
Pergamon 
International Journal of Plasticity, Vol. 10, No. 4, pp. 327-346, 1994 

Copyright © 1994 Elsevier Science Ltd 
Printed in the USA. All rights reserved 

0749-6419/94 $6.00 + .00 

NONPROPORTIONAL LOADING EFFECTS ON 
ELASTIC-PLASTIC BEHAVIOR BASED 

ON STRESS RESULTANTS FOR THIN PLATES 
OF STRAIN HARDENING MATERIALS 

C.H.  CHOU,* J. PAN,t and S.C. TANO:~ 

*Edison Welding Institute, tThe University of Michigan, and *Ford Motor Company 

Ahstraet-A stress resultant constitutive law in rate form is constructed for power-law hard- 
ening materials. The change of plate thickness is considered in the constitutive law. The elas- 
tic-plastic behavior of a plate element based on the stress resultant constitutive law under uniaxial 
combined tension and bending is determined under a limited number of nonproportional and 
unloading paths. The results based on the stress resultant constitutive law and the through-the- 
thickness integration method are compared within the context of both the small-strain and finite 
deformation approaches. The results indicate that the selection of the normalized equivalent stress 
resultant and the corresponding work-conjugate normalized equivalent generalized strain is 
appropriate for describing the hardening behavior in the stress resultant space. However, the 
hardening rule in a power law form must be modified for low hardening materials at large plas- 
tic deformation when finite deformation effects are considered. 

I. INTRODUCTION 

Inelastic behavior  o f  plate and shell structures has been analyzed by use o f  stress resul- 
tants in the last few decades (ILYuSHIN [1948], CRISFIELD [1974], BIENIEK & FUNARO 
[1976], EOOERS & KROPLIN [1978], EIDSHEIM & LARSEN [1981], PAPADOPOtrLOS & TAYLOR 
[1990]). In the analyses o f  plate and shell structures where a plate or  shell element is plas- 
tically deformed,  constitutive laws and flow rules based on stresses must  be employed,  
and then, in general, stress resultants are determined f rom integrating stresses th rough  
the thickness.  This me thod  is referred to as the through- the- th ickness  in tegra t ion 
method.  The stress states through the thickness are usually complicated and dependent 
upon  the entire deformat ion  history o f  the plastically deformed  plate or  shell element. 
However ,  when a macroscopic  viewpoint is adopted,  stress resultant constitutive equa- 
t ions are employed and the local stress variat ion th rough  the thickness then cannot  be 
accounted  for.  Nevertheless, when the stress resultant theory  is employed in structural  
analyses by finite element methods,  one less dimension o f  calculation and less m e m o r y  
space are needed as compared  with those using the through-the-thickness integrat ion 
method.  

F rom phenomenological  viewpoints, perfectly plastic models or strain hardening mod-  
els with a limit yield surface are assumed in those stress resultant constitutive laws men- 
t ioned above except in that  o f  PAPADOPOULOS and TAYLOR [1990] where linear strain 
hardening is assumed.  In contrast ,  CHOU et aL [1991] derived a stress resultant consti- 
tutive law based on the Ki rchhof f  assumption and the J2 deformat ion  plasticity theory 
for  power-law hardening materials. This constitutive law was developed under  the 
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assumptions of large plastic strains and nearly proportional loading paths. Under these 
assumptions, the elastic strains are neglected and the use of the J2 deformation plastic- 
ity theory is justified (BtroXANSKY [1959]). In applications, however, loading paths can- 
not be guaranteed to be nearly proportional and a simple closed-formed yield condition 
is preferred. Therefore, Cnov et  al. [1993] constructed a modified Ilyushin yield sur- 
face and derived a hardening rule in the stress resultant space. Then, an appropriate rate 
form of the elastic-plastic stress resultant constitutive law can be established based on 
the yield surface and the hardening rule. 

Stress resultant constitutive laws should be verified for all possible loading paths 
before being employed in practical applications. However, it is impossible to examine 
all possible complex loading conditions. Therefore, uniaxial combined tension and bend- 
ing loads have been considered to explore the coupling effects between moments and 
membrane forces (EmSHELU & LARSEN [1981]). On the other hand, BIENIEK and FUNARO 
[1976] examined their constitutive law under cyclic uniaxial bending. Also, under uni- 
axial combined tension and bending conditions, CHOU et al. [1991] examined their con- 
stitutive law of deformation plasticity nature in proportional loading and prestretching 
cases, where the states of the prestretching are below the initial yield state. The results 
based on the constitutive equation of Cuou et  al. [1991] are very close to those for the 
corresponding elastic-plastic materials using the through-the-thickness integration 
method. 

