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ABSTRACT

Generalized Langevin Theory is applied to the analysis of fluctuations
in simple fluids. Formulas for the current-current and density-density cor-
relation functions are developed. More importantly, they areAdeveloped for a
region of frequencies (w ~ 10*%sec™) and wave vectors (k ~ 10%m™') which are
explored in typical slow neutron scattering measurements. Where applicable,
comparisons are made with the results of the numerical calculations carried

out by Rahman, and good agreement is generally found.



1. INTRODUCTION

The calculation of correlation functions in classical simple fluids in
terms of microscopic quantities plays an important role in statistical mechan-
ics, both for the interpretation of scattering experiments and the evaluation
of the frequency and wavelength-dependent transport coefficients. Among these,
the density-density (or Van Hove) correlation function has received the most
attention because of its direct relation to the differential scattering cross-
sections. Other correlation functions, such as the transverse current-current
correlation functions which are not readily accessible in experiments, have
been subject to quantitative investigations only recently following the publi-

(1)

cation of Rahman's computer calculations in argon-like liquids. Computer

studies of correlations(g) using molecular dynamical calculations provide a
stringent test of the validity of the various classical theories introduced in
correlation analysis because they only assume a known model interparticle po-
tential, and involve no quantum effects.

The classical analysis of correlations is usually based on either a kinetic

or hydrodynamic description of fluids. The kinetic description developed ex-

(3)

tensively by Nelkin and his co-workers has been justified theoretically for

(4)

dilute gases, and used successfully to interpret Brillouin scattering from

(5,6) (7)

gases. It has also been extended to dense fluids

(2)

molecular dynamics calculations for liquid argon with poor gquantitative agree-

(8)

and applied to Rahman's

ment.
The hydrodynamic description of fluids has long been in use in the fluctua-

2



tion analysis in arbitrary continuous media as a phenomenological theory. In
this approach, the conventional hydrodynamic equations are used to describe the
linear response of the fluid, and the correlations functions are then related

to the linear response by means of the fluctuation-dissipation theorem.(3>

(10) (11)

Using the formulation described by Landau and Lifschitz, Rytov applied
the fluctuation-dissipation theorem to distributed parameter systems and cal-
culated, among others, density-density correlation functions in an arbitrary

continuous medium. This hydrodynamic approach has been used to interpret light

(13)

scattering from liquids successfully by Mountain. A systematic and general

hydrodynamic description of fluids for the calculation of correlations and

1
transport coefficients has been developed by Kadonoff and Martin.( 2) The

1
latter approach has been applied by Chung and Yip( 2 to Rahman's calculations

of current-current correlations.
The objective of this paper is to present a classical analysis of correla-

tions in simple fluids, based on the generalized Langevin equation developed

(15) (16,17)

by Zwanzig, and Mori and to interpret quantitatively the current-

(2)

current correlations computed by Rahman for liquid argon. This approach
has several appealing features. First by choosing the dynamical variable in

the description of the fluid as the microscopic phase density function one

(18)

obtains an exact kinetic equation for the correlation function I(v,v';x,x',t),
)

(19

which reduces by approximation to the kinetic equation derived by Zwanzig

(8)

and Nelkin. However, by making an alternative choice of the dynamical vari-
ables to be microscopic densities in configuration space (e.g., mass, current,

and energy densities) one arrives at an exact hydrodynamic description of cor-



relation functions in terms of frequency and wavelength-dependent transport
parameters. The choice of the appropriate set of dynamical variables is ar-
bitrary. For any choice of these variables one obtains exact expressions for
the correlation functions of the variables in the set. Different levels of
approximations can be obtained for a particular correlation function by adding
new variables to the set and using the same simplifying assumption (e.g. Markoff
assumption) in each case. The continued fraction expansion of correlation

(17)

functions by Mori, for example, can be obtained by using an orthogonal
extension of the:set starting from a given dynamical variable. The separation
of thermodynamic and transport parameters can be given a geometric interpreta-
tion in terms of projections of dynamical variables on appropriate orthogonal
axes, and the extension of their definitions to short wavelength where the
anisotropies become significant can be made in a systematic.way.

In this paper we will use the configuration space (hydrodynamic) descrip-
tion of fluids to investigate the current-current correlation functions, and
obtain approximate formulas for transverse and longitudinal current-current
correlations in the frequency and wavelength regions encountered in neutron
scattering using a ¥ iov assumption. The results will then be compared to

2)

Rahman's computer data( for liquid argon. We will also obtain the wave-

length and frequency dependence of shear and longitudinal viscosities explic-

itly and discuss the influence of thermal effects as a function of wavelength.

(L)

The objective of this paper is similar to that by Chung and Yip; however

their approach is based on the correlation function formalism developed by

(13)

Martin and Kadonoff, rather than on the projection operator formalism by

(15) (17)

Zwanzig and Mori.



2. THE GENERALIZED LANGEVIN EQUATION

Extending the projection operator technique first introduced by Zwanzigfl5)
Mori(l6) proves that the equation of motion of a set of dynamical variables,
aj(t), can be written in the form,

da(t) ) t
eyl ig-a(t) + 4) @(t-u)-a(u)du = f£(t) , t>0. (2.1)
The state vector a(t) is defined such that it has no invariant contribution,
e.g.,
a(t) = A(t) - <A(t)>, (2.2)

where <...> denotes the thermal average of the vector A(t). Equation (2.1) is
the generalized form the Langevin equation (10,20) in the stochastic theory of

Brownian motion. The random force vector f(t) is given formally by

et(l—P)i

P(t) = 1-pa , (2 = iLa) , (2.3)

where L is the classical Liouville operator and P is a projection operator de-

fined for any arbitrary phase function G(t) by

PG(t) = <G(t)aT>-<aaT>~l-a . (2.4)

