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Abstract-Kinetic equations for neutrons and some of the other kinds of particles important to 
neutron balance in reactors and reactor-like systems are derived from a quantum Liouville equation. 
In particular, equations for some of the relevant singlet and doublet densities in phase space are 
deduced for the purpose of studying neutron density fluctuations. 

The equations describing neutron densities, ignoring delayed neutron precursors, are then singled 
out for special attention. These equations are reduced to ‘one-speed’ or mono-energetic analogues, 
and are then approximated by equations for the zeroth and first angular moments of these densities. 
During the process, points of connexion with the descriptions of neutron density fluctuations by 
various other authors are made. 

Formal solutions of the equations in phase space are displayed, along with an explicit solution of 
the reduced equations. Properties of these solutions are discussed, with particular interest paid to 
the implications for the ‘critical limit.’ 

1. INTRODUCTION 

FLUCTUATIONS in neutron distributions in reactors have been the subject of intensive 
study-both theoretical and experimental-since the inception of the fission reactor 
techno1ogy.t The keen interest in this subject is generated by two quite different as- 
pects of the problem. 

In the first place, it is surmised that the information obtainable from these fluctua- 
tions-whenever they can be observed and interpreted-might be of considerable 
practical importance. Parameters which are peculiarly influential in the determination 
of the kinetic behaviour of reactors may be inferred from steady-state measurements. 
Monitoring and interpreting fluctuations in highly subcritical systems may provide 
valuable information about reactors during shut-down. Continuous observation of 
fluctuations in power systems might provide an important contribution in the problem 
of control. For these reasons among others, the problems associated with the measure- 
ment and analysis of reactor noise have received considerable attention from those 
concerned with the advancement of the fission power technology. 

There is a second aspect to these problems, however, which broadens and deepens 
interest in them considerably. This one stems from the fact that neutron distributions 
in reactors may be an unusually convenient special case of the general many-body 
problem which has come under ever more intensive scrutiny during the past few years. 
The suggestion as to its unusual convenience follows from the obverse considerations 
of the potential experimental and theoretical accessibility of the system. On the one 
side we have the possibility of observing refinements of neutron distributions which 
may not be so readily and directly seen in solids, liquids, gases or plasmas. In partic- 
ular, one is provided with an enormous density range (from about log particles/ 
cm3 on down) over which experiments may be performed, and which is perhaps 

* AEC pre-doctoral fellow. 
t The bibliography, and present state of the matter are quite thoroughly reviewed and discussed 

in the recent monograph on reactor noise prepared by THIE (1963). 
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ideally suited to the study of the higher-order stochastic characteristics of the 
system because of the fact that at low density (a first-order stochastic characteristic) 
they presumably become relatively more significant. 

On the other side we have the suggestion (which it is the burden of this paper to 
develop) of clearer interpretation of experimental results when and if obtained. In 
many respects, neutron distributions in reactors are among the simplest of examples 
of many-body systems attainable. Because of the extremely short range of nuclear 
forces, they share with neutral gases some of the simplicity of mathematical characteri- 
zation that is allowed by the binary collision approximation in the treatment of 
interactions. Furthermore, because the neutron-neutron collision cross section is 
probably comparable to the neutron-proton cross section (which is the order of 20 
barns or less in the energy range of interest), and because of the very low neutron 
density compared to the density of the ambient nuclei in realizable systems, these 
distributions lend themselves to an even simpler description than do neutral gases 
since it is linear. At least it is linear up to the point that the neutrons begin to modify 
the distributions of the surrounding nuclei-a point which will be the subject of some 
discussion later in this investigation. Thus in the sense that the binary collision 
treatment of interactions is more justifiable and the self-interactions more ignorable 
than in other realizable systems, neutron distributions represent the simplest examples 
of many-body problems. Thus, by implication, they represent an important class of 
systems from the point of view of the search for experimental verification of theoretical 
descriptions of higher (than the first) order stochastic quantities, such as the doublet 
density or the closely related variance of the distribution. [It should be noted in 
passing that, under appropriate circumstances, photon distributions may share an 
equal and similar simplicity (OSBORN and KLEVANS, 1961; KLEVANS, 1962), and 
perhaps are equally accessible to experiment.] 

Of course, there are respects in which the description of neutron distributions 
appears somewhat more complicated than that for, say, the neutral gas. The most 
obvious of these arises from the almost inescapable necessity to take explicit account 
of reactions in which the particles of interest are not conserved. In particular, in 
multiplying systems, detailed accounting of both destruction and creation of neutrons 
must be kept. Furthermore, again in multiplying media, neutrons may be created 
and destroyed in the same reaction-but not necessarily at effectively the same time, 
as is exemplified by the production of delayed neutrons from neutron-induced fission. 
Such delay phenomena can significantly influence the temporal evolution of the neutron 
distribution, and hence must be dealt with explicitly. Nevertheless, complicating 
features such as these may be more than offset by the simplifications alluded to above. 
At least the possibility that this is so should be explored. 