In this paper, we continue to assess the applicability of the stress resultant theory, 
which includes the modified Ilyushin yield surface and the hardening rule of CHOU et  al. 
[1993], the associate flow rule, and the finite deformation effects. Preloading and then 
unloading cases under uniaxial combined tension and bending conditions are considered 
to show the coupling effects of bending and stretching, where the preloadings are beyond 
the initial yield state. 

First, the rate form of the stress resultant constitutive law are derived using the hard- 
ening rule and yield surfaces in the stress resultant space of Crlou et  al. [1993], which 
were derived and constructed from the stress resultant constitutive law of CHOU et  al, 
[1991] for power-law materials under proportional straining conditions. Then, we reduce 
the rate form of the stress resultant constitutive law for prestretching and prebending 
cases under both plane stress and plane strain conditions. Also, for completeness, the 
incremental stress-strain equations for Mises materials will be presented under both 
plane stress and plane strain conditions. The results of this through-the-thickness inte- 
gration method, where the stress resultants are obtained from integrating the stresses 
through the thickness, will be used as the benchmarks to critically assess the applica- 
bility of the stress resultant theory. Furthermore, the through-the-thickness integration 
method based on the finite deformation approach wilt also be presented, and its results 
will be compared with those of the stress resultant theory. This is because the stress resul- 
tant theory is applied to the simulation of sheet metal forming processes (Cnou et  al. 
[1994]), where finite deformation effects must be taken account for. 

Next, the plastic (residual) midplane strain and curvature will be examined by unload- 
ing a plate element from a loading state until the free stress resultant state is reached. 
During the loading process, prestretching and prebending paths will be chosen. In the 
prestretching cases, the bending moment increases at a fixed preloaded membrane force; 
in the prebending cases, the membrane force increases at a fixed preloaded bending 
moment. In each case, the normalized equivalent stress resultants and normalized equiv- 
alent plastic generalized strains will be calculated under both plane stress and plane strain 
conditions for different hardening exponents. These results will be compared with those 
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using the through-the-thickness integration method based on both the small-strain and 
the finite deformation approaches. The implications of these results will be discussed. 

Finally, according to the definition of the yield surface in the stress resultant space, 
the plastic (residual) midplane strain and curvature remain unchanged and path inde- 
pendent during unloading processes. However, it has not been investigated whether the 
results of the through-the-thickness integration method are significantly path dependent 
or independent in the stress resultant spac¢ because there may be reverse plastic load- 
ing in some layers locally during unloading processes. From this viewpoint, we will inves- 
tigate the residual midplane strains and curvatures and the local stress distributions under 
different unloading paths. These unloading paths are as follows: two follow the origi- 
nal loading path in the reverse direction and another follows the proportional unload- 
ing path, where the ratio of the bending moment to the membrane force is kept as a 
constant. The results of this investigation will also be presented and discussed. 

II. A STRESS RESULTANT CONSTITUTIVE LAW 

In this section, a rate form of the stress resultant constitutive law will be constructed 
with the associate flow rule. Although Caov et al. [1991] derived a stress resultant con- 
stitutive law for a plate element of power-law hardening materials under proportional 
loading conditions within the context of the small-strain theory, loading paths are usu- 
ally not guaranteed to be proportional in engineering applications. In general, a rate 
form of the constitutive relation is employed in elastic-plastic structural analyses because 
elastic-plastic deformation depends upon prior deformation history. 

In the stress resultant theory, a plate element, shown in Fig. 1, is subject to the stress 
resultant vector S, which is defined as 

S = IN11,N22,NI2,~II ,~/[22,!~/[12],  

where N ~  are the membrane forces and M ~  are the bending moments. In this paper, 
Greek subscripts range from 1 to 2. The local coordinate system xl, x2, and x3 for the 
plate element is fixed at the reference surface with the xl and x2 axes being tangent to 
the surface. The reference surface is the middle surface of the plate element within the 
context of the small-strain approach. When the finite deformation of the plate element 
is considered due to the change of thickness, the reference surface is the deformed con- 

N22 
2 M21 

M 2 1 ~  2 

Fig. 1. Conventions of a plate element. 
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figuration of  the middle surface in the undeformed configuration. The work-conjugate 
generalized strain vector E is defined as 