T
Here, a denotes the row vector which is the hermitian conjugate of a. The
t- t
<aa > is the inverse of the square matrix [<aiaj>] which is the static corre-
lation matrix. It should be noted that the evolution of the force vector f(t)

t(1-P)iL

is determined by the special propagator e , Whereas the evolution of

the state vector a(t) is given by



(16)

It is shown by Mori that

_\_
<f(t)a >

1f
e
e
ot
V
O

(2.6)

The square matrices ¢(t) (damping function) and O (frequency matrix) are de-

fined by

o(t) = <f(t)f (o)><aa >t (2.7)
and
. F T_-1
10 = <aa >-<aa > . (2.8)

1

T .
Multiplying (2.1) by a -<aa >~ from the right, taking the thermal average of

the resulting equation and using (2.6) yields

aRr(t)
dt

- 10°R(t) + {f o(t-u)-R(u)du = 0, >0, (2.9)

where R(t), the normalized dynamic correlation matrix, is defined by

R(t) = <6L(t)r:LJr>~<aa.T>"l . (2.10)

The one-sided Fourier transform of R(t) is obtained from (2.8) as

R(iw) = [iw-i0+p(iw)]™t, (2.11)

where

e(t)dt . (2.12)

The projection technique enables one to find a closed set of linear equa-

tions for the correlation matrix R(t) when the state variables aj(t) are chosen



as fluctuations from thermal equilibrium. The theory, although formally exact,
serves only to transform the calculation from the direct computation of R(t) to
the computation of © and ¢(t). However, the frequency matrix Q is determined
from static correlations which are generally much easier to compute than the
time-dependent correlation functions, and we may use approximations to compute
the damping matrix ¢(t). In particular we will consider representations in

which we can make a Markov approximation on ¢(t), viz.,

o = lim ¢(iw) , (2.13)
wWw>0

to approximate the transform of the correlation matrix ﬁ(iw) by
R(iw) = [iw-iQ+w]™t . (2.14)

We shall follow this formal procedure to calculate the current-current correla-
tion function and its transform by choosing the components of the state vector

as the spatial Fourier transforms of the local densities of conserved variables.



5. TRANSVERSE CURRENT CORRELATIONS

We first calculate the cosine transform of the transverse current correla-
tion function as a simple application of the generalized Langevin equation, and
then compare it with Rahman's computations. For this purpose, we choose the

components of the state vector as

a1 21(5) (3.1a)

as 231(E) (3.1b)

where J(k) and II(k) are the mass current density and the stress tensor, respec-

tively. They are defined by

N
= o e
JJQE) - Q/Z']_ mvjexp(ll_(_ X ) s (3.2a)
aB_ o
N X.TX, .
— a _]_-_ 1 J .aB l.li.z(_
Hij(5> = a;l {%vivj+ 5 Bgi T;&EIE P (gﬂ e (3.2b)
(Bta) '=
where
P = P (3.2¢)
-ik.R
ap __av(R) 1l-e =2
P = R Tikw 0B (3.24)

In these definitions, 5@ and Xg denote the position and velocity of the ath
particle in the system, and the subscripts i and j refer to the Cartesian com-
ponents in a coordinate system in which k is parallel to the z-axis. With this

choice of variables the static correlation matrix is diagonal, viz.,



<ala§> 0
*
<aa > = [ ] (3.3)
>

*
0 <aoap

since the variables a; and as are respectively odd and even functions of the
*
particle velocities so that <asa;> = O. Furthermore, a direct evaluation of the

diagonal terms using (3.2) yields

S <ala§> = 0, (3.4)

*
'S <a232> = 044(1{)

(3.5)

[% + n2[d°R g(R) =%y (l-coskZ{}

X2 K2

where B =01/kBT)(kB= Boltzmann's constant), V is the volume of the system, and

po is the equilibrium density. Here Cu.(k) is one of the elastic moduli cal-
(21)

culated by Schofield. The frequency matrix O is calculated using (3.L4) and

(3.5), and noting a; = ika, as follows:

0 1
Q0 = k{; } : (3.6)
44(k)/po 0

Since (1-P)a; = ik(1-P)as = 0, the random force component f,(t) is identically

equal to zero and the damping matrix ¢ has only one non zero element,

0 0
o(t) =[: } . (3.7a)
0  @oo(t)

where

% t(1-P)iL .
Pon(t) = <(l-P)a:e( P)i (l-P)aé'><a2aZ>'l . (3.70)



The generalized Langevin equation for the set (a1(t),as(t)) becomes

dacliit - ikap(t) = 0 (5.8a)
dadét—) - ik €22 5, (6) + [0 guo(b-u)ag(u)an = £a(t) . (3.80)

e}

The transverse current correlation function is defined by

*
<a1(t)al>

Rl(k t> <aja;>

(3.9)

Its cosine transform El(k,w) is the transverse current power spectral density.
*
The latter can be obtained directly from (3.8) by multiplying it by ai, taking

*
the thermal averages, using <fs(t)a;> = 0, and
Ri(k,w) = Re[iw+(k%/p )n  (k,iw)]™" (3.10)

wnere , 1) may be 1dentlrle as a k- and w- epenaen snear VvV1scoslty ade-
here 1_(k, 1 be identified d w-dependent sh i ity d

fined by
. _ po <;2§hngal>
n(k,in) = — — (3.11a)
s ik .
<al(1w‘)al>
k
= 344( ) . (3.11p)
in+paa(k, iw)
Rahman(g) has computed R;(k,w) for various values k and w. We have been able

to obtain an exact expression for it in terms of the Laplace transform of the
damping function, viz., ®ss(k,iw). However, the evaluation of the latter using