If indeed neutron distributions do represent a potentially important class of many- 
body systems in which to search for experimental comparisons with theoretical 
refinements, then it seems imperative to obtain predictions from first principles as 
deductively as possible. It is the purpose of this paper to describe such an attempt. 
It is not suggested that the approach employed in the present attempt is the only one, 
merely that it is a feasible one which we feel has advanced the study significantly and 
perhaps should be explored further. 

Until recently (OSBORN and YIP, 1963), the theory of neutron distributions has 
rested solely upon phenomenological bases. One of the more elaborate treatments of 
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this kind was presented by MATHES (1962), and it serves well as a summary of the 
phenomenological approach. Densities are defined as appropriate averages taken 
with respect to a fundamental probability distribution-which, however, is itself 
defined by an empirically deduced equation. The point of departure of the investiga- 
tion described herein is the observation that this probability distribution is in fact 
rigorously described by the Liouville equation, and our initial effort will be to establish 
a sense in which working equations for the various, relevant singlet and doublet 
densities for the reactor may be deduced by approximation from the rigorous de- 
scription. Of course, the above observation is of the nature of the obvious, and hence 
it is a bit surprising that there has been no previous attempt to exploit it. Particularly 
is this so in view of the wide-spread upsurge of interest in problems of this kind; 
especially as they pertain to neutral and charged gases. 

In Section 2 we will sketch a derivation of a sufficient set of equations to enable 
an attack on the problem of interpreting a certain class of fluctuation measurements 
in reactors. The equations that we will need are those for the singlet and doublet 
densities for neutrons, a single kind of delayed neutron precursor, the particles 
actually counted in a detector (illustratively we will consider them to be K-particles 
accumulated in a Boron-Trifluoride detector), and all relevant cross densities. The 
derivation will proceed from the quantum Liouville equation for the reactor. Of 
course, we do not anticipate any explicit quantum effects to influence our description 
of the system at the working level. Nevertheless, in dealing with systems in which 
particles are not conserved, we find the logic of derivation greatly simplified and 
clarified by a quantum mechanical formulation. When, in the course of the argument, 
it is convenient to do so, we will pass to the classical limit. 

In Sections 3 and 4 we will concentrate exclusively on the equations which describe 
the neutron singlet and doublet densities, neglecting delayed neutrons. Section 3 will 
be devoted to an examination of various reduced forms of these equations for the 
primary purpose of establishing points of connexion and comparison with the work 
of others in this field. In particular, the diffusion theory analogues will be obtained 
by integrating the phase-space equations over the angular variables in velocity space; 
the monoenergetic transport analogues will be obtained by integrating over energy 
variables; the steady state, consistent PI equations will be displayed; and finally the 
‘point-reactor’ kinetic equations will be obtained by integrating over all the phase 
variables. 

In Section 4 we will sketch a formal solution of the phase-space equations for the 
purpose of extracting a comment on the implications of the linear theory of the 
doublet density for critical system. We will also develop on explicit solution of the P, 
equation in order to explore the space dependence of the doublet in certain simplified 
but non-trivial situations. 

2. THE PHASE-SPACE DENSITIES 

In this section we sketch the derivation of the balance relations for the relevant 
densities. Manipulative detail will be largely omitted, since it has been presented 
elsewhere in one form or another in connexion with the derivation of transport 
equations for neutral gases (0~0, 1954) and plasmas (OSBORN, 1963). However, 
sufficient discussion of the method of attack and of the approximations made will be 
included in the effort to make this exposition reasonably self-contained. 
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As indicated above, the derivation of the balance relations from the Liouville 
equation for the system will be carried through from the quantum point of view, in 
spite of the fact that we do not anticipate any explicitly quantum effects to influence 
the results we finally settle for. There are at least three strong reasons for doing this. 
In the first place, the quantum formalism provides a convenient context within which 
to describe systems in which the particles of interest are being created and destroyed. 
In the second place, the quantum mechanics enables a precise definition of positive 
definite densities in phase space, and in the third place, a quantum treatment of 
reactions is required if transitions among bound states play a significant role in the 
description of the system. Actually this last reason will not be exploited in this paper, 
since detailed formulae for reaction rates are not necessary for present purposes. 