E = {el l ,e22,2e12, tCl l ,K22,2r12] ,  

where e ~  are the midplane strains and K.~ are the curvatures. 
The components of the generalized strain rate/~i are assumed to be decomposed into 

elastic p a r t s / ~  and plastic par t s /~f  

L = P~f + EF, (1) 

where the subscript i has a range from 1 to 6. It should be mentioned that the additive 
decomposition in eqn (I) is generally assumed in the classical small-strain plasticity 
theory. We assume this additive decomposition in eqn (I) in order to maintain the sim- 
plicity and practical applicability of the theory for the range of the strains typically 
encountered in sheet metal forming applications (Cnov et al. [1994]). The components 
of the plastic generalized strain ra te /~ f  are defined, analogous to the associate flow 
rule of the classical plasticity theory, as 

OF 
/~f = A - -  (2) 

OSi ' 

where zi is a proportionality and F is the yield function. The yield function is assumed 
to be a linear function of normalized stress resultant invariants (Caou et al. [1993]) 

F = [ I u  + ~ I ~  + ,Z, II~NI} ~2 = ,~, (3) 

where the parameters/~ and & depend upon the power-law hardening exponent n of the 
stress-strain relation in a tensile test. In eqn (3), S represents the normalized equivalent 
stress resultant, and IN, IM, and IMN are the second order invariants of the normalized 
stress resultants,/V~n and ~t,~n, as follows: 

kv  = R~, + N22 - N , ,N22  + 3N22, 

and 

IMm = N11M11 + N22M22 ½NIIM2z - l -- ~Nz2MII  + 3NIzM12,  

where N~0 = N ~ / a o h ,  and M~0 = 4M~o/ao h2. Here, Oo is taken as the initial yield 
stress of the tensile test, and h is the current plate thickness when finite deformation 
effects are considered. Within the small-strain approach, however, h is just assumed to 
be the initial plate thickness. 

The stress resultant rate S and the elastic generalized strain rate !~ e are assumed to be 
related via the usual elastic modulus !) e as 

Si = DijEje "e  = D f j ( E j  -- E l ) ,  (4) 
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where the subscripts i and j have a range f rom 1 to 6. The components  of  the elastic 
modulus D e are 

Eh 
[ D * ]  - 1 - / :2  

"1 v 0 0 0 0 

v 1 0 0 0 0 

1 - v  
0 0 0 0 0 

2 

h 2 vh 2 
0 0 0 1--2 12 0 

vh 2 h E 
0 0 0 12 I-2 0 

(1 - v)h 2 
0 0 0 0 0 

24 

where E is Young's modulus and v is Poisson's ratio. 
The consistency condition dictates the stress resultant state during plastic flow to 

remain on the yield surface in the stress resultant space. It is 

OF S~ + O F .  0 2  
as--5 ~ h = ~ A, (5) 

where h = - (/71 + /~ ; )h  is assumed. Multiplying eqn (4) by OF/3Si and combining with 
eqns (2) and (5) give the proportionali ty of  plastic flow rate as 

OF OF 

= , (6) 
3 .  P OF e OF 

where the subscripts k, l, m, and n have a range f rom 1 to 6. 
The rate form of  the stress resultant constitutive law is derived by substituting eqn (6) 

into eqns (2) and (4) as 

~, = D,TE:. (7) 

The tangent moduli D~ p in eqn (7) are derived as 

D :p = D fk "~k \ , /| - - ~  - ~ F - f ~  i '  

- ~ + ~ m " o s .  ) 

(8) 

where Iij are the elements of  the unit matrix. Also, OF/OSi and OF~Oh can be derived 
f rom the yield function in eqn (3) as 
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OSl ~-5 (2NIl  - N22) + ~ Mll  , 

OF 1 ' +  

OF 1 f6N12 12ff~AMlz / 
os~ - o g ~  ( h 2 + fi~ ) '  

