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ABSTRACT

Bremsstrahlung of non-relativistic electrons in a neutral gas is
investigated including the polarization and éxchange effects. The in-
tensity and spectrum of the bremsstrahlung and of the induced dipole
radiation are obtained for a maxwellian distribution of electron energy
in terms of the elastic scattering cross section of the atom for electrons
and its polarizability. The interference of the induced dipole radiation
with the bremsstrahlung is also considered. It is found that the exchange
effects and the induced‘dipole radiation are negligible as far as the
total radiated power is concerned. The latter, however, may be impor-
tant at the short-wave end of the spectrum. Finally, the absorption
coefficient is obtained from the bremsstrahlung cross section. The re-

sults are evaluated explicitly for a maxwellian distribution.



I. INTRODUCTION

Bremsstrahlung of slow electrons in the field of neutral atoms has at-
tracted interest in recent years in estimating the intensity cf micrcwave ra-
diation from slightly ionized gases and their free-free absorption coefficients.
The radiation from a neutral gas containing free electrons ig due to the de-
celeration of the free electrons in the field of a neutral atom and to the
time-dependent dipole moment of neutral atoms induced by free electrons. In
this paper, we shall refer to the former radiation mechanism as the "brems-
strahlung'" and to the latter as the "induced dipcle radiation." The spectra
of the radiation due to these mechanisms are entirely different. The observed
spectrum will be a superposition of the bremsstrahlung and the induced dipole
radiation. However, since these two emission mechanisms are nct independent
in so far as they are caused by the same collision event between a free electron
and a neutral atom, the resultant radiation can not be cobtained by simply
addirg the two intensities. The interference between these two radiation mech-
anisms shculd be taken into account.

Furthermore, the exchange effect due to the indistinguishability of the
incident electron arnd the bournd electrons in the neutral atom may alsc play a
role in estimating the intensity of the observed radiation.

ke aim of this paper is to derive an expression for the intensity and
spectrum cf the total radiation from a slightly ionized neutral gas taking

into account the aforementioned effects.



Bremsstrahlung of slow electrons decelerated by neutral atoms was dis-

(1)

cussed previously by Firsov and Chibisov who argued classically that the
induced dipole radiation may account for the large portion of the radiation
from a neutral gas. However, as will be apparent in the text, their quantum
mechanical calculation includes neither the induced dipole radiation nor its
interference with the bremsstrahlung. Their result gives the intensity of the
bremsstrahlung only in terms of the elastic scattering cross-section of an
electron on a neutral atom. However, the exchange effects and the polariza-
tion of the atom by the field of the incident electron are included implic-
itly through the scattering cross-section. In this paper, the induced dipole
radiation and its interference with the bremsstrahlung are included in the
quantum mechanical calculations, and the relative magnitudes of bremsstrahlung,
induced dipole radiation and the interference effects are compared as a func-
tion of the gas temperature, assuming that the electrons and the neutral atoms
are in thermal equilibrium. Moreover, the magnitude of the exchange effects
on the radiation intensity is calculated explicitly, and its relative impor-
tance is discussed and shown to be negligible.

It is hardly necessary to mention that the calculations are approximate
in view of the complexity of the problem. Most of the approximations used in
the derivations are standard in the study of the elastic scattering of slow
electrons by a neutral atom. Some of the approximations are made only to derive
a simple practical formula that contains all the qualitative features of the

phenomenon under consideration. They can easily be relaxed if numerical pre-

cision is required. These approximations enable one to relate the intensity



of the observed radiation to some atomic parameters which are already known
either experimentally or theoretically for many atoms, such as the elastic
scattering cross section for slow electron scattering and coefficient of
polarizaticn, etc.

The exchange effects are discussed in the case of hydrogen atom for sim-
plicity. The calculation of the intensity of bremsstrahlung and induced dipole

radiation is carried out in general for an arbitrary atom.