The densities we need here are defined by 

F”(X, K, t) = E3Tr 2 p"(X, K, s)D(t), (1) 
and 

Fab(X, K, X’, K’, t) = L-‘Tr 2 p”(X, K, s)p”(X’, K’, s’)D(t). 
ss’ (2) 

The singlet density, F”(X, K, t), defined in equation (1) represents the expected number 
of particles per cubic centimetre of kind a located in a cubic configuration space cell 
of volume L3 having momentum tzK at time, t. The wave vectors, K, are also discretely 
distributed; the distance between successive values of Kl for example being 27r/L. 
We are here following the prescription of ONO for coarse-graining phase space. 
Accordingly it has been divided up into non-overlapping hypercells of volume (2~)~, 
if the centres are parametrized by (X, K), or of volume (h3) if parametrized by (X, P = 
fiK). Since all of the particles in a given cell are assigned the co-ordinates of the centre 
of the cell, it is evident that the uncertainty in the simultaneous specification of the 
position and momentum of these particles is as it should be according to the uncertainty 
principle. The operator, p”(X, K, s), is a number operator whose eigenvalues in a 
diagonalizing representation are the numbers of particles of kind a in the cell centred 
at (Xx, K) having spin, s. Keeping an explicit account of particle spins is actually 
superfluous here, and will be dispensed with in the following. The density matrix, D, 
presumably satisfies the equation 

aD 
- = f [D, H], 
at (3) 

where H is the Hamiltonian for the system. Of course, because nuclear interactions 
among others must be included in H, this Hamiltonian can hardly be regarded as 
fully known. However, for the purpose of deriving balance relations for the densities 
defined in equations (1) and (2) less than full knowledge proves sufficient. Finally, 
the doublet density L6Fab (X, K, X’, K’, t) represents the expected number of particles 
of kind a to be found in the hypercell centred at (X, K) and of kind b in the hypercell 
at (X’, K’) at time, t. Since pa and pb commute, Fab is real. 

In order to derive equations for these densities, we observe that 

- N 1 [Fyt + T) - F”(T)], 
aF” 
at r 
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provided that F” does not vary too rapidly over the time interval, T. Of course, 
equation (4) is rigorously true by definition if 7 can be made limitingly small; but 
such a limit is not meaningful. The density cannot be fruitfully compared at two 
times closer together than the longest interaction time of a reaction expected to 
influence the balance relation. Thus we find it necessary to coarse-grain in time as 
well as in phase space. 

Introducing 
rl”(X, X) = 2 p”(X, K, s), (5) 

we find from equations (1) and (4), 

aF” 
- N T-1L-3Tr?/a[D(t + T) - D(t)]* 
at (6) 

According to equation (3), we have 

D(t + 7) = u(T)D(t)u+(T), (7) 
where 

U(T) = eXp (-iTH/h). (8) 

To proceed from here, it is desirable to discuss H in a little more detail. We subdivide 
it according to 

H = c T”+%, (9) 
a 

where T” is the kinetic energy of the u-type particles. In this paper, we will regard all 
particles except the neutrons, delayed neutron precursors, and the detected particles 
as being in known distributions. Consequently only the kinetic energy of these kinds 
of particles requires our explicit attention. The symbol, Z, is intended to represent 
all other contributions to the energy of the system. 

For illustrative purposes we consider the kinetic energy of the neutrons, i.e. 

T” = & 
s 

d3x Vyjf . Vyj, (10) 

where the sum over repeated spinor indices is understood. We expand the operators, 
Yj, as 

?pj(X) = LF312 2 exp(i KSx)Uj(s)E(X, x)Q(X, K, s), 
XKS 

(11) 

where U,(S) is the unit spinor, i.e. 

uj*(s)uj(s’) = 6,,., and 1 Uj*(s)Uj(s) = djj,, (12) 

and where E(X, x) is the three-dimensional step-function equal to unity for all x in 
the cell of volume L3 centred at X and equal to zero for all x outside that cell. These 
functions were first employed in problems of transport theory by ONO, and 
they provide the analytical realization for the above comments regarding phase-space 
coarse-graining. The quantity, a(X, K, s) is the destruction operator for neutrons of 
spin, S, in the cell centred at (X, K). Furthermore, 

p”(X, K, s) = a+(X, K, s)a(X, K, s). (13) 
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Entering equation (11) into equation (lo), we find 

= &“+P. (14) 

The first term, P, represents the kinetic energy of the neutrons within cells, and helps 
define the states between which neutrons jump when they experience interactions. 
The second term consists of two parts. One is linear in the gradient of the step- 
function, and describes the transport of neutrons from one cell to another. The other 
is quadratic in the gradient of the step-function, and to the level of approximation 
employed herein contributes nothing to the subsequent calculations. Similar com- 
ments apply to the other kinetic energy terms appearing in equation (9). Thus now 
we may write 

H=~&"+~~a+c8 
a n 

= T’ + c%‘, (15) 
where 

T' = IF", 
a 

and 

(16) 

The term T’ in H describes particle transport, and the term 2’ describes interactions. 
The time evolution operator in equation (8) may be written as 

U(T) = exp [-h(T’ + S’)/h] (17) 

= exp (--i-rT’/k) exp (--i~3P’/Q7(7). 
where 

aJ 
- = U(T)J, 
87 

J(0) = I, (18) 
and 

V(T) = f [Z' - exp (i~X’/h) exp(iTT’/ft)%’ exp (-i~T'/h) exp (-~P’/ti)]. (19) 

Note that for small 7, 

u(T) - i2 [T’, *‘I, (20) 

so that 

J(T)- I + -$ [T', 2'1. (21) 