,/16  7;( 
0S4 - o - ~  ( h 4 (2MI1-M22)  + - -  N i l - - -  ?)/, 
OF 1 ~16/~ 4~3A ( 
3S5 - o2S  ( - ~ -  ( 2 M z z -  M ~ )  + - -  N 2 2 -  - N)/ 
OF 1 ~ 96t~M,2 12&AN,2'~ / 
a S  6 -- (rg~ ( ~ Jr- h3 J ' 

and 

OF I I 2  4 3 I 
o h -  2 ~ I u + ~ I ~ , + ~ l l M u l  , 

where A = sgn(IMN ) (A = 1 when IMN > 0 and A = - 1  when IMN < 0). 
To determine the value of Off,/OA, the hardening rule for power-law materials in Caou  

et al. [1993] based on the small-strain approach is adopted as 

.p = ~ 1 / . ,  (9) 

where n is the power-law hardening exponent, and 7/ is a constant dependent on the 
deformation state. The value of  r/is very close to 1 and the maximum deviation from 
1 is 4o7o. Therefore, ~ is assumed to be 1 for simplicity. Here, .,[ is the normalized equiv- 
alent plastic generalized strain accumulated through the deformation history as 

f0 ' ~  
f i  = dt. (lO) 

The relation between the normalized equivalent plastic generalized strain rate .4 and the 
proportionality A is 

J = AE/ogh.  (1 I) 

The normalized equivalent plastic generalized strain rate can be described (CHou et al. 
[1993]) as 

= i~ + ~ i~ - 8---~- i ~  . (12) 
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Here, 1~, 1~, and I~ are the second order invariants of  the normalized plastic general- 
ized strain rates as follows: 

and 

I~ = $(? + ~ 2  + 4(, ~g + ~,~2, 

I~ = ,~p2 + ~,~2 + ?,~ ;;2 + ;~2, 

= "-p .-p .-p .-p 25Pt~2, I~ 2e~l~ p + 2 e P r  p + ez2xH + gllg22 + 

where ~.,~ = d,~aE/oo and ~a  = ko, aEh/3oo. From eqns (9) and (11), Off,/OA can be writ- 
ten as 

0S 0S OA E ~1-~ 

OA OA OA nagh 
(13) 

Note that when the stress resultant theory is applied to analyses with the small-strain 
assumption, the undeformed geometry can be treated as the reference configuration 
according to the small-strain theory. Then, h is treated as a constant in the normalized 
terms and the terms related to the thickness change in eqn (5) can be eliminated. 

It should be noted that it is impossible to benchmark all the possible loading paths 
for the stress resultant theory. In this paper, we will examine a limited number of  uni- 
axial combined bending and membrane force cases under plane stress and plane strain 
conditions as many previous studies on stress resultant theories (CRISFmLD [1974], 
BIENIEK ~ FUNARO [1976], EIOSI-mlM & LARSEN [19811). Then, eqn (8) can be simplified 
for these special cases. Under plane stress conditions, the conditions of  6P = - ~ P / 2  
(due to incompressibility) and 6P = 0 lead to ~P = - ~ P / 2 ,  ~P = - ~ P / 2 ,  ~P = 0, and 
~2 = 0. The normalized equivalent plastic generalized strain rate is 

9 • 3~A ellgll) 1/2. (14) 3 = ~p2 + ~ ~1~2_ ~ -p :p 

Moreover, OF//(~S2 = - 1  ( OF/OSI ) and OF/OS5 = -~ ( OF/OS4). The lateral deformation 
measures e22 and r22 are functions of elx and Kll because N22 = M22 = 0. Then, the rela- 
tions between NI~, Mll and ell, K~I can be established from eqn (8). Under plane strain 
conditions, the normalized equivalent plastic generalized strain rate can be simplified as 

[4( 9 • 3~3A _.p _.p 
zi ----- ~12 + ~ K~12 8p ellKll (15) 

With the constraint ell = 0 and Kll = 0 ,  the relations between Nll ,  MH, and el,,  Kll can 
be easily established from eqn (8) directly. 

IlL THE THROUGH-THE-THICKNESS INTEGRATION METHOD 

To benchmark the constitutive behavior of  the stress resultant theory, we investigate 
the plate element constitutive response using the corresponding elastic-plastic stress- 
strain equations for each layer of  material through the thickness and calculate stress 
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resultants by integrating the stress through the thickness. The plastic hardening behav- 
ior for the corresponding Mises materials is taken as 

eP ( % ] "  - 1, (16) 
eo 0.0 / 

where eo 0 .o /E ,  0 . e (  = t 2 " - xl/2 = ~ ]~ij~O) , where s o = 0. o - ~ 0 . k k S i j )  is the effective stress, and 
E p is the effective plastic strain. The effective plastic strain is obtained from integra- 
tion over the deformation history based on the effective plastic strain increment de p 
[ ~ I 2 r l - P ' 4 - P x l / 2  ~ ue  o ue i j  j , where dei~ are the plastic strain increments], 

