon states by
Im > = |n'k, > = [n>[k >, (3.15)
and zero-photon states by
ln> = |n>j0> . (3.16)

The total power radiated in all directions in the frequency interval

dw about‘w can be obtained from (3.13) as

I(w)aw = z T x,(K) (3.17)
%NWEdW

A
where k = (k/k) and w = ck. Recalling that

> -(———Q——;——g wadw dQﬁ R
2mc -

1= [>]

one obtains the intensity distribution I(w) as

ow3h
I(w) = W z f dﬂgwmn P, , (3.18)
A,n,n!
where
Ph = Dn,n (3.19)
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is introduced to emphasize the physical significance of Dn,n as being the
probability of finding the particle system in |n > and the photon system in

|0 >. It is taken here to be

P, = < n|e—BH|n >/Trle PH] . (3.20)

If one neglects the interaction energy V¥ in H, (3.20) can be approximated by

P, = 2z ' ePin (3.21)

where Z = Tr exp[-pBH]. Furthermore, in (3.20) and (3.21), B = (1/KT), where
K is the Boltzman constant and T is the temperature.

Now we consider Wp,, which can be written alternatively [cf. (3.1L4)] as

(3.22)

Won(s) = 'Umn(S)|2 _ IU'mn(s)I2 }: IUmn(S)Ig

° Z IUmn(S) |2 mién
m#n

Instead of interpreting Wpn(s) as the transition probability per unit time
and thus using (2.31) —which is valid when s satisfies 7,5 << 1, IS << 1,
and s >> 4/ |Ey-Ey| [case (i) ]—we proceed as follows: We evaluate the first
factor in (3.22) for 7pS >> 1 and 7,8 << 1 [case (ii) ], and the second factor
for the values of s in case (i). Since U is unitary, one can write the
denominator of the first term as 1-|Uy,(s)|® [ef. (3.12)]. One finds from

(2.28) that

=S

(3.23)

2
lUnn(S) | = €
Hence, one can neglect |Unn(s)|2 as compared to unity for y,s >> 1, and can
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replace the denominator in (%.22) by one. The numerator is given by (2.32)
for the values of s in case (ii).

As to the second factor, we combine (2.31) and (2.21), and obtain

2 |Umn(s) |2/S = 7n (5'2)4')

m#n

In conclusion, we approximate Wmn(s) by

Won(s) = |Upnl® 7, - (3.25)

Substituting (3.25) into (3.18), and using (2.32) for (Umnlz, one obtains

the following formula for the emission spectrum:

ow3h e, |2
(w) = —— z fdQﬁP 7n | V| , (3.26)

2nc)3 e Em'En‘Snm)2+(ﬁ/2)27§

which will serve as the starting point in the present treatment of line shape

theory.

C. AUTOCORRELATION FORMALISM

Before proceeding further, we shall briefly discuss the autocorrelation
formalism which has been the starting point in almost all previous treatments
of line shape theory. In autocorrelation analysis, Wmn(s) is interpreted as
the transition probability per unit time, and is thus approximated by (2.31).
The same result can be obtained directly from (3.26) by letting y, and Spp

tend to zero. Recalling that

lim 2€ = (x)
e»0 X7te
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one obtains

3
I(w) = Q;g:gg Z hf ngIVIl;mIZ Py 8(w-wpiy) . (3.27)

n’}n}
The matrix element of Vﬁn can be expressed as
2rh
T, = 5—;‘— R, iy (3.28)
where R is an operator defined by

=jkers
= - =J .
R(k,) = Z e (e3/ms)ps-en(k) . (3.29)
J
The summation in (3.29) is extended over the particles. The charge, mass,
momentum, and position of the jth particle are denoted by ej, mj, EJ and I

d

respectively. The Wyrp in (3.27) is given by
Yntn = (Ep-Eq1) /8

Inserting (3.28) into (3.27) yields

3 2
I(v) = —= Z f dQp Pp|Byipl 8(w-wprp) . (3.30)
gncea / —_
n',n, A\

Using the Fourier representation of the delta function, i.e.,

+00 .
5(x) = b/\ elXt/ﬁ at/28 ,

-00

one can write (3.30) as follows:

e wt
w2 i
I(w) = e fm e” " p(t)at , (3.31)
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where

(t) = Tr [%S j{:u/‘dﬂﬁ RT(0) R(t)| . (3.32)
- K

The time-dependent operator R(t) is defined by

eitﬂ?/ﬁ -itE° /A

R(t) = R(0) R (3.33)

In (3.32), D° denotes the density matrix for the particle system.
The function @#(t) is known as the autocorrelation function of the light
amplitude (see p. 498 of Ref. 1). In the usual dipole approximation, #(t)

reduces to
4(t) = -fl‘-wz Tr[D° a*(0)-a(t)] . (3.34)

It is observed that the autocorrelation formalism follows from the emis-
sion spectrum formula (3.26) when the width and the shift of the particle
states are ignored. Since the transitions between these states are caused
by the electromagnetic interaction, the approximation involved in obtaining
(3.31) from (3.26) is equivalent essentially to neglecting the natural width.
Equation (3.26) expresses the spectrum as the weighted superpositions of a
sequence of Lorentzian distributions which represent the spectrum of the in-
dividual photons emitted in transitions |n >+ |n' >. In (3.27), these
Lorentzian curves are replaced by a sequence of delta functions. When the
width of the observed spectral lines is much greater than the natural width,
as 1s the case in most applications, the use of delta functions instead of

Lorentzian distributions is a valid approximation. Therefore, the emission
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spectrum formulas (3.26) and (3.31) can be regarded as two starting points
which are equivalent as far as exact calculations are concerned. For approx-
imate calculations, however, one approach may be preferable to the other.

This can be found out by comparing the number and the nature of approximations
that have to be made in both approaches to obtain a practical line shape
formula. The autocorrelation approach has been fully investigated in the
literature.l The subsequeht sections will explore the possibilities of the
present formalism so that it can be compared with the autocorrelation ap-

proach.
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IV. LINE SHAPE

A. INTRODUCTION

Line shape is defined as the frequency distribution of those photons
that are emitted in transitions between two boynd states. Photons which are
due to transitions involving one or two free states (continuum radiation) can
be disregarded in discussing the shape of a spectral line whose intensity is
sufficiently greater than the continuum radiation.

Tt is convenient to think of the particle system as composed of two in-
teracting quantum-mechanical systems; these will be referred to henceforth
as the emitter and the perturber. It is assumed that only the emitter has
discrete energy’levels. The perturber can be visualized as an aggregate of
interacting, structureless particles. The interaction of the radiation field
with the perturber can be ignored, because it gives rise to Bremsstrahlung.

The Hamiltonian HS of the particle system [cf. (3.1) ] can now be written

as

B = B¢+ B+ VP (L.1)

where H® and HP are the Hamiltonians of the emitter and the perturber re-
spectively, and Vp is the interaction energy between the emitter and the
perturber. The Hamiltonian of the system, including the particles and pho-

tons, is

H=H+E+8+7 +W (L.2)
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where V¥ represents the interaction between the emitter and the radiation.
The individual spectral lines corresponding to transitions between the
internal energy levels of the emitter are not recognizable in the emission
spectrum formula (3.26). By a proper choice of the base vectors |n >, one
can express the intensity I(w) as the superposition of the spectral lines.

This will be task of the present section.

B. LINE SHAPE FORMULA IN THE REPRESENTATION {|aM >|g >}
It is desired to split the Hamilton H as HO+V in such a way that the base

vectors |n > for the particle system will be of the following form:
ln > = lOﬂM >]B> b (L"-B)

where |[0M > are the internal energy eigenstates of the emitter with energy
Ep: The quantum number M indicates the degeneracy of the levels. Thus, if

H% is the Hamiltonian for the internal motion of the emitter, one has
(H?-Ea) oM > = o . (L4.L4)

The eigenstates |B > will be defined presently. The requirement that |n >

be factorizable as in (4.3) restricts the choice of HP to the following form:
H°=H§+HB, (4.5)

where H@ is the part of H which does not depend upon the internal coordinates
of the emitter. To express HB explicitly, let it be assumed that VP can be

split as
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VP o= 9P+ PP (4.6)

where 7 is not a function of the internal coordinates of the emitter. Then,

HB can be written as follows:

. Hoy + B + TP | (4.7)

where ng 1s the Hamiltonian which describes the center of mass motion of
the emitter. The eigenstates ]5 > can now be defined as the solutions of the

following eigenvalue problem:
(HB-EB)IS > = 0 . (L.8)

The manner in which VP is broken up into L%p and VP depends on the nature
of the emitter and the perturber as well as on our ability to solve the eigen-
value problem (L.8). Since the perturbation potential V which enters the damp-

ing theory is now given by
Vo= Vv o+ 9P (4.9)

the choice of LVP and V¥ affects the approximation inherent in the line shape
formula obtained in this representation. In the case of a neutral emitter,
as will be assumed in the subsequent sections, the natural choice is 7’ = 0.