In estimating the right-hand side of equation (6), we retain only those terms which 
are explicitly or implicitly independent of 7, obtaining 

a; e -L?Tr f [q”, T’]D(t) + L-3T$~v1 

X {exp (-iTZ/h)D(f) exp (iTTiY’/Ii) -D(t)}. (22) 
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In a representation which diagonalizes the number operator, ya, with eigenvalues, 
P(X, K), equation (22) may be displayed as 

5 + L-3Tr ; [q”, T’]D(t) = L-3 2 (N”‘(X, K) - N”(X, K))W,.,, D,L,(t) (23) 
n n ’ 

+ (Terms involving the off-diagonal elements of D), 

where 

W,., = 1 [exp (-i~Z’/ti)],,, ’ 
7 

(24) 

is the transition probability per unit time, and will be evaluated for large T (large 
compared to the longest interaction time of any interaction which significantly in- 
fluences the distribution of particles of the a-th kind) for which it is independent of T. 
Henceforth we will neglect the terms involving the off-diagonal elements of D in 
Equation (23) and in other similar equations. Such a similar equation is the one for 
a doublet density, which, at this point, would read 

T + L-‘Tr i [f, T’]ybD(t) + L?Tr iqa[qb, T’]D(t) 

+ L-6I {N”‘(X, K)Nb’(X’, K’) - N’(X, K)Nb(X’, K’)}W,+JI,,( t). (25) 
T&n, 

Further reduction of the streaming terms (those involving the commutators with 
T’) is straightforward, but approximate. An important approximation is that the 
various densities vary sufficiently slowly from cell to cell so that, for example, 

Fa(Xi + L) - F’(X,) aF” 
- 

L -ax,* 

Then equations (23) and (25) become 

aF” i AK, aF” 
- = c31: {N”‘(X, K) - N”(X, K)}W,.,D,,, 

at ’ m, ax, nnr 

(26) 

(274 

= Lp6 2 {N”‘(X, K)N”‘(X’, K’) - N”(X, K)Nb(X’, K’)}W,r, D,,. (27b) 
nn’ 

The last task to be accomplished in this section is that of expressing the interaction 
terms in equations (27a) and (27b) as explicit functionals of the densities of interest. 
Thus it becomes necessary to decide what interactions are important to these balance 
relations, and how much of the information about them, implicit in the transition 
probabilities W, requires explicit attention. To obtain a realistic, but at the same time 



626 R. K. OSBORN and M. NATEUON 

not too unwieldy, description we will restrict consideration to scattering, radiative 
capture, and fission so far as the neutrons are concerned. We will neglect the scattering 
of neutrons by neutrons. In the fission process, we will assume both the production 
of prompt neutrons and of precursors of delayed neutrons (fission fragments which, 
after one or more p-decays, achieve a nucleonic configuration capable of de-exciting 
by neutron emission). The delayed neutron precursors will be presumed created by 
fission and destroyed by a p-decay which simultaneously produces a neutron. We 
will ignore the possibility that the precursor might be transmuted by neutron capture. 
The detected particles will be considered to be a-particles produced in the 
rOB(n, oc)‘Li reaction, and it will be assumed that upon production they accumulate. 
We will also include a neutron source other than fission so that we may broaden our 
discussion to include subcritical systems. 

For present purposes, it turns out to be unnecessary to give much attention to the 
details of these transition probabilities, except for their dependence upon occupation 
numbers. This dependence is easily elicited, since, for any process in which a particle 
of kind a is destroyed at the phase point (X, K), we anticipate the factor, IV(X, K). 
Conversely, if a similar particle is created, we expect the factor, [l & N”(X, K)], 
where the plus or minus sign goes with bosons and fermions respectively. However, 
it can be readily shown that the retention of the term N compared to unity in the 
factor that goes with particle creation leads to peculiarly quantum effects-quantum 
statistics vs. classical statistics. Since we do not expect that the systems to which 
the present theory will be applied will be sensitive to such a distinction, we henceforth 
ignore the occupation number dependence arising from creation processes. 

With these remarks in mind, the final reduction of equation (27a) and (27b) to 
useful form is essentially nothing but a task in accounting-albeit a large and tedious 
one. After it is completed it is convenient to assume that the discrete points in phase 
space are actually sufficiently closely spaced that we may treat them as continuously 
distributed. Points in this continuous domain will be labelled (x, v), where v is 
velocity and is given by v = /zK/m. We will also use lower case symbols to represent 
the densities defined over this domain. We then find that a set of working equations 
for the study of neutron fluctuations is: 

; + v - v + L(v)] LA x, v, I) - A/?(v) 
s 

d3a’ji4(x, v’, t) = S(x, v, r), (28a) 

where 

L(v)flN(x, v, r) = u C, (v)fl(x, v, r) - s d3dd C, (v' + v)~;'(x, v', r) 