Now, the constitutive behavior of  elastic-plastic materials is discussed for each layer 
of  the thin plate element where 0.3i = 0 ( i  ~ 1,2,3) (see Fig. 1). Under plane stress con- 
ditions (simple beam problem, az~ = 0, i = 1,2,3), the incremental elastic stress-strain 
relation is 

d0.11 = E d e l l  . (17) 

The incremental stress-strain relation under plastic loading is 

E H '  
d o l l  = - -  d e l l ,  (18) 

E + H '  

where H '  = d0 .e /de  p .  Under plane strain conditions (E2 i  -~- 0 ,  i = 1,2,3), the incremen- 
tal elastic relations are 

E 
d o l l  - -  1 - v 2 d e l l  (19) 

and 

E p  
d 0 . 2 2  - 1 - v 2 d~ll" (20) 

The incremental relations under plastic loading are 

E _ 20.22)2] 2 H ' 0 .  + ~ ( O n  

2 0"~1 + (5v + 2v 0"2 2(1 - v 2) ~ -  0.~ + - 2v - 4)011022 -- 

and 

do '22  _-- 

E 0.,1)] [ 2 v H ' 0 . ~  - -~  (20-11 - 0.'22)(20.22 - -  

(21) 

d e l l  . 

2(1 - v 2 ) - ~  - a  2 +  - 2 v  a~ l+  ( 5 v - 4 ) a t , 0 2 2 +  - -2v  a22 

(22) 



Nonproportional loading effects 335 

Next, we consider the through-the-thickness integration method based on the small- 
strain approach and the finite deformation approach. Within the small-strain approach, 
the current configuration is assumed to be the same as the initial configuration. There- 
fore, the thickness of plate element is assumed not to change during deformation. The 
strain increments, according to the Kirchhoff assumption, are 

d~ll : de l l  -Jr- ZdKll , d~22 = dc22 + zdK22. (23) 

The membrane forces and bending moments are obtained from integrating stresses 
through the thickness as follows: 

(h/2 lh/2 
N I l  = 0.11 dz, N22 = 0"22 dz (24) 

d -h/2 d -h/2 

and 

(h/2 fh/2 
M l l  = 0.11zdz , M22 = 0.22zdz , (25) 

d --h/2 d -h/2 

where h is the initial thickness and the stresses are accumulated from the increments of 
the stresses in eqns (17)-(22). In general, numerical methods are needed for the integra- 
tion through the thickness to obtain the resultants in eqns (24) and (25) when the rela- 
tions between the stresses and strains are not linear. Here, we subdivided the interval 
of integration into 50 equal subintervals, and consequently, we used a simple rectangu- 
lar rule for the integration. 

Within the finite deformation approach, the current thickness is different from the 
initial thickness. The thickness of each layer ~h should be updated according to 

d~h 
de33 = tSh ' (26) 

where de33 is the out-of-plane strain increment, and dish is the thickness increment for 
the current layer. Under plane stress conditions, the strain increment of each layer is 

H 
! 

2v-~-- + 1 

de33 = dell, (27) 

and under plane strain conditions, the strain increment of each layer is 

4 /°11°2  ( 2)] 2 , , t l  + ~,) -~- o~ + t l  + + - + 4 , ,  - 1 , , 2  

de33 = de1. 
H I 

+ (5v--4)011022+ (2--2v)0~2 ] 

(28) 
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The true strain definition is adopted in this approach as follows: 

ell = I n  Al, 622 = I n  A2. (29) 

Here, A~ and A2 are the stretch ratios in the xl and x2 directions. According to the 
Kirchhoff assumption, they can be written as: 

Al = A°(1 + ZKll), /~2 = A°( 1 + ZK22), (30) 

where A ° and A ° are the stretch ratios of  the reference surface in the x~ and x2 direc- 
tions. Consequently, the strain rates are 

Zt~I1 + Ki1;~ Zt~22 -~- K22 ~ 
611 = ell "+ , ~22 = e22 -~- , (31) 

1 + KIIZ 1 + K22Z 

where ~H = A ° and e22 = AO" The membrane forces and bending moments are obtained 
from integrating stresses through the thickness as follows: 

N l l =  fhOlldZ , N22= fha22dz (32) 

and 

Mll = fhtrllZdZ , M22 = fha22zdz , (33) 

where oH and 022 are the Cauchy stresses. These integrations are performed through the 
current thickness h. 

