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Abttact-This paper CCNILX.~F~S the synthesis of dynamic output feedback controllers foe minimum-p& 
multjwuiable nonlinear procesw.s with a nonsing&r characteristic matrix. Statespace controller realize- 
tions are derived that induce a linear input/output behavior of general Iorm in the closed-loop system. 
A combination of input/output linearizing state leedback laws and state observers is ctnpIoyed for the 
derivation of rhe oontrollers. For open-loop stable pr-ses, the procerss model is used as an open-loop 
state observer. In the more. general ca3c of possible open-loop instability, a reduced-order obmrver is used 
based on the Foroed zere dynamics ot the process model. The perforraance and robustnel;s characteristics of 
the proposed mntrol methodology are illustrated through simulations in a chemical reactor example. 

One of the most basic problems in process control is 
the one of specifying a controller that makes use of 
measurements of process output variables in order to 
influence the dynamic bhavior of the process in a da- 
sirable way. This problem is well-understood and 
studied within a linear control framework, where both 
a state-space approach and an input/output approach 
have led to identical solutions [see e.g. the classical 
tiokg by Chen (1984), Kailath (1980) and Astrom and 
Wittenmark (1984)]. In a stats-spa- approach the 
synthesis of the controllers is based on a combination 
of state feedback and state observers, while in an 
input/output approach the controller transfer fun- 
tions are derived directly. 

An obvious limitation of the theory developed in 
the above framework arises from the fact that physical 
and chemical phenomena are inherently nonlinear. As 
a result, real processes can exhibit distinctly peculiar 
dynamic behavior, which Cannot be properly cap- 
tured and accounted for in a linear control frame- 
work. M&vat& by such considerations, the control 
community has lately witness& an expanding re- 
search activity towards the development of nonliiiear 
control methods. Differential geometry has provided 
powerful mathematical and conceptual tools in this 
dire&on, allowing fundamental aspects of nonlinear 
dynamics to be understood and typical theoretical 
coatrol problems to be sucoesSrully addr& [see e.g 
the books by Isidori (1989) and Nijmeijer and van dcr 
SchaR (1990)]. The early results in this area have 
shown that the natural frame for nonlinear control 
lies within the state-space approach, which allows 
typical results of linear control theory to be naturally 
generalized in a nonlinear setting. This is jn contrazt 
with the abstract input/output approach for nonlinear 
systems, which does not have the power and explicjt- 
ness that transfer functions have in linear systems, 
although it provides philosophical guidelines and 
macroscopic perspective. 

In a nonlinear state-space approach, the problem of 
synthesis of dynamic output feedback controllers TV?.- 
come5 the problem of deriving state-space realizations 
of the controllers, viewed as nonlinear dynamic sys- 
tems. In analogy with the linear case, the most logical 
and intuitively appealing approach to this problem is 
the combination of nonlinear state feedback laws and 
nonlinear state observers. The major difficulties to 
this end are associated with the observer &sign prob- 
lem. Very few results are avaiIabIe on the existence 
and constructian of observers for general nonlinear 
systems [e.g. Tsinias (1989, 1990) and Grizzle and 
Mortal (199O)], and moreover there is no general 
separation principle for nonlinear systems, to guaran- 
tee a well-behaved observer+ontroller combination. 
One way to cope with this problem is to utilize the 
natural modes of rhe process (i.e. fhe wholo process 
dynamics or the process zero dynamics) For the state 
observation (Daoutidis and Kravaris, 1992a). In this 
direction, Daoutidis and Kravaris (19923) develod 
a general solution of rhe dynamic output wbaok 
problem for single-input single-output (SISO) rnin- 
imum-phase nonlinear processes. In the present work, 
a general dymunic output feedback control problem is 
addressed and solved for a large class OF multiple- 
input multiple-output (MIMO) minimum-phase non- 
linear processes. In analogy with the SISO treatment, 
the key features of the approach are: 

(1) The globally linearizing control (GLC) meth- 
odology (Krarariu and Chun& 1987; Kravaris 
and Soroush, 1990) provides the conceptual 
framework for the derivation of the controllers, 
which is ba-& on the combination of in- 
put/output linearizing control laws and open- 
loop or reduced-order state observers. 

(2) The combination of the controller and the ob- 
server is treated as a dynamic system itself for 
analysis and design purposes; thus, the problem 
of state reconstruction is not studied in&- 
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pendently, but is incorporated in the controller 
synthesis. 