(3.Tb) is as difficult as solving the Liouville equation, although perturbative

10



(18)

techniques such as expansions in density or interparticle potential may
be used in dilute systems. For sufficiently small frequencies, we can approxi-
mate (3.10) by replacing 622(k,iw) by its zero frequency limit 522(k,o). This
approximation corresponds to a Markov description of the fluid in terms of

a1(t) and as(t), in which the convolution integral in (3.8b) is replaced by

~

[ 0ea(t-w)az(n) = aa(t) [ au opa(u) - (5.123)

The frequency range in which the Markov assumption may be expected to be valid
can be estimated by considering the next term in the expansion of 5éz(k,iw) in

powers of (iw):

icp—adg((—ik:)i—w) (3.12b)

w << 522(k10)

iw=o0
It is clear that the Markov assumption ceases to be valid if 622(k,o), the
leading term in this expansion vanishes for some values of k. In such cases
it turns out to be more convenient to go to a more complete description of the

fluid by introducing new variables.

With these remarks, we obtain the following approximate form fortﬁl(k,w):

w, (k)kCaa(k)/0
Ry(k,w) = =) 5 (3.13)
2 2 k=C4a(k) 2
o w (k) +{ ——— - w
S P
o
where we have introduced
g (k) = lim gaa(k, i) . (3.14)
age

11



Calculation of wg(k) directly from (3.14) is still a formidable task in dense
fluids, although it is simpler than calculating 522(k,iw). Therefore, we choose
to try to guess its k-dependence by considering the asymptotic behavior of
Ri(k,w) in the large-k limit, and of ns(k, iw) in the small-k limit. First, it

is known that

lim ns(k,iw) = %fﬁé§% (3.15)
K, w0 s

is the conventional shear viscosity, ns. Hence, the small k limit of ws(k) is

given by

w (o) = Caslo) (3.16)

g

(22)).

(Note that Cuu(o) is G in Zwanzig's notation

The large-k behavior of Rj(k,w) may be predicted from the transverse cur-

rent spectrum of an ideal gas, viz.,

/2
Ry (k) = (E@E NELVES (3.17)

k2

This function has a single maximum at w = o for all k. On the other hand, (3.13)

attains its maximum for a fixed k at a frequency

2 2
Byl) = HCaalkl il (3.18)
o

for wi(k) < 2k2C44(k)/po, and at w = o otherwise. (The function wsm(k) is often

referred to as the "dispersion relation.")(g) The dispersion relation (3.18) is

expected to approach that of an ideal gas as k + « because for large-k the par-

12



ticles behave as free particles. (This is more apparent in the case of longitu-

dinal current correlation function because it is related directly to the neutron

scattering cross section, there the large values of k correspond to large momen-

tum transfer to the scattering medium.) Hence, we require wim(k) to approach

zero for large values of k, i.e.,

(3.19)

Thus, we obtain the asymptotic behavior of ws(k) for small and large k from
(3.16) and (3.19). The k-dependence of wg(k) for the intermediate values of k
can be obtained by interpolating it between the zero and large k limits by the

following formula:

(1)2(1{) - 2k2044(k> N I:(Di(0>-2k2(044(k)‘po/Bm)/pO]

S
Po [1+k%/K]

) (3.20)

where ko is an adjustable parameter whose choice will be discussed presently.
It is interesting to compare (3.13) using the above expression for ws(k)
to the ideal gas result in (3.17) for zero frequency and large k, because the
Markov approximation becomes exact at w = o. Noting that 044(k)/po ~ (1/pm)
(cf. Equation (3.5)) we obtain El(k,o) from (3.13) as (EBm)l/e/k whereas
(3.17) yields (Ham/2)l/2/k. The ratio is VLI/Il ~ 1.12. Thus (3.13) recaptures
the ideal gas result in the limit of small w and large k. It may be pointed
out here that (3.10) can be approximated for large frequencies by replacing

agg(k,iaﬁ by ¢o2(k,0)/iw (short-time expansion of ¢@os(k,t)). Since our inter-

13



est lies in the small frequency region we shall not dwell on this point further
even though ¢@ss(k,0) is calculable exactly.

With the aid of (3.20) we have been able to obtain an expression for the
transverse current power spectral density (3.13), which contains only one ad-
Jjustable parameter, ko. The value of ko determines the transition from the
small to large k limits. It is expected to be in the vicinity of the main peak

o

of the structure function S(k), which occurs at k = 2R

(2)

"1 in Rahman's computer

calculations for liquid argon. We have chosen ko = l.SA-l which yielded
the best fit to the computed curves although the value of ko is found to be not
too critical. The other constant in (3.20) is wﬁ(o) which is obtained from
(3.15) as mg(o) = .1 x 10%° gec™™, corresponding to a value for the shear vis-
cosity ng = 2.8 x 1072 poise at oy = 1.L07 g/cm® and T = 76°K for liquid argon.

The values of Cus(k) were computed according to Eq. (3.5) in which the inter-

particle potential is taken, following Rahman, as

o2 RS
V(R) = “8[(%?) - <§>]

with (8/kB) = 120°K (kB = Boltzmann constant) and ¢ = 3.9 &. The variation of
Casa(k) is plotted in Fig. 1.

Figures 2 and 3 show the variation of wq(k) and ns(k,o) = Caa(k)/w (k) with
k. We observe that the k-dependent shear viscosity decreases very rapidly by
a factor of 100 in the region of k from zero to 2 K-l, and approaches zero as
(1/k). This k-dependence of ns(k,o) appears to be crucial to the behavior of
Ri(k,w) for the k-values in 1-4 £71.