Note that under plane strain conditions, ~22 = /£22 ~" 0 ,  and under plane stress condi- 
tions, N22 = M22 ~- 0. Finally, the normalized equivalent stress resultant is calculated 
from eqn (3), and the normalized equivalent plastic generalized strain rate is calculated 
from eqns (10) and (14) under plane stress conditions and from eqns (10) and (15) under 
plane strain conditions. 

IV. A COMPARISON BETWEEN THE RESULTS OF THE STRESS RESULTANT THEORY 

AND THE THROUGH-THE-THICKNESS INTEGRATION METHOD 

In this section, we will investigate the relation between the normalized equivalent stress 
resultant 2~ and the normalized equivalent plastic generalized strain A, using both the 
stress resultant theory and the through-the-thickness integration method. The plastic 
(residual) generalized strains for preloading cases are determined after unloading a plate 
element from any loading state until the free stress resultant state is reached. Accord- 
ing to the associate flow rule of  the isotropic hardening model in the stress resultant 
space, no plastic part of  the generalized strain increment is generated during this unload- 
ing process. However, the stress resultants are determined using integration from the 
local stresses of  each layer when the through-the-thickness integration method is used. 
Although the plate element is under unloading conditions in the stress resultant space, 
each layer of  the plate element has three possible loading types in the stress space: plas- 
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tic loading, elastic unloading, or reverse plastic loading. The loading type for each layer 
is dependent upon the unloading path in the stress resultant space. Consequently, there 
may be plastic strains generated locally in some layers during this unloading process. 
Therefore, the plastic generalized stains are globally defined from the residual gener- 
alized strains at the free stress resultant state when the through-the-thickness integra- 
tion method is used. 

To understand the effect of the coupling of moments and membrane forces, we inves- 
tigate cases under combined membrane force and bending moment. We control the mag- 
nitudes of NH and M1~ to follow the loading and unloading paths (regardless of N22 
and M22 under plane strain conditions) as shown in Fig. 2. The loading paths include 
prestretching cases (path Ps) and prebending cases (path Pb). In the prestretching cases, 
the bending moment M~ increases at a fixed preloaded membrane force NH; in the 
prebending cases, the membrane force N~I increases at a fixed preloaded bending 
moment MI~. The unloading paths are those following the original loading path (path 
Ps or Pb) in the reverse direction (path EP-1 or EP-2). 

When the through-the-thickness integration method is used, eqns (17)-(22), (24), (25), 
(32), and (33) determine the plastic generalized strain increments and the stress resul- 
tant increments in each incremental step. Then, the normalized equivalent stress resul- 
tants are determined from eqn (3) and the normalized equivalent plastic generalized 
strain increments from eqns (14) and (15). When the stress resultant theory is used, the 
plastic generalized strain increments are determined from eqn (9) for a given stress resul- 
tant increment. Also, eqns (2), (3), and (6) determine the yield surface and the plastic 
generalized strain at the preloading. 

Based on the small-strain approach where the thickness of the element is assumed not 
to change as a function of deformation, the results under plane stress (simple beam) con- 
ditions are shown in Figs. 3 and 4, and the results under plane strain conditions are 
shown in Figs. 5 and 6. In these figures, the curves marked as "Power Law" represent 
the results based on the stress resultant theory with the power-law hardening rule, and 
the curves marked as "Through-the-Thickness Integration" represent the results based 
on the through-the-thickness integration method. In these figures, Np,~ represents the 
preloaded membrane force normalized by AlL (=ooh) and Mp,~ represents the preloaded 
bending moment normalized by ML (=ooh2/4). 

