The Relative Essentiality of the Antioxidative Function of Coenzyme Q—The Interactive Role of DT-Diaphorase

Robert E. Beyer*

Laboratory of Chemical Biology, Department of Biology, The University of Michigan, Ann Arbor, MI 48109–1048, U.S.A.

Abstract—This paper will address two aspects regarding the antioxidative role of coenzyme Q (CoQ): (1) Is the antioxidant function of CoQ primary or secondary (coincidental), i.e. was this molecule selected during evolution to function primarily as an essential functional component of the mitochondrial electron transfer chain and oxidative phosphorylation processes, is its antioxidative capability merely a coincidence of its hydroquinone structure, or was its synthetic enzyme sequence selected on the basis of the advantage to the evolving organism of both functions of CoQ? (2) What is the mechanism whereby the hydroquinone (antioxidant) form of CoQ (CoQH$_2$) is maintained in high proportion in the various and many membranes in which it resides, and in which an obvious electron transfer mechanism to reduce it is not present? The essentiality of the antioxidative role of CoQH$_2$ will be explored and compared to other primary and secondary antioxidants. Recent evidence implicating the two-electron quinone reductase, DT-diaphorase, in the maintenance of the reduced, antioxidant state of CoQ during the oxidative stress of exhaustive exercise will be presented, and a hypothesis concerning the evolutionary significance of DT-diaphorase will be offered.

Introduction

Evolving in the presence of oxygen must have presented a paradox to potentially aerobic organisms. On the one hand, oxygen was in abundant supply and chemically well suited to act as the terminal electron acceptor for the major energy transferring and conserving system, the mitochondrial electron transfer chain. In addition, the end product of these reactions, water, was not toxic and was easily excreted. On the other hand, molecular oxygen also had the capacity to accept an unpaired electron leading to the formation of damaging oxygen free radicals. In order to survive the evolutionary process of natural
selection and to establish themselves as species, it was necessary for aerobic organisms
to develop and select successful means of preventing the formation of free radicals
and/or mechanisms to convert them to nontoxic molecules (i.e. antioxidant defenses),
and to repair free radical damage to the various cellular constituents.

Discussion

We synthesize a number of enzymes such as superoxide dismutases, catalases and
peroxidases in order to convert oxidizing molecules, formed during metabolism, to
innocuous chemical species. In addition, we obtain via nutritional means a number
of antioxidants synthesized by other species for their own antioxidant protection, and
utilize them as essential antioxidant defence devices. Among the latter category are
vitamin E (α-tocopherol), β-carotene (a form of vitamin A) and vitamin C (ascorbic
acid). Although β-carotene and ascorbic acid have important functions in addition to
antioxidation, they, and especially vitamin E for which no other function is known
(Tappel, 1965; Maguire et al., 1989), may be assigned to the category of “Primary or
Essential Antioxidants”. A number of other compounds whose primary functions may
be unrelated to antioxidants but which, due to some aspect of their molecular structure
and reactivity relating to their oxidation–reduction potential or reducing capacity, are
able to perform as antioxidants, have been referred to as “Secondary or Incidental
Antioxidants” (Beyer, 1990, 1992). A number of such molecules are formed, either
as a result of anabolism or catabolism, whose primary functions, for which they were
selected during evolution, are not related to their secondary, or incidental, antioxidative
capacity. The extent and diversity of such secondary antioxidants in biological systems
may be appreciated by perusing Table 1 which contains a list of such compounds. It
should be acknowledged that many of the compounds listed in Table 1 have been shown
to have met the criteria regarding “How to characterize a biological antioxidant” offered

Table 1. A partial list of secondary or coincidental antioxidants functional in plant and animal
systems*