- 
s 

d3ura’ C, (v’) 2 c&,~(v’, v)fiN(x, v’, r), (28b) 
ja 

[ 
& + v . V + A] _/~(x, v, r) = p(v) 

s 
d3u’u’ Z, (v’)f;v(x, vr, r), (29) 



Kinetic equations for neutron distributions 621 

I & + v . v + v’ . V’ + L(v) + A] pqx, v, x’, v’, t) 

= ,u(v’) s d%‘lf,““(x, v, x’, v”, t)u” C, (u”) 

+ S(x, v, t>f/(z’, u’, t) + rg(v)jd3”r~p(x, v”, x’, v’, t) - 6(x - x’) 

x Mv>fi”(x, v’, 0 + p(v’b X:, (vW(X, V, rj 

-p(v’) s d3u"v" C, (v”) 2 crB,j(v”, v)f;-‘-(x, v”, r) 1 ja 

& + v . v -it v’ . V’ + L(v) 
1 
fpyx, v, x’, v’, t) 

= s d’v”u” XD (v” + v’)~~~~~‘-(x, v, x, v”, r) 

$ &3(v) s d3u'f,AD(x, v”, x’, v’, t) + S(x, v, t)fi”(x’, v’, 1) 

4(x - x’)u c, (v + v’jp-(x, v, t). 

$ + v . v + v’ . V’ + A I f,““(x, v, X’, v’, t) 

= s d'd'd C, (v” + v’)~~-‘~(x’, v”, x, v, t) 

+ p(v) 
f 

d’d’u” Xf (v”)&“~(x, v”, x, v, t). 

v . v + v’ . V’ + L(v) + L(v’) 
1 
pyx, v, x’, v’, t) 

= ng(vJjjd3dy~““(x, v, x’, v”, t) 

t ~/I(V) s d3dlf;yA(x', v’, X, V, t) + S(X', VI, t)fl-'(x, V, tj 

(31) 

(32) 

(33) 

$ S(x, v, t)p(x’, v’, t) + 6(x - x’) 

x [,i(v, V’, x, t) + S(v - vyp(+“‘~“(x, v”, t) -t 6(v - v’)S(x, v, t)], 
(34.2) 
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where 

h(v, v’, x, t) = 6(v - v’) v C, (v)fiN(x, v, 1) + 
I 

d%“u” 

- u c, (v - v’) + x, (v) 1 cd,yv, v’) 
[ 

fi”(X, v, t) 
?a 1 

-v’ x:, (v’ - v) + TX, (v’) 2 cd,yV’, v) 
[ 

fiLV(X, v’, t) 
jz 1 

+ 
s 

d3u”vN C, (v”) 9; c$BOLBj(v” 1 v, v’)fiN(x, v”, t), 

[ 
+.v+v’.v’+21 f;4A(x,v,x’,v’,t) 

1 

= p(v) 
I 

d%“v” & (v”)fiv’(x, v”, x’, v ‘, t) 

+ /L(v’) 
s 

d’v”v” C, (~“)fi-~~(x’, v”, x, v, t) + 6(x - x’)S(v - v’) 

d3v”v”Xf (v”)f;“(x, v”, t) + 3Lfi-4(x, v, t) 1 . 

WI 

(35) 

; +v.v+ v’ . V’ 1 f,““(x, v, x’, v’, t) = s d3v”unCD (v”+ v)f, ND(~, v”, x’, v’, t) 

+ 
s 

d3unv”CD (v” + v’)fznTD(x’, v”, x, v, t) 

+ 6(x - x’)S(v - v’)jd3v”u”Z, (v”+ v)f12’(x, v”, t). (36) 

A table follows in which previously undefined quantities, appearing in the above 
equations, are defined. 

(i) The superscripts N, A and D, on the densities refer to the various particles as 
follows: N, neutrons; A, delayed neutron precursors; D, detected particles (alphas). 

VE d’; B(v) d 3u is the probability that a delayed neutron will be born with velocity 

iii) 1 is the precursor /?-decay constant. 
(iv) S(x, v, t) d3x d3v is the expected number of neutrons produced per second at 

time t, in d3x about x, and with velocity VE d3v, by means other than the fission process. 
(v) ,u(v) d3u is the expected number of precursors, with velocity VE d3v, produced in 

a fission. 
(vi) C,(v) is the probability per unit path for small paths that a neutron with 

velocity v will be scattered. The rest of the sigmas are defined in the same manner, 
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with the subscripts indicating the specific interaction of interest, i.e. s, scattering; f, 
fission ; a, absorption ; c, capture (C, = 2, - X:,), and D, detection process. 

(vii) X, (v’ --f v) d3C is the probability per unit path for small paths that a neutron 
with initial velocity v’ will be scattered into a final velocity VF d”l*. 

(viii) c,, (v’ --f v) d3c is the probability per unit path for small paths that a neutron 
with velocity v’ will experience a detection interaction to produce a detection (x-) 
particle with velocity VF d3tl. 

