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Abatraet—This paper concerns the synthesis of dynamic output feedback controllers for minimem-phase
multivariable nonlinear processes with a nonsingular characteristic matrix. State-space controller realiza-
tions are derived that induce a tinear input/output behavior of general form in the closed-loop system.
A combination of inpat/output lingarizing state feedback laws and state cbservers is employed for the
derivation of the controllers. For open-loop stable processes, the process model is nsed as an open-loop
state observer. In the more generzl case of possible open-loop instability, a reduced-order observer iz used
based on the forced zero dynamics of the process model. The performance and robusiness characteristics of
the proposed control methodology are illustrated through simulations in a chemical reactor example.

INTRODUCTTON

One of the most basic problems in process control is
the one of specifying a controller that makes use of
measurements of process output variables in order 1o
influence the dynatnic behavior of the process in a de-
sirable way. This problem is well-understood and
studied within a linear control framework, where both
a state-space approach and an input/output approach
have led to identical sotutions [see e.g. the classical
books by Chen (1984), Kailath (1980) and Astrom and
Wittenmark (1984)]. In a state-space approach the
synthesis of the contrellers is based on a combination
of state feedback and state observers, while in an
inputfoutput approach the controller transfer func-
tions are derived directly. .

An obvious limitation of the theory developed in
the above framework arises from the fact that physical
and chemical phenomena are inherently nonlinear. As
a result, real processes can exhibit distinctly peculiar
dynamic behavior, which cannot be properly cap-
tured and accounted for in a linear control frame-
work. Motivated by such considerations, the control
community has lately witnessed an expanding re-
search activity towards the development of nonlinear
control methods. Differential geometry has provided
powerful mathematical and conceptual tools in this
direction, allowing fundamental aspects of nonlinear
dynamics to be understood and typical theoretical
control problems to be successiully addressed [see e
the books by Tsidori (1989} and Nijmeijer and van der
Schaft (1990}]. The early results in this arca have
shown that the natural frame for nonlinear control
hes within the state-space approach, which allows
typical results of linear control theory to be naturaily
generalized in a nonlinear setting. This is in contrast
with the absiract input/output approach for nonlinear
systems, which does not have the power and explicit-
ness that transfer functions have in lnear systems,
although it provides philosophical guidelines and
MAacroscopic perspective.

In a nonlinear state-space approach, the problem of
synthesis of dynamic output feedback controllers be-
comes the problem of deriving state-space realizations
of the controllers, viewed as nonlinear dynamic sys-
tems. In analogy with the linear case, the most logical
and intuitively appealing approach to this problem is
the combination of nonlinear state feedback laws and
nonlinear state observers. The major difficulties to
this end are assoctated with the observer design prob-
lem. Very few results are available on the existence
and construction of observers for general nonlinear
systems [e.g. Tsinias (1989, 1990) and Grizzle and
Moraal {1990)], and moreover there is no general
separation principle for nonlinear systems, to guaran-
tee a well-behaved observer—controller combination.
One way 10 cope with this problem is to utilize the
natural modes of the process {i.e. the whole process
dynamics orf the process zero dynamics) for the state
observation (Daoutidis and Kravaris, 1992a). In this
direction, Daoutidis and Kravaris (1992a) developed
a general solution of the dynamic output feedback
preblem for single-input single-output (8ISO) min-
imum-phase nonlinear processes. In the present work,
a general dynamic output feedback control problem is
addressed and solved for a large class of multiple-
input multiple-output {MIM O} minimum-phase non-
linear processes, In analogy with the SISO treatment,
the key features of the approach are:

(1) The globally linearizing control (GLC) meth-
odology (Kravaris and Chung, 1987; Kravaris
and Soroush, 1990) provides the conceptual
framework for the derivation of the controllers,
which is based on the combination of in-
put/output linearizing control laws and open-
loop or reduced-order state observers.

{2} The combinatton of the controller and the ob-
server is treated ays a dynamic system itself for
analysis and design purposes; thus, the problem
of state reconstruction is not studied inde-
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peadently, but s incorporated in the controller
synthesis.

In addition to the above Reatures, the propossd
methodology accounts naturally for the multivariabie
nature of the control problem, allowing for any desir-
able degree of coupling to be achieved in the
closed-loop system, by an appropriate choice of some
adjustable parameters. It provides general and ex-
plicit output feedback controller realizations which
are directly applicable to a large class of nonlinear
multivariable processes of interest.

More specifically, in what follows, we will start with
a brief discussion on key differential geometric con-
cepts and alternative state-space realizations of non-
lincar multivariable processes. Then, a general cutput
feedback synthesis problem will be formulated for the
class of multivariable minimum-phase processes un-
der consideration. Im the subsequent sections, the
basic results of the paper will be developed: state-
space realizations of dynamic outpnt feedback con-
trollers that solve the posed synthesis problem will be
derived, and the closed-loop dynamics will be ana-
lyzed in terms of the induced input/output behavior
and the asymptotic stability characteristics. Finally,
the performance and robustness characteristics of the
proposed control methodology will be illustrated
through simulations in a chemical reactor example.