Figures 4 and 5 show comparison between the calculated curves and Rahman's

1L



(2)

data. It is noteworthy that the present model predicts well the cut-off
wavelength in the dispersion curve, i.e., wsm(k). Other features are self-ex-

planatory.

15



L. A GENERALIZED HYDRODYNAMIC DESCRIPTION

The previous application indicates that the correlation function asso-
ciated with a dynamical variable a;(t) (e.g., Ji(k,t)) can be obtained by solv-
ing the appropriate generalized Langevin equation. If only the autocorrela-
tion function is of interest, the one-component description of the system is
sufficient in principle. The correlation function in this case is obtained by

solving
Ry(t) + [ au ga(t-w)Ra(a) = © (4.1)

(Note that the frequency matrix is always zero in one-dimensional description.)
The damping function @;(t) involves f(t) = exp[t(1-P)iL](1-P)ai(o) where P pro-
jects a phase function onto a;(o). Although (4.1) is exact, the calculation of
@1(t) is as difficult as calculating <al(t)ai> directly. Crude approximations
for ¢;, such as the Markov assumption, afe generally not precise enough to in-
clude even the qualitative features of the correlation function, or the power
spectral density associated with it, for large values of w and k. By introduc-
ing instead, a multidimensional description of the system, one actually ex-
tracts a great deal of information about the collective motion of the system
through the frequency matrix even though one may still be interested only in
the autocorrelation function of a single variable. This information is con-
tained in @;(t) in one-dimensional description. A proper choice of the addi-
tional variables in a given system, can lead to a sufficiently precise expres-

sion for the correlation function in a wide range of w,k even with crude

16



approximations on the multidimensional damping function. The variables J;(k)
and Iz (k) introduced in Section 3 provide such a description for the trans-
verse-current correlations. The description of the longitudinal current cor-
relations requires a more detailed description of the fluid including thermal
and viscosity effects as will be demonstrated in this section. Moreover, a
multidimensional description also allows the computation of the various cross-
correlations between the variables in the set in terms of the same thermody-
namic and transport parameters.

The purpose of this section is then to present a- 14 -dimensional descrip-
tion of a simple liquid, and to compute specifically the transverse and lon-
gitudinal current correlations. This description includes thermal effects, and

sheds light on the anisotropies in the fluid for large k values.

For state wvariables, choose

a = COl[p’e’op’Ji’qj] ) (k.2a)

where J. and qj are vectors with three components (i,j = 1,2,%) and o is a 6-

component vector with u =1,...6, viz.,

Ou = col[o011,022,0335 0130235 013] - (k.2b)

The variables ©, ¢ and qj are defined by
v

N ik-xa
o) = m & XX (4.3)
=1
o(k) = %o&) i @(—)p*(5)> p@ﬂ (h.b)
<p(k)p (k)>

17



<, (K)e (x)> <, (k)8 (x)>
o, (k) = @I (k) - —— o(k) - —=— (k) (4.5)
<p(k)o (k)> <e(k)e (k)>

0
P
N~—
Il

a,(x) - <ng*<5>>-<g<k)J*<k>>‘l-J(k) (4.6)

J'_ — — — —

The definitions of J(k) and Hij(E) have already been given in (3.2a) and (3.2b)
respectively. The quantities E(k) and Qj(g) are the energy density, and:the

energy current density respectively. They are defined as

N N . (07
Yov(] kP X (L.7)
=1 g=1

(Btar)

=
=
1
gl
n |+
B
I<
+
N |+

O
&
I
™
<
Q
i
Q
Q
™~

+
[
™
'_.
<
+Q
<
>
5
Q
jo))
}Jx
v
HJ
Q
@
i~
[0)
}_J
-
ES
=
fos}

(§aB and PaB(E) were defined previously in (%.2c) and (3.2d)).

The following usual conservation laws prevail among the variables p, Jj’

E :
Hij’ , and Qj

% - ik-J , (L.9a)
%% = ik-I, (L.9p)
g% = ik-Q . (lL 90)

18



The tensors Hij and Oij are symmetric and have only six independent components
as implied in (4.2b). The variables Oij and qj denote the viscous stress tensor

and the heat flux vector. The 6(t), defined by (4.L4), will be replaced later

by

o(k)

T(k) = E;E;TET (4.10)

whose average with respect to a perturbed distribution function yields the tem-
o : : : : . . (16)
perature in the conventional linearized hydrodynamic description of a fluid.
Such an identification, however, is not needed for the present. The quantity

Cv(k) will be defined later (it will be identified as the specific heat at con-

stant volume).

The average values of p(k), E(k), and Hij(k) are zero for k ¥ 0. When

(21)

k = 0, we have

.\]_} <p(O)> = po (u.lla)
o 2
§mO)> = 22 %—;— [ a%R)(V(R) }(g(R)) (k.110)
L g (0)> = &, P = 8 39 Egi [ a®°R R av(R) (R) (k.1lc)
v i T %5 %0 T Ciglmp T 6 R © ©oAeRse

Here, PO is the equilibrium pressure. We shall always assume that these aver-

ages are subtracted from p, E, and Hi' whenever they are not zero, so that the
J

state vector a will denote the fluctuations.

Eight of the 1k components of the state vector a are even, and the remain-

19



ing six are odd functions of particle velocities. Hence a can be decomposed

into even and odd parts as
e o
a = colla ,0] + col[0,a ] .