(ix) B,j(v’, v) d3v is the probability that a fission induced by a neutron with velocity 
v’ will produce j prompt neutrons of which tl will have velocities in d3C about v. 
Similarly BaPj(v’ 1 v, v”) d3C d3tl” is the probability that a fission induced by a neutron 
with velocity v’ will produce j prompt neutrons of which o! will have VF d31. and 1 have 
V”E d3cN. 

3. DISCUSSION OF THE NEUTRON EQUATIONS 

The full set of equations, (28) through (36), is probably a minimal description of 
particle distributions required for an interpretation of experiments designed to measure 
neutron fluctuations. However, it is evident that this set of equations poses a rather 
complicated mathematical problem-one in fact which has received little or no 
attention to date. In fact, even the far simpler problem of studying the description of 
prompt neutron distributions only, provided by equations (28a) and (34a) when 
delayed neutrons are neglected, has been given only limited and preliminary con- 
sideration. Equations similar to the ones referred to above have been presented by 
GOVORKOV (1962) and derived by PAL (1957), BORGWALDT and SANITZ (1963), and 
BELL (1965) (though by arguments quite different from those employed here). In 
each case some specific implications of the equation for the neutron doublet were 
explored to some extent; nevertheless it seems to us that more remains to be done 
than has yet been done. Thus, for the remainder of this work, we will concentrate on 
the simplified (by the elimination of delayed neutrons) versions of (28a) and (34a) in 
an effort to examine points of connexion with other work in this field and to explore 
some of their implications. 

For the purposes of clarification and ease of reference, we rewrite these equations 
here in a changed and compacted notation. Introducing ,f(x, v, t) to represent the 
neutron singlet density, and F(x, v, x’, v’, t) for the doublet density, we display (28a) as 

af -+Bf=s, 
at (37) 

and (34a) as 

$ + (B + B’)F = ,sf’ + Slf+ 6(x - x’)6(v - v’)S + b(x - x’>rf. (38) 

Here we have introduced the symbol B to stand for the Boltzmann operator which 
acts on the unprimed or primed phase point depending upon whether it itself is 
unprimed or primed. As is readily established by reference to equation (28a), it is 
defined by 

&(x,v)= v.vy+ v&y- s d3u'v'C,(u+u)y(u') 

- d3utv’ C,, 2 tcB;(v’, v)~(v’). 
jU 

(39) 
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The operator, l?, appearing in the inhomogeneous terms in equation (38), is defined 
by [as can be seen from (34a) and (34b)] 

l?y(x, v) = d(v - v’){vC, y + 
s 

d%“v”& (v” --f v)y(v”)) 

- O’P;, (v’ - v) + 2;; 2 CIBj(v’, v)]y( v’) 
ja 

+ 
s 

d3v”vn “;E c$~~pi(v”j v, v’)~(v”). 

It is sometimes more convenient to study a correlation function rather than the 
neutron doublet density itself. Thus we define 

G(x, v, x : v : t) = F(x, v, x’, v’, t) - f(x, v, t)f(x’, v’, t), (41) 

and show by an obvious exploitation of equations (37) and (38) that G satisfies 

2 + (B + B’)G = 6(x - x’)S(v - v’)S + 6(x - x’)If (42) 

In the next section we will examine some interesting aspects of formal solutions 
to these equations; however in this section we emphasize comparison between equa- 
tions employed by others in the study of neutron fluctuations and various reduced 
forms of (37) and (38). To this end we introduce some notation for the representation 
of angle-integrated densities and currents, energy-integrated densities, and energy-and- 
angle-integrated densities, i.e. 

yb, E, 0 = s dQf(x, E, 62, t), (434 

j(x, E, t) = 
s 

dQ vS?f(x, E,Q, t), (43b) 

0(x, E, x’, E’, t) = 
I 

d!2 dCYF(x, E,Q, x’, E’, 51’, t), (43c) 

J(x, E, x’, E’, t) = 
s 

d!A dCY&F(x, E,SZ, x’, E’,S2’, t), (4W 

J’(x, E, x’, E’, t) = 
s 

d!2 dQ’v’Q’F(x, E, A-2, x’, E’, a’, t), 

4(x, Q2, t) = j&(x, E, Q> t>, 

(43e) 

(4W 
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@(x,Q, x’,S2’, t) = 
s 

dE dE’F(x, E, Gl, x’, E’, Sz’, t), (43g) 

n(x, t) = 
s 

da dEf(x, E, S2, t), (43h) 

and 

N(x, x’, t) = 
s 

dE dQ dE’ dQ’F(x, E,!i2, x’, E’,SY, t). (43i) 

The densities f and F appearing in the definitions (43a) through (43i) are, of course, 
related to the densities in equations (37) and (38) according to 

f(x, v, t) d3v = f(x, E, a, t) dE dL2 

F(v, v’) d3v d3v’ = F(E, Q, E’, S-2’) dE d!2 dE’ dfi’. (44) 

Consider first the equations which describe the reduced densities y and 0. They 
are obtained from (37) and (38) by first transforming according to (44) and then 
integrating over directions of motion S2 (or 8 and 52’). Assuming that the scattering 
frequency depends only on the angle between the initial and final directions of motion 
of the scattered neutron, i.e. 