PRELIMINARIES

We consider MIMO nonlinear processes, with an
equal number of inputs and outputs, and a state-space
representation of the general form

X=fa+ 3 g(x)u;
= )

wi=hix) i=1....,m

where x denotes the vector of state variables, u; de-
notes a manipulated input, and y, denotes an output
(to be controlled). For the theoretical development,
and without loss of generality, it is assumed that all
variables represent deviations from nominal values,
and thus the origin is the equilibrinm point of interest.
It is also assumed that x ¢ X < R", where X is open
and connected, u=1[u;...u,] cR” and ¥
=[v¥; ... =17 € R™ Finally, f(x), g;,(x}, w.(x) are
used to denote analytic vector fields on X and h;(x) is
used to denote analytic scalar fields on X. In a more
compact vector notation, eq. (1) ¢an take the form

=7 +gxu

{2)
¥i = hyix),

i=1,...,m

where g(x) is an (n xm) matrix with columns the
vector fields g {x), . . . . guixk

Throughout the paper we will be using the stand-
ard Lie derivative notation, where L h;(x)
=37_, [éh(x}/8x,) f;(x) and fi(x) denotes the Ith
row element of f(x). One can define higher-order Lic
derivatives L%k, (x) = L L} ' hy(x) as well as mixed
Lie derivatives L”L'}_1 h:(x) in an obvious way.
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For the MIMO nonlinear process described by eq.
(1), let r; denote the relative order of the outpur v; with
respect to the manipulated input vector t, ie. the
smallest integer for which

LLF 7 hy(x) = [Lg, LY " hi(x) L, LY o)
o L LT ()1 # [0 0 - - 0], 3

If such an integer does not exist, we say that r, = co.
A graph-theoretic interpretation of the concept of
relative order, as well as its interpretation as
a measure of how “direct” the effect of the input vector
is on an output variable, can be found in Daoutidis
and Kravaris {1992b). It is assumed that a finite rel-
ative order r, exists for every i, since this is a necessary
condition for cutput controllability. Then, the matrii

Lo L7 hyix) Ly L " hy(x)
C{x) = : .

L L h(x)
@

is called the characteristic matrix of the system, It will
be assumed that the state-space X does not contain
any singular points, i.e. points for which det C{x) = 0.
As long as det C{0) # 0, one can always redefine X in
order to satisfy the above assumption.

in what follows, we selectively review some basic
results in alternative state-space realizations and the
noticn of minimum-phase behavior for the class of
processes under consideration. For the nonlinear pro-
cess described by eq. (1), with finite relative orders
v, i=1L1...,m and nonsingular characteristic
matrix Cix), one can always find scalar fields
#(x), . . - sty — ¥, (x) such that the scalar fields

B (X0 oo By (X Ry () Lphy(X) . L LT R (X)
o), Lphy (%), ..., L7V h(x)

are linearly independent (Isidori, 1989). Then the
mapping

Ly, L;'m -1 hm (JC)

f(x)

[ - E,r,(x:'

L3 k0 )

ueg
H
H

T(x) =

Ao
Ly (%)

L )
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is invertible and qualifies as a curvilinear coordinate
transformation. Assuming also that the vector fields
gi(x), . . ., gu(x) are involutive (a condition which is
usually satisfied in MIMO systems of practical inter-
est, and is trivially satisfied for SISO systems), one can
always choose the scalar fields r(x) such that
L,,ty(x) = Ofor all i, j. Then, the original system under
the coordinate transformation of eq. (5) takes the
following normal form (Isidori, 1989)%

= Fa (0 )

C‘Lﬂlzlr, =F,_ E,ri(cm); C“]; +

™)
=y
Bha=ap
= W (L9 L0, L gy
+ CEOLD, L™ (©
o pm
=
L = Wl 0, 0™
+ Gl (™, L ™
ya={¥
Vm = C‘EIM}
where
FU 00, ) = (Lt () e -2 a0

=1 (n-30)

CALO L0, rm™y — [ 1S h() ot )
i=1....m (7
caa i)y = [L} h(x))e-7 11
i=1,....,m.

W[(C{D,s C{”’ -

Referring to the above normal form, let
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Then, according to Daoutidis and X ravarts (1991), the
dynamic system

N =F (£ 2y, ... DY)
: (%)

Glpn=Fo g (. By, ... 2ya)
represents a reduced-order reafization of the inverse
system (or, equivalently, the forced zero dynamics) of
2q. (1)

Furthermore, the unforced reduced-order inverse,
i.e. the dynamic system

£ = F,(¢™,0,...,0)
: (10)
(0 5= Fy_ x5, (09,0,...,0)

represents the (unforced) zero dynamics of the process
described by eq. {1), i.e. the nonlinear analogue of the
concept of transmission zeros in MIMO linear sys-
tems (Daocutidis and Kravaris, 1991).

In analogy with the linear case, the nonlinear pro-
cess in the form of eq. (6) is said to be minimum-phase if
its (unforced) zero dynamics [eq. (10)] is asymp-
totically stable, while it is said to be nonminimum-
phase if its (unforced) zero dynamics is unstable.

FORMULATION OF THE OUTPUT FEEDBACK SYNTHESIS
PROBLFM FOR MINTIMUM-PHASE PROCESSES

In this section, we will formulate the output feed-
back conirol problem for MIMO minimum-phase
nonlinear processes as an explicit synthesis problem,
The ebjective is to calculate state-space realizations of
nonlinear controllers which will be using measure-
ments of the output variables and the output set-
points in order to enforce certain properties in the
closed-loop system (see Fig. 1). The desirable closed-
loop properties will, as usual, include

® input/output stability

& tracking of the cutput set-points

# rejection of disturbances and modeling errors

e asymptotic stability of the unforced closed-loop
system (internal stability).