M 

2 
3 

Pre-bending 
PathPb 

- y 
"q" E-P2 / 

/ 
/ 

E-P3// [[ 

I i 

E_P1 ~ 

Path Ps 
Pre-stretching 

1 N" 
N L 

Fig. 2. Loading and unloading paths in the stress resultant space for prestretching, prebending, and unloading 
cases. 
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Fig. 3. Comparison of the relation between the normalized equivalent stress resultant and the normalized 
equivalent plastic generalized strain based on the small-strain approach under plane stress conditions along 
loading path ,as. (a) n = 3. (b) n -- 10. 
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Fig, 4. Comparison of  the relation between the normalized equivalent stress resultant and the normalized 
equivalent plastic generalized strain based on the small-strain approach under plane stress conditions along 
loading path Pb- (a) n = 3. (b) n = 10. 
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Under plane stress conditions, the results of the normalized equivalent stress resul- 
tant 2~ as a function of the normalized equivalent generalized plastic strain A along path 
Ps are shown in Fig. 3, and those along path Pb are shown in Fig. 4. In general, the 
results from both the through-the-thickness integration method and the stress resultant 
theory agree very well with each other. A detailed comparison shows that the stress resul- 
tant theory gives a bit softer results than the through-the-thickness integration method 
for n = 3. However, for n = 10, the stress resultant theory gives a bit softer and then 
a bit stiffer results than the through-the-thickness integration method. Typically, the n 
value ranges from 4 to 6.8 for sheet metal used in forming operations. A possible source 
of the error using the stress resultant theory is the assumption of the value for the con- 
stant ~ in the hardening rule in eqn (9). As shown in Cnov et al. [1993], the constant 
~/can have a deviation of 4% from 1 under proportional loading conditions. Another 
possible source of error is the approximation of shape in the modified Ilyushin yield sur- 
face in eqn (3) where a quadratic function is chosen to fit the complementary potential 
surface of Criov et al. [1991] for simplicity. 

Note that there are very small differences of the relations between the normalized 
equivalent stress resultants and the normalized plastic generalized strains under path Ps 
and path Pb based on the through-the-thickness integration method when we compare 
Figs. 3 and 4. This is because the local phenomena slightly affect the global results and 
the results are somewhat dependent on the paths. In general, the results of the stress 
resultant theory are very close to those of the through-the-thickness integration method 
even under different loading paths. 

Under plane strain conditions for v -- 0.3, the results of the normalized equivalent 
stress resultant S as a function of the normalized equivalent generalized plastic strain 

along path Ps are shown in Fig. 5, and those along path Pb are shown in Fig. 6. A 
comparison shows the same trends as those under plane stress conditions. For n -- 3, 
the hardening curves of the through-the-thickness integration method in Figs. 3(a), 4(a), 
5(a), and 6(a) are very close to each other. For n -- 10, the hardening curves of the 
through-the-thickness integration method in Figs. 3(b), 4(b), 5(b), and 6(b) are also very 
close to each other. This implies that the normalized equivalent stress resultant S and 
the normalized equivalent generalized plastic strain .4 derived in CHOU et al. [1993] are 
excellent parameters to characterize the plastic deformation of the plate element, since 
they are consistent under both plane stress and plane strain conditions and different 
loading paths. In conclusion, the results of the stress resultant theory agree well with 
those of the through-the-thickness integration method based on the small-strain 
approach. 

Although the stress resultant theory gives good prediction for A up to 500 (about e = 
25% for AK-steel), the small-strain approach adopted in our through-the-thickness inte- 
gration method will become inaccurate when the plastic deformation becomes large. At 
large deformation, the plate thickness must be updated and the true strain measures 
should be adopted. Therefore, we have to use the results of the through-the-thickness 
integration method based on the finite deformation approach as discussed earlier to 
benchmark the results of the stress resultant theory. 

Based on the finite deformation approach, the results of the through-the-thickness 
integration method are shown in Figs. 7 through 10. In these figures, the same symbols 
and notations are used as those in Figs. 3 through 6. Figure 7 shows the results under 
plane stress conditions along path Ps, and Fig. 8 shows the results under plane stress 
conditions along path Pb. A comparison shows that the stress resultant theory gives 
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slightly softer and then stiffer results than those of the through-the-thickness integration 
method for both n = 3 and 10. The differences gradually become large as the normal- 
ized equivalent plastic generalized strain increases. This effect becomes more significant 
as the hardening exponent increases. For high hardening material (n = 3), the stress 
resultant theory gives good approximations when compared with those of the through- 
the-thickness integration method. However, for low hardening materials (n = 10), an 
unloading phenomenon appears when the through-the-thickness integration method is 
used. This unloading cannot be simulated by the stress resultant theory where the hard- 
ening rule is described by a monotonically increasing power-law relation. This unload- 
ing phenomenon appears when n > 7 based on a further parametric study. The softening 
occurs because of the coupling of the moments and the membrane forces and the finite 
geometry change. 