Es@‘, Q’ - E, fi) = I;,(E’, E, s1’ . a), (45) 

and that fission can be treated as completely isotropic in the laboratory system so that 

&YE’, fi’ + E, 8) = (4~)-‘B,j(E’ --+ E), 

B,,j(E”, Q” 1 E, Sz; E’, a’) = (47~)~ B,,1’(E” 1 E, E’), (46) 

we find that (37) reduces to 

ay --iv. j+vC,y- 
s 

dE’u’&(E’-tE)y(E’) 

- 
s 

dE’v’ C,’ y(E’) 1 aB,j(E’ --+ E) = So. (47) 
ia 

In this equation we have introduced the further notation 

&, (E’ - E) = 
s 

dQ X, (E’, Sk’, E, CZ), 

s,,(x, E, t) = 
s 

dQS(x, E,f$ t). (48) 
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Equation (47) is, of course, quite conventional and familiar. The reduced 
obtained from (38) is 

z + v . J + V’ . J’ + (v C, + u’&)<D - 
s 

dE”u” &,, (E” + E)@(E”, E’) 

- 
s 

dE”u” &,, (E” + E’)@(E, E”) - 
s 

dE”u” Cf” O(E”, E’) 2 ctB,j(E” + 
ja 

equation 

E) 

-SdE”v”C~~(E,E”)~aB.‘(E”-E’) 
ja 

z s,ry + s,,~’ + 6(x - x’)6(E - E’)S, + 6(x - x’>NE - E’) 

x I dE”v” C,, (E” - E)y@“)j 

- o C,, (E ---f E’)y(E) - u c, z aB,j(E + E’)y(E) - u’ Es0 (E’ + E)y(E’) 
ju 

- u‘ C,’ 2 aB,j(E’ --) E)y(E’) + 
ja s 

dE”u” C,” y(E”) c aoB,,j(E” 1 EE’)]. (49) 
jab 

This equation is substantially* the same as the one derived and discussed by MATHES 

(1962). It does differ in one significant respect, however, in that instead of the terms 
V . j, V. J, and V' . J’ MATHES obtains DV2y, DV2Q and DVt2@ respectively. In the 
present instance it is clear that these identifications are Fick’s rule approximations to 
the current divergences. 

A second reduced form of (37) and (38) is obtained by integrating over all energy 
variables. However, this process of reduction is seriously complicated by the fact that 
the cross sections in the operators B and F are usually significantly energy-dependent. 
Conventionally, in dealing with the singlet density, this complication is cut through by 
defining energy-averaged parameters in such a way that 

s 
dEBf = &, (50) 

where r$ is defined by (43f). Proceeding analogously for the reduction of the doublet 
density, we find that 

s dE dE’(B + B’)F = (B + ii)@, (51) 

where B and i differ from each other and from B because they depend upon parameters 
which have been averaged with respect to different weight functions. The extent and 
significance of these differences are not known at the present time. In the discussion 
that follows, we will ignore them and equate 

- 
&&& (52) 

* MATHS’ equation describes the variance, Yr(E,E’), rather than the doublet density. The two 
quantities are simply related as follows: 

Y(E,E’) = Q(E,E’)-y(E)~(E’)--(x - x’)&E - E’)y(E). 
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It then follows that (37) and (38) reduce to 

2 + Bc$ = 3, 

and 

!g + (B + B’)@ = S$’ + S’r$ + 6(x - x’)d(s2 - 8’)s + 6(x 

where 

_ 
S(x,Q, t) = 

s 
dES(x, E, a, t). 

(53) 

x’)@, (54) 

(55) 

The operators B and P are the ‘one-speed’ counterparts of B and I‘ and are here 
defined by 

+efs 4?7 
d !2’+(!2”)] - r,y( ii2 ---, S2)+( S2’) 

(57) 

Equation (53) is the familiar monoenergetic neutron transport equation for the 
singlet density and, as such, requires no further comment here. Equation (54) does 
not appear to have been presented explicitly before, although it is, of course, 
implicit in the work described in GOVORKOV, PAL, BORCWALDT and SANITZ 
and BELL. These reduced (and approximated) equations still pose a formid- 
able problem. Thus it is desirable to reduce (and approximate) them still 
further. With respect to equation (53), this is conventionally done by taking its 
zero-th and first velocity-angular moments (moments of G!) and then, in the equation 
for the first moment, approximating the second moment according to the assumption 
that C$ depends at most linearily upon 8. This leads to an equation for the zero-th 
moment of c$, i.e. 12(x, t), which is second order in both space and time derivatives and 
is sometimes referred to as a consistent PI equation. For present purposes, we carry 
out the same programme with respect to equation (54). On the whole the required 
manipulations are straightforward and conventional, so we present no detail here. 
However, one mildly subtle point should be singled out. The quantity 

is not generally zero* and hence must be duly considered if the resultant equation 
for N(x, x’, t) is to be consistent in the same sense that the equation for n(x, t) is 
consistent. Since it is our intention here to discuss only some of the steady-state 
characteristics of the doublet density, N, we eschew the presentation of the full 

* We are indebted to Dr. F. SHURE for bringing this fact to our attention and for valuable dis- 
cussions illuminating its significance. 