Then, |B > can be further factorized as
B> = [k>p> , (k.10)

where |K > denotes the external eigenstates of the emitter and |p > denotes
the eigenstates of the perturber, i.e.,
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(How-EQ K> = 0, (4.11)
(HP-EP) lp> = 0 . (Lk.12)

In the case of an ionic emitter, VP may be chosen as the interaction between

a point charge located at the center of mass of the emitter and the perturber.
The spectrum I(w) can be expressed in the representation {|oM >|g >|q >)

by replacing V' in (3.26) by 3#P+VP, and computing the matrix elements in this

new representation. To compress writing we denote the initial and final states

of the emitter by |i > = laiMi > and |f > |anf >, and any arbitrary state

by |u > = |oM > Similarly, [B;> and |B p > will denote the initial and final
states of the perturber plus the external motion of the emitter. Thus, |n >
and |m >, which have been defined as the initial and final states of the

whole system [cf. (3.15) and (3.16) ] become
n> = |1>|g; > = |y >[B; >, (L4.13)
m> = |£>[pp >k > = |agy >[p, >k, > . (k1)

Consider now the matrix element V . Since the number of photons changes
by one in the transition |n > » |m >, the matrix element of L9p, which depends

only particle coordinates, vanishes. Thus,

Vo= Vo .

mn

The matrix element of the electromagnetic interaction, i.e., V;n, can be cal-

culated by using (3.28) and (3.29). Putting the center of mass coordinate rq
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of the emitter in evidence in (3.29), ignoring the radiative effects due to
the center of mass motion, and making the usual dipole approximation for the

sake of simplicity, one obtains

ik.r
V;n = /%;f_ﬁ wip < Tldre,(k)[i><Bele’™==2[p; >, (4.15)

where

vip = (By B /B . (L.16)

After Vﬁn is substituted into (3.26), one can perform the integration over
the direction of propagation as well as the summation over the direction of

polarization, with the assumption that the emission is isotropic:

8x 2

Zfaa@ <rlggmli> F - B f, (.17

where ]gfilz denotes the sum over the three components of 4.
The probability Pn which appears in (3.26) can be approximated in this

represéntation by
Po = Py, Py s (4.18)

where the definition of Py; and Py can be obtained from (3.20).
i

With the foregoing remarks, one finds the spectrum as follows:

s ik'ro 2
' \ ral< Bele ™= =21 >|
I(w) = Asp Pg , (4.19)
LT Bi,Be

i 2 2

where

2
2 (% 2
Aif = - W) W2 P Id

31 oB ir Foyldesl (4.20)
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Awif = W - Wip . (ll-.el)

The matrix element < Bf|exp(ig-go)|6i > in (L4.19) represents the recoil
of the emitter and the perturber as a whole in the emission of a photon, and
the term (EBf-EBi) is the recoil energy. It is observed that (L4.19) gives
the spectrum as the superposition of the spectral lines as indicated by the
summation over fhe quantum numbers i and f. In the following sections, we
shall confine ourselves to a neutral emitter and take W = 0, as mentioned
previously. Therefore the expressions for 7n @nd S, need not be given in this

representation.

C. LINE SHAPE FORMULA IN THE REPRESENTATION { |aM >|K >|p >}
In this representation, the last factor in (L4.15) takes the following

form:

I<Bf|ei5'£°|6- >)° - 8(Kp+k-K;) & (4.22)
1 =T — =1

Pi»Pg’

where the 8's are Kronecker deltas. In view of (L4.22), the recoil energy

(E, -E; ) in (L4.19) can be written as
Br "By

() ©
Top Ty T Pt By T ek - (1.23)
c
where S5 1s defined by
S¢ = (Kirk)/Me2 . (k.2k)

As will be seen later, Sd represents the Doppler effect. The quantity M is

the mass of the emitter. Substituting (L4.22) and (4.23) into (L4.19), one

38



obtains the line shape formula in the representation {|oM >|K >|p >} as fol-

lows:

vz
I(w) = Z As e z Py = R (L.25)
i,f p,K P (B4 £-Spm=Sg) “H(h/2) %2

where (ﬁﬁ/Mcg) is ignored as compared to unity, and the subscript i on K; and
1 is dropped to compress writing. Henceforth, |K > will denote the initial
external state of the emitter, and |p > will denote the initial state of the
perturber. In (4.25) we have dropped also the summation over K¢ by approxi-
mating it by K;j everywhere except in the Doppler term Sy, because the dominant
effect of the recoil of the emitter on the line shape is included through the
term S4. 1In view of the foregoing remarks, the base vectors |n > and |m.> in

(4.25) take the following form [cf. (4.13) and (L.14)]:
In> = [i>K>p> = |y >K>[p >, (k.26)
m> = [f>]K>|p >k > = |ogMe >[K >|p >k, > . (k.27)

Equation (L4.25) is the basic line shape formula of the present study.
It contains all the dominant features of the line shift and line width

phenomena. The rest of this work will be devoted to the discussion of (L4.25).

D. STATISTICAL APPROXIMATION

In this section, we shall discuss an approximation which is made by re-
placing the average of a ratio of two functions by the ratio of the averaged
functions. This approximation, which is referred to here as the statistical

approximation, will be used to simplify the basic line shape formula (4.25).
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First we propose to discuss the implications of this approximation in a‘qual-
itative and general manner.

Consider a function z = f(X,Y), where X and Y are themselves functions
of some set of stochastic variables T = (ti,ts..ty). The joint distribution

function for T is denoted by P(T). The mean value of z is defined by

zZ = Jffﬂgﬁ P(T)dT . (4.28)

The mean values of X and Y, which are also defined according to (L4.28), are
denoted by X and Y. Let x,y be the deviations of X and Y from their mean
values, X = X+x, Y = Y+y. Substituting these into f(X,Y) and expanding into

Taylor series, one obtains

+ ...

—— 1
- _ fd 2 " " "
z = f(X,Y) + 5 [x fx2 + 2xy fxy + y2 fyz] , (4.29)

where the linear terms in X and ¥ vanish by definition. Note that the mean
values of x2 and y® are denoted by 5? and X?. If x and y depend on different
sets of stochastic variables, then xy vanishes. In this qualitative argument
we shall neglect the cross term in (4.29) even if xy is not zero.

Tt follows from (4.25) that in the present problem, f(X,Y) has the fol-

lowing form:

z = N ’ (L.30)
where
X = 7n )
Y = fMwip - Spp - Sg - (4.31)



The stochastic variables upon which X and Y depend are the gquantum numbers
describing the states of the system. They are denoted by K and p respec~-
tively. The corresponding distribution function is PKP'

Combining (4.3%0) and (L4.29) yields

= -2 _—2
7 = X |1 - (geexz) X
2472 (T+T) 2

Treating the second term in the parenthesis as a small quantity and using

(1-x) =~ (1+x) -, one obtains

>l

zZ = (Lk.32)
2_.,2 N 2_.2
|y 2 PR X
T2+%2 To+3C

The mean value of Y is a function of frequency, as can be seen from (L4.31),

viz.,

since the mean value of the Doppler term 54 is zero. It follows that ?2 in
(L.32) can assume all the values from zero to infinity. However, the variance

yZ is independent of frequency. At the center of a line where Y = 0, (4.32)

reduces to

X
zZ = — , (k.33)

Rry2-x2

whereas at the wings of a line it becomes

7 =

!—ﬂ l.‘><?|

The following qualitative conclusions can be drawn from the foregoing

remarks:
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(1) When the correction terms in (4.32) are neglected, one obtains

= X
V4 = ] (L"'Bs)
74X

which is a Lorentzian distribution. This result corresponds to the approx-
imation of replacing the average of a function by the function of the average.
Comparing (L4.35) to (4.33) and (3.34), one finds that this approximation is
good at the wings of the line, but may not be good at the center if (y2-x3)

is not small compared to . Since X is a positive quantity, one may assume
as a first approximation that its variance 5? is small compared to X=. But
one can not assume, even as a first approximation, that X? << 7?, because

12 is the variance of a different quantity. As will be shown later, (L4.35)
corresponds to the impact limit (cf. V.C).

(ii) Consider now the approximation of replacing the average of the
ratio of two functions by the ratio of the average of the functions. When
applied to (4.30), this approximation yields the following Lorentzian distri-
bution:

z = —X (L.36)
T4+

where we have ignored x® as compared to X-. A comparison of (4.36) to (L.33)
and (L.34) indicates that (L4.36) is a better approximation than (4.35) both at
the wings and at the center of the line, provided §? <X holds.

(iii) Both of the previous approximations replace the actual line shape
by a pure Lorentzian distribution. Deviations from the Lorentzian distribu-

tion can be investigated by (L.32). By differentiating the denominator of
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of (4.32) with respect to Y, one finds that (L4.32) has two peaks on both sides
of the line center if (y2-x2) > (ie/h). When these peaks are not present, the
top of (L4.32) is more flat than the top of a pure Lorentzian shape.

(iv) When the variance of X is negligible as compared to its mean, one

can write (4.30) as follows:

7 - fd'rP X_ (4.37)
Y2+x2

In quasi-static limit, where the emitter and the perturber are assumed to be
infinitely heavy, X is equal to the natural width [ef. (5.10) ]. Then, one

may replace (L4.37) by

7 = nde P s(Y) , (4.38)

which is the basis of the Holtsmark theory [cf. (5.11) 1.

The four cases listed above represent the statistical approximations in
order of increasing accuracy; these approximations will be encountered in the
subsequent sectiéns. We shall use the case (ii), i.e., (L.36), for our dis-
cussions of the line shape because it appears to be a compromise between the
impact and quasi-static limits, and because it leads to a line shape formula
where various mechanisms contributing to the structure of a line can be

sorted out.