The assumption of minimum-phase behavior

¥1 Vm allows the formulation of a generic synthesis problem
Py, = : P - along the above lines. In particular, the assumption of
Y= an 24 R d""‘v 1 - 8 stable zero dynamics allows requesting 2 closed-loop
——'—_-)% _)i response with no zeros, resulting by essentially cancel-
de” dr™ ing the zero dynamics of the process. Furthermore,
Yo o] ppimiack LY _e NONLINEAR » OUTPUT Yy
CONTRLLER PROCESS

Fig. L. Generi¢ ouiput feedback control structure.



436

properness considerations dictate that the relative or-
ders r; are “preserved” in the closed-loop system,
which allows requesting a closed-loop response of
order (r; + - - - + r,}. For convenience, a linear in-
put/output behavior will also be requested, allowing
for input/output stability and performance character-
istics to be transparently incorporated in the design
procedure. Taking into account the above considera-
tions, as well as the requirement of a closed-loop static
gain matrix egual to the identity matrix, the following
synthesis problem is posed:

Ghiven a state-space realization of a MIMQ nonlinear
process, calenlate a state-space realization of a non-
linear controller which induces an inputjoutput be-
havior of the form

¥+ Z Z l'l'k d.t" "-,}’.epi

=l k=1
y: + Z Z ')’lk dt"' = Vepz
i=1 k=1 . (n
m [ o] dk
Ymt+ Y }: Yk dt" = Yipm
i=1k=0

where v1, are adjustable constant parameters, with

i, Vi Y-
i, Vi P

det| Tt V2 e leo (2
T Pin Ve

(1+ Y0 vies®)

and Y. . - . . Yapm aFe the ottput set-points.

In a more compact vector form, eq. (11) takes the
form

i
¥+ Z Z Fixe o5 — Vap (13)
=1k=1

where vy = [v4- - -9%]7. The condition of eq. (12)
guarantees that the ¢losed-loop system will be nonsin-
gular and of order vy + - - - + r,. Furthermore, its
bounded-input bounded-output (BIBO)] stability
characteristics will depend on the roets of the charac-
teristic polynomial:

(3 5™
(1 + 3L, v%sY)

(1437, 715%)
det (-1 ries™)

[Z:l_- L 7Tk s*) (Z;;x 7% s%)
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Note that the inputfoutput behavior of eq. {11) is
a fulty coupled one, capturing the most general form
of a linear input/output behavior. However, the role
of the adjustable parameters 7% is transparent: they
determine the input/output stability and performance
characteristics as well as the Ievel of imputi/output
coupling in the closed-loop system. A common design
objective in practical applications {with the exception
of some ill-conditioned processes like high-purity dis-
tillatfon columns) is the requirement of an input/out-
put decoupled closed-loop system. In this case, the
postulated inputfoutput behavier in the synthesis
problem takes the simplified form

ri dk,)’i
¥+ Z ?ik*—dt, = ¥sp1
k=1

ry dky
¥z + E }'Zk d z—’y.!pz
=1
(13)
Frey d"y
.'f’m"" Z ymk df‘ _'yspm
or in more compact notation
ri dky
¥+ Z }'.[k'a‘_,: = Vips (16)
k=1

fori =1, ..., m The BIBOQ stability characteristics of
the closed-loop system will then depend on the roots
of the characteristic equation:

0 L]

1 2 oowdes®) L. 0

( +Eg'=]l’2ks] ' =0, (17)
0 B T S LA L

Finally, one can further simplify the form of the
closed-loop input/output behavior by requesting a de-
coupled, critically damped response, in which case the
number of adjustable parameters reduces to w.

In what follows we will address the posed synthesis
problem in its most general form, initially for open-
loop stable processes and then for general processes
that may be open-loop unstable. In analogy with the
SISO treatment of the problem {(Daoutidis and
Kravans, 1992a), the GLC synthesis methodology
will be used in the derivation of the controller real-
izations. In_ particular, referring to the GLC structure

(Zy,—l'}’mks J
(Zp:{}'mks )

=0. (14)

(1 + 307, yms®)
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L o NONLINEAR OUTPUT
_p..(?_.. LINEAR | ¥l INEARIZING [T % " pRocRas o wap LA
*_d CONTROLLERE FEEDBACK
STATE
QOBSEREVER
Fig. 2. GLC structure.
of Fig. 2, the following steps will be followed: ED o ([¥aen = Frr ] ™ D
- : Mol }
- 'Syl'lthESlS of a state ljeedback law that induces an x I:( Vop— ¥}~ E z P & }:L R :l
input/output behavior of the form =1 k=1
= o dby W = f0w) + G0N {[Brr* B ICIW)} 71
Y Y Buga (18) 1
i=1 k=0 Mmoo r—
o« L gt
between y and o, where Sy = [Bh---SR]" are {E:l t;ﬂ Bl
vectors of adjustable parameters; . 4
» reconstruction of the process states through an Rl LTURRAY SR | B PR
appropriate state observer; mon—l @
= combination of the state feedback law (with the X| (Yen— ¥) — 1§1 kz-l Tl
states estimated through the observer) with a lin- -
ear error feedback compensator with integral -
action i.mp(?sed on the p—v dynamics', that indu- -3 i Bu L% h;(w)}
ces the desired input/output behavior between i=14=0
Yap and y.
k= {[ﬁln ot ﬁmM]C(W)}_l
OUTPUT FEEDBACK CONTROL OF OPEN-LOOP STABLE m o1 .
MINIMUM-PHASE PROCESSES x { S OY Balia
Under the assumption of open-loop stability of the =L k=0
process dynamics, the process state variables can be Sl V- TEPR R S | P T
reconstructed by simulating the process dynamics m -1
itself. The process model can be used as a (full-order) x I:(ysp -9 =3 ¥ yaéd 1:|
open-loop state observer for this purpose. Theorem =1 A1
1 provides a solution to the posed synthesis problem i .
for the class of nonlinear processes under considera- - El ,Eo BuLphi(w) ()

tion, using the above state observer. The proof can be
found in the appendix.