*
Consequently, the static correlation matrix $ = <aa > splits into two dis-

Joint submatrices as

¢ 0
¢ = o (L.12)
o ¢
where
<o > 0 0
e _ e e¥* e *
¢ = <aa > = 0 <06 > < | > (4.13a)
0 0 <gg >
and
*
(o] o O¥% g > 0
¢° = <aa > = « (4.13Db)
0 <qg >

e o
The block-diagonality of 2 and g is a consequence of the choice of the state
variables as in (L.4), (4.5), and (L4.6), which imply the following orthogonality

relations:

9 - > - 9 - J = O ( l )
<F) > <O e} <o > <(] > . LI-. )-L
- o s LY

The static correlation functions appearing in (4.13a) and (L4.13b) will be dis-
cussed later.

. x -
The frequency matrix Q = <aa >¢ 1 can be written as

20



. * -l
0 <é?20 >.90
i = (4.15)
.0 _e* -t
<go_a_e >.0° 0

As a consequence of the conservation relations (4.9), f£(o) = (1-P)a has only

nine nongzero components:
g a
f(o) = coll:0,0,fﬁ,0,0,0,fgj. (L.16)

Therefore, the damping matrix g(t) is of the following form:

—

[0 0 0 0

o(t) = , (4.17)
0 0 0 0

f19= are 6 x 6 and 3 x 3 square matrices. The off-diagonal ma-

where ggg and
trices gﬁ“g(t) and g99= are 3 x 6 and 6 x 3.
Substituting (4.15) and (L4.17) into the generalized Langevin equation dis-

cussed in Section 2, we obtain the following set of equations:

b(t) = ik-d(t) (1.18)
_ <_'qp*>~ <'ge*>
J(t) - —5 o(t) - o(t) = ik-g(t) (4.19)
<pp > <6 >
o(t) + <6F >.<g I > 1.g(t) = ik-g(t) (1.20)

21



o(t) - <og ><qg > teq(t) + [ e==(t-u)-q(u)au

- 5T >e<IT ST 3(8) + [ @ (tmu) o(wan = £2() (h.21)

<§e*> .
Q) - = e(t) + [ 9¥¥(t-u)-q(u)
<00 >
- <G ><oo > ho(t) + [ 02(t-u)-o(wan = (%) (4.22)

- e}

n writing (L4.20) and (L4.22) we have used the orthogonality properties of the

variables, and the identity:
.ox
<gp > = 0 (4.23)

. ¥ L ¥

These follow from the sum rule <AB > = -<AB > where A and B are two arbitrary
: . (21) . : ,
dynamical variables. Notice that we recover the conservation laws (L4.9)
in Egs. (4.18), (4.19), and (4.20). Eguations (4.18) through (L4.22) describe
the time evolution of the state vector a = col[p,e,oH,Ji,qj] exactly. We shall
approximate them by neglecting the coupling between the viscous stress tensor
and heat flux vector and introducing the Markov assumption in (L4.21) and (L4.22).
. ¥

The first approximation is equivalent to setting <ogq > = O and ggg(t) = 0 in

(4.21) and (4.22), and the second to

(o2 (tu)- o(w)an = W) o(t) (k.2ka)
4fg%?(t_u).g(u)du = 1wt (x)-q(t) (4.2kb)
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where

=
—
o
N—
Il
—
jon)
+
S
1
1
—~
&+
~—
-

W) = [ at g23e)

(4.25a)

(4.25p)

Furthermore, the following definitions and equalities will be introduced:

. ¥
<Jp >
< _ ayns
— = cL(k)lg
<pp >
. ¥
<JT >
< _ s _
= C2(k)pp (K)ik
<IT >
o]
*
Lo = 25
Vo oij B ij

Then, we obtain the following approximate description:

o(t = ik J . (%
(t) Jd J )
m gm

J

23

5, (6) - cT(k)ik [p(t)+p (K)o T(t)] = ik o, (%)

(4.26a)

(4.26b)

(L.26¢)

(L.264)

(L.26e)

(L4.261)

(Lk.27a)

(4.27b)



5(t) - p (R)CT(R)T p(t) = ik (t) (h.27c)

au(t) - Zhv(k)sv(t) + wEv(k)oV(t) = fE(t) (4.274)

G,(8) - K (0)iko(t) +Wsaq (b) = £3(t) (4.27e)

where amn is the rate of strain tensor, i.e.,

R
Smn(k) = 20, [kan+knJm] (4.28)

We shall discuss the physical implications of the various quantities ap-
pearing in this set.

The Ci(k), introduced in (4.26a) can be defined also by

*
>
cE(k) - e (4.292)
<pp >
1
= —— 4.29p
B () (-290)
where S(k) is the structure factor defined by
° . s ikeR._., . .
S(k) = 1+ —[da%e - -/[gR)-1],, (4.29¢)

g(R) being the static pair correlation function. We will refer to CL(k) as
the longitudinal isothermal speed of sound. Its relation to the conventional

isothermal speed Co(k) can be established by considering the definition of the

latter:(l6)(21)

*

<(Tr I, )p >
4 = a_;) = C3(k) (4,294)
9] T o

*
<pp >

1
3

2L



16,21
where P is the thermodynamic part of pressure( ,21)

p = (l/B)TrHij (the non-
thermodynamic part, by definition, has no projection on p and T). If we define

a transverse isothermal speed as

* *
> <I > 1
a2 o Sab2 o 2 ey (4.30)
* * 2 L
<pp > <pp >

then, ci = (1/5)(ci+c§). In the isotropic limit where k+a << 1, a being the
mean linear force range, then Ci = Ci = (1/2)05, and the distinction between
longitudinal and transverse isothermal speeds becomes irrelevant. It is im-
portant to note that only longitudinal isothermal speed is related to the
structure function S(k) as in (L.29b).