II. GENERAL FORMULATION

The physical system under consideration consists of an atom situated at
the origin of the system of reference and an incident electron. We consider
a radiative transition of this system from an initial state Ii > to a final
state lf > with the emission of a photon. The energy intensity of the radia-

tion emitted in all directions and in two polarization states per unit energy

is
2 2
5, ;¢ () = 22 | <rRli> | (1)
3C
where
241
R = Z L (2)
j=1

and where IJ denotes the position of the Jjth electron with respect to the nu-

cleus of the atom which is assumed to be at rest. There are 2z electrons in

the atom. The frequency w is given byzﬁ& f;gi i;f} wherszfi and;ﬁ} are the

energiles of the initial and final states. The symbol { <fl§|i > 12 in_(l) is

to be interpreted as

J\N

| <¢|rl1 > % - | <t|Ryli > |° (3)

1
v=1

where Ry are the cartesian coordinates of the vector R.
The state vectors li > and |f > are the solutions of the Schroedinger

equation for the atom + electron:



(H8+He+V—;i)li>=O, ()

where H® is the Hamiltonian of the atom, H° is the kinetic energy of the in-
cident electron, and V is the coulomb interaction between the atom and the
electron. The final state ]f > satisfies a similar equation.

We shall assume that the atom is in a ground state, and the energy of the
incident electron is insufficient for the excitation of the atom. Thus, the
atom will be found in a ground state after the collision in which the incident
electron will be scattered from the initial momentum state |kj > to the final

momentum state 'Ef >. Conservation of energy requires

£ 1
£r

where m is the electron mass, and Eo energy of the atom in the ground state.

Bo + (h-ki-/2m) (5)

Eo + (1i°kp/2m) (6)

Il

The interaction potential V in (4) is the coulomb interaction between the

electron and the atom:

where r is the position vector of the incident electron.

The central problem is to compute the matrix elements < le]i > using the
solution of the Schrodinger equation (4) for energieszfi amizﬁ-given by (5).
Let the wave function associated with initial and final states be denoted by
Vi(ry,015...rg+1,05+1) and Wf(ﬁl:gli"':£z+1’cz+l)' These functions must be

antisymmetric with respect to the interchange of any pair ({i,di) and (EJ,GJ)



where oF denotes the spin of the jth electron. In the non-relativistic theory,
the total spin of the system is a constant of motion, and the spin state of
the system is not altered by the collision. However, the symmetry with re-
spect to the interchange of the position coordinates of the wave function will
depend upon the symmetry properties of the spin state. Therefore, the spin
state of the system will affect indirectly the intensity of the radiation (ex-
change effects). In order to discuss the exchange effects in a most simple way,
we shall focus our attention to the hydrbgen atom. However, the other effects
will be calculated for an arbitrary atom.

In the case of a two-electron system, there are two possible spin states:
a triplet and a singlet state. The triplet state is symmetric whereas the
singlet state is antisymmetric with respect the interchange of spins. There-
fore, the coordinate wave function is antisymmetric in the triplet state while
it is symmetric in the singlet state. Let us denote the symmetrized initial

+ +

and final wave functions by ¥i(rj,rp) and V¢ (ry,rp) where the superscripts(+)
and (-) indicate a, symmetric and an antisymmetric wave function respectively.

Using symmetrized wave functions one can modify the intensity formula (1) as

follows:

-

S ) — LPCD)-“e2

+ + D
isf = | <ve [RIV; > | (8)
3¢

In the case of an unpolarized incident electron, the probabilities of find-
+
ing the system in a triplet and singlet state are B/M and 1/50 Hence, S i>f
and S7,
i

> must be combined by the ratio 1 to 3 to yield the total intensity:



- 2 1
Sise = 1 Sisr T Sior (9)
The symmetrized wave function can be constructed from an unsymmetrized
wave function as

+ 1£P1o
Vv (r,,rs) = V(ry,ro) (10
110212 \/*2 f1,r2 )

where Fjp is uvuc cacuaunge operator. The matrix element of R between two sym-
metrized wave functions can be expressed in terms of the unsymmetrized wave

function as
+ *
<VrlRIVT > = < Vp|R[¥y > % < ¥p|RP o[V > (11)
where we have used the fact that the exchange operator Pjp commutes with R =
ry * rp, and that

(liP12)2 = 2(1-Pyp). (12)

Substituting (11) into (8) and combining the resulting equation with (9),

one obtains

L 2 2 o
Si-plw) = ”‘;; [I <VelRlvy > |7+ | < ¥|RP [V >
- Re < Vp|Rlv; > <V [RP1o|Yg >j, (13)

The last two terms accounts for the exchange effects.