Theorem k: Consider the nonlinear process described
by eq. (1), with finite relative orders r; and det C(x) # 0
Jor x € X. Then, the dynamic system

(1 1
& =gy

F i1 1
651]—1 = ‘551]

S = (D10 Ve ] "

m o1
XI:()"sp_.V)_ IS mf&‘ll]

=1 k=1

a

Il
o,
“E

Y, =&

where Bn =[BL---BR]1" are vectors of adjustable
parameters with det[ f1., - - - Bawrw ] # O, and the sym-
bol ( ); denotes the ith row of a matrix, represents an
{n+r + - + 1,)th order state-space realization of
a dynamic output feedback controller that induces the
closed-loop inputfout put behavior:

Remark 1; Equation (19) represents a state-space
realization of a dynamic error-feedback controller.
The input to the controller is the error vector
(¥sp — ¥). its output is the manipulated input vector
for the process u, while it involves{(n +», + - -+ + r,)
state variables. The state variables denoted by & cor-
respond to the state variables of the Linsar error feed-
back compensator, while the n state variables denoted
by w correspond to the state variables of the full-order
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¥, NONLINEAR OUTPUT ¥
—l CONTROLLER _ " » >
+. "l PROCESS MAP
Yo ¥ {';;NEARB K v O LINEARIZING u
A STATE FEEDBACK
COMPENSATOR
E
OFEN LOCP
STATE ORSERVER

Fig. 3. Error leedback controller and conirol structure.

open-loop observer. The overall control structure as
well as the various components of the controller are
shown in Fig. 3.

In complete analogy with the results for SISO sys-
tems {Daoutidis and Kravaris, 1992a), appropriate
initialization of the states of the controller of eq. (19)
can lead to elimination of the states £, leading to
a reduced-order controller realization. This result is
summarized in Corollary 1, whose detailed proof can
be found in the appendix.

Corollary 1: Under the assumptions of Theorem 1, the
dynamic system

Ww=5W + g { {1 " P 1)} 1

] I:(yu —-¥y)~- ;): . ) mL}hu(W)]
= {[Pin" " Y] CW)} 1

x[(y,,—y)— >y m}h;(w)]

F=1 k=]

(20)

represents an (n)th order state-space realization of a dy-
namic output feedback comtroller that induces the
closed-laop inputfoutput behavior of eq. (13).

Remark 2. The controller realization of eq. (20) is
clearly the most convenient for practical implementa-
tion because of its reduced order. It is also interesting
to note that eq. (20) can be interpreted as a feedfor-
ward controller on the error vector (y,; — y) which
enforces the dynamics

m Fi dk
Yy ¥ ?uFJf = (¥pp— ¥)

fm] km]

This interpretation suggests an alternative way of
derivation of eq. (20), starting from the above post-
ulated dynamics, and using estimates of the output
derivatives obtained from the process model. A more
detailed development along the above lines is omitted
for reazons of brevity.

Remark 3: In order to obtain a decoupled closed-
loop input/output behavior of the form of eq. (16), one
simply sets y4 = 0 for i # j in the controller realiza-
tions of egs (19) and (20). By also sctting £} = O for
i+ jin eq. {(19), we essentially request input/output
decoupling in the v—y dynamics of eq. (18), in which
case the linear compensator used in the proof of
Theorem 1 reduces to 8 cascade of SISO linear com-
pensators. In this case, the resulting error feedback
controller assumes the following full-order real-
ization:

(1) 1)
&7 =¢%

o, =

1 ri—1
I:(y,,u = ﬂ»é{‘ll]
T 13

i1y __
fn) ]

=gy

Elm_ = gl

N 1 rm-—1
ei:’zy..—[(y,,..—y.)— ) w;éi‘i’l] (1)

B k=1
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W = f{w) + g{w) {diag [BL,1C(w)} "
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ri=1 \ ri
[ ploct + p (ﬁ:., ﬁ::‘ :t)fi”l ﬁ::‘ O = p) = 3 BhLih(9)
x :
Fop— L nr
mé™+ 3 (m— )&i"il +y""'"(ym Pm) — z B LY h(w)
k=1 mrm rm =
L .
v = {diag [}, 1C(w)} '
) it ﬁl.n 1 (1} ﬁlr. - 1 [ }
ﬁwfx + Z Bix — w JSir = (Y — Y1} — Zo.sle;’ll(W)
.'ln 1r km
e
i) ot ™ ::"m M (e} Bmm - m 3
BralT + kZ (ﬁm - )fnl +}_(y.7pm V) — Zoﬁml-fhm(w]
=1 M'm My
and the following reduced-order realization:
(¥ap1 — Y1) — Z ?hL}hl(W)
k=1
W =f(w) + g(w){diag [}, 1C(w}} ! r
Vrom — ¥m) = 2, ¥oeLibm(w)
k=1
(22

{yxpl - yl)
u = {diag [74,JCW} ! :
Ymd = Y voa Ll b

k=1

(¥spm —

Remark 4: In the case of a SIS0 nonlinear process,
ie. for m = 1, the controller realizations of egs {21)
and (22) reduce exactiy to the realizations derived in
Daocutidis and Kravaris {1992a), as expected.