E. LINE SHAPE FORMULA IN THE STATTISTTCAL APPROXTIMATION
Combining (L4.36) and (4.25), one obtains the line shape formula in the

statistical approximation:
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I(w) = z Asp 7n s (L4.39)

2
i,f (w3 £-Sp) +Cﬁ/2)27§
where we define
B o= 3T (14.L0)

The quantity y, in (4.L40) is defined by

H2 _ EZ 20,z 42 _
r7§ = . PKSd = ﬁgg(ﬁw) B (h.hl)

and can be identified as the Doppler broadening. The averaged width 7h is
defined by

7h = j{: PKp Yy - (4.42)
K,p

The quantity 75 is a broadening which is statistical in nature, like the Dop-
pler broadening, and is due to the spread of the individual lines corresponding
to the states |Kp >. We shall refer to 7s as the statistical broadening, al-

though the name should include the Doppler broadening as well. It is defined
by
‘ﬁ2
i

2 = ). Peplstn - (5 . (1.43)
K,p

Our next task will be to investigate the averaged width ?h, which is the

width due to the finite life-time of the states.

F. AVERAGED WIDTH 7n
In this section, we shall first express 7n in the representation

{|aM >|K >|p >} and then consider its average. An arbitrary eigenvector in

Ly



this representation will be labelled as follows:

m'> = .[n’>|5)'\‘ >,
[n'> = |ur>[K'>[pr>, (L.LL)
ju'> = JaMm>

The initial state |n > and the final state |m > have been defined by (k.26)
and (4.27). 1In interpreting the matrix elements appearing in the following
formulas, the foregoing definitions should be kept in mind.

The y  can be obtained from its definition (2.21) by substituting V =

VE+V®P and x = Eq:

——
2
v, = z—“ < |V + P|m>|" 8(By-Bye '), (4.45)
m!
where w' = ck'. The following can be readily verified:
2 2 2
[<a|V + Plm>|® = V| Bp,pr + Vo | 55,\’0 : (L.h6)

Inserting (4.46) into (L4.45), one finds that 7, can be split up into two

parts:
Tn = vt R,
where
r _ 2% . ]2 Kk
Fo= 2 ) el sl (oo T - 2,
c
H')E;\
and
o _ 2n I P 2
yg =%—Z 'Vn'nl S(Eai-Ea.'FEP-EP,'I‘EK_EKI) . ()-l-.)-l-8)
nl
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The quantity 7£ is the natural width corresponding to the radiative transi-
tions of the emitter. Combining (4.15), (4.17), and (4.22) with (L.L7), and
ignoring the recoil term in the argument of the delta function, one obtains

for y§L:

Tr )-\L w3 '

ey L 1F (4.49)
3he3 aia' iU ,

V)
(Byi< By)

Note that we have changed the subscript n into i, to indicate that the natural
width depends only on the initial state of the emitter. When the internal
energy levels of the emitter do not have accidental degeneracies, one can
choose the internal states as the definite orbital angular momentum states.
Then, M in |oM > will be the magnetic quantum number. In this case, one can

further simplify (L4.49) by using the Wigner-Eckart theorem,5 and noting that

)l tlalsl® - < aylaforsf? (1.50)
M 2£i+l

where [£; is the orbital angular momentum quantum number of the initial state,

and < 0;/dfla'> is the reduced matrix element of the dipole moment operator

appropriate to the emitter. Inserting (4.50) into (4.L49) gives:

yéi - b : L 2 Vo o 1< oglldfloer>|2 . (4.51)
3’{'103 2£i+l ot 1

The number of terms in the summation on o' in this expression is limited by
the usual selection rules. It is noted that the natural width is independent

of the initial magnetic quantum number M;j, as implied by the subscript o4 in

(L.51).



Now we consider y2 in (L4.L8), which is the width due to the interaction
of the emitter with the perturber. Since this is equal to the transition
probability per unit time from the initial state In > to other states, its
average with respect to the perturber states can be expressed in terms of a

scattering cross-section for the emitter:

n

P o= ) m - By i) (k.52)

The first term on the right hand side is the speed of the emitter, np is the
number density of the perturber, and oi(K) is the total scattering cross-sec-
tion for the emitter. The latter is defined as follows: np ci(K) is the
probability per unit path that the emitter will make a transition from the
state |i >|K > to any other state. Note that 01(K) includes the collective
behavior of the perturber, although it is defined per particle. The average
of 7§K with respect to the external motion of the emitter can be formally

written, assuming a Maxwellian distribution for the momenta, as follows:

)

K
or

D s 3 -(£x) Z /om0

nos iy | OKK o;(K) e s (k.53)

M( 2 40)

where ® is the mean energy. We note that 7? may depend on the magnetic quan-
tum number M; of the initial state. But if the perturber as a whole is
spherically symmetric, then 7? depends only on Q4.

The averaged width 7, defined by (L4.L42) can now be written as

b7



Tn o= 75+ k. (4.54)

The first term is the natural width mentioned earlier. The second term is
known as the pressure broadening. The physical conditions of the medium (or
the perturber) are reflected on the line shape partly through the pressure
broadening. Therefore, it might be illuminating to investigate how the pres-
sure broadening can be related to the dynamic properties of the medium. The
following analysis is nothing but a calculation of an effective scattering
cross-section in the first Born approximation.

Assume that the interaction between the emitter and the perturber can

be expressed as

D

Vo= }Z €i €3 V(IEi'BJI) ’ (L4.55)
i,J

where r; and Bj denote the positions of the constituent particles of the

emitter and the perturber respectively. The charges of the particles are ej

and ej- One can also write VP as follows:

LE— f a%x M%) P(X) KX , (4.56)
(2n)®
where
Hx) = ko f R V(R) sin XR dR , (4.57)
X (@]

P(X) (L.58)

I
C. L\/J

(0]
Ce
]

[

| =0

(G}
1>



Separating the center of mass coordinate Is, One can write E(zj as

By = ¢S ¥y (4.59)
where
AND) = Z e, e s (4.60)

The vectors Eé denote the positions of the particles in the emitter with re-
spect to the center of mass. The summation on s includes nuclei as well as
electrons.

To assure the convergence, and to Justify the interchange of certain im-
proper integrals which will be encountered below, we assume that V(R) decays
exponentially for large values of R. For example, the Coulomb interaction

will be assumed to be given by

V(R = e Mg, (4.61)
where A is a small positive number. It will be taken to zero in the final
results.

The matrix element of V° in the representation (L4.L4) can be obtained as

Vnr = % D) <pIB(X) [p'> < 1]A(X) o>, (4.62)
where
X = K-XK' .,

Inserting (L.62) into (L4.48) gives

(O ), 10w iy (0 |< DIR(D) [2>1 0lRgy, +8y-y -3y B
nl
(K%-x'%) 1, (1.63)
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where

Fiu,(X) = < i|A(X) [u>]® . (L4.6L)

The average of 7?1 with respect to PKp can be expressed in a compact way by
using the Fourier representation for the delta function in (L4.63). After

some lengthy manipulations, one finds:

+oo X2, 2 .
_ - ==(t"0-1ith)
ol 1 3 2M 2
¥ = = at [ @%x e £3(X,t) Sp(x,t) [0 |2,
i (en° #2 V. f REY (4.65)
where
Sp(X,t) = Z Py < p|P(X,t) P+(§,o) lp >, (L4.66)
P
£3(X,t) = < 1i|A(X,t)A%(X,0) |1 > . (4.67)

The time-dependent operators P(X,t) and A(X,t) are defined by

Faw = ) e e 0 E (1.68)
j
AXt) = Zes S0 X (5.69)
S
and
1Kt/ -iHPt /A
Rj(t) = e gj(o) e , (L.70)

e
iHt /A -iESt /A
e I/ _1%(0) elI/ .

ri(t) (L.71)

Equation (4.65) reveals that the pressure broadening depends on the

medium through the function SP(X,t) ; which is the Fourier transform of the
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G(E,t) function with respect to r. Since the latter is discussed by Van Hove

7 we shall not dwell upon this point

in some detail for a number of systems,
any further. In Section VI we shall actually evaluate (L.65) for a plasma,

assuming that the perturber which consists of electrons and ions can be

treated as a perfect gas.

G. THE SHIFT sb

In this section we shall discuss the shift Spy in the representation
{|aM >|K >|p >}. This shift has been defined by (2.33) and (2.22). Substi-
tuting V = V'+VP into (2.22) and using (L4.L46), one finds that Spms Like 7,

splits into two parts:

r +Sp

Sam = Spm nm

where S 1is the shift caused by electromagnetic interaction and Spy is the

shift caused by the perturber. One can also show that Sﬁm depends only on
the initial and final states of the emitter, i.e., Spy = Sif. Therefore, Sir
is present also in the measured spectrum of a free atom. If the spectrum of
the perturbed atom is compared to that of the free atom, the observed shifts
will be given by Sﬁm. Hence, for our purpose it is sufficient to compute
only ng.

The expressions of SP and Sﬁ can be found from (2.22), with x = E, and

x = Ey. The result is:

9] P IV:]_E)ln' |2
S, = Vo, + PP (4.72)

n' Eai+Ep+EK~Eal —Ep 1 -EK!
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and
T lngn'lg
= Vﬁfnf + PP ) (L.73)
n' EOfi+EP+EK_Ea' —Ep 1 -EKt

where we have introduced
]nf > = |O£fo >]K >|p >

in addition to (L4.26), (4.27), and (L4.44). Furthermore, in (4.73) we have
ignored the recoil of the emitter and replaced E@f+ﬁw by Eﬂi‘

It is to be noted that SE and Sﬁ are, respectively, the shifts in the en-
ergy of the upper state and the lower state of the atom. It is often true
that the interaction of the atom with the perturber in the lower state is much
weaker than its interaction in the upper state, because the atom is more
tightly bound in the lower state. Therefore, Sﬁ is often larger than Sﬁ, and
it may be a good approximation to neglect Sﬁ as compared to Sg (see p. 505,
Ref. 1). But to be all-inclusive, we shall keep Sﬁ in the general theory.