We shall now attempt to determine the wave function V¢ and Vi in order

L(2),(3)

to compute the matrix elements appearing in (13). For this purpose, on



expands V(ry,rp) into the atomic wave functions &y:

Ve =) Fa e ) ez (1)

where Fn(£2> are the state functions of the scattered electron when the atom

is in the state @n(zl), and satisfies

7 ] 2 f ] N f .
[va + (0% - Unn] o = Z Unn' Fpio 0 (15)
n'+n

In this equation, one defines
U, o= 2o |v]|e. > (16)
nn 5 on n

pal
and
f£,i\2 2 2 a

(kn "9 = ke g -/gfgﬂ (E; - Eo) (17)

where Ena is the energy of atomic state I@n >.

In (14), the summation over n includes the integration over continuous
spectrum also.

One observes in (17) that (knf’i)2 < 0 for all n £ o, and only (knf’i)2
> 0, since the incident electron energy is assumed to be insufficient for
excitation of the atom. In other words the interaction of the electron with
the atom is an elastic scattering collision. The solution of (15) with the

asymptotic condition

(18)




igs standard in the study of elastic scattering of electrons by neutral atoms(g)’(B)

(2)

and will not be repeated here. The relevant results are

V)
Fpf ~ - 2L 7ot (19)

En-Eo

2 2 f f
(V" + ke Upp - Uy7) Fyo =0 (20)
where
T (Va2
£ | 'nr|
8] r = - 2; ) SN - 2la
p (__2) En—EO ( )
n%f
and
Upp(rp) = ,1%2[2 < op|v|op > (21b)

Similar equations are obtained for Fni(gz) by replacing the index f by i. The
symbols |®; > refer to the initial and final ground states of the atom belong-
ing to the energy Eo' They may differ from each other in their magnetic quan-
tum numbers, viz., le > = ITiJiMf > and {®; > = Eé;JiMi > where J; and M;
refer to the total orbital angular momentum and its projection respectively.
The 4 denote the remaining quantum number describing the ground state of the
atom. When the latter is an s-state, i.e., when J{=0 and thus M;=Mr=0, there
will be no distinction between the initial and final ground states. Such
atoms will be referred to as spherically symmetric. Although the hydrogen
atom which is being used for the discussion of the exchange effect is spheri-
cally symmetric, we shall retain the distinction between the initial and final

ground states, because most of the results here will be used for an arbitrary

10



atom. It is to be noted that the additional potential energy Upf(EQ) in (20)

(2)

represents the effect of the polarization of the atom by the field of the
incident electron when the atom is in the state l®f > . The potential Uff(zg)
represents the mean potential, or the "rigid" potential of the atom in the
state ]®f> . Thus, (20) yields the wave function of the electron in the po-
tential field Uqp(rs) + U f(r )
ffv=2 p ‘\=2/°
We now return to the calculation of the matrix element < Wflglwi > ap-

pearing in (13). Substitution of the expansion of Wf and ¥© in (14), and the

use of the orthogonality of ¢,'s yield

<Ve|Rl¥; > = Z <P Fy T > <oyl ]oy >+

!
n, n

<F lrplE b > (22)

+
P\/j

el

jn

Note that the functions an and Fni are essentially the expansion coefficients
in (14) and are not orthogonal.

The double sum in (22) contains the matrix elements of the dipole operator
er] associated with the bound electron, and represents the induced dipole ra-
diation. Similarly, the second term in (22) contains the matrix elements of
the dipole moment of the incident electron between various states of the scat-
tered electron, and represents the bremsstrahlung in the field of the neutral
atom. The cross term which appears in the expression of l < Wflﬁhki >|2 will
account for the interference of the induced dipole radiation and the brems-

strahlung.