OUTPUT FEEDBACK CONTROL OF MINIMUM-PHASE
’ PROCESSES

The error feedback controllers developed in the
previous section can be applied only to open-loop
stable minimum-phase processes. In the case of open-
loop instability, any error in the observer initializa-
tion would grow indefinitely, leading to obvious inter-
nal stability problems. However, the normal-form
representation of eq. {6) for minimum-phase nonlinear
processes suggests an alternative way of state recon-
struction, valid even in the presence of possible open-
Ioop instability. In particular, it is clear from eq. (6)
that (V= @yy. . ... " =Dy, ie.(ry + - +ra)
state variables are exactly the outputs and their deriv-
atives up to (r; — 1)th order, which are assumed to be
available. The remaining (n — ¥ ,r,) state variables
can be obtained by simulating the forced zero dy-
namics of eq. (9 under the assumption of minimum-
phase behavior. The foreed zero dynamics act, then, as
a reduced-order observer, forced by the putputs and
their dertvatives. Theorem 2 provides a solution to the
posed synthesis problem for general minimum-phase
nonlinear process¢s based on the above reduced-or-

ry
— 3 yhLihiiw)
k=1

w)

der observer, In particular, the observer is combined
with an input/output linearizing state feedback which
makes explicit use of the outputs and their derivatives,
while the overall controller is completed with a state-
space realization of a linear multivariable error leed-
back compensator with integral action.

Theorem 2: Cousider the nounlinear process described
by eq. {6). Then, the dynamic system

‘}:[U ‘;:(ll
fy - b
(1] = {[}'1:’1 '"J’wm]_ ! }1
m -1
xl:()’:p ¥)— z Z Hufku]
=1 k=1
g e
ey = o (23)
h}‘:‘ = ([}'11’1 v ”}'wm] _")m
m =1 B
[ on—n= £ 5 it |
I=1 k=]
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T =F (5 @y, .- s DY)

ﬁ"—z;"r =Fu—,’5_‘.n{m@}’1; s

» DBy,,)
u={lFu " B JCOLDBY1, -, DY)} "
{273 pactt,
+ LB B 1LV1r - Y] ™
x [(y,p -y - i)i ;;11 ya e ]
~5S mi
- El Bu Wiln. 2y, - - .E’By...)}

where fi = [Bk - BR]T are vectors of adjustable
parameters with det[8,,, - - - Bae 1 # 0, represents an
(n)th srder state-space realization of a dynamic output

ri—1
Blot + S (Bh

k=1 1ry ir:

" : e
%)
Phr P e

ﬁln - ﬂin
'J’ '}"u Skt 1.}1 + ?1_ {ywl

b4

e N
Bmo¢i +kg B

feedback controller that induces the closed-Ioop in-
putfoutput behavior:

+!=z ; .[l d!k = sp'

Remark §: The controller of Theorem 2, similarly to
the SISO case, is a nonlinear analogue of a two-
degree-of-freedom controller, ie. a mixed error and
output feedback controller, This is consistent with the
intuition from linear systems theory where a two-
degree-of-freedom controller is usually employed for
open-loop unstable systems, with the output feedback
having a stabilizing effect on the overall control ac-
tion. The overall control structure and the varicus
components of the controller are shown in Fig. 4,

Remark 6 The implementatton of the controller of
Theorem 2 in the case that r; > 3 for some { may
require filtering of the cutput signal or approximation
of the output derivatives in order to suppress noise
effects.

Remark 7: The controller of eq. (23) that induces
a decoupled closed-loop input/output behavior of the

EL 4+ wm(y:pm Ym) =
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form of eq. (16) takes the simplified form
fm ED
§'£}’—1 =&

. 1
- [(ys,.

iry

=L
—¥1)— E Titfililjl

k=1

:"") 6““)
&, =<:9"1
. Fue - 1
fs'.".?_ [(ywm ym)“‘ Z }‘m'ff'l]l]
Piem k=1
ﬂl = Fl("sgy‘l; L '9@}5“}
ﬁn—zir‘ = Fn—zlr‘(’f; L7 N & A | (24)
u = {diag [}, ]1C(n. 2y, - .., Pyw)} ™"
d‘}’l 1
yl)_ Z ﬁik d!h ﬂ.‘ln WL(*J;QJ";,----@}'-.)
rm—1 di
E ﬁmk d Wm{'fs@}'u---.@ym)

in the case that input/output decoupling in the »—y
dynamics is also requested.

Remark 8: In the case of a SISO nonlinear process,
ie. for m=1, the controller realization of eq. (24}
reduces exactly to the realization dertved in Daoutidis
and Kravaris (1992a), as expected,

Remark 9 The controller realizations derived in
Theorem | and 2 can find a transparent input/output
interpretation from an input/output operator per-
spective, 1 complete analogy with the SISO results
{(Daoutidis and Kravaris, 1992a). In particular, the
controller realizations ¢an be decomposed in real-
izations of the postulated operator between the error
and the output, and internally stable realizations of
the process inverse, illustrating thus the importance of
alternative realizations of the inverse for the control-
ler synthesis and implementation.