We shall now discuss the diagonal matrix element of VP in (L.72) and

(4.73). It is obtained from (4.62) as

V= lim % X <plB(X)|p>< 1A ]1> . (4. 7L)

nn X0
The last factor in (4.74) behaves like X- < i|d|i > as X»0 when the emitter
is neutral, which we are assuming in the present study, and when the upper
state li > is degenerate. In the case of nondegenerate levels, it vanishes as
X®. The factor < p|P(X)|p >/Q in (4.7k4) approaches the average charge dens-

ity of the perturber as X»0, and hence also vanishes. Finally, the first
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factor follows from (L4.61) and (L4.57) as

S Xz““a : (4.75)
A

It follows from the above observations that Vﬁn vanishes irrespective of the
degeneracy of the states. 1In the case of nondegenerate states, this conclusion
holds even if one sets A = O in (L4.75) before the limit X+0 is taken. When
the states have accidental degeneracy, the order of limits A0 and X+0 becomes
important, indicating that the order of integrations involved in the matrix
element Vﬁn‘ [ef. (4.62) and (4.56) ] can not be interchanged if the unshielded
Coulomb potential (A = O) is used. By taking the limit X»0 first and then
letting A\ tend to zero, we avoided this difficulty.

The foregoing discussions indicate that the shift ng depends on P quad-
ratically in the representation {|aoM >|K >|p >}, since the linear term in
(4.72) and (4.73) vanishes. The ng can be expressed by inserting (L4.62) in-
to (L4.72) and (L4.73), and converting the summation over K' into an integral

as follows:

| [Fi 1 (X) -Fe, (X)) 1< p|P(X) [p>]®
S:rplm = 1 PP deXI&/(X)iz “ lp.'(_) fu (_)]I p[ (_) lp |
(2m) % g 42
E, -E +E -E - — -2X-
oy B By By gy (X-2X0K)
(L.76)
which is valid both in the degenerate and nondegenerate cases.
The'average of ng with respect to PKp’ i.e.,
1%
Sir = z Pyp Shm - (4.77)

P, K

553



does not lend itself to a simple interpretation as the averaged width 7? does.
Therefore we shall not discuss it here in general terms, but in Section VI
shall actually compute it for the case of a plasma.

Before proceeding further, we want to obtain a formula for the shift in
the approximation in which the emitter is assumed to be infinitely heavy and
at rest. This formula will be needed in Section V.B when we discuss the
quasi-static limit. First we consider the diagonal term in (L.72) and (L.73).

When the motion of the emitter is ignored, Vﬁn takes the following form:

VB = <ip|Wlip > = 1)3 deX AAx) < p|R(H) |p > <i|A(X) |1 > .

(2x (4.78)

In the dipole approximation which corresponds to retaining the first term in
the expansion of A(X) [cf. (4.60)]1, (L4.78) takes the following, more familiar
form:

e o= -<ilili>'<p|_@_|p>, (L4.79)

where_éi is the electric field operator acting on the perturber coordinates,

i.e.,

e:R.

£ . z = (1.80)
- - RS

J dJ

at the point where the emitter is located. One finds from (4.79) that Vﬁn is

zero when the states are nondegenerate, because then that states |i > = |oyM; >

have a definite parity. In the case of accidental degeneracy, one chooses the

base vectors ]aM > in such a way that the component of the dipole operator

along a specified direction Q will be diagonal [cf. (2.36)]. The diagonali-

zation process can be automatically carried out if one makes use of the par-
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abolic coordinates.* In this case, the internal states of the emitter are
labelled as |asM > where o is the principal quantum number, s is the "electric"
quantum number (s = 0,1,...0-M-1), and M is the usual magnetic quantum number
[M = 0,+1,...#(a-1) ]. Equation (L4.79) then becomes:

2

Iﬁ*

Vo= - 2% (og(ag-esi-Im -] < p| £l >, (1.81)

me

where sz is the component of the electric field operator along the direction
of quantization which is taken as the z-axis. One finds that Vgn is not zero
when the states are degenerate and when the emitter is assumed to be infinitely
heavy. It must be pointed out that all the matrix elements appearing in the
line shape formula (L4.39) should be computed in the representation {IasM >|p >}
when the states have accidental degeneracy. Since the second term in (L.72)

and (4.73) is of second order in powers of VP, the shift Sﬁm can be written as

gn-Vifnf'when both the upper and lower levels are degenerate. Using (L4.81),

one finds
412
sh, = - %‘“ a3 (@ -251 - My | -1) ~atp(otp-2se- Mg |-1) 1 < p| €, |p > .
me
(4.82)
We now consider the second term in (L4.72) and (L4.73), which is the first
nonvanishing term in the expansion of Sﬁ or Sg when the states are nondegen-

erate and the emitter is assumed to be at rest, and when the interaction Vet

is approximated by (4.79). 1In this case, Sﬁm can be obtained as

*See p. 1676 of Ref. 8 or p. 229 of Ref. 9.
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Shn = z pp 1S PIEVIR>1Z | J<erimg-v, v]esm>]2]< oy llaflar>|2

Ot'p'v EOti+Ep’vECX"FP' 211"‘1

|<t'1Mp-v,v|1eMe>|Z|< oplldflar >3

’ (4.83)
24p+l

where < Z'l,M—v,v[ﬂiMi > is the Clebsch-Gordon coef‘ficient,5 < oziHQHOt'> is
the reduced matrix element, £; and 4¢ are the orbital angular momentum

quantum numbers of the upper and lower states, and év are the spherical com-

ponents of the electric field operator (v = 0,*1).
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V. COMPARISON WITH OTHER LINE SHAPE THEORIES

A. INTRODUCTION

This section is devoted to establishing a connection between the present
theory of line shape and the other theories. In‘the other theories, ions
and electrons are treated in the quasi-static and the impact approximations
respectively. The quasi-static approximation ignores the motion of the par-
ticles of the perturber as well as the motion of the emitter. The procedure
for computing the line shape is as follows: One first assumes that the per-
turber particles are located at fixed positions, and then calculates the spec-
trum of sharp lines which are split by the constant electric field of the
perturber. Finally, one performs a statistical average over positions of the
perturber particles to obtain the broadened spectrum. This approximation,
which is also #nown as the statistical approximation, was the basis of the
Hbltsmarklo theory developed for the treatment of ioms.

In the impact approximation, the collisions are assumed to be instan-
taneous. In each collision, the radiation from the emitter suffers a certain
phase change which depends on the distance of closest approach. In the early
impact theories, the radiative process is assumed to be interrupted when the
phase change is greater than a certain value. The effect of the collision on
the radiating atom is ignored completely when the phase shift is smaller than
the threshold value. This simple model is the basis of the Lorentz theory,
which treats the radiative process as a train of light waves of finite dura-

tions. The duration of each train is determined by the free time T between
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collisions. The intensity of distribution of this radiative process is ob-
tained by computing the Fourier components of a finite wave train of dura-
tion T. This distribution is averaged over the probability that the free time
between collisions is T. The latter probability is v exp(-vT) , where v is the

collision frequency. This procedure leads to a line shape proportional to

1

T )
(w-wo)2+v2

which is the Lorentzian distribution.

The modified impact theories are more complicated and include the effect
of the small as well as the large phase shifts. Since a detailed presenta-
tion of the modern impact theory can be found in Ref. 1 and in the excellent
review articles listed there, no attempt will be made in this work to repro-

duce either the impact or the statistical theory.

B. QUASI-STATIC LIMIT
This section is devoted to the derivation of the Holtsmark (or statisti-
cal) theory from the line shape formula (4.25). The following assumptions
are made about the physical system:
(i) The emitter is at rest;
(11) W = -a-& ;
(iii) The motion of the perturber is small.
In view of the first assumption, the summation over K in (L4.25) as well as
the Doppler term Sq drop out. The second assumption implies that the electric
field produced by the perturber is uniform within the emitter. The third
assumption implies that the kinetic energy of the perturber particles is neg-
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ligible. Hence, the Hamiltonian of the perturber can be approximated by the

Coulomb energy between the particles, i.e.,

B = QRi,...Ry ,

where BJ are the positions of the particles. In view of this approximation,
one finds that H® and VP commute, i.e., [H°,VP] = 0. Hence, the base vectors
Ip > can be chosen to diagonalize both H® and V¥. TIn this representation,

VE takes the following form [cf. (4.48) and Section II.D]:

M- 511 Z |< oz [d]am'> - < p|E|p >|? a(Eai-Ea,) = 0. (5.1)

n
a'M'
Aoy My
The reason why 75 vanishes is that the terms for which E,. = By are excluded
i

in the summation. When the states are nondegenerate, the matrix element of
the dipole operator between the states belonging to the same energy is zero.
In the case of accidental degeneracy, d, is assumed to be diagonalized in the
subspace belonging to each energy level. Since the diagonal element is ex-
cluded in the summation, again there is no term with E@i = Fyt. The fact that
7£ vanishes when the perturber is at rest could be expected on physical
grounds.