In addition to the above features, the proposed 
methodology accounts naturally for the muftivariable 
nature of the control problem, allowing for any de&- 
able degree of coupling to be achieved in the 
closed-loop system, by an appropriate choice of some 
adjustable parameters. It provides general and ex- 
plicit output feedbtik controller realizations which 
are directly applicable to a large class of nonlinear 
multivariable processes of interest. 

More specifically, in what follows, we will start with 
a brief discussion on key differential geometric con- 
cepts and alternative state-space realizations of non- 
linear multivariable processes. Then, a general output 
feedback synthsjs problem will k formulated for the 
class of multivariable minimum-phase processes un- 
der consideration. In the subsequent sections, the 
basic results of the paper will be developed: state- 
spa% realizations of dynamic output feedback con- 
trollers that solve the posed synthesis problem will be 
derived, and the closed-loop dynamics will be ana- 
lyzed in terms of the induced input,Joutput behavior 
and the asymplotic stability characteristics. Finally, 
the performance and robustness characteristics of the 
proposed control methodology will be illustrated 
through simulations in a chemical reactor example. 

PRELtMINAPIES 
We consider MIMO nonlinear processes, with an 

equal number of inputs and outputs, and a state-space 
representation of the general form 

where x denotes the vector of state variables, tij de- 
notes a manipulated input, and y1 denotes an output 
(to be controlled). For the theoretical development, 
and without loss of generality, it is assumed that all 
variables represent deviations from nominal values, 
and thus the origin is the equilibrium point of interest. 
It is also assumed that x E X c R”. where X is open 
and connected, u = [u, . . u,J”E W”, 
=[yI...ym]=ER”. 

wed to denote analytic 
used to denote analytic scalar fields on X. In a more 
compact vector notation, eq. (1) caa take the form 

yi = k,(x), i = I, . _ , m 

where g(x) is an (n Km) matrix with cdumns the 
vector fields Q 1 tx), . I _ b ga(x)- 

Throughout the paper we will be using the stand- 
ard Lie derivative notation, whew Lch;(x) 
= EYE, [&(x)/ax1 IX(x) and J(x) denotes tie Ith 

row element oF fIxI. One can define higher-order Lie . . 
derivatives L>hi(x) = LIL, ‘-I k,(x) as Well as mixed 
Lie derivatives L,, L:- ’ h,(x) in an obvious way. 

For the MIMO nonlinear process d&bed by eq. 
(I), let r1 denote the relative order of the errsput y1 with 
respect to the mutiipuhted itapttt vector u, i.e. the 
smallest integer for which 

&L;i-‘h,(x) = [&,L;‘-‘h&) L&-%,(X) 

.“&J-‘h,(xx)]f[O 0---O]. (3) 

If such an integer does not exist, we say that r1 = M. 
A graph-theoretic interpretation of the concept of 
relative order, as well a6 its interpretation as 
a measure of how “direct” the affect of the input vector 
is on an output variable, can be found in Damtidis 
and Kravaris (1992b). It is assumed that a finite rel- 
ative order F, exists for every i, since this is a necessary 
condition for output OantroIlability. Then, the matriir 

LglL;‘-lhl(x) -. - L+J;‘-‘h,(x) 
C(x) = 

[ : 

I 
L,, t;- 1 1 h,(x) - . I 1 LSM L;-- t h,(x) 

(4) 

is called the chwacter~stic m&ix of the system. It will 
be assumed that the state-space X does not contain 
any singular points, i.e. points for which det C(x) = 0. 
As long as detC(O) # 0, one mn always redefine X in 
order to satisfy the above assumption. 

In what follows, we selectively review some basic 
results in alternative state-spaoe realizations and Ihe 
notion of minimum-phase behavior for the class of 
processes under consideration. For the nonlinear pro- 
cess described by eq. Cl), with finite relative orders 
ri 9 i= I...., m, aad nonsingular character&c 
matrix C(x), one can always find scalar fields 
f L (x), . _ , tn _ L,~, (x) such that the scalar fields 

11 (x). . . - , r,-pM h,(Xh L,k,(x), . . . .L;‘-lk,(x) 