<table>
<thead>
<tr>
<th>N-Acetylcysteine</th>
<th>Dihydrolipoid acid</th>
<th>Lactoferrin</th>
<th>Proteolytic enzymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anserine</td>
<td>Diphenylamine</td>
<td>Lipoate</td>
<td>Protoporphyrin</td>
</tr>
<tr>
<td>Apomorphine</td>
<td>Ergothioneine</td>
<td>Melanins</td>
<td>Pyrroloquinolinequinones</td>
</tr>
<tr>
<td>Azelaic acid</td>
<td>Estrogens</td>
<td>Melatonin</td>
<td>Pyruvate</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>P-ethanolamine</td>
<td>Monoamines</td>
<td>Riboflavin</td>
</tr>
<tr>
<td>Biliverdin</td>
<td>Flavonoids</td>
<td>Neopterin</td>
<td>Spermine</td>
</tr>
<tr>
<td>Ca²⁺ channel blockers</td>
<td>Glycated proteins</td>
<td>Nitric oxide</td>
<td>Tannic acid</td>
</tr>
<tr>
<td>Caffeine</td>
<td>Hemocyanin</td>
<td>Orotic acid</td>
<td>Taurine</td>
</tr>
<tr>
<td>Carnitine</td>
<td>Hemoglobin</td>
<td>Ovotriol</td>
<td>Thioctic acid</td>
</tr>
<tr>
<td>Carnosine</td>
<td>Histidine</td>
<td>Phylic acid</td>
<td>Thioproline</td>
</tr>
<tr>
<td>Ceroloplasmin</td>
<td>Homocarnosine</td>
<td>Polyamines</td>
<td>Urate</td>
</tr>
<tr>
<td>Chlorophylls</td>
<td>Hylauronic acid</td>
<td>Procyanidins</td>
<td>Vanillin</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>Hypotaurine</td>
<td>Propiynicarnitine</td>
<td>Xanthophylls</td>
</tr>
</tbody>
</table>

*Due to space limitations, literature references to the table contents are not included. A
complete list of references may be requested from the author.
The question has been presented: “Why are secondary metabolites (natural products) biosynthesized? (Williams et al., 1989). Several possibilities exist: (1) temporary mutation, (2) evolution in progress, (3) waste or detoxification products, (4) functional metabolic role and (5) repellent or attractant role. CoQ, which has received attention as an antioxidant in recent years, would appear to fit into category 4 as it was discovered as an essential member of the mitochondrial electron transfer chain by Crane et al. (1957) and as a functional component of the oxidative phosphorylation mechanism by Peter Mitchell in 1975. The antioxidative capacity of CoQ was first reported by Lea and Kwietney (1962) and the superior antioxidant capacity of the hydroquinone form of CoQ, equivalent to that of vitamin E, was reported in 1966 by Mellors and Tappel. This observation has been repeated many times in many laboratories since then, especially in Laura Landi’s laboratory in Bologna (Landi et al., 1984, 1987, 1990a,b, 1991, 1992; Cabrini et al., 1991; Fiorentini et al., 1991, 1993; Merati et al., 1992; Solaini et al., 1987), Lars Ernster’s laboratory in Stockholm (Ernster, 1984; Beyer et al., 1986, 1987; Glinn et al., 1992; Ernster et al., 1992; Ernster and Forssmark-Andréé, 1993), Lester Packer’s (Lang et al., 1987; Kagan et al., 1990; Hiramatsu et al., 1991; Packer et al., 1991), Roland Stocker’s (Stocker et al., 1991; Mohr et al., 1992; Suarna et al., 1993; Ingold et al., 1993), Jan Karlsson’s (Karlsson, 1987; Karlsson et al., 1993) and my laboratory in Ann Arbor (Beyer, 1988). From these and other outstanding studies and other laboratories, the antioxidant properties of CoQH₂ would appear to be well established. This subject has been reviewed by this author on several occasions (Beyer, 1989a, 1990a,b, 1992; Beyer et al., 1986, 1987; Beyer and Ernster, 1990, Ernster and Beyer, 1991). Because of its primary role in such a vital and central function as mitochondrial electron transport and oxidative phosphorylation, it was assumed that its exclusive location was in the inner mitochondrial membrane and that its only function was in mitochondrial energy release and transformation.