In the representation where both H° and VP are diagonal, ng is obtained

from (4.83) as follows:
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1 2 2
5 |<e'1Mj-v,v|LiM;>|" < o |d]lor>]
R = ) l<olf o5 ) 2 ’

v Oﬁ'}éaj_ EO!i-Ea' 2£i+l

< 2 Mp-v, v | 2eMe> ] < aplldflar>]®

: (5.2)
200+l

When the states are degenerate, SPp is given by (L4.82). 1In either case,
Shm is a function of Ep, which is an eigenvalue of the electric field operator,
i.e.,

Stm = SPe(Ep) . (5.3)

With the foregoing remarks, the line shape formula (4.25) can be written
as follows:

r
Yoy
I(w) = z Ajp Z Pp ” Zl . > (5.4)
i,f D (B £-85 p(Bp) 17+(B/2) “(7g,)

Let the last factor in (5.4) be denoted bygﬁj(gb). Then, (5.4) involves the

expected value ofcgf(g%), i.e.,
Z P, J(Ep) = Tr[DPQT(E)]/Tr[DP] , (5.5)
b

where D® is the density matrix appropriate to the perturber. Equation (5.5)
can also be expressed in terms of the distribution function W(E) of the elec-

tric field as

[ e wndm . (5.6)

The latter can be obtained as the Fourier transform of the characteristic

function* which is the expected value of the quantity exp(iz'fz), i.e.,

*See p. 176, Vol. I (English translation) of Ref. 5.
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W(E) = ( l)s u/\d?’X e_iX.E Tr [DP eiz.gi]/Tr[Dp] 5 (5.7)
2

where the electric field operator is as defined by (4.80). Substituting
(L4.80) into (5.7), and expressing the trace in either momentum or coordinate

representation, one writes (5.7) as follows:

iX.-E "BQ(Bl- EN ) ,
W(E) = L fd3x e -—ﬂdsRl..dSRNp e Pexp | ix- J,eJ-EJ-/RJ:?

(2m) ®
-
-BQ(R;..R -1
ﬂdSRl..dsRNp e —Np)‘l . (5.8)
If the Boltzman factor exp(-pQ) is ignored, one obtains
1 GX.E[1 e, iX-R/RFMP
WE = —— [ a3% e 22|L4%Re , (5.9)
- (2:,1,)3 0

which is the Holtsmark distribution function. The line shape formula now

becomes:

r
() = Z Aje fW(E) a%E e _ , (5.10)
i,f [y -85 (B) 12+(1/27% 7éi)

or, if the natural width is ignored,

I(w) = Z Ayp f W(E) a°E &[Baw;e-SEe(B) ] . (5.11)
i,f

The last formula expresses the line shape as the statistical average of the
sharp lines split by the constant electric field E. Equation (5.10) includes
the finite natural width of these lines. The remaining task in completion of
the Holtsmark theory is to evaluate the integrals in (5.9). We need not go

into these details, however, since they can be found in the literature.lo
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We shall now compare the line shape formula (L4.39), which was obtained
with the statistical approximation, to (5.10) or (5.11) to check the statis-
tical approximation in the quasi-static limit. To simplify the comparison,
the lower state interaction will be ignored and the initial state will be
assumed to be an s-state. Then, (5.2) reduces to ng = C4E°, where Cj de-

pends only on the initial state. Let H(E2) be defined by

°EH(E®) = fw(g)daﬁ . (5.12)

The reason for introducing H(EZ®) to characterize the distribution of the elec-
tric field will be soon evident. Inserting SY¢=CyE® and (5.12) into (5.11),
one finds that the line shape is proportional to H(x) where x = (fhAw;¢/Cy).

On the other hand, the line shape formula (L4.39) reduces in the quasi-static

limit to
1
() ~ —E—— (5.13)
(x-x0) “+x5
where
Xq =f Hy)y dy ,
o
x2 =f H(y) (y-x0)  dy -

o
Hence, the statistical approximation is equivalent in this case to replacing
the distribution function H(x) by a Lorentzian shape with a center frequency
which is equal to the mean value of H(x), and with a width which is equal to

the standard deviation of H(x). The validity of the statistical approxima-
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tion in the quasi-static limit depends on the shape of the distribution of
H(x). For example, the approximation yields the correct half-width in the
case of a gaussian distribution about the mean. The actual shape of H(x) and
its first and second moments, which are needed for a more definite conclusion
as to the validity of the statistical approximation in this limiting case,
calls for numerical study since no analytical form of the Holtsmark distribu-
tion function is available at present. We shall not pursue this comparison
any further, because checking the validity of an approximation, i.e., the
statistical approximation, is not Jjustified in a limiting case which itself
may not describe the actual physical system adequately. This point will be
clarified in Section VI.B, where we actually compute the width for ions, which
is ignored completely in the quasi-static limit. We shall see that even in
the zero temperature limit, where the quasi-static approximation may be ex-

pected to be valid, the width due to ions is not zero.

C. IMPACT APPROXIMATION

In this section an attempt is made to establish the connection between
the impact theory and the line shape formula (4.39). The impact approxima-
tion corresponds to the statistical approximation introduced by (h.35), namely
by replacing the average of a function by the function of the average. The
latter approximation is equivalent to ignoring the statistical width 7q
[ef. (L4.40)] in the line shape formula (L4.39). To facilitate the cémparison,
we shall also ignore the natural width x;i, the Doppler effect Sy and 74

and the shift S? of the final state. Then, (4.39) reduces to
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I(w) = Z A A . (5.14)
i,f (it p-85) *+(17/2) ©

This formula of line shape is identical in form to Eq. (47) of Ref. 1. The
next task is therefore to show the connection between the shifts and the
widths in these two formulas. By using (2.20) one can write S? and 7? in a

compact form as

and

g
0
5
A

=
v

where < i[j{li > is

<i|}€|i>

< ip|¥lu'pr>|2

lim Z P,y < ip|VP|ip > +
€0 P i
D L'p' 1e+(Eai+Ep-Ea.-Epl)

1]

(5.15)

The last term in (5.15), which contains the summation on the intermediate

states |u'p'>, can be written as follows:
. . e -1.pl.
< 1p|VP[1e+Eji+Ep-(H +1°) ] VPlip > , (5.16)

e
where H® denotes the internal Hamiltonian of the emitter, i.e., H® = Hy, since
the emitter is assumed to be at rest. The following operator identity can be
easily proven by recalling the definition of the time-dependence of an ope-

rator, i.e.,

eitH/ﬁ W e-itH/’ﬁ ,

v(t) = 0)

6k



and performing the indicated integration:*

%% f at v(-t) Je-B /A , (5.17)

o

1
—V
a-H
where a is a complex number with a positive real part, and H and V are two
operators. Using (5.17) in (5.16) with a = ie+(Ey;+Ep), H = HS+HP, and
V = VP, one obtains

f at e < ip|VP(0) P(t) |ip > . (5.18)

L
i'h'o

Inserting (5.18) into (5.15) and lettin e»0 yields

<i|%|i> ZPP <p

b

<i

p >li>,

(5.19)

® o+ %—5 f at VP(0) U(t) VP(-t) U (t)
(o]

where U(t) = exp[-itH®/A], indicating the time-evolution of the emitter, and

where the time-dependence of Vp(t) is due to the time-evolution of the per-
turber alone. At this stage, we make use of the assumed equality of the en-

semble average and the time average, i.e.,

+T
Z Pp<p|Vp|p> = lim Lf dx < ¥(x) [P |(x) >, (5.20)
o T 2T Y

where y(t) is the state of the perturber at time t. Following the notations

of Ref. 1, we define

—

%) < y(t) [VPly(t) > (5.21)

i

and

u(s) L) U (1) . (5.22)

i

W)

*An alternative but lengthier proof of this identity has been given by 0. von
Roos (Ref. 11).

65



The first term in (5.19) can be written as follows:

+T
Z Pp<ip|Vp|ip> = lim l_f dx [ﬁx) . (5.23)
o T 2T -7

The second term in (5.19) becomes:

+T ©
lim L ‘f dxf dt < ¥(x)
T 2T =T f6)

It should be pointed out that in obtaining (5.23) and (5.24) no assumption

<i i>.

VP(0) U(t) VP( -t) U™ (t) ]w( x) >

(5.24)

has been made except for replacing the ensemble average by the time average.

We now approximate the matrix element < y(x)|...|[y(x) > by
< () [V2(0) [y(x) > U(t) < ¥(x) [WP(-1) [y(x) >u¥(v) , (5.25)

which is essentially equivalent to replacing the expected value of a product

by the product of the expected values. Noting that
<Y() [P(-t) [¥(x) > = < y(x-t) [VP(0) |y(x-t) >, (5.26)
one can write (5.25) as follows:

(AR U(t) (A x-t) UH(t) . (5.27)

Inserting (5.27) into (5.2L4), and then combining (5.23) and (5.2L4) with (5.19),

one obtains

+T +T b'e
<i]ﬁ|i> = < i|lim & f ax (’j(x) +%f dxf dy (}(x)ﬁ/(y) i>.
T)OO 2T _T 1 _T 00

(5.28)
This expression, which yields the shift and the width according to (5.15), is

essentially equivalent to the formula (L42) of Ref. 1. [See also Egs. (L48)
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and (49) of Ref. 1.,] However, the latter is derived with the assumption that
the perturber consists of noninteracting particles (electrons). Furthermore,
the calculations are made by first assuming a single perturber to be present,
and then multiplying the results by the number of perturbers. These assump-
tions can be introduced in (5.28) by writing the wave function y(t) as a pro-
duct of the wave functions of each electron, expressing zé%x) as the sum of
interactions with each electron, and finally ignoring the cross terms due to
the quadratic form of Z§(X)Z§%y). In evaluating the time average for a single
electron, one must choose a time interval 2T which is much greater than the
average collision time to achieve good statistics. From this point on, one
may use arguments almost identical to those used in obtaining Egs. (40), (k41),
(42), and (L43) of Ref. 1.