, h&l, L&(X), . , Ljm-‘hdx) 

are Iinearty independent (Isidori, 1989). Then the 
mapping 

(5) 
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is inwrtible and qualifies as a curvilinear coordinate 
transformation. Assuming also that the vector fields 
al(x), . _ , gm(x) are involutive (a condition which is 
usually satisfied in MIMO systems of practical inter- 
est, and is trivially satisfied for SJSO systems), one can 
always choose the scalar fields r!(x) such thai 
L,, r,(x) = Ofor all I, j. Then, the original system under 
the coordinate transformation of eq. (5) takes the 
following normal form (Isidori, 1989); 

Ym = Pi”) 
WbfXC 
F,(p), p ,...1 I’“9 = CL,t,(xllx=r-1rr, 

I=],... .(q) 
C*(T’O’, 1”) ,...I .p) = EL,L;!-‘h;(x)],,r-,(:) 

i= l,.&.,m (7) 

W,@“), CC’) I..., I’“)) = [L;:&U*=T iI<) 

i=l,...,m. 
Referring to the above normal form+ let 

Then, according to Daoutidis and Kravaris (1991), the 
dynamic system 

::‘i I,,, = F, - ~,r, (CC”1 LQi, . . . , Gya) 

represents a reduced-order reakation of the inverse 
system (or, equivalently, the forced zero dynamics) of 
89. (I). 

Furthermore, the unforced reduced-order inverse, 
i.e. the dynamic system 

g”’ = F t 1 ({“l 0 Ci) 11 I 

110) 

& E Ir, = F,-pa(r’o! 9 ,O) 

represents the (unforced) zero dynamics of the pmxss 
described by aq. (I)? i.e. the nonlinear analogue of the 
concept of transmission zeros in MXMO linear sys- 
tems (Daoutidis and Kravark,, 1991)_ 

In analogy with the linear CXW, the nonlinear pro- 
cess in the form of eq. (6) is said to be minimum-phase if 
Its (unforced) zero dynarniw [eq. (IO)] is asymp 
totically stable, while it is said to be Ill?nminimlrm- 
phase if its (unforced) zero dynamics is unstable. 

FORMULATION OF THE OUTPUT FEEDBACK SYNTHESIS 
PROBLKM FOR MINIMUBW’HASE PROCESSES 

In this section, we will formulate the output feed- 
back control problem for MIMO minimum-phase 
nonlinear processes as an explicit synthesis problem. 
The objective is to calculate state-space realizations of 
nonlinear controllers which will be using measure- 
ments of the output variables and the output set- 
pints in order to enforce ertain properties in the 
closed-loop system (see Fig. 1). The desirable closed- 
loop properties will, as usual, include 

l input/output stability 
l tracking of the output set-points 
l rcjtiion of disturbances and modeling errors 
1 asymptotic stability of the unforced closed-loop 

system (internal stability). 

The assumption of minimum-phase khavior 
allows the formulation of a generic synthesis problem 
along the above lines. In particular, the assumption of 
stable zero dynamics allows requesting a dosed-loop 
response with no zeros, resulting by essentially cancel- 
ing the zero dynamics of the process. Furthermore, 

-I 

Y*P OUTPUT u 

l I-EEDnP-CK . 
NONLJNEAR OUTPUT Y 

CclNlRWLER 
m- MAP 

Fig. 1. Gwetic cutp~t fedback control sttuchte. 



properness considerations dictate that the relative or- 
ders ri are “preserved” in the closed-loop system, 
which allows requesting a dosed-loop ‘response of 
order (rl + . ’ . + r,). For convenienw, a linear in- 
put/output behavior will also be requested, allowing 
for input/output stability and performance character- 
istics to be transparently incorporated in the design 
procedure. Taking into account the above considera- 
tions, as well as the requirement of a closed-loop static 
gain matrix equal to the identity matrix, the Eollowing 
synthesis problem is posed: 

Givelr u state-space reulkalion of a MlMO nonlinear 
process, calculate a state-space realization of a non- 
lineur contrullger which induces an inpu+tpvt be- 
havior 0~ the &rm 

Note that the input,/owput bhavior of cq. Ill) is 
a fully coupled one, capturing the n&t general form 
of a linear input/output behavior. However, the role 
of the adjustable parameters yfk is transparent: they 
determine the input/output stability and performance 
characteristics as well as the Ievel of input/output 
coupling in the closed-loop system. A common design 
objective in practical applications (with the exception 
of some ill-conditioned processes like high-purity dis- 
tillation columns) is the requirement of an input/out- 
put decoupled closed-loop systm. Tn this case, the 
postulated input/output behavior in the synthesis 
problem takes the simplified form 

or in more compact notation 

where y& me adjusmble constant parameters, w&h 7L, v:,, . . . ?.L, (16) (1-q for i = 1, . _ , m. The BI3O stability characteristics of 
the closed-loop system will then depend on the roots 
of the characteristic equation: 

det 

0 
L 

and Y**l, . , y*,, Are the output set-points. 