For p = 0.3, Fig. 9 shows the results under plane strain conditions along path Ps, and 
Fig. 10 shows the results under plane strain conditions along path Pb. A comparison of 
the two figures also shows the same trends as those under plane stress conditions. 
Unloading phenomenon occurs when n > 7 as in the plane stress cases. A comparison 
of the n = 3 curves and the n = 10 curves based on the through-the-thickness integra- 
tion method in Figs. 7 through 10 shows that they all show the same trend as compared 
with those based on the stress resultant theory. It implies the normalized equivalent stress 
resultant and the normalized generalized equivalent plastic strain chosen in CI-IOU et al. 
[1993] are good scalar parameters to characterize the size of the yield surfaces in the 
stress resultant space and the corresponding plastic deformation measures even with 
finite deformation being considered. The results shown in Figs. 7 through 10 suggest the 
hardening rule should be modified to simulate the softening phenomenon for low hard- 
ening materials. 

We now investigate the plastic residual strains under different unloading paths using 
the through-the-thickness integration method. For simplicity, our investigation is re- 
stricted to the small-strain approach under plane stress conditions. As shown earlier, the 
loading paths do not affect the residual plastic strains significantly under the small-strain 
assumption. We therefore select a plastic deformation state resulted from loading path 
Ps to investigate the unloading path effects on residual plastic strain. We select one un- 
loading path follows the original loading path Ps in the reverse direction path shown in 
Fig. 2 as EP-1. The results are shown by curves UL-P~ in Fig. 11. The other unloading 
path follows the proportional unloading path shown in Fig. 2 as EP-3, where the ratio 
of the membrane force to the bending moment is kept as a consta:~t. The results are 
shown by curve UL-P~ in Fig. 11. The maximum value of the normalized bending 
moment is chosen close to the Np,~. The results of the two unloading paths for both 
n = 3 and n = 10 are very similar to each other as shown in Fig. 11. This indicates that 
the unloading paths do not have a significant effect on the global state variables, i.e. 
the stress resultants and the generalized plastic strains. This also indicates that the results 
based on the through-the-thickness integration method are nearly path independent in 
the stress resultant space for these limited number paths considered here. However, the 
local stress state which will be illustrated later is greatly affected by the unloading paths. 
In Fig. 1 l(a) for n = 3, it exhibits a discontinuous slope. This is the transition point from 
preloaded tension to combined tension and bending. In Fig. 1 l(b) for n = 10, the dis- 
continuous slope at the transition point cannot be identified easily because of the dif- 
ferent scale. 

Based on the through-the-thickness integration method, the stress distributions in 
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the x3 direction are shown for different loading and unloading paths in Fig. 12. In 
Fig. 12(a), curves L-Ps and L-Pb indicate the stress distributions in the x3 direction for 
paths Ps and Pb, respectively, at N / N c  = M / M c  = 1.5 under plane stress conditions. 
Both stress distributions are quite similar. In Fig. 12(b), curve UL-Ps represents the 
stress distribution after unloading to N = M = 0 for loading path P~ and unloading 
path E-P1, and curve UL-Pb represents the stress distribution after unloading to N = 
M = 0 for loading path Pb and unloading path E-P2. Since the stress distributions for 
loading paths P~ and Pb at N/No = M/Mo = 1.5 are quite similar, only the results of the 
stress distributions of curve L-P~ after unloading to N = M = 0 for the proportional 
unloading path E-P3 are presented by curve UL-P u. As shown in the figure, the stress 
distributions after unloading following the three paths, marked by UL-P~, UL-Pb, and 
UL-Pp, are quite different. Note that there is hardly any reverse plastic loading through 
the thickness for the three unloading paths. This explains the path independence of resid- 
ual generalized strains based on the through-the-thickness integration method for the 
unloading paths considered here. 

V. CONCLUSION 

It should be noted that an unlimited number of nonproportional loading and unload- 
ing paths can be selected for this study. However, we have selected these simple non- 
proportional loading and unloading paths that represent some typical loading and 
unloading conditions in sheet forming operations. The results for these paths using the 
stress resultant theory are compared well with those using the through-the-thickness inte- 
gration method based on the small-strain approach. However, as suggested by the results 
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where finite deformation of the sheet element is considered, the power-law hardening 
rule for the normalized equivalent stress resultant and the normalized equivalent gen- 
eralized plastic strain must be modified to take account for the finite deformation 
effects. A modification of the hardening rule in an ad hoc manner is presented in Cnotr 
et aL [1994] for applications in simulations of sheet metal forming by finite element 
methods. The finite element simulations based on the stress resultant theory take much 
less computational time (about 60°7o less), and the results are compared well with those 
based on the through-the-thickness integration method. The investigation presented here 
forms a part of the theoretical basis for employing the stress resultant theory to simu- 
late sheet metal forming operations. 
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