11



The second and third terms in (13) represent the exchange effect as in-
dicated by the presence of the exchange operator PiE'

It is in order to mention at this point the simplification introduced by
considering the hydrogen atom for the discussion of the exchange effect. The
crucial problem in the discussion of the exchange effect is the construction of
the (Z+l)-electron function from the Z-electron and the incident electron wave
functions. This problem has been discussed in detail for an arbitrary atom in
reference 2. The coordinate wave function for the system of the electron plus
the atom for a given total spin is rather complicated even in the case of the
helium atom. It has a simple form only in the case of a 2-electron system
already indicated by (10). Since the exchange effect is expected to be small
as far as the radiation intensity at low electron energies is concerned, its
inclusion for an arbitrary atom is considered as an unwarranted complication
in the present analysis. However, the magnitude of the error due to the neg-
lect of the exchange effect will be estimated quantitatively in the case of

hydrogen atom as a guide by considering the last two terms in (13).

12



ITTI. BREMSSTRAHLUNG

The radiation due’to the deceleration of the incident electron by the
neutral atom is represented in (22) by Zn < anllei > where we replaced
Iy by r which we recall refers to the position of the incident electron.
Since the energy of the latter is insufficient to excite the atom, the domi-

nant contribution will come from the first term
Iy = <F5(o)|zlF Nx) >, (23)

where Fol(z) and Fof(g) are the wave functions of the scattered electron when
the atom in the initial and final states, and satisfy (20). They can be ex-

panded into spherical harmonics as

PR - ) (D' (ko) TR 3,4(9) (2k)

Z;m

where % (kfr) are the solution of the radial Schroedenger equation. Sub-
stituting (24) and the similar expansion for Fol(g) into (23), performing the
angular integration and retaining only the terms in the resulting equation

containing the product FOFl, one obtains

A [ee]
L = iyx l:gi f dr 12 F*(ker) Fi(kyr)
O

- ke k/ﬂ ar 2 F1*(ker) Fo(kir{:} (25)

¢}
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where k; = k;/k; and ke = ke/ke. As pointed out by Firsov and Chibisov(l),
the terms involving Fz for £z2 correspond to electrons at a large distance
from the atom at low energies, and do not interact appreciably with it. There-

fore only the terms in (25) are of significance. Following this reference, we

use

Fo(kr) = %glﬁ) (26a)
Fy(kr) = J1(kr) (26b)

where %o is the phase shift of the s-wave, and jl(kr) is the spherical Bessel
function. We ignore the phase shift &, associated with the p-wave which is
Justified at small incident-electron energies. The phase angle %0 is a func-
tion of k, and represents the interaction of the electron with the atom. It

is related to the elastic-scattering cross-section by
T
o(k) = BE sin 8o(k) (27)
k

Substituting (26) into (25) and performing the indicated integrals, one

obtains

L, = iyn (’2%)2 [:‘“’(kf) ky - Volky) E:f:I (28)

This can be further simplified if the cross-section does not change appreciably

in the region (0-kj) then o(ke)~0(ki)=~0(0), and

(29)

h

2
I, = il <§{f@> Vo(o)

14



Where
a4 = k; - ke (30)

The intensity of the bremsstrahlung alone can be calculated substituting (29)

into (15), multiplying the resulting equation by the density of final electron
2

states per unit electron energy, viz.,*fé(mfﬁE)B/ thl(En)B, and integrating

over the direction of Ef, one obtains

3/2 1/2
5, () = Mg 42 o(o)e (F—2> I: -"E] [1 = (31)

where o is the fine structure constant (eg/ﬁb), E; is the incident electron

energy, and finally N, is the number of neutral atoms per unit volume.
The spectral density for a maxwellian electron distribution is obtained
from (31) by averaging it with En(n@)'5/2Ne'Jﬁi exp[-E; @] as

- /2 2 i/ 20
Bottin) - NaNe-;‘%@fl@)l o) (42)" (x)ipbtin/z8)e (32)

where N, is the number of electrons per unit volume, ® is the temperature of
the gas, and Kg(x) is the modified Hankel function. Equation (32) gives the
intensity of bremsstrahlung per unit energy from a unit volume of gas contain-
ing N, atoms and N, electrons. The ratio of Na/Ne can be obtained from the
Saha equation at the specified temperature.