In a more compact vector form, eq. (11) takes the 
form 

(13 

where vlk = [vjL. . .JY;*]~_ The condition of eq. (12) 
guarantees that the closed-loop system will bz nonsin- 
gular and of order rl + . _ + r,. Furthermore, its 
bounded-input bounded-output (BIEO) stability 
characteristics will de-ad on the toots of the chatac- 
teristic polynomial: . 

det 

Finally, one can further simplify the form OC the 
closed-loop input/uutput behavior by requesting a de- 
coupled, critically damped response, in which cwxz the 
number of adjustable parameters reduces to m. 

in what follows we will address the posed synthesis 
problem in its most general form, initially for opw- 
loop stable processes and rhcn for general process~ 
that may be open-loop unstable. In analogy with the 
SE0 treatment of the problem (Daoutidis and 
Kravaris, 1992a), the GLC synthesis methodology 
will be used in the derivation of the r;ontrdler real- 
izations. In pa&mlar, referring to the GLC structure 
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LINEAR Y I/o 
-LINEARIZING --% 

NONLINEAR OUTPUT Y 

CONTROUER FEEDBACK 
PROCESS - MAP 

t 
STATE 

OBSERVER + 

t 

Fig. 2. GLC structure. 

of Fig. 2, the following steps will be followed: 

synthesis of a state feedback law that induces an 
input/output behavior of the form 

between y and u, where &h = COB. _ ./J;] T are 
vectors of adjustable parameters; 
reconstruction of the process states through an 
appropriate state observer; 
combination of the state feedback Iaw (with the 
states estimated through the observer) with a lin- 
ear error f&back compensator with integral 
action imposed on the v-y dynamics, that indu- 
ces the desired input/output behavior between 
YIP and Y. 

CWTPUT FKEDBACK CONTaOL OF OPEN-LOOP STABLE 

MINIMUM-PHASE PRCKW=ES 

Under the assumption of open-Ioop stability of the 
process dynamics. the prwess state variables can be 
mmnstructed by simulating the process dynamics 
itself. The pro&ss model Ott be used as a (full-order) 
open-loop state observer for this purpose. Theorem 
1 provides a solution to the posed synthesis problem 
for the cl= of nonlinear processes under considera- 
tion, using the above state observer. The proof can be 
found in the appendix. 

Tkuem k Consider the nonlinear process described 
by eq. (I), withfinite re&itw orders rI and det C(x) + 0 
for x E X. mn. the bylramic sys&m 

&i’ = (;[,‘I 

Remark 1: Equation (19) repmoms a state-space 
realization of a dynamic mror+edbaclr controller. 
The input to the controller is the error vector 
I YOP - JJ). its output is the manipulated input vector 
for the process y while it involves In t rl + . . * + r_) 
state variables. The state variables denoted by t: cor- 
respond to the state variables of the linear error feed- 
back compensator, while the n state variables denoted 
by w cmrespund to the state variables of the full-order 
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Fig 3. Error Cdback controller and control structum. 

open-loop observer. The overall control structure as 
well as the various components of the controller are 
shown in Fig. 3. 

In complete analogy with the results for SK0 sys- 
tems (Daoutidis and Kravaris, 1992a), appropriate 
initialization of the states of the aontrollet of eq. (19) 
can lead to elimination of the states 5, leading to 
a reduced-order controller realization. This result is 
summarized in Corollary 1, whose detailed proof can 
be found in the appendix. 

represents un (n)th order sms-space realizatitin of a dg- 
namic ovrplrt feedback cmtrdler that induces the 
closed-loop inptdnct/oidtptlt behavior of eq. (13). 