The quantity BL(k) in (4.26b), which we refer to as the longitudinal

thermal expansion coefficient, may be equivalently defined by

*
JgaT > _ 2
TR = cRlegp (i) (431)

We may also define a transverse expansion coefficient BT(k), similar to (4.30),

* * * *
as (pOBTC;/E) = <l[1;T >/<TT > = <l[poT >/<IT >. The conventional definition of
(k) as a derivative of the thermodynamic part of pressure is
*
<TrIl..T >
i

2 .1 i3~ _ op
Co(k)poBO(k) =3 Py = a£>p . (h.32)

i lated t
Then, Bo is related to BL and BT by

p_CZ+p CZ2

L°L PTT
Be = T o - (4.33)
€L
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In the isotropic limit, Bo = BL = ﬁT.
Equation (4.26d) defines the specific heat at constant volume. This de-
s e . . (21)
finition is identical to that by Schofield.

The quantity Kj introduced in (5.26e) can be equivalently defined by

*
> 1 * *
k() = ez o L [<Q3Qa>-—% I<EH33>I%] : (4.34)
<06 > <00 > o

It will be related later to the components of the thermal diffusivity tensor

(cf. L.b2).
The symmetric tensor Zﬁ (k) defined by (4.26f) is related to the elastic
%
moduli tensor C by
Y
* * * *']
<P ><pll > <IL T I >|

L o= C - % " + —— I (k.35a)
<pp > <IT > J

where

=§
c v <

» > (L.35p)

i

We have already encountered some elements of Cuv° In (3.5) we have used
* . * * * *
Caqa = (B/V)<IU31llz1>. Since <Mgj0 > = 853<Nlzgp > and <nsz > = 833<H33T > the

terms in parenthesis are zero. We then obtain

L4a = Cay = Csg = X5 (k.36)

. *x
we shall also need Zas and Lap, in terms of Cgs = B/V <lgllag> and Capn = B/V

*
<Tallzp>(clearly 2gs = Lg1, and Cap = Cz1). From (4.35a) we get

Yaz = Cas - 007(k)C§(k) (L.37a)
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where we have introduced

BE (k)07 (k)
-—TE;GZY——-TO . (4.370)

7(k) 1+

(a consistent notation would be yss. For simplicity we let Y = yas). The
quantity y(k) reduces to the conventional ratio y = (Cp/Cv) in the limit of
k -~ O (the product J;TCL(k) can be interpreted as the longitudinal adiabatic
speed of sound. However, such identifications for large values of k become
ambiguous, and in fact are not needed. The important point is that all the
elements of Zhv are expressible in terms of the integrals involving the two-
and three-particle static correlation function and interpartical potential.)

For 2as we find from (L.35a)

Yz = Cap - Doci(k)732 (k.38a)
where
< H22> <TH:2>
Y32 E + B . (4.38p)

<J1Jf> L <J1Jf>
We note that ygp is different from y in (L4.37b). They become identical in the
isotropic limit mentioned above.

It is known that in a crystal with cubical symmetry, the elastic moduli

tensor has only three independent components as discussed by Kittel:(QB)

rbll Ciz Cis ]
Cis C11 Caio 0
o _ %12 Cip Cya (4.39)
uv Caa 0
Caa
0 0 Caa
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As an approximation we shall assume that both Zﬁv and Cuv have this form. The
numerical values of Cii1, Cio and Cuy are plotted in Fig. 1. The values of Ci(k)
are determined from the knowledge of S(k) (cf. 4.29b). Therefore, if we approxi-
mate y and ygo by their limit for small k, we can compute the elements 212, 211
and 244.

We now focus our attention upon (L.27d) and (L.27e) which are generaliza-
tions of Maxwell's model for relaxation of the viscous stress tensor and

. . o
Fourier's law. They both contain the relaxation frequency matrices Wﬁ and
\

w@ . Using the former and the relation o,, = 1n,.,6 € valid for small fre-
Jm iJ 1jim fm

quencies wave numbers, we may define a "viscosity" tensor 7 ¢ as
"

Y= w N
» n, Ve, (4. 40)

Tt is consistent with (L4.39) to assume the same symmetry for n ¢ as Zﬁv° Then,
V)

the viscosity tensor also contains only three independent elements my11, mMio and

Nase Since the inverse of a matrix of the form of (L.39) has also the same

)

tv

form we find that the frequency matrix W; posses only three independent fre-

quencies wi1, Wio and Wyg:

ﬂ11211+ﬂ12(211-2212)
. = .1
@11 (n11-m12)(ni1+2n12) ( 2)

lenll-zllﬂlz
= L. h1p
P12 (n11-n12)(n11+2n12) ( )

Wa4 = Z,'ﬁ B <)-|--)-|—lC)
N44

These frequencies as well as components of the viscosity tensor are functions
of k, which have to be determined from either (L.25a), or from the asymptotic
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behavior of the correlation functions as discussed below.

(k)

In the case of W%,, we define a thermal diffusivity DT
3 =

W3, . Kp(x) (L. l2a)

q

On the basis of symmetry arguments it is reasonable to assume that wij in

q a a
diagonal with elements ;1 = Wop and wag = Wg. Only &6 appears in the calcula-

tion of the longitudinal current correlations. The corresponding component of
D i
Dy 1is

b (k) = XLk (4.42b)

= ” s
T o (k)
which reduces to the conventional thermal diffusivity in the limit of k - O.