The total radiated power in all energies is obtained by integrating (32)

over Aw. The result is

— 1/2 2
s - g (2)" o

15



Iv. INDUCED DIPOLE RADIATION

The dominant contribution to the double sum Znn:<anan|l> <¢nl£ll¢n|> in

(22), representing the induced dipole radiation comes from terms for which

either n = o or n' = o:

Iz, > < op|Dloy >] (34)

Hﬁ

i
= %[<Fo |[F,™> < ¢D|e, >+ <F,
where

Z
D = % (35)

5=
In (34) we replaced r; by D such that the subsequent analysis will be valid

for an arbitrary atom. The neglect of the terms for which both n + o and

n' + o can be Jjustified by observing that they contain the product of two inter-
action potentials, viz., V o Vin,/(EniEo)(En,iEo), whereas the terms in (34)

are proportional to Vyi/E,-E,). Substituting an and Fni from (19) into

(34) one obtains

. . . .
<SF | VeplF " > < o Do, >+ <P M|V [F " > <o |D|o >

I = -
~a 2T En - Eo
(36)
where
Z
vV = - ZSE + 24 __EE__
r lr-rjl
j=17"7

In order to calculate the integration with respect to r appearing in <Foflanl

i f i f i
Fol > and < Fg anilFo > we shall approximate F, and Fol by plane waves. The

result is

16



< ¢fl - Z + ZJelg.EJ I ¢n>

1l

f i
< F, lanlFo >

I
e

2
bme 94 - < oe|Dlo, > (37)

where the last step 1s obtained by approximating exp(ig'zj) by l+ig'£J. This
is Justified when Q'r, < < 1 which is the case for low incident electron

energies. Substituting (37) into (36) yields

. }: < ¢og-Dlo, > < o [Dlo, >+ < ¢nl9'21¢i > < ¢f[21¢n >
- 2

- bne®
< . T P - o (38)

Using Wigner-Echart theorem, one evaluates (38) as follows:

(—— A
ob(Mi)eZ , for Mg = M
I, =-1 & < By (-Ex+ily), for My = My + 1 (39)

B_ (é‘x+ié‘y) , for Mg = M; - 1

—

A A
where ez”ﬁb and where

_ 2 _ 2 U I <oeple, > |7
a(My) =a - boMT = 2 Z lEn - go (Lo)
nito
BuM) = - B(-M ) = vo EHZ (T M) (A1) (41)
i i i i i

The expression ay and by in terms of reduced matrix elements of D. 1In the

case of a spherical atom for which Js=M; =0,

= -1 Eg-a q (42)

17



The quantity a is the polarizability of the atom, which is (9/2)r03 for hy-
drogen(z).

The intensity of the induced dipole radiation alone is obtained by sub-
stituting (39) into (13), summing over Mf, averaging over Mi, and integrating

over g_f:

Sd()’lu)) = N-— > Cmc)l/g n2xu£n {l+~/_—]/l \/—]} (L3)

where

n2 Z (ao +2;3 B )
2J,+1

2

bo 2 2 J;(J441)
= + b - — 1
a O[ 2ao * 3 (2Ji+2Ji+l)] ATis

(kk)

and where x = (hw/Ei)

One observes in (43) that the spectrum vanishes when 4Auwro in contrast to
bremsstrahlung of the incident electron given by (31). Certainly both spectra
vanish atAhw=Ei. The spectrum of the dipole radiation has a peak at approximately
hw=0.97E;. The major portion of the total induced dipole radiation for a given
electron energy Ei is emitted in the frequency range under this peak.