Remark 2. The controller realization of eq. (20) is 
clearly the most convenient for practical implementa- 
tion because af its reduced order, It is also interesting 
to note that eq. (20) can be interpreted as a feedfor- 
ward controller on the wror vector (yBa - y), which 
enforces the dynamics 

This interpretation suggests an alternative way of 
derivation of eq. (Zo), staRing from the above post- 
ulated dynamics, and using estimates of the output 
derivatives obtained from the process model. A more 
detailed development along the above lines is omitted 
for reasons of brevity. 

Remark 3; In arder to obtain a deccrupled clowd- 
loop input/output bhavior of the form of aq. (M), one 
simply sets rk = 0 for i # j in the controller realiza- 
tions of eqs (19) and (20). By also setting @!A = 0 for 
i # j in eq. (19), we easwtially request input/output 
decoupling in the v-y dynamic of eq. (lg), in which 
case the linear compensator used in the proof of 
Theorem I reduces to a cascade of SISO linear com- 
pensators. In this case, the resulting error feedback 
controller asumes the following full-order real- 
ization: 
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u = {diag [#$,lC(w)}-’ 

and the following reduced-order realization: 

Remark 4: In the case of a SISO nonlinear process, 
i.e. for m = 1, the controller realizations of eqs (21) 
and (22) reduce exactly to the realizations derived in 
Daoutidis and Kravaris (1992a), as expected. 

OUTPUT FEEDBACK CONTBOL OF MINIMUM-PHASE 
PBOCB 

The error feedback controllers develop4 in the 
previous section can be applied only to open-loop 
stable minimum-phase ~~O~EYWS. In the case of open- 
loop instability, any error in the observer initializa- 
tion would grow indefinitely, leading to obvious inter- 
nal stability problems. However, the normal-form 
representation ofq. (6) for minimum-phase nonlinear 
processes suggests an alternative way of state rccon- 
struction, valid even in the presence of possible open- 
loop instability. In particular, it is clear from eq. (6) 
that I(‘) = 5Qi . _ ctrn? = gym. i.e. (rl + . . . + r-1 7 1 
state variables are exactly the outputs and their deriv- 
atives up to (rl - l)th order, which are assumed to be 
available. The remaining (ta - 1. ri) state variables 
FENI be obtained by simulating the forced zero dy- 
namics of eq. (9) under the assumption of minimum- 
phase behavior. The forced zero dynamics LUA, then, as 
a r&we&order observer, forced by the outputs and 
their derivatives. Theorem 2 provides a solution to the 
posed synthesis problem for general minimum-phase 
nonlinear presses based on the above reduced-or- 

der observer, In particular, the observer is mmbined 
with an input/output linearizing state feedback which 
makes explicit use of the outputs and their derivatives, 
while the overall controller is completed with a state 
space realization of a linear multivariable error &d- 
back compensator with integral action. 

Tlwrtm 2: Consider the nonh~~ pmxss described 
by eq. (6). Then, the dynamic system 

m rr-l 

Yl- c c r,a, 
I=1 k=l 1 

(231 
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feedback contmlkr that induces the closed-loop in- 
put/ou~pput bekatrim: 

Remark 5: The controller of Theorem 2, similarly to 
the SISO case, is a nonlinear analogue of a two- 
dcgreesf-freedom controller, i.e. a mixed errof and 
oartputfkedback controller. This is consistent with the 
intuition from linear systems theory where a two- 
degree-of-freedom controller is usually employed for 
open-loop unstabk systems, with the output feedback 
having a stabilizing effect on the overall control ac- 
tion. The overall control structure and the various 
components of the controller arc shown in Fig. 4, 

Remark 6e The implementation of the controller of 
Theorem 2 in the case that ri 2 3 for some i may 
require 6ltcring of the output signal or approximation 
of the output derivatives in order to suppress noise 
effects. 

Remark 7: The controller of eq. (23) that inducea Under the controllers of Theorems I and 2, the 
a decoupled closed-loop input/output behavior of the input/output characteristi= of the closed-loop system 

form of eq. (16) takes the simplified form 
e”V) _ {:‘I 

-Y1)- 

:-Ym)-- . . 

in the case that idptitfoutput decoupling in the v-y 
dynamics is also requested. 

Remark & In tht case of a SISO nonlinear process, 
i.e. for m - I, the controller realization of cq. (24) 
reduces exactIy to the realization derived iti Daoutidis 
and Kravaris (1992a), as expected. 