STABILITY CONSIDERATIONS IN THE CLOSED.LOOP
SYSTEM
Under the controllers of Theorems @ and 2, the
input/output charagteristics of the closed-loop system

™
-
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Fig. 4. Error and output feedback controfler and control structure.

clearly depend on the roots of the closed-loop charac-
teristic polynomial [eq. (14)]. The designer has the
flexibility to choose the adjustable parameters in or-
der 10 achieve a desirable speed of the response and
level of input/output coupling, as well as other closad-
loop design objectives, and such that they do not
violate the comstraints in the manipulated inputs. In
addition to input/output stability, the internal stabil-
ity of the closed-loop systerm must aiso be guaranteed,
i.e. the asymptotic stability of the states in the un-
forced closed-loop system, for perturbations in the
inittal conditions. To this end, assume that

{1) the process dymamics is locally exponentialty
stable,

{2) the zero dynamics of the process is locally expo-
nentially stable,

(3) the roots of eq. (14) He in the open left-half of the
complex plane, and

(4) The roots of the characteristic equation

(Zk—l] Hlks"l (2’2_ (Z;’lo
s uﬂusk) (i

Blis*)

ﬁ2 s%)
det u

(stu ?isk] (z;2=0 (E

lie in the open left-half of the complex plane.

gks*]

A stability analysis of the unforced closed-loop sys-
tem (Vo = O) based on Lyapunov’s first theorem can
then be wsed to show that the above conditions
guarantee the local internal stability of the closed-
loop system under the controiler of eq. (19). Under

Bris®)

(ZZ';.] Bas*

.gmis

conditions 2, 3 and 4 from above, a similar procedure
can be used to guarantee the local internal stability of
the closed-loop system under the controller of eq. (23).
The detailed proof: of the above results are omitted
for reasons of brevity.

ILLUSTRATIVE EXAMPLE

Consider the ideal continnous stirred tank reactor
{CSTR) shown in Fig. 5. A solution stréam at concen-
tration C,o and temperature T, enters the reactor,
where the following chemical reactions take place:

AsT,
A-U,
A-P
A-=U,
AU,

=0 (25

U,,U;, Uy, U, represent undesirable products,
while P represents a desirable one. The effluent stream
leaves the reactor at concentrations C,, Cy,, Cyr;.
Cu,s Cu,. Cp. and temperature T, The values of the
various process parameters are shown in Table 1.
Figure 6 provides a plot of the selectivity with respect
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to P, denoted by S,, as a function of C, a.nd T. 8pis
defined as
Tp

Sp ==
oy + fu, + 7y, +ry,

where
Fu, = kch — k-]CUi

Ty = kaC}
Fp= krcﬁ
ry, = kaCj

ru, = ko Cy

evaluated at steady-state, and &, = Z;exp{ — E;/RT).
As can be seen, there is a well-defined maximum
for the selectivity at Sp = 1.0, corresponding to
C,y=10kmolm * and T =400 K. Based on the
above, the control problem is formulated as the one of
operating the reactor at the above reactant concentra-
tion and temperature. Under standard assumptions,
the dynamic behavior of the process is then described
by the following material and energy balances:

dC 1
E{__(CAD - CA} - (?’u, + Firy +rp+ Pory, + "m)
dCy, 1

d: = - ;CLH + ry,

dT 1

Ty —(To T)"‘mQ (26)

1
+ ;;[( —AH)ry, + (— AHyjry,

+(— AHp)rp +{ - AHa)ry,
+(— AR )]

It is assumed that measurements of the controlled
outputs €, and T are available, while Cy, cannot be
measured. The inlet reactant concentration and the
heat input 1o the reactor are used as the two manip-
ulated input variables. Setting x;, = C,, x, = Cy,,
¥3=T, uy =Cup, 1 =0, ¥y, =C, and y, = T, the
dynamic model of the process can easily be put in the
form of eq. (1), with

PROLBEOMOS DAOUTIDIS and COSTAS KRAVARIS

1/z 0

gifx)=| 0 |, ga(x)=} O
0 1/¥Vpc

hi(x)=x;, ha(x) = xj.

A straightforward calculation of the relative orders
gives

r_l = 19
while the characteristic matrix of the above system is
found to be equat to

_| Lesu{x) O _[Fiv o
C(x}_l: 0 Lﬂ:hz(x)]_-[ 0 1,-*’Vpcj|

and is nonsingular in the entire state-space. Moxe-
over, the process model is already in normal form, and
for this reason the controller of Theorem 2 was em-
ployed in the stmulations. More specifically, for the
above process and for an input/output decoupled
closed-loop response of the form

?'2=1

dy,
¥+ P%lw‘—'hm

(27)
+ p2 d_“'.:_2=
. LFTanl 551 & Vap2
the controller takes the form
Z(1) 1
61 :Tfyspl—yl)
Y11
P =—2'(J—'.-pz — ya)
721
1
= -1 + ry, (M ¥1, ¥2)
4 i
tay =m[ﬂio¢:" :‘cym 1) (28)

- ﬁio}'l - ﬂ{lfl'[rh Jr'pyz):l

Vpe B31
tip = ﬂ%l [ﬁzof(” + ; (Vapz — y2)

= Bloya — B3 faln, y1, J’z):l-

EAE)
Jix) =\ f2(x)

_fs(x)

_ 1 _-

— ;xl — re >y, x2, X3) + T (305, X304 vp(00, X3) + Po, (X1, X3) + P (2, X307
1
- ;xz + ry,(xy, xz, %3)
= 1
{E[( — AH Yo, (xq. %2.%3) + ( — AHp Wy, (xy, X3} + ( — AHp)rp(x,. x3)
1
+(— AHS)"U;("U X3} +(— AH Yry, (%1, x3}Y] + ;(To - xs}}
B J
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F T,,%an

Fig. 5. A continuous stirred tank reactor (CSTR).
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The adjustable parameters were chosen as fio = 1,
B3o =1, By =7}1 =25 and B3, =y}, = 60, while
a sampling period of 2.5 s was used in the simulations.
The performance of the above ocutput feedback con-
troller was tested in terms of the tracking and regul-
atory characteristics of the closed-loop system, giving
excellent results. All the simulations were catrried out
vnder both '