The spectrum for a maxwellian distribution of incident electron energy is

found as

and the total radiated power

18



S = 215 (2nc*e V2l o )“ 2 ,
Sq NgNe 315 ( - Ho n (46)

It is interesting to compare the total radiated power in the case of
bremsstrahlung and induced dipole radiation. From (33) and (46) one obtains

their ratio as

Sq 2T g2 (ne2)® 2
5, " e o e

The magnitude of n and o(o) are of the order of 10~2ucm5 and lO_l6cm2,

respectively, for most atoms. For example n=.62x10_2ucm§ and G(o)=l+810_l6cm2
for hydrogen(g). For ©=0.5 ev which corresponds to a temperature 5000°K this
ratio is less than 8% (for hydrogen .6%) indicating that the induced dipole
radiation will be insignificant in most cases. This statement is particularly
true in the microwave range of the spectrum because of the difference in the

shape of the spectrum in the two cases as discussed above. This conclusion is

at variance with that givén in reference (1) by classical arguments.

19



V. INTERFERENCE EFFECTS

The interference of the dipole radiation and the bremsstrahlung is deter-
; . . . 2 _ 2 2
mined by the cross term in the expression of l£d+lb = l;bl +l£dl +2Re(£d'zg)a
We have already discussed the first two terms. Using (29) and (39) we find

that

int m

2
I. = 2Re Iy I¥ = -523“/?(/5) O(O(Mi)\/c(o) (48)

Note that there is no contribution for Mf%Mi. The interference correction to
the radiation intensity is obtained by averaging Iint over M;, multiplying it
by the density of final electron states, integrating over Ef and finally sub-
stituting the resulting expression into (13). The spectrum for a given elec-
tron Ei,j the averaged spectrum and the total radiated power are calculated

as

o 2 — > -
fJf‘“;) o No(0)/7 VB 45 (49)

Singlfo) = -

- NN ey T/ .
Simbm) - - Y2y N o0) ()T T 2 “.@> (50)
30 e me 28
and
- 12 7/2 -
Sing = - 122240 Cgé o, Vo(o]) (51)
105n A c \[m
where

20



% = 2J1+ﬂ_24 (M) = 2, - 39 J;(95+1) (52)
M

In performing the average over N& we have approximated the average of OB(NE)
N c(o; by the product of the averages. When the atom is spherically symmetric
in the ground state this approximation becomes unnecessary because there is no
M, dependence in o (M, ) =a and~No(o).
1 o i o}
We shall now compare the combined effect of the induced dipole radiation
and the interference term to the bremsstrahlung intensity. Using (33), (46)

and (51) we obtain

_ - 2
Sq*Sint ) ol —02 <m02 > o i 3 </hgc2 N o(o) (55)
Sb 21 o(o) \AH%c° 8/x \ me? Qg

It is interesting to observe that this ratio depends on the type of the neutral

atom only through the ratio (5%2/0(0)). To estimate the relative error we
again use agﬁlo_eucm5 and 0(0)*10—16cm2 as typical values in (53), and obtain
0.3 ® (-1.7) where ® is in ev. In the range of validity of the foregoing deri-
vations, which require the incident electron energy to be small, and thus

® < 1, one finds that the effect of the interference term on the radiation
intensity is more important than the induced dipole radiation alone. It
tends to decrease the total intensity as indicated by its negative sign. For
©=0.5 ev, the above ratio becomes 18% (for hydrogen it is less than 3%) which
is probably an upper estimate for many atoms. It can be concluded that the
dipole radiation and its interference with the bremmstrahlung, which are as-
sociated with the polarization of the atom by the field of the incident elec-

tron, are insignificant as far as the total radiation intensity is concerned.

21



The relative error at a given frequency can be easily discussed with the fore-
going formulas for the various spectra. At low photon energies the spectrum
of the bremsstrahlung is flat whereas that of the induced dipole radiation and
the interference term decreases QS/ﬁzw?. Hence, the emission due to the polari-
zation of the atom can be ignored at low photon energies.