Remark % The controller realizations derived in 
Theorem I and 2 can find a transparent input/output 
interpretation from an input/output operator *r- 
spective, in complete analogy with the SISO results 
(Daoutidie and Kravaris, 1992a). In partictdar, the 
controller realizations can be decomposed in real- 
izations of the postulated operator between the error 
and the output, and internalIy stable realizations of 
the process inverse, illustrating thus the importance of 
alternative realizations of the invekse for the control- 
ler synthesis and implementation. 
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u 
CONTROLLER c NCWLJNEAEl OUTPWT Y 

PROCESS MAP 

t 

Y 

t- 

Fig. 4. Error and output lccdback cantraIler and oantrol structure. 

clearly depend on the roots of the closed-loop charae 
teristic polynomial [eq. (1411. The designer has the 
flexibility to choose the adjustable parameters in or- 
der fo achieve a desirable speed of the response and 
level of input/output coupling, a$ well as other dosed- 
loop design objectives, and such that they do not 
violate the constraints in the manipulated inputs. In 
addition to input/output stability, the internal stabil- 
ity of the closed-loop system must also be guaranteed, 
i.e. the ritrymptotic stability of the stales in the hn- 
forced closed-loop system, for perturbations in the 
initial conditions. To this end, aSsume that 

(1) the process dynamics is locally exponentially 
stable, 

(2) the zero dynamics of the process is locally cxpo- 
net&ally stable, 

(3) the roots ofeq. (14) lie in the open left-half of the 
complex plane, and 

(4) The roots of the characteristic equation 

conditions 2,3 and 4 from above, a similar procedure 
can by used to guarantee the local internal stability of 
the closed-loop system under the controller of eq. (23). 
The detailed proofs of the above results are omitted 
for reasons or brevity. 

ILLU5rrRATlvX EXAMPLE 
Consider the ideal continuous stir& tank reactor 

ICSTR) shown in Fig. 5. A solution zstre&r~ at concen- 
tration CA0 and temperature TO enters the reactor, 
where the following chemical reactions take place: 

A*UU, 

A + Uz 

A-rP 

A+& 

A-c&. 

lie in the open left-half of the complex plane. 
U, , Up, U,, U, represent undesirable products, 

A stability analysis of the unforced closed-loop sys- while P represents a d&rabIe one. The eflluent stream 
tem (y.@ = 0) based on Lyapunov’s first theorem can leaves the reactor at concentrations C,, CV,, Cu,, 
then be used to show that the above conditions Cus. C,,, Cp, and temperature T. The value of the 
guarantee the 1-l internal stability of the clossd- various process parameters are shown in Table 1. 
loop system under the controlier of cq. 119). Under Figure 6 provides a plot of the selectivity with respect 



to P, denoted by S,. as a function of CA and T. Sp is 
defined as 

where 

b = k,C:, 

fu. = k4CA 

evaluated at steady-state, and k, = Z, exp ( - E,/R T), 
As can be seen, there is a well-defined maximum 
for the selectivity at S, = 1.0, corresponding to 
CA = 1.0 kmolm-’ and T= 400 K, Based on the 
above, the control problem is formulated as the one of 
optrating the reactor at the above reactant concentra- 
tion and temperature. Under standard assumptions, 
the dynamic behavior of the process is then described 
by the following material,and energy balances: 

dG, 
-= 

dt 

It is assumed that measurements of Ihe controlled 
outputs CA and Tare available, while Cu, cannot be 
measured. The inlet reactant concentration and the 
heat input to the reactor are used as the two manip 
ulated input variables. Setting x1 = GA, x2 = GUI, 
xg = T, ~1 = Cfi~, uz = Q, y1 = C, and yz = T, the 
dynamic model of the process can easily be put in the 
form of eq. (1). with 

A straightforward calcuiatioo of the relative orders 
g&S 

r’1 = I, r2 = 1 

while the characteristic matrix of the above system is 
found to be equal to 

and is nonsingular in the entire state-space. More- 
over, the process model is already in normal form, and 
for this reason the controller of Theorem 2 was em- 
ployed in the simulations. More specifrcallg, for the 
above process and for an input/output decoupled 
closed-loop response of the form 

the controller takes the form 

(271 
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The adjustable parameters were chosen as JiO 6 1. 
& = I. /3!, = yj, = 25 and /3i1 = yir = 60, while 
a sampling per&l of 2.5 5 was us4 in the simulations. 
The performance of the above output feedback mn- 
troller was tested in terms of the tracking and regul- 
aiory characteristics of the closed-loop system, giving 