Beginning with the work of Sasty et al. (1961), Jayaraman and Ramasarima (1963), Crane and Morré (1977), and then the explosion of information from Gustav Dallner’s laboratory in Stockholm (Kalén et al., 1987; Elmberger et al., 1989; Appelqvist et al., 1991; Thelin et al., 1992; Åberg et al., 1992; Swiezewaka et al., 1993), it became

Table 2. Distribution of Coenzyme Q in subcellular fractions from rat liver. Values are means ± S.E. of seven experiments (modified from Kalén et al., 1987)

<table>
<thead>
<tr>
<th>Subcellular fraction</th>
<th>Coenzyme Q₀ (µg/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogenate</td>
<td>0.79 ± 0.08</td>
</tr>
<tr>
<td>Golgi vesicles</td>
<td>2.62 ± 0.15</td>
</tr>
<tr>
<td>Lysosomes</td>
<td>1.86 ± 0.18</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>1.40 ± 0.16</td>
</tr>
<tr>
<td>Inner mitochondrial membrane</td>
<td>1.86 ± 0.13</td>
</tr>
<tr>
<td>Endoplasmic reticulum</td>
<td>0.15 ± 0.02</td>
</tr>
<tr>
<td>Peroxisomes</td>
<td>0.29 ± 0.04</td>
</tr>
<tr>
<td>Plasma membrane</td>
<td>0.74 ± 0.07</td>
</tr>
<tr>
<td>Cytosol</td>
<td>0.02 ± 0.004</td>
</tr>
</tbody>
</table>
apparent that CoQ was distributed widely in various membranes of the cell. Table 2, from Dallner's laboratory, shows the wide distribution of CoQ and its concentrations in those compartments. It is notable that the concentration of CoQ is higher in the Golgi membranes, and as high in the lysosomal membrane, than in the inner mitochondrial membrane. The question of the function of CoQ in these diverse membranes was difficult to resolve until it was shown that, depending on the tissue, for the most part, well over 50% of the resident CoQ in a variety of rat and human tissues is in the reduced, antioxidant form (Åberg et al., 1992).

Once it was known that CoQH$_2$ functions as an effective intramembrane antioxidant and that it is present in the reduced state in essentially all cellular membrane compartments, the question arose as to the mechanism whereby CoQ in these membranes is maintained largely in the hydroquinone state. As early as 1986, my colleagues Kerstin Nordenbrand, Lars Ernster and I stated: “It is conceivable that mitochondrial DT-diaphorase maintains CoQ in the hydroquinone state thereby promoting its antioxidant function” (Beyer et al., 1986). DT-diaphorase, otherwise known as NAD(P)H:Quinone Acceptor Reductase and menadione reductase, is an inducible 2-electron quinone reductase which has been shown by Charles Huggins to prevent carcinogenesis from several quinone carcinogens capable of quinone cycling and consequent free radical production (Huggins and Fukunishi, 1964; Huggins et al., 1964, 1978; Huggins, 1979). About twenty years ago, Lars Ernster, a co-discoverer of DT-diaphorase, convinced Bruce Ames to demonstrate the antimutagenic properties of the liver S-9 fraction from rats in which this enzyme had been induced to high activity (Chesis et al., 1984). Juan Seguar-Aguilar, Lars Ernster and I also showed that the activity of DT-diaphorase is induced to high levels in rapidly proliferating cells such as HepG2 hepatoblastoma and the Zajdela ascites hepatoma, and labeled it an anticancer enzyme (Beyer et al., 1988).

Although considerable information is known about the structure, prosthetic group, mechanism, gene and other aspects of DT-diaphorase (see e.g. Ernster et al., 1987), its normal function, i.e. the role for which it was selected during evolution, remains unresolved. In order to test the hypothesis that it may function to maintain membrane-bound CoQ in a reduced steady-state, we have assayed the extent of lipid peroxidation, the oxidation-reduction state of CoQ, and the DT-diaphorase activity of gastrocnemius muscles of control rats and rats injected with a potent inhibitor of DT-diaphorase, dicoumarol, and subjected them to severe oxidative stress by running them to exhaustion. All non-run control and dicoumarol-treated animals were killed and the gastrocnemius muscles removed and processed approximately 15 min following dicoumarol injection. The results of this experiment appear in Table 3. The extent of lipid peroxidation products, as thiobarbituric acid reacting substances (TBARS), were slightly higher in the dicoumarol-injected controls than in the non-treated controls (not significant). Running to exhaustion in a rodent treadmill increased TBARS about 3-fold in the non-dicoumarol injected rats and about 4-fold in the dicoumarol-injected, run-to-exhaustion group in which the DT-diaphorase activity was inhibited to approximately 1/3 of the non-inhibited level. These data are consistent with a role for DT-diaphorase in the maintenance of the reduced, antioxidant form of CoQ.