It must be pointed out at this point that the polarization of the atom af-
fects the intensity of the bremmstrahlung considerably. However this effect
is taken into account through the elastic scattering cross section 0(0), which
is to be calculated from the asymptotic form of Fo(z). The latter is the
solution of (20) which includes the effect of polarization of the atom through
the additional interaction energy Up(z). The elastic scattering cross section
decreases(g) where the effect of polarization of the atom is added to the
rigid potential scattering. Hence, the intensity of the bremmstrahlung will
also be smaller when the atom is polarizable, than when it is rigid, by a ratio

which may be as high as 1/2 as is the case for hydrogen(e).

22



VI. EXCHANGE EFFECTS

This section is devoted to the investigation of the exchange effects in
the calculations of the bremmstrahlung intensity for the hydrogen atom.

The matrix element associated with the exchange effect in (13) is < ¢f(£l,£2)l

51+32lw1(52’51) >. To evaluate this matrix element we substitute the expan-

sion (14) for V¥, and ¥; and retain the terms for which n=o and n'=o:

<Fol(zp)lo (z,) > < 0 (x)|x; [Fo(x) >

+

<P Hrp) zplog(ry) > < o (x) [F H(zp) > (54)

In order to calculate »= < Fofl®o > we use the expansion of Fof into spherical
harmonics given by (24). Using the fact that o5(ry) is a function of 1321,

one obtains

_ £ ‘ 2
7y = <F, l@o > = Hng/' F *(ker)o (r)rar.
o

Substituting Fo(kr)=sin(kr+50)/kr as before one gets

Lt e ®
y = — |cos & rdrd (r)sinkfr + sindo L/1 rdr® (r) cos kger
k © °
T o o)
Since we are dealing with slow electrons whose wave length is larger than
the size of the atom, k.r < < 1. Then, using cos By~1, sinkfrzkfr and cos Sozl,

f

we find

f

y = lLx / rgdr@o(r) + ~Jhﬂc(o)\/m rdr@o(r) (55)

25



For the hydrogen atom, the wave function of the ground state is @O(r)=
N )
(nrOB) /e exp[—r/ro] vhere rg = %°/(me®) = 5.3 x 10'9cm, the Bohr radius.

Hence for the hydrogen atom

y = 2Vry [brgVr +Vo(o) | (56)

2
In reference (2), the elastic scattering cross section is given as o(o) = 60nro .
With this value of o(o), we obtain 7:25.h8rb'f}ro.

i

Next we consider < ¢o|£]Fbl~> . Using again the expansion of F, ™ into

spherical harmonics, and the fact that &, is a function of !3] only, we find
(-]
i .
< OlrlEt > = 141(131[ Fl(kir)<1>o(r)r5dr

Putting Fl(ki.r) = jl(kir) and using the asumptotic form of jl(kir) for small

arguments we get

<@O|£ini> = i%‘-’-‘-@lﬁ (57)
where
"
5 = JF r Og(r)dr (58)

For hydrogen atom, & = 4! r05~Jro/ .

Repeating similar calculations for the second term in (54), we obtain the

desired matrix element as
I, = iug (59)

where

2k



o= s o= Gt b+ (o(0)/m) Y2 (60)

The corresponding radiation intensity is obtained as

5/2

b 2
S, (o) = n ;?2 () ﬁc—g- u? (2B, 40) VE; -0 (61)

One observes again as in the casge of dipole radiation, that the spectrum van-
ishes when fiwso. The total power for a maxwellian distribution of incident

electron energy follows from (61) as

§c=l+5ulogl‘oz\/ om® |, m@BNN (62)
Bn c-h

Using the value of the elastic scattering cross-section given in reference
. 2 . == -6k

(2) i.e., g(o) = 60nro , one finds that the ratio (Sc/sb) ~ 107 @ where ©

is in ev. Hence the contribution of this term is negligible for ® < 1.
As a final step, we consider the last term -2R.[ < YelRlwy >* - < velR