I? T excellent results, All the simulations were carried out 
C under both 

(I) the assumption of a perfect model, and 
(2) a 10% error in the reaction rates 

Fig. 5. A cxmtinuous stirred tank reactor (CSTX). in order to also test the robustness characteristics 

CI 

0 

Temperature: 

Concenuatinn Temperature 
Fig. 6. Thruxlimmsional plot of sensitivity vs reactant concentration and factor temperature. 
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of the controller. The first representative run cor- tween the actual process value and the observer es- 
wds to the start-up of the reactor. :Starting timate for Co1 in the case that the above mdeling 
from the initial conditions: CA = 0.0 kmol tW3, error is assumed. As expected, there is a his in the 
CU, = Mkmol rnT1 and T = 300 K, the control ob- estimate of Cv, due 10 the process-model mismatch. 
jective is to bring the reactor to the desired operating Note, however, that although the state obeyer does 
conditions_. Figures 7-10 ilhrstrate the profiles for the not perform perfectly, the controller compensates for 
two controlled outputs and the two manipulated in- this, with the overah perforrnanee being excellent. In 
puts. The output responses under the perfect model the second representative run, the reactor is initiaily 
clearly verify the theoretically predicted ones, while qwrating at the nominal steady-state: C, = 1.0 
under the modeling error the responses are also very kmolm--5. CU, = 0.585 kmolm-’ and T = 400 K, 
satisfactory. Figure 11 provides a comparison be- and at time t = 100 s an increase of 20 K is imposed in 

Table 1. Process parameters 

r=M)s R = 8.345 kJ kmol-’ K-l 
p = 1 x IO3 kg mm3 c=UkJkg-‘K-’ 
v= IxlO-~m~ TrJ = 355 K 

2, = 3.906 5-l 
2, = 3.906 m6 kmol-’ s-’ 

z-, =rns- 
Zp = 2.4993 x 10bm’ kmok-’ SC’ 

2, = 9.99 x 1O’O m6 krn01-~ s-l 2, = 9.99 x lo’Os-’ 
E, = 2xlO*kJ kmol-’ E_, =6x WkJ kmol-’ 
Ez - 2x 104k.l kmol-’ E,--6X104kJktl101-~ 

E3 - fxi05kJ kmol-’ E4=1x10’kJktm-’ 
-AHI=2xlU3kJkmol-’ - AH, = 2 x 103 kJ kmol-’ 
-&Hp=6x10LkJkmol-’ - AHa = 2 x 103 kJ kmol- ’ 
- AH, = 2 x lo3 kJ kmol-’ 

nf = 1 n-, =I 
?I2 = 3 rr, = 2 
na = 3 “4 = 1 

Fig. 7. Reactant concentration profile during reactor start- 
w 

Fig 8. Reactor trmperature profile during reactor start-up. 

Fig. 9. Inlet reactant Goncentration profile during reactor 
start-up. 

Fii. 10. Heat input profile during reactor start-up. 
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F& Il. Actual and estimated state variable under modeling 
errOr. 

Fig. 12 Reactant concentration proHe for disturbance m- 
jection. 

^1 rzzzEz3 
e 

40 I 

the ifilet temperature I”, . Figures 12-15 illustrate the 
profiles For the two controlled outputs and the two 
manipulated inputs as the reactor returns safely to the 
desired steady-state. A comparison between the actual 
promo value and the observer estimate for Co, dues 
not show any difference in the case of the perfect 
IIK&I (Fig 16), w&h is expected since the disturb- 
ance doeg not appear in the reduced ober~er dy- 
namicc. Fn the case of mdeling error, a constint 
difference between the estimated and the actual value 

0 I 
0 *10 m --w 1w )oo 6m 

Fig. 16. Actual and estimated state variable in the prexnce 
or disturbnczz 

;;r._ . . . . . 5.--.” . . . . . -.-............ _ . . . . .._ _ . . . . . . . . . .._.___ _.\ 

Fig. 17. Actual and estimated state varkbk in the ~TES%FC 
of disturbance, under modeling error. 