TRANSVERSE EQUATIONS

The projection of J on a fixed axis perpendicular to k satisfies the fol-

lowing equations obtained from (4.19) and (L4.20)

Ji(t) = ikoga(t) , (L. k43a)
. ik o o
0a(t) - == Cgqada(t) +W- 0o (t) = f£-(t) . (k. L42p)
0 4V v u
o
The assumption of cubical symmetries removes the coupling between o,(t)
and other components of o (t), because it implies Wg =0 w . If we let
v 4y 4v 44
w1 = wg in (4.L43), they become identical to (3.8) in the Markov limit, which

was obtained by using a two-component description. Hence, we can use (3.1L)

to compute wgs(k). Using (3.11b) and (L.klc) we also find that

nas(k) = ng(k,0) (b bk)

29



which enables us to interpret nuu(k) as the k-dependent shear viscosity. It

is important to note that Eq. (3.8), corresponding to (L.L3) in the hydrodynamic
description, is .exact; whereas (L.43) are approximate. It therefore appears
that the damping term in (%.8b) automatically includes all the coupling effects
which are ignored in (4.43b). The definition of w,, obtained from (L.2%a) as

& component of the multidimensional damping matrix is not identical to (3.1L)

because they involve different projection operators.

LOGITUDINAL EQUATICNS

The compenent of J parallel to k satisfies the following set of equations:

p(t) = 1ikJg(t)

Ja(t) - ikCTlp(t)*g o T(t)] = ikos(t)

a(t) - F Taada(t) + eaalon(t)toa(6)]* mnaoa(t) = 2(t)
O H

G2(6) - 2 Diada(t) + wazoa(b) + wnioa(t) * wisos(t) = £2(8) > (k.4s)
O i

o2(t) - %§ Zapda(t) + ®1101(t) + ®yp00(t) + ®p05(t) = fg(t)
O

&(t) - g CTT b(t) = ikas(t)

Ga(t) = o [aa(t)-ikD0(t)] = £(t)

3 et

where we have already introduced the cubical symmetry. Multiplying these equa-

. * . . o * q *
tions by Jz(o), taking ensemble averages, using <fﬁ(t)J3(o)> = <f3(t)J3(o)> =0,
and Laplace transforming with respect to time, we obtain the following expression
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for the longitudinal current power spectral density

as

where

<Ta(t)Ta(0)>

00
Rii(k,w) = {)dtcosam =
<Jad 3>

k2c2 5
1
i<;— L>+E?'nL(k,iw)+C§k2(7-l)
o 1tk (k, 1w)

- *
_ Po <65(1w)ga>

Yl (k: i(JJ) _
k *
L <JTg(iw)Jz>

Lo
ngk,iw) +g‘n§k,u@

- *
o <1/3 Trci,(ia$J3>
(k,iw) = o - J - =
<Jg(iw)Jg>

I

2y 1+22
o = + 2 = =i =412
B W g ) M1 2710

: B
. = = 11 12
T] (k’lw> 2 i(l)+a)'
S

J

1

211-25
W' = By - @y = A=l
s Mii-Miz

- *
i
5(k,ia) = 459§§5—25&§1
1k<O(iw)Jz>

D (k)

1+i@D/bo)

21

(4. L6a)

(k. L46Db)

(4. 47a)

(4. L47p)

(4. L8a)

(L. 48D)

(4. L9a)
(k.L4op)

(4.50a)

(4.50p)



(2)

The variations of Rll(k,aﬁ with k and w has also been computed by Rahman
for an argon-like simple liquid. We shall interpret his data using an approxi-
mate form of (L.46). It is important to note that (L.46) is an exact result if
nL(k,iaﬂ and 8(k,iw) can be evaluated exactly using their definitions in (k.L7a)
and (L.50a) in terms of correlation function. The approximations which we have
introduced above (i.e., the neglect of the coupling between heat current and
viscous stress tensor, the Markov assumption, and the assumption of cubical
symmetry), were actually made to evaluate nL(k,iw) and &(k,iw) explicitly. We
shall discuss them in some detail. We observe in (k4.lL7a) that nL(k,iaﬁ is the
sum of two terms. The first term, nB(k,im) may be identified as a generaliza-
tion of the bulk viscosity as its definition in (L4.L48a) indicates. The expli-
cit form in (L4.L48) has been obtained from (L4.L45) considering Trcij = g1tootos.
The second term n;(k,iaﬁ defined by (4.49a) is not the k- and w-dependent shear
viscosity ns(k,iaﬂ (cf. 3.11) as one might have expected. For small k limit,
however, this is indeed the case. In the limit of k + O, the components of

21
the elastic moduli tensor satisfies( »23)

Ci1 - Cip = 2C44 - (k.51)

¥ao in this limit, we also have 211-212 = 2244 = 2C44. Furthermore,

Since vy

Ni1-T1o = 2TNag4 because 7 and 2. are assumed to have the same form. Then,
KV 12

(L.L9) yields Wy 1-Wyp = Wyy, i.e., the relaxation frequencies for the viscous

stress tensor are not independent. Substituting these in (L4.49) we obtain

n;(k,iw) > ns(k,iw) (isotropic limit) (L.52a)
and
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1 (610 + i) + (D (10 (k. 520)

If, as an additional approximation we assume ay; >> ays then, wy ~ w, =w
11

di’ and we have for all k

Caa (k)-p y (k)C] (k)

(k,idﬁ =~ 'iaﬁdi(k) (u°55)

,

Physically, this assumption is equivalent to ignoring the coupling between O3
and o1 and oo in (4.L45) (set ayo = 0). An other consequence of this approxima-
tion is that the transverse relaxation frequency Wy = Wy approaches ui for
small k because uyy > Wwii1-wo = wani. These observations have been verified
approximately using Rahman's computer results as will shortly be discussed.