Plglwi > in (13), which is equal to -2 R [(1q + Ib) . ZC*J Ignoring the

induced dipole term I3 one finds the spectrum associated with this term as

teﬁm) = Egé?g uvo(o) 02 (ZE - Ho) Vv E; -Ho (63)
7t

Cln

The total average power is

11 1/2
- _ oVea = [ me L
oo = w Vo) () e, e

The ratio of this term to the intensity of the bremsstrahlung is approxi-
mately equal to @ /lO where © is in ev. Hence, for © < 1, this ratio is less

than lO%, and decreases rapidly with the gas temperature.
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The final conclusion is that the exchange effects can be ignored completely
in estimating the intensity as well as the absorption of radiation in a neutral

gas containing slow electrons.
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VII. THE EFFECTIVE ABSORPTION COEFFICIENT DUE TO FREE-FREE TRANSITIONS

We have seen that for the low electron energy range, the only processes
responsible for transitions between states of the whole system (neutral atom
+ electron + radiation field) are bremsstrahlung and inverse bremsstrahlung.
It is possible to use the energy intensity of emission due to bremsstrahlung
of equation (32) to calculate the effective absorption coefficient for radia-
tion. This calculation will now be done.

If it is assumed that the medium is isotropic, then the effective absorp-

(%)

tion coefficient for unpolarized photons is

O = 2= ) T an(e(0) - o) (65)

where
N 1s the index of the polarization state
&\ is the transition probability per unit time for emission of a photon

of polarization N into direction QK

ox is the transition probability per unit time for absorption of a photon
of polarization A traveling in direction {

It is possible to show that for a Maxwellian electron distribution the ab-

sorption and emission transition probabilities are related by the equation

a (k) = /0 ¢ (k) (66)
also, the total radiation intensity S(#iw) per neutral atom per unit energy

interval is related to ek(g) by
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5 b

w

s = s fa ) o (W (67)
A

The use of equations (66) and (67) in equation (65) yields for the effec-

tive absorption coefficient

Qerr = féng S(rw) (1 - e1/0)

Substitution of S(#w) which was obtained previously in equation (32) by ignor-
ing polarizability and exchange effects and approximation of K, (fw/28) and
exp [#w/®] in the result yields for Qeff

2 1
0. = 2¥2_ e o (yeén L (68)

eff T 3 w2 o

It is interesting to note that if one defines an "effective collision

Lo o) n o),

frequency" in the standard way (cf. Ref 5 where Vgpe = 8/3
m

the absorption coefficient may be seen to agree with the power absorption coef-

ficient Qgpp Of the Maxwell-Lorentz theory(5) for non-dispersive media and small

2
collision frequencies (v << m?)
eff
2
a Yeff CDp
eff —=
c w
where
mpg = plasma frequency = MﬂegNe/m
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VIII. CONCLUSION

The present analysis indicates that the dominant contribution to the in-
tensity of radiation from a neutral gas containing slow electrons comes from
the deceleration of the free electrons by the field of the neutral atoms. The
contribution of the induced dipole radiation is always negligible. However,
the interference of the induced dipole radiation with the bremsstrahlung may
decrease the total intensity as much as 18%, depending on the ratio of the
polarizability of the atom and its elastic scattering cross section for slow
electrons with energies less than 1 ev. The induced dipole radiation may be-
come appreciable in the short-wave limit of the emitted spectrum.

It is also found that the exchange effect in the calculation of radiation
intensity for the hydrogen atom is much less than 10%, and can be ignored en-
tirely. The same conclusion is expected to be also true for a multi-electron atom.

The intensity of the bremsstrahlung of the free electrons in the field of
the neutral atoms which is the dominant emission mechanism is shown to be pro-
portional to the elastic scattering cross section of the atom for slow electrons
in the limit of zero incident energy. This cross section includes the effect
of the polarization of the atom by the field of the incident free electron.
Thus, the polarizability of the atom affects, and decreases, the intensity
of the bremsstrahlung, although the induced dipole radiation which is due to
the polarization of the atom is negligible.

In view of these results, it is concluded that the free-free absorption of

the microwaves in a slightly ionized neutral gas will be predominantly due
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to the inverse bremsstrahlung. The absorption coefficient has been found to
be in good agreement, above the plasma frequency, with that given by the class-

ical Lorentz formula of electro-magnetic theory for nondispersive media.
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