of CU, can be seen in Fig. 17; despite this diffe’erena, 
the overall control action is very satisfactory. 
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NOTATION 

heat capacity of the reacting mixture, 
kJkg-‘K-’ 
characteristic matrix 
molar concentration of s&es i, km01 ma3 
inlcr molar concentration of spcciw A, 
kmolm-3 
activation energy, k3 kmol- L 
vector field 
vector field 
scalar field 
order of reaction 
heat input to the reactor, kJsmi 
relative order 
ideal gas constant, kJ kmol- ’ K- r 
the Laplace domain variable 
time 
reactor temperature, K 
inlet temperature, K 
manipulated input 
auxiliary variable 
reactor volume, m3 
state vector of process model 
state vector of process 
procew output 
output set-point 
frequency factor 

Greek letters 
8ik adjustable parameters 
v: adjustable parameters 
- Mi heat of reaction, kJ kmol-’ 
r state veCtof of process in normaLf0rm co- 

ordinates 

z 
controller state variables 
state vector of linear compensator 

P density of the reacting mixture, kg m-s 
r reactor residence time, s 

Math symbols 
det determinant of a matrix 
diag diagonal matrix 

f not equivalently equaf to 
Iw” rr-dimensional Euclidean space 
T transpose 
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CY’ = r’;“’ 

and the output map d&n& by eq. (29) rep-t an ir- 
ieducible state-space realization of the linear input/output 
dynamics bstwozn (P,~ - y) and 0, with the fullowing repres 
entatian in differential opmator form: 

P(D)??= P(D)(y., - u) 
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where 

B(D) = ding g + [yrV,. . r y& -’ [ 1 

and L:” = [c\“. . ..$\;“‘I. Equation (31) can be interpreted as 
a linear compensator with integral action imposed on the 
u-y dynamics. The other component of eq. (19) then becomes 

3 =S(w) + s(NEC1.; _ ~Bh”,lcw))-’ 

which is an input/output linearizing state feedback law 
(Kravaris and Soroush, 1990A with the states nxxmstructcd 
through an open-loop state obszrver, the prcxess model 
itself. Under consistent inizialization of w and x [i.e. 
w(O) = x(O)], it easily follows that w(t) = x(t) and cq. (33) 
indums the dynamics 

(34) 

or, equivalently, 

CB1rr~ . ,&.,] diag z 
[ 1 (35) 

Combining nq. 135) with the second equation from eq. (31X 
we obtain the following equality: 

(36) 

the first equation from eq. (31) also yields 

h, 
d” ,$’ 

Yu, 1 diag - 
[ 1 dt” +i 

ir * 

(37) 

Etiminating ( yrP - y) from eqs (36) and (37), we easily obtain 

Under con&tent initialiitinn of ct’ and yr, i.e. 

dkt%J d’y,(O) -=-, 
dP dtk 

Ic=O ,..., r,,i=l,.,.,m (39) 

weobtain{:” = y(,i= 1,. . . . tn, and eq. (37) takes the form 

which is equivalent to the desired dosed-loop input/output 
dynamica: 

Pi-mfof Corollury 1 
From eq. (33), it easily follows that 

which, combined with eq. (31), yields 

,,,,...,,dia$[~]+~,~~~p,~~ = n-1 
= [j?,., .f&,] diag 

or, equivalently, 

(43) 

Under consistent initialization of k,(w) and C\‘, ie. 

d’C%‘) _ d”(WW), k _ D ~ 
dts dt’ I I II i=l,....m 

Wl 
or, equivalently, 

cI”(O)=L;-‘IlJw)(O), I= I,.. .,r(, i= l,...,m 

, m. Subatituthg 

Pro@ of ?keorem 2 
Similarly to the proof of Theorem 1, the linear er~r 

feedback compensator defined 1 ‘--’ . .__I . 
the input/output dynamics desc 
output feedback compensator 

m 

- ,sl Bc, Wth, SYl, 9 BYA 
1 

is an input/output linearizing state feedback law, with the 
states reconstructed through the reduced-order obnxver. 
Under consistent initialization of n in eq. (45) and <(oJ in the 
process normal form of eq. (6h i.e. r;;“‘(o) = #fj(O), 
I-f,... , (n - z,r,) it easily follows that Cpt = vi. 
I= I... . , (a -CirtJ, Then, given that r:” = dL-‘yJdt’-‘, 
k=l,..., r,.i=l,... ,m,eq.(45)indu~~eexacflyIhedy- 
namics of eq. (34); combining eq. (31) with aq. (34) through 
a similar proccdnre as in the proof of Theorem 1 results in 
the desired closed-loop inputloutput behavior. 