In order to test the DT-diaphorase-CoQ interaction further, we utilized an in situ technique, used previously in my laboratory (Starnes et al., 1987), which overcomes
Table 3. Effect of dicoumarol administration on lipid peroxidation, oxidation-reduction state of coenzyme Q and DT-diaphorase activity of gastrocnemius muscle of rats at rest and following oxidative stress induced by treadmill running to exhaustion

<table>
<thead>
<tr>
<th>Experimental condition</th>
<th>Lipid peroxidation</th>
<th>Coenzyme Q*%</th>
<th>DT-diaphorase activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>22.6 ± 6.4</td>
<td>56</td>
<td>44</td>
</tr>
<tr>
<td>Control + Dicoumarol</td>
<td>29.4 ± 3.7</td>
<td>62</td>
<td>38</td>
</tr>
<tr>
<td>Run to exhaustion</td>
<td>62.7 ± 4.2</td>
<td>66</td>
<td>34</td>
</tr>
<tr>
<td>Run to exhaustion + Dicoumarol</td>
<td>88.4 ± 7.2</td>
<td>82</td>
<td>18</td>
</tr>
</tbody>
</table>

Lipid peroxidation as μmols MDA/g tissue wet weight. Dicoumarol administered i.p. at 3 mg/100 g body weight 15 min prior to exercise commencement. Control animals + dicoumarol were killed following a treatment period equivalent to time required for run to exhaustion. Oxidized and reduced states of CoQ were determined according to a modification of the method of Beyer (1989b). DT-diaphorase as nmols cytochrome c reduced/min/mg protein. Values reported as mean ± S.E.M. Each group consisted of eight animals.

*The concentration of total coenzyme Q in terms of pmoles/mg protein (224.6 ± 18.4) did not differ statistically between groups.

...of the disadvantages of both in vivo and in vitro techniques. Briefly, adult male Sprague–Dawley rats (c. 450 g) were anesthetized with Na-Pentobarbital, and the gastrocnemius–plantarust–soleus muscles of the left leg were exposed. The tendons were severed at the ankle, the knee joint stabilized, and the muscles were stretched 15–20% beyond resting length by attaching a weight of 100 g. For muscles which were to receive electrical stimulation, needle electrodes were inserted directly into the muscles and stimulated with two supramaximal pulses/sec for 90 min. The isotonic contractions were monitored to assure maximal contractions and the muscles were bathed with Ringer’s solution at 37°C. Control values represent the contralateral limb which was treated similarly, but not stimulated. As in the previous experiment, dicoumarol was administered about 15 min prior to initiation of electrical stimulation.

The results of the in situ stimulation experiments (Table 4) also demonstrate that inhibition of quinone reductase activity results in an increase in free radical damage, measured as TBARS via lipid peroxidation. Although such data are somewhat indirect and other explanations are plausible, they are consistent with a CoQ reductase function for DT-diaphorase under physiological conditions, and support the concept of an important function for DT-diaphorase in maintaining a significant level of the hydroquinone form of CoQ in the various membranes of the cell, thus allowing this hydroquinone to act as an effective antioxidant in such hydrophobic cellular compartments. Although the majority of DT-diaphorase activity resides in the cytosolic compartment, its assay in vitro requires the presence of non-ionic detergent for maximal activity. This suggests that the cytosolic DT-diaphorase may interact with membrane components located near the membrane–cytosol interface similar to the interaction of cytosolic ascorbate and membrane-bound α-tocopheroxyl radical to regenerate α-tocopherol, the reduced, antioxidant state of vitamin E (Beyer, 1994). The long (45 carbons in rats, 50 in humans) polyisoprenoid side chain of CoQ may allow...
Table 4. Effect of dicoumarol administration on lipid peroxidation, coenzyme Q oxidation-reduction state and cytosolic DT-diaphorase activity of in situ electrically stimulated gastrocnemius muscle of rats