As a result of the k® factor multiplying 8(k,iw) in (4.L46b), the thermal
effects become insignificant for large values of k (e.g., k > 1A71 for argon),

and Ri:(k,w) reduces to

k2C2 5 -1
Ri1(k, w) S Relifw - a)L>+ -};— nL(k,ia)) (L.5L)
(o]

We have used (L.54) and (L4.53) to interpret Rahman's data (we have set y(k) =~ 1
as a further numerical simplification) which may be called the isothermal ap-
proximation:
2 2 2
oy (K)k2[Cra(k)-p C2(k)]/0

Rii(k, @ = > . (4.55)
o7 (k) [w5-k2C7 (k) ]+ (0=-k%C11 (k) /p_)*

The only unknown in this expression is wL(k)n Its value for k -~ O was
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estimated using

C11(0)-p C3(0)
@ (o) = T (4.56)
nB+ g n

s
where nB and ng are the conventional bulk and shear viscosities, respectively.
We note that

lim Cy1(k) = K + % G (k.57)

k-0

where G was defined in Section 3, and K.Oo is the bulk modulus in Zwanzig's nota-
[o0]

(e2)

tion. The value of Cyi(o) was read from Fig. 1, and that of Ci(o) (the
ordinary isothermal speed of sound) was calculated from (4.29b) (Rahman has also
calculated S(k)).
To model the large k behavior of wL(k) we consider the ideal gas,
IG
of gm e-ﬁma?/Zkz

Rii(k,w) = pm —
k2 \ 2k2

) (4.58)

which has a maximum at (DIZH( k) =2k®/pm . Requiring that the frequency at which (4.55)
attains a maxinmmlforexfixed1<approack12k2/5m for large k, and using the same

interpolation formula as in (3.20) we obtain the following expression;forcgb(k):

af(k) =

W |0

k% (C11(k)-p C5(k)-p /Bm) /0,

8
| ) - SRS e,
[1+k2/k§]

where ai(o) is given by (L4.56). The variation of ai(k) is shown inFig. 2
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(ko =1.5 ATt as in the case of transverse correlations).

Tt is interesting to compare again Rij(k,w)/af from (L.13a) and R%%(k,uﬁ/a?
from (4.18) for k » w and @~ O, as in the case of transverse current power
spectral density. Using Ci(k) ~ (1/pm) and Cii(k) - (BQO/Bm) as k > o, we find
ﬁll(k,o)/a? -> (Sm)B/E'J§7Er/k3 and ﬁ%g(k,o)/uf > (5m)5/2'J575_/k3. Thus, the
approximate formula for ﬁll(k,uﬂ yields the ideal gas limit for small w and
large k within a factor~J§7ﬁ?Q¢O.98g

The curves in Figs. 7 and 8 are calculated using (L4.55) and (L.59). The
agreement between Rahman's computer results and the theoretical curves are re-
markably good.

The thermal effects dominate for small values of k such as those involved

in light scatteringa(l5) We then approximate (L4.L46b) as
-1
Ker(o) c2(0)x=(y-1)
Rii(k,w) = Re|if{w- + — n (o,0) + . (Lk.60)
L
iwtk DT(O)

which is the result corresponding to the conventional hydrodynamic description
with constant transport parameters. Since the variation of the thermal dif-
fusivity DT(k), thermal relaxation frequency and y(k) are not readily available,
we may use their limiting values as k >~ O in (L.L6b), and substitute nL(k,aﬁ

from (L.59) to find

. K502 (k)N 2 Caa(k)-p yC2(k)
Ri1(k,w) = Relilw - ——:;——- + S; HD+Ui(k
k=D (o
+ kZCi(k)(y-l) iw + l+@bﬁb (k.61)
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where wL(k) is to be taken from (4.59). All the functions of k appearing in
this expression are calculable in terms of S(k) (or g(R)) and interparticle

potential, and the constants 7, DT(O) nL(o,o) are experimentally available.

CONCLUSIONS

In this paper we have used the generalized Langevin equation to investigate
fluctuations in simple liquids in the frame-work of a generalized hydrodynamic
description. The various transport coefficients appearing in this description
have been defined in terms of time-correlations of the dynamical variables, and
computed numerically whenever possible for argon-like liquids. The results,
such as the variation of viscosities with wavelength, may be applicable to other
simple liquids. In view of the good quantitative agreement with Rahman's data
for all values of k and w encountered in neutron scattering, we may expect the
final expression (L4.61) to be applicable to the interpretation of coherent neu-
tron scattering as well as light scattering from dense fluids. (Figure 8 rep-
resents afS(k,w) = Ri1(k,w) as a function of k and w. No attempts have been
made to compare these to actual neutron scattering data because the discussion

»

of the contribution of incoherent scattering which is important in natural
(1k) . : : : :
argon is beyond the scope of this paper.) The formalism developed in this
paper enables one to calculate correlations between other pairs of hydrodynamic
* * *
variables, e.g., <E(t)E > and <Q(t)Q >, <Ji(t)J11>, etc. Computer results for
these correlation functions in conjunction with the analytical calculations

will shed light on the k- and w-dependence of the thermal parameters y(k),

wb(k) and DT(k) as we have demonstrated for the viscosities.
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FIGURE CAPTIONS

Variation of elastic moduli with wavelength.

The variation of the transverse and longitudinal relaxation fre-
quencies with wavelengths.

The variation of shear viscosity with wavelength.

The transverse current-current correlation, R;(k,w), vs. w for var-
ious k.

The maxima of a transverse current-current correlation function vs.
wave number, k. Solid line due to present theory and points repre-
sent Rahman's data.

The frequency at which the transverse current-current correlation
function is maximum.

The transverse current-current correlation at zero frequency.

The longitudinal current-current correlation function vs. w for var-
ious k. The points are from Rahman.

The maxima of the longitudinal current-current correlation function
vs. wave number, k. The points are from Rahman.

Frequency at which the longitudinal current-current correlation
function is maximum.

The scattering function, S(k,w), vs. w for various k.
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