The foregoing remarks should be sufficient to demonstrate how the present
formulation reduces to the impact theory with certain approximations. Since
the two approaches are based on entirely different approximations, a one-to-
one correspondence between the final line shape formulas cannot be expected.
However, the dominant features of the impact theory follow from the present

theory of line shape through the foregoing analysis.

D. TWO NONINTERACTING PERTURBERS

In this section, we consider a case where the perturber consists of two
noninteracting parts. Then, the wave function Ip > of the perturber can be
written as

p> = |a>lqQ>,
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where ]q > and IQ > are the eigenfunctions of each part. In dealing with the
spectral line shape from a plasma, one usually treats the electrons and the
ions as two noninteracting systems of particles. Therefore, the present
analysis has a direct application and will indicate how to combine the effects
of ions and electrons on the line shape.

An inspection of (L4.58) reveals that the matrix element [< p[P(_}E)|p'>|2
appearing in (4.63) and (4.76) can be written as follows:

i 2
|® |

= IPQQI

|Ppp: I P Pga*Paq Pla) Bear Sqq-

(5.29)
where we have omitted the argument of P(X) to compress writing. The super-
scripts i and e distinguish between two parts of the perturber. When (5.29)
is inserted into (L4.63) and (L4.76), one can recognize three different terms

for the width and the shift: 71, 7S, 751 and sl | 88 . SEl respectively. The

nm’ “nm
terms labelled by i and e represent the width and shift due to ions and elec-
trons alone. The occurrence of the cross term labelled by ei indicates that

the effects of ions and electrons on the line shape are not strictly additive.

Inserting (5.29) into (L4.63), one obtains for »S and 7§i:

Tn f’fé’g Z 0 | Fo (R 1< alP5(0) [ar>]®
Kfu!qv
)ﬁz 2 2
' 6{%31'E“'+EQ'EQ’+ SRR B (5.30)

and

el - f—l—’E%sz |10 |7 Fy,1(X)2Re [< a|P%(®) Ja > < Q|PH(-¥) IQ>]
lu'

o

EEo;i'Ea'+ Zl_; (Kz'Klzz—J b} (5-51)
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where X = K-K', and Eq,EQ represent the energy of electrons and ions respec-

tively. The ion width 7& can be obtained by replacing q by Q in (5.30).

.

1 and Sﬁl will be ignored

In the subsequent analysis, the cross terms 7§
as an approximation. Under some circumstances, the cross terms may vanish
as a consequence of certain assumptions made about the system. For example,
we shall see in Section VI that the diagonal matrix elements < qIPe(z)Iq >
and < QIPi(§)|Q > vanish unless X = 0, if one treats the electrons and ions
as an ideal gas by neglecting the interaction between electrons and between

ei

ions. Then, y,~ vanishes because Fiu.(O) = 0. The same holds for s&T

n - Thus,
if one makes the ideal gas approximation in a plasma, the cross terms dis-
appear automatically. Another example is the case where the emitter is as-
sumed to be at rest. In this case, (5.31) involves only.a discrete summation
on @' and thus vanishes, as explained in Section II.D [see also (5.1)]. How-
ever, Sgi does not necessarily vanish if the motion of the emitter is ignored.
It follows that the approximation of ignoring the cross terms may be justified
in some circumstances.

The expression for Sgp and S%m are obtained by replacing |p > in (L.76)
by |a > and |Q > respectively.

With the foregoing remarks, the line shape formula (L4.3%9) takes on the

following form:

I(w = Asp PKQ 5
: 4 i 2 4 i\ 2
i,f qQK (hAWif_Sl(?lm-S;-]m—Sd) + T (7Crxi+7rel+71:"-l) (5 52)

The assumption that the perturber consists of two noninteracting parts enables
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one to treat each part by a different approximation. Suppose that the elec-
trons are treated by the impact approximation, and ions by the quasi-static
approximation. Furthermore suppose that the emitter is at rest. To simplify
writing, neglect:the natural width. TImpact approximation implies that 7§

and ng are replaced by their mean values 7? and ng. In the quasi-static
limit 5. = 0 and Sgy = S1.(F), where E is the electric field produced by ions.

With the foregoing assumptions, (5.32) becomes

. e
I(v) - 2 Age fdaE W(E) — . (5.33)
1% i, -85 o(E) -85, 1+(Hy5/2) ®

This formula expresses the line shape as a weighted superposition of Lorent-
vzian distributions whose center frequencies are shifted by the ionic field
and by a constant averaged shift due to electrons. The widths of these
Lorentzian distributions are identical and are determined by electrons. Equa-
tion (5.33) represents the present status of line shape calculations, which
is summarized by Barangerl as follows: "First, the atom is assumed to lie in
a fixed electric field created by the ions, with attending Stark splitting.
The effect of electrons on the corresponding sharp lines is computed with the
impact approximation. Then one averages the electron broadened spectrum with
the probability distribution of the ionic field. Finally, one investigates
the possible corrections due tb the motion of the ions." It should be noted,
however, that in the present theory of line shape, calculation of the electron
width and shift is based on different formulas, as explained in the previous

section.
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We shall now investigate the case of two noninteracting perturbers with
the aid of the line shape formula (4.39) based on the statistical approxima-
tion. With minor modifications, (L4.39) is reproduced here as (5.34) to

facilitate reference:

7

1(w) Z Arg —— (5.34)

i,f (htw;p-5he)~ + T 7

where
7]51 = 7(1‘:(1 + 7? ) (5'55)
g = 73T AR, (5.36)
2 %5 P (8B - (s1p®] . (5.37)
Kp

In this formalism, the calculation of line shape is reduced to the determina-
tion of three quantities, i.e., 7?, S;f, and 7., for a given perturber. In

the case of two noninteracting perturbers, 7? and Sif can be written as fol-

lows [cf. (5.29)]:

o= St 5, (5.38)

e i el
sbr = Sip * Sip + Sif - (5.39)

Once again, we shall ignore the cross terms without further comment. The

statistical width y, then becomes:

2 i 8 i i
),% = ( 72 + ( 7% 2 + ‘f? Z PKqQ [ngS%m - S?fsif] . (5 . L”O)
KaQ
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Since 8§, and S%m involve only electronland ion states, respectively, the
last term vanishes if the center of mass motion of the emitter is neglected.
Then, the average of the produce SSmS%m is equal to the product of averages.
We shall ignore this term even in the case where the motion of the emitter
is taken into account, because this term is probably of the same order of
magnitude as the cross terms, which have been ignored in the preceding dis-
cussion. It is emphasized that these simplifications are introduced for a
qualitative discussion of line shape. In numerical calculations, one may
retain these terms if they are not found to be negligible.

With the above simplifications, the following line shape formula is ob-
tained:

7§+7%+%§i
I(w) = }: Air . 72 : ,
i,f (Bawsp-Sip-S57) + - [7§+(7§)2+(7§)2+(7§+7i+7§i)21

(5.41)

This formula includes all the dominant effects which influence the line
shape. It treats the ions and electrons in the same manner. The relative
magnitude of the various terms in the total width depends on the physical
conditions and on the nature of the perturber, e.g., temperature and mass.
For example, 7% vanishes if the mass of ions is infinite (quasi-static ap-
proximation), and the terms corresponding to the pressure broadening become
dominant if the temperature is sufficiently high (impact 1limit). It is im-
portant to realize.that the approximations involved in (5.41) are all opera-
tional rather than physical, and therefore can be tested in principle by

estimating the magnitude of the terms which are thrown away.
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VI. APPLICATION TO PLASMAS

A. INTRODUCTION

In this section the line shape theory developed in the previous sections
will be applied to the emission spectrum from a plasma. In a plasma, the per-
turber consists of electrons and ions. It is assumed that ions can be treated
as structureless particles. Furthermore, the interaction between electrons,
ions, and electron-ion pairs is ignored. Thus, the perturber is treated as
an ideal gas. The emitter is assumed to be a neutral atom.

The purpose of this section is to compute analytically the pressure width
and shift due to electrons and ions, so that some aspects of the line shape
theory may be better understood. This computation will also reduce the number
of numerical calculations necessary to obtain the line shape. We shall not
attempt to evaluate the statistical width [ef. (5.37) ], the third quantity
which must be calculated to determine the line shape, because that would in-
volve numerical calculations. Therefore, this section should be regarded as
a guide in applying the general theory of line shape to a given physical sys-

tem, rather than a complete treatment of line shape in plasmas.

B. THE WIDTH DUE TO ELECTRONS AND IONS

We shall use (5.30) to compute the width 7? due to electrons. The ionic
width 7% can be obtained by replacing the electron mass by the ion mass in
the final result.

The wave function |q > for electrons which are treated as an ideal gas
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will be labelled by the occupation numbers of the single-electron wave func-
tions, i.e.,

q> = nl,...nj..> 5

where nj denotes the number of electrons in the eigenstate

j_r.q.
e — =d B

=

where ﬁgﬂ is the momentum of the electron. The operator Pe(X) appearing in

(5.30) is explicitly given by

I
[0]
[0]
e
1=
[
154
.