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Lipid peroxidation</th>
<th>CoQ (% reduced)</th>
<th>DT-diaphorase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control*</td>
<td>27.7 ± 7.4</td>
<td>51</td>
<td>3.01 ± 0.41</td>
</tr>
<tr>
<td>Stimulated control</td>
<td>36.2 ± 5.4</td>
<td>36</td>
<td>2.87 ± 0.62</td>
</tr>
<tr>
<td>Dicoumarol*</td>
<td>44.4 ± 6.2</td>
<td>33</td>
<td>0.92 ± 0.21</td>
</tr>
<tr>
<td>Dicoumarol stimulated</td>
<td>96.4 ± 8.7</td>
<td>14</td>
<td>0.77 ± 0.17</td>
</tr>
</tbody>
</table>

*Control and dicoumarol-treated were the right contralateral gastrocnemius of left-limb-stimulated rats. Reduced state of CoQ was determined using a modification of Beyer (1989b). Cytosolic DT-diaphorase as nmols cytochrome c reduced/min/mg protein (Beyer et al., 1988). Values as mean ± S.E.M.; n=8.

In situ stimulation method as reported previously (Starnes et al., 1987). Lipid peroxidation as μmols MDA/g tissue. 3 mg dicoumarol/100 g body weight administered 15 min prior to start of electrical stimulation.

the quinone moiety of CoQ to move to the membrane surfaces (Siedo and Stidman, 1986; Lenaz et al., 1992; Samori et al., 1992; Fato et al., 1986; Ondarroa and Quinn, 1986; Cornell et al., 1987) in order to interact with, and receive reducing equivalents from DT-diaphorase. Very recent evidence (Salgado et al., 1993) utilizing the magic angle spinning 13C-NMR spin-lattice relaxation technique indicates that CoQH₂ can flip-flop across membranes, carrying reducing equivalents for energy conservation and/or antioxidation purposes. In addition, the report of three distinct CoQ pools in heart mitochondria (Jörgensen et al., 1985) may be consistent with the notion of multiple function for CoQ.

Additional evidence supporting the concept of chemical interaction between DT-diaphorase and long polyisoprenoid side chain CoQ has appeared in recent reports of CoQ-binding proteins with DT-diaphorase activity in liver soluble fractions which may function to transport CoQ from its site of synthesis in the endoplasmic reticulum to various other sites (Kishi et al., 1991), and the characterization of dicoumarol-sensitive NAD(P)H-dependent CoQ reductase activities in rat liver microsomes (Shigemura et al., 1993). It is also of interest that CoQH₂ has been reported to be a more efficient antioxidant with respect to lipid peroxidation of human low density lipoprotein when compared to α-tocopherol (Stocker et al., 1991; Ingold et al., 1993).

Conclusion

The question of whether CoQ should be considered an essential (primary) or a secondary (coincidental) antioxidant must be addressed. The voluminous literature supporting its antioxidant role, in addition to beneficial effects of CoQ therapy, lacking detectable toxic side effects (Langsjoen et al., 1991), effective in a large number of clinical pathologies reported in previous symposia on CoQ (Folkers and Yamamura, 1977, 1981, 1984, 1986; Folkers et al., 1991; Lenaz, 1985; Lenaz et al., 1990; Conference on Coenzyme Q, 1993; Yamamura et al., 1980), would now appear
to support the concept of a primary, essential function for CoQ in acting as a chain-breaking antioxidant in the various membranes of the cell, in addition to its role in regenerating the active form of vitamin E.

Acknowledgements

The author wishes to acknowledge financial support from the Elsa U. Pardee Foundation, gracious and valuable editorial advice from Ms Boon Neo Juliana Ong-Beyer, and freedom from excess teaching and other unrewarded responsibilities from The University of Michigan, thus allowing the author time to complete this, and other, manuscripts.

References

Antioxidative Role of Coenzyme Q