{1) the assumption of a perfect model, and
(2) a 10% error in the reaction rates

in order to also test the robustness characteristics

%
%

4350

Temperatpre

Fig. 6. Three-dimensional plot of sensitivity vs reactant concentration and reactor temperature.
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of the controller. The first representative rum cor-
responds to the start-up of the reactor. Starting
from the initial conditions: C, =00kmolm *,
Cy, = 00kmolm ™3 and T'= 300 K, the control ob-
jective is to bring the reactor to the desired operating
conditions. Figures 7-10 illustrate the profiles for the
two controlled outputs and the two manipulated in-
puts. The output responses under the perfect model
clearly verify the theoretically predicted ones, while
under the modeling error the responses are also very
satisfactory. Figure 11 provides a comparison be-

PRODROMOS DACUTIDIS and COSTAS KRAVARIS

tween the actual process value and the observer es-
timate for Cp, in the case that the above modeling
error i8 assumed. As expected, there is a bias in the
estimate of Cy, due 1o the process—-maode) mismatch.
Naote, however, that although the state observer does
not perform perfectly, the controller compensates for
this, with the overall performance being excellent. In
the second representative run, the reactor is initially
operating at the nominal steady-state: C, = 1.0
krolm "3, Cy, = 3585 kmolm "3 and T=400K,
and at time ¢ = 100 s an increase of 20 K is imposed in

Table 1. Process parameters

=005
p=1x10%kgm?
F=1%10"?"m?
Z,=3906s5""
Z;=3906m" kmol *g!
Z,=999x 10" m® kmol %571
E; = 2x10*kJ kmol ™!
E; = 2% 10 k1 kmol ™!
Ey=1=10° kS kmol ™'
— A, = Ix 1P k) kmol !
— AHp = 6x 10* k] kmal !
—~ AH, = 2x10? kY kmol !
ny=1
Z

[P A ]

R =835kl kmol ! K?
c=42kKkg 'K !

Z_, =9%00s!
Zp=24993x 10°m* kmol~* 57!
Z4=9.99x 101051
E., = 6x10% kJ kmol~!
Ep=6x 10"k ko[~ *
E,=1x10°kT kmoj~*
— AH, = 2% 107 kJ kmol ™!
— AHy = 2x10° kJ kmal 1

LN
fip
fly

b
o
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Fig. 7. Reactant concentration profile during reactor start-
up.
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Fig 8. Reactar temperature profile during reactor start-up.
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Fig. 9. Inlet veactant concentration profile during reactor
start-up.
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Fig. 10. Heat input profile during reactor start-up.
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200
TVE {sec)
Fig. 11. Actual and estimated state variable under modeling
error.
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Fig. 12. Reactant concentration profile for disturbance re-
Jjection.
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Fig. 13. Reactor temperainre profile for disturbance rejec-
tion.

the iniet temperature T,. Figures 1215 illustrate the
profiles for the iwo controlled outputs and the two
manipulated inputs as the reactor returns safely to the
desired steady-state. A comparison between the actual
process value and the observer estimate for Cp, does
not show any difference in the case of the perfect
madel (Fig. 16), which is expected since the disturb-
ance does not appear in the reduced observer dy-
namics. In the case of modeling error, a constant
difference between the estimated and the actual value
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Fig. 15. Heat input profile for disturbance rejection.
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of Cp, can be seen in Fig, 17; despite this difference,
the overall control action is very satisfactory.

Acknowledgement—Financial support from the National
Science Foundation, Grant No. CTS-8912836, is gratefully
acknowledged.

NOTATION

< heat capacity of the reacting mixture,
klkg 1K™*

C characteristic matrix

C; melar concentration of species 4, kmolm ™*

Cuo inlet molar concentration of species A,
kmolm ™3

E, activation energy, k¥ kmol ~*

f vector field

a, vector field

k. scalar field

mo order of reaction

a heat input to the reactor, kIJs !

r relative order

R ideal gas constant, kI kmol ' K~!

5 the Laplace domain variabile

t time

T reactor temperature, K

Ta inlet temperature, K

u manipulated input
v auxiliary variable

V reactor volume, m?

w state vector of process model
x state vector of process

¥ process output
Yspi output set-point
Z, frequency factor

Greek letters

B adjustable parameters

T adjustable parameters

— AH; Theat of reaction, k] kmol ™!

[y state vector of process in normal-form co-
ordinates

centroller state variables

state vector of linear compensator
density of the reacting mixture, kgm™
reactor residence time, s

3

A D S

Math symbols

det determinant of a marrix

diag diagonal matrix

+*= not equivalently equal to

R* n-dimensional Euclidean space
T transpose
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APPENDIX

Proof af Theorem 1
Define the auxiliary vector variable

m orn—1

v=['—’1"‘1’m11'= E z ﬁ!iff!}l

=1 k=)

F A Bowu J Ve " " Yo 177 [(y,,. -5

- i h}il ruEhny ] (29}

F=1 k=1

Then, based on standard linear systems realization theory
[e.g. Chen (1984)], it can be verified that the dynamic system

& g

0, - o
ii,” = ([?lr,‘ n Tw,,.]_]h
m -1 )
xl:{}"sp—y)_ Z Z '}'lkéle:-l]
=1 k=1
: (30)
= Em
oy = o
[SLAE | CTEEIEE oy b W
o=l ;
x[(y,,—y)v Yy méi‘il]

i=1 k=1

and the output map defined by eq. (29 represent am ir-
reducible state-space realization of the linear input/output
dynamics between (y,, — ¥) and z, with the foliowing repres-
entation in differential operater form:

P(D)EY = 2(D)(yup — 3}

v=R(DKED + # (DWyy, — ¥) e
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where

) dan LI e | di
P(Dy= dlﬂg[d!,‘] + [¥ire " Ymrd [ ;, *Z }'nd‘,‘:l
2(D) =TIy, " }'...r..] -t

32)

m =1

(D) ~ [ 3 Z 3;&
Foem 71 l- i nzl }'"‘A:*—l

Li=l k=1
V{D) = [ﬂlrl " 'ﬁm..][?ln
and £9 = (£ - - £9"] Equation (31) can be interpreted as

2 linear compensator with integral action imposed on the
v—y dynamics. The other component of eq. (19) then becomes

W =Jw) + giw}{[F1., - B JCW)} 7!
- ¥ ¥ ﬂnL}hd(W):l

i=1 k=0

]_[ﬂirx”' ﬁmr..]

K[}'!r.' -

* Yo d

(33)

w={[B, ﬁ-..]C(W)}“[v—— x Z ﬂmfa;k;(‘v)]
I1=1 k=

which is an input/output linearizing state feedback law
(Kravaris and Soroush, 1990), with the states reconstructed
through an open-loop siate observer, the process model
itself. Under consistent initialization of w and x [ie.
w{0) = x(0)], it easily follows that w(r)= x(#} and eq. {33}
induces the dynamics

" e dk W
1§1 t=o Bu ar =7 G4
or, equivalently,
ra 2 m A1 dk
[y B ] dlag[ d: ] + E} .}_:D B.-.E’Q =y (35

Combining eq, (35} with the second equation from eq. (31),
we abiain the following equality:

m o1 kﬁlﬂ
E Z Blt +[ﬁ1n 'ﬁw..][?ln' * '}'mr..]‘l
i=1 k=
m r—1 d& L]
X[(}'.p—_v)— ¥ ?u%]
i=1 k=1

d o=l
= [Bir," " Buarwl dlag[ :|+ Z b ﬁs.t ,‘ {34)
(SLasp Ot
The first equation from eq. (31) also yields
A dnéiif) wm -1 dté(ll
Erin " P ] diag [F .‘-t; le Tag b = (Y —¥)-
(37
Eliminating ( y,, — ¥) from egs {36) and {37), we easily obtain
. d m 1 dkyt
CAss,- - 3nm]dlﬂs[ . ]+
' de ,Zl t_u Ak
dn‘:m ™ or—1 dlfﬂ)
= [Bir, " " Barm] dtag[ a + Y ¥ Bn—i- ar (38)
i=1 k=0
Under consistent initialization of £ and yy, ie.
dtEP)y  dty (0 .
“d;—s("z“;;—x“' k=0,....ri=1_....m {39

weobtain &Y = y,,i=1,...,m and eq. (37) takes the form

CES a%:4-B
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m o1

Ezh"d"‘

=1 =1

dy
Ly, - - - v...r_]dlag[ dt"] = (¥sp— ¥)

(40

which is equivalent to the desired closed-loop input/output
dynamics:

m r dk}'.l
+ &|
¥ El & Tagm = Ve
Proof of Coroliury 1
From eq. {33), it ¢asily [ollows that
[ 4 h (
T 5 g 0D S ) (1
=1 ka0 3
which, combined with eq. (31), yields
. . d™ (h; (w)) = "o, diUy(w))
[y, B-wm]dlag[ a ] + i;l ngo ﬂmT
. I'!E(n m ol dk (x‘)
=[Brei " " Burn] dlﬂsl: arm ] ¥ E ﬂm—— 42
£ =1 k=
or, equivalenily,
m oK dk(h (W)} " re dk Em
Y ¥ Bu—r—=13% Zﬁ"‘dk {43}
i=1i k=0 =1L k=
Under consistent initialization of 4;(w) and ¢, ie.
d* &) d*Rw)0)) ]
pr = art  k=0,...,r, i=1....m
{44y
or, equivalently,
ERO =LY "h(w)0), I=1,...,r, i=1...,m
it easity follows that &9 =h or, equivalently,
P = LTV, 1=1, sFy i=1,...,m. Substituting

the above relations mto cq {19), we easily obtain eq. (20).

Proof of Theorem 2

Similarly to the proof of Theorem 1, the linear error
feedback compensator defined by eqs (29) and (30) induces
the input/output dynarnics described by eq. (31}, while the
output feedback compensator

#; = Fl[n,gyl,, e oy DY)
in = Fr = Fa- 5 (0. 891, Bym) s)
w={[B1" B JCOL By1. . ., By}

m =1 d A
[u B }:‘ Z T de*
- Z Bu, Wiln, 2y,, . ... 95-'».)]
=1

1§ an input/output linearizing state feedback law, with the
states reconstructed through the reduced-order observer.
Under consistent initialization of y in eq. (45) and {'™ in the

process normal form of eq. (6} ie. {0} = (D),
t=1....tn =3 ,#) it easily follows that {|°' =g,
I=1,....(n —Y,r) Then, given that [{’ = d*~ 1 y,/de*~!
k=1,...,rm.i=1,....m, eq. {45) induces exactly thedy—

namics of eq. {34); combining eq. (31) with eq. {34) through
a similar procedunre as in the proof of Theorem 1 results in
the desired closed-loop input/ouatput behavior.