PE(X) (6.1)

where Ej is the position of the jth electron. The matrix elements
< q'lPe(§)|q > can be computed easily* by expressing Pe(g) in terms of crea-
tion (A*) and destruction (A) operators, viz.,
e _ S +
PE(X) = ej{l b(gfgk-gﬂ) A3hy . (6.2)
J,k

The result is found to be
< nl,..nj,.,nk-l..lPe(ggInl,,onj..nko.>{2 = e2 ng(1lnj) 6(§}gk-gd) . (6.3)

The factor (1l#nj) 1is a quantum-mechanical effect and can be replaced by
unity in the present problem since the number of states available for an
electron is much greater than the number of electrons. The diagonal matrix

element < q]Pe(§)|q > can be computed as

*See p. 215 of Ref. 12.
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< nl,..nj..]Pe(z)!nl,..n > = e N, 3(X) , (6.4)

j.c

where N, is the number of electrons. It is important to note that the 8,s
appearing in (6.3) and (6.4) are Kronecker deltas. It is observed from (6.L)
that the diagonal element is zero unless X = O; this conclusion has been re-
ferred to in Section V.D.

Inserting (6.3) into (5.30), converting the summation on K' into an in-
tegral, and performing the summation on j with the help of the Kronecker

delta, one obtains

g = —= z deXI(ﬂ’(X) % 7y (X z Ny
p! k

LPoh

- SEai-Ea.- g (XF+2X-qp) - g (x2-2§-§‘)il . (6.5)

Using

3
Qe

which defines the number density n(g) in the momentum space, one can write

(6.5) as follows:

7 = LH;;I ZfdsX | |2 Fy () fdaq n(q)
W

. SEE%_EQ,_ (0% ﬁz.(x_yﬂ ’ (6.6)

My

where m, is the reduced mass
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and where v and V are the velocities of the electron and the emitter respec-
tively.
The mean value of 72 can now be computed by assuming a Maxwellian distri-

bution of momenta %K and ﬁg. Thus ,

_ ‘ e2
S = Z PPrr§ = =7 nNe 2 de X2 (%) |2 £50 (%)
qK 7T . o

'fd3v777(V,m)‘/d3VW/(M;V) SEO‘i-EO"- %’ﬁ ‘—ﬁz'(z-@] » (6.7)

My

whereIWZ(v,m) is the normalized Maxwellian distribution, i.e.,

27 vy

ne is the number of electrons per unit volume, and fia,(X) is defined by

n\3/2 -(mv®/20)
E—;E) e 5 (6.8)

fi0(X) = 2 fdﬂf( Fi (X)) . (6.9)
M = '

When the states are nondegenerate, one may simplify (6.9) by expanding the
exponential function in the definition of F; .(x) given by (4.64) and (L4.60)
into spherical harmonics, and employing the Wigrer-Eckart theorem. One finds

that

. 2

e (0 = ) |< @l ogsl® (6.10
L=1

where the irreducible tensor operators Try are defined by

Z

Lt ez ym(g;j) Jp(xey) (6.11)
j=1

Trm(X)

In the last expression, Yrm and jp are spherical harmonics and spherical
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Bessel functions. It 1s noted that fia' is independent of the magnetic quan-

tum number M; of the initial state. In the dipole approximation,

in
£, (%) = gi‘ X2 |< atllalles>|® (6.12)

where d 1s the dipole operator for the emitter. The case of degenerate states
will be discussed later.
Substituting (f(X) from (L4.75) into (6.7), and performing the indicated

integrations (see Appendix A), one obtains

e _ 8e z f°° _x
7T = F De L, dX(}\,2,+X2)2 0 (X) I(X) , (6.13)

where I(X) is defined by

S L[ nr (Toy For ﬂ)j
0 = 5 Ve eXpE2@< %x " omy . (6.14)

We shall now attempt to draw some conclusions from (6.13) about the pres-

sure width. First we consider the zero temperature limit. From the defini-
tion of I(X) given by (6.14), it follows that I(X) reduces to a delta function

as 60, i.e.,

(%) » SEEai—Ea,— (ﬁx)g:l . (6.15)

2my
Inserting (6.15) into (6.13) yields

2 3 fiqr(m)
5 = =, (6.16)
o (}\2+T]2)2 -F

E
a5 '

Tr



where

=3
1l

[%5 (Eai-Ea,)]l/z : (6.17)

It is observed that the pressure broadening does not approach zero in
the zero temperature limit. There is a finite width due to the transitions
to the lower states (E,:< Eﬂi)' This result indicates that ions can cause
transitions even if their motion is negligible before the interaction. There-
fore, to ignore the width due to ions on the ground of their relatively slow
motion, as is done in the quasi-static limit, may not be Justified. However,
the width approaches zero as my,. tends to infinity, as can be verified by not-
ing that

fia,(n) - (l/q2) as 1 + o .

Hence, the quasi-static limit actually corresponds to assuming that the masses
of both the emitter and the perturber are infinite.

It is now in order to discuss the role of the parameter A in (6.13) and
(6.16) as well as in the subsequent formulas. This parameter was introduced
as a convergence factor [cf. (L.61)] to allow interchange of integrations.
Therefore, it is to be set equal to zero in the final results, e.g., in
(6.16). However, one may improve the theory numerically by interpreting A
as the inverse of the Debye shielding distance. The reason for this is that
the theory developed in this section ignores the interaction between electrons
and ions, and it is not realistic to do so. This approximation may be im-
proved by introducing a shielded Coulomb potential between charged particles.l

The improvement may be expected to be appreciable particularly in the case of
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closely adjacent levels, and also in the case of electrons. This is because
A enters the formula (6.16) as (A24n®), and its effect is appreciable only
when A > n [cf. (6.17) 1.

The computation of 7§ can be simplified by making the dipole approxima-

tion in (6.16). Substituting (6.12) into (6.16) gives

e 2 5
7 = i%e— ne z |< a'fldfloy>] 1 . (6.18)
5 Oé' ( n2+)\'2) 2( Eai-Eal)

(Byr< Fgy)
A note of caution is due here. The dipole approximation is valid when the
argument of f, . in (6.16) is sufficiently small [cf. (6.10) and (6.11)].
If ro is the radius of the emitter, an approximate criterion for the validity
of the dipole approximation may be given as nro < 1. Taking ry = 10-8 cm,
one finds that in the case of electrons, the dipole approximation holds for
transitions for which,E@i-Edvi 8 ev, whereas in the case of ions, e.g., He,
the dipole approximation holds only for transitions for Which.Ebi—Ea,SDOOE ev.
Therefore, (6.18) may be a better approximation for electrons than for ions.
In the case of lons, one may use the asymptotic wvalue of fia‘ for large
arguments., The latter decreases as l/q2 for nro > 1, as can be verified from
(6.10) and (6.11). From these discussions one may expect the width due to
ions to be smaller than the width due to electrons at low temperatures, al-
though a definite conclusion requires a careful numerical evaluation.

We now turn to the task of evaluating (6.13) at any temperature. We

first consider the case of Ej_ # Eyrs which corresponds to the contribution

i
of the inelastic collisions to the width. The integral in (6.13) can be

performed numerically as it stands, and can be worked out analytically if
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one makes the dipole approximation and sets A = 0. The result can be shown

to be (see Appendix A) :

s\ (Eq;-Eqr) /20
R R I TR
al

( Egy AEqy1) (6.19)
where K, is the modified Bessel function of the second kind. The summation
on @' includes transitions both to upper and lower energy levels. Equation
(6.19) reduces to (6.18) as @»0. That (6.19) diverges as mp>w is a consequence
of the dipole approximation. The temperature dependence as well as the de-
pendence of the width on the mass of the perturber can be studied with the
aid of (6.19). We shall not go into details of these calculations, which are
of numerical nature. It is emphasized that the validity of (6.19) is re-
stricted by the dipole approximation. When the latter is not justified in a
given temperature range, or for a given perturber mass, the original Eq.
(6.13) should be used.

The contribution of the elastic collisions, i.e., E@i = Ey1, can be ob-

tained from (6.13) as follows:

%) S22
2 -(H=x=/86m,.)
7§ = §§— ng r »/ﬁ dx —Z fia_(X) e /8oy
e 210 V% (A\2+x3)2 * , (6.20)

where the symbol fia-(x) means [cf. (6.9) ] explicitly
i

£i05(0 = 2 f aos < i|AX) |a mr>|® . (6.21)
M -

When the initial state is nondegenerate, the parity selection rule excludes

the dipole moment and all the other odd moments in the expansion of fia-“
i
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Since 7§ due to the elastic collisions involves higher moments, it can be
neglected as compared to the width caused by the inelastic collisions given
by (6.19).

When the initial state has accidental degeneracy, the contribution of
the elastic collisions is not negligible, because the matrix element of the
dipole operator between two states with the same energy does not vanish. We
shall treat this case only in the dipole approximation, and assume that the
degenerate eigenstates of the upper level diagonalize the z-component of the
dipole operator [ef. (4.81)]. The internal states can be labelled as |asM >
in parabolic coordinates. To compress writing we denote the quantum numbers
(sM) by v. The case of degenerate states differs from that of nondegenerate
states only in the choice of the representation in the subspaces correspond-
ing to a given energy. The results of the previous case can be used directly

by modifying (6.9) slightly. In dipole approximation, (6.9) reads

£, (X = 2 fdg}% < ila-xX|arvi>|® . (6.22)
' -

Noting that

one writes (6.22) as follows:
Ly 2 z . 1o ]2
£,0(X) = N X < ildlarv'>]T . (6.2L)
v'

The matrix element on the right hand side now denotes the sum of the squares

of the matrix elements of the components. The difference between (6.24) and
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(6.12) lies in the summation over v'. Equations (6.18) and (6.19) can be

used with the foregoing modification. For example, (6.19) reads

2 ]——— | (B ~Egr) /20
7§ _ 16e2 ng ggmr E; |< i|g|a'v'>|2 o i Kb(iﬂai"ﬁd'|/2®) )
a!-‘}l

2
% (6.25)

The contribution of the elastic collisions can be obtained from (6.20)

as follows:

= 2
¥ = 8V2n o ne_Jf,l: F<§_ﬁ__> < ila,li >%, (6.26)

i 32 em, Ry,

where F(z) is defined by

F(z) = f dx —— % (6.27)

o (1+x) =
In (6.26), Rp is the Debye shielding distance. It is important to note
that in the case of degenerate levels, the width due to the elastic collisions
diverges if the quantity A in (6.20) is taken to zero. This indicates that
the use of a shielded Coulomb potential or any other appropriate cut-off pro-

cedure is imperative in the present case.

C. THE SHIFT DUE TO ELECTRONS AND IONS
We shall use (L4.76) to compute the shift due to electrons and ions. The

shift of the upper state takes on the following form in the case of a plasma:

e 2 3
s = m ; deX (%) | Fiu'(X) PPfd q n(q)

EEai-Ea,— (?)2 - ﬁ;_co(y_-y):l o (6.28)

My
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The shift of the lower state can be obtained by replacing Ii > by [f >. The

mean value of S§ can be written as

s{ = 8)23 n, z f ax x| U(x) |® fia,(X)deV%(v,m)
T, o o)

(2

i ’h/X 2 ; -1
deVV/é(V,M) EEai-Ea,— (BX) ~ _ ﬁg-(z-y:)jl . (6.29)

2my

Following the procedure described in Appendix A, one finds the analogous

formula to (6.13):

o0
2
e € X
S = =—n f X —=—— £, (X I(X) (6.30)
i r € 2 % (A2+x2)2 ia’ ’
where
2o 2
1 L © _§u2 EO‘i-Fat- {J})n(l +hXu
- 3 3/2
I(X) = =— — g/ du u e 1n > , (6.31)
X /7 A (%)
E,.-E,:- -hXu
Qi " om,.
where
- Ir
* T e
The zero temperature limit is obtained by using
) 2
1im ¥ ES/Z - 5(;) )
Ero VT u
and noting that
1
lim I(X) = PP s (6.32)
oo 5 g, (02
oot T
1 2my-

as follows:
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S? = - Ei r. . L .
’ "neg [ >\~+X2>2 o (Byr ~Ty,) + (20

(Ey> By,) 2hr  (6.%33)

(%)

1

It is observed that in (6.53), transitions only to upper energy levels contri-
bute to the shift in the zero temperature limit. This is in contrast to the
zero temperature limit of the width, i.e., (6.16). Furthermore, the shift
does not vanish as my+wo (quasi-static limit), whereas the width does vanish.

In the dipole approximation, (6.33) reduces to

2 < a'lldlles>]?
s = -”“g ne Vemg, Z I< o'fidles>1” (6.3L)

5 ! VEal_Ea.

i

(Bgr> EOéi)
The discussions about the validity of the dipole approximation as well as the
choice of A apply also to the shift.

The shift at any temperature can be obtained in the dipole approximation

and with A = 0. Performing the integrations in (6.31) and (6.30) (see Appendix

B), one obtains

$ Bl T g O, ()

( O5.> Frys) (6.35)

where I, is the modified Bessel function of the first kind.
We shall give the shift formula for the case of degenerate levels with-

out any further comment:
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-(Eqr-Ey.) /20
¢ - ”ﬂe [ < ild|orve>|
>E )
- m..R
EO‘ E°‘> I D < i]a,|i >|° ﬂ (6.36)
8@erD
where
. 32[00 -zxsz y2 y+x
o(z) = = / J dx x e d TP Lo/ = (6.37)
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VII. CONCLUSIONS

The present theory of line shape has, as its starting point, the emis-
sion spectrum formula (3.26), which is based on Heitler's damping theory. The
starting point of the existing theories, i.e., the quantum mechanical Fourier
integral formula which expresses the spectrum as the Fourier transform of the
autocorrelation function of the time-dependent dipole operator [cf. (3.3k4)],
follows from (3.26) when the natural width is neglected. These two starting
formulas are therefore equivalent in all practical applications where the
width of the lines is greater than the natural width. However, the form of
(3.26) lends itself to a more systematic treatment of the line shape. When
the interaction between the emitting and perturbing systems is treated as part
of the perturbation energy, (3.26) reduces to (L4.25), which is the basic line
shape formula of the present study. Equation (L4.25) expresses the spectrum
as the superposition of the perturbed lines of the emitter. The structure of
each line in turn is expressed as the weighted superposition of a sequence of
Lorentzian distributions. Equation {4.25) contains the limiting approxima-
tions, advanced in the existing theories, as special cases. The Holtsmark
theory follows from (4.25) when the emitting and perturbing systems are treated
in the quasi-static limit. The impact theory is obtained by making the assump-
tion of replacing the average of a function by the function of the average,
and by using the ergodic theorem.

When applied to plasmas, the present theory treats the ions and electrons

on the same basis. It also indicates that the pressure width due to ions or

87



electrons does not vanish in the zero temperature limit. This result implies
that neglect of the ion width on the ground of the slow motion of ions, as
assumed in the quasi-static limit, is not Jjustified even at very low tempera-
tures. In other words, fhe zero temperature limit does not correspond to the
limit of infinite mass.

It is concluded that the present theory of line shape is more systematic
and more interpretable than the existing theories. There is reason to expect
that the computational framework provided by this theory will improve the
accuracy of the line shape calculations particularly in the intermediate

region, where neither impact nor the quasi-static approximation is valid.
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APPENDIX A

DERIVATION OF THE WIDTH FORMULA

We start with (6.7) and substitute u = v-V to perform the integration

on V. The latter yields

faSvWZ(v,w 20| val,m) = Pumg) (A.1)

where my is the reduced mass, and where \W(v,m) is the normalized Maxwellian
distribution. The Egq. (A.1l) can be verified easily by using the following

tabulated integral :15

® 2
- 2
f dxesxsinha\/;{- = 'g's-\/n:/s ea/s.

e}

We then carry out the integration over u, i.e.,

I(x) = 2nfu2 %(u)du f+ldp 6[§- Lﬂﬁ - fJXuE] s (A.2)

-1 emy.

where the z-axis is chosen parallel to X. Integration over u yields

(x - 22 fmu M) p(wau (4.3)

[e]

where D(u) is defined by

n
.

D(u) for uy<u

(1/2) for ug =u

= 0 for ug >u,
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where

R Co s
v = l(g | = (A1)

Using the definition of D(u) in (A.3) and inserting\7?qu) from (6.8), one
"
obtains (6.1L).
In obtaining (6.19) from (6.13) in dipole approximation, one encounters

the following integral:

which can be written as

The last integral is tabulated:d

2abe
e

M = Ko(2|abe])

This result leads to (6.19).
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APPENDIX B

DERIVATION OF THE SHIFT FORMULA

To obtain (6.35) from (6.30) in the dipole approximation, we substitute
(6.31) into (6.30) and perform the integration on X. The following integral

is encountered:

[e0)
2
+ dx X“+2ax-1 -
" = “Zj — 1 eyl I for ;j = Eai qt >0, (B.1)
and
® 2
- +2ax+
1T = fﬁﬁln%—g—@’—‘—l , for E<o, (B.2)
X xX“-2ax+1l
o)
where
2
32 ~ uTmyr
21§ |
Substituting

x2 + 2ax - 1 (x+x4) (x-%2) ,

x= - 2ax - 1 (x-x1) (x+x5)

in (B.1l), one can verify that I" venishes. The roots X, and X» are, of

course, given by

N1l+a? + a

Xy =
Xo = N1+a? - a
Now consider I-. When a > 1, one again substitutes
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X< + 2ax + 1

(x+x3) (x+x2)

x2 - 2ax + 1 (x-%x,) (x+x5)
in (B.2), and finds that

I = ¥ for a>1

When a < 1, the argument of the logarithim is always positive, and one can

therefore drop the absolute sign. Thus,

+oo
[e e
2
- = ax 4 §§i§§§i£ = \/ﬁ ax In(x®+2ax+1) . (B.3)
x xZ-2ax+1 Lo %

To evaluate the last integral, one may proceed as follows:

+o0

e B (B.4)
da Yoo xZH2ax+l
Hence,
I" = 2xsin~la +C,

where C is the constant of integration. Since (B.3) vanishes for a = O (odd

function), C is zero. Thus,
- 1

I" = 2xsin~a, for a<1l. (B.5)

In computing the remaining integration on u with the foregoing value of I,

the following integral is encountered:
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By integrating by parts, and using

1
d/\ dx e ¥/ Nx(x-1) = = e-s/2 I(s/2) ,

o}

one proves that
T = -2 g5 X e‘(5/2) To(5/2)

The last formula leads to (6.35).
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