4 
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equation governing its temporal evolution as well as its spatial variation. The equation 
for the latter is 

2a - D(V2 + VIZ) + bD2 
b)’ 

(V” - V’2)2 1 N 
2(a + 

D(V" + V'2) 2(a + b) 1 sf? + --+k'x'x - -M- a+b 
x (V . z + V’ ?? SP) + (ajD 

2(a + b12 
(V2 - 0’2)(0. 2P - V’ . 2’). - - - (59) - 

The definitions of the new symbols appearing in this equation are: 

a = r, - (1 Pf = rC + rf - Wr,, (boa) 

(60b) 

b = rt - pr, = ra + rs - prs, (60~) 

,G = dR8. S2 j(S2’42), 
s 

2 = [df2 d!2 ‘fi, 

(6W 

(60e) 
J 

A? = 
s 

d!J dW2l?, X’ = dC2 dQ’!XH, - - s 
(6Of) 

(6W 

IT = Sc#’ + sy + 6(x - x’)d(Q - s2’)S + 6(x - x’)ry. (6Oh) 
Equation (59) does not seem to have appeared elsewhere before, though an approxima- 
tion to it was presented in OSBORN and YIP. It is interesting to note that an inte- 
gration of equation (49) over energy accompanied by the Fick’s rule identifications 
of the current divergences leads to 

[2a - D(V2 + V’2)]N = 2. (61) 

As a final comment in this section, we note that the conventional, so-called ‘point- 
reactor,’ kinetic equations are immediately obtainable from equations (53) and (54). 
This may be done by integrating these equations over all space and angle variables, 
neglecting the streaming terms in the operator B, and defining 

Q(t) = 
s 

d3x d3x’ d&2 dQQ(x, S2, x’, S2’, t), 

S(t) = 
s 

d3x dQZ(x, S2, t). (62) 
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One finds immediately that 

d+(t) 
-g-- + @b(t) = S(t) (63) 

and 

$- + 2aaqt) = 2S(t)&t) + S(t) + c+(t), 

where 
C = rc + ((j - l)‘)rf. (65) 

Recalling that, in this section, we have neglected delayed neutrons, it is seen that 
equations (64) and (65) are the same as those extensively employed in studies of 
neutron fluctuations (COURANT and WALLACE, 1947; HARRIS, 1958 ; SOODAK, 1961; 
PLUTA, 1961). 

4. SOME IMPLICATIONS OF THE DOUBLET EQUATIONS 

In this section we examine a few of the characteristics of some rather formal 
solutions of the various equations presented for the description of the neutron singlet 
and doublet densities in the previous section. In particular, we examine an implicit 
solution of the unreduced equations (37) and (38) in an effort to extract some in- 
formation about the tempera1 behaviour of the doublet density, and then display an 
explicit solution to the one-speed, P1 equation (59), in order to reveal some aspects of 
its approximate space dependence. 

The formal solutions to equations (37) and (38) are 

f(t) = e-tBf(0) 

and 

(66) 

F(t) = e- 2@?+B’)F(O) + 
s 

tdt,e-‘t-L’“B+B”H(t,), (67) 
0 

where we have introduced H(t) to represent the inhomogeneous terms in equation (38). 
Note that 

H = dE dE’H, 
s 

(68) 

where fi has been given in (60h). These solutions are too implicit to be of much 
practical use in general, although they do provide us with a framework within which 
an interesting observation about the probable temporal behaviour of the doublet 
density in a critical system can be developed. To this end we first look for the station- 
ary, asymptotic singlet density in the source-free case, i.e. 

f(t) - eekBf(0). (69) 

We assume a complete set of eigenfunctions of B and of its adjoint. The existence of 
such sets has not yet been demonstrated so the following argument is suggestive rather 
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than conclusive. The eigenfunctions and eigenvalues satisfy 

BY, = &wj, (70) 

where the eigenvalues may be discretely and/or continuously distributed. Let the 
eigenvalues be ordered, i.e. 

a, < a1 < a2 < . . . < aj < . . . (71) 

and assume that at least 2, belongs to the discrete set. Again, this is an untested 
assumption, but seems justified if the critical state is physically realizable in a finite 
time. !ff we display 

f(0) = z: a,(O)WiY 
i 

where we sum or integrate depending upon whether ij belongs 
tinuous distribution, we find 

The critical state is now defined by the requirement that 1, = 0. 
large time, we find 

f(t) - %(O)Wo. 

(72) 

to a discrete or con- 

(73) 

Then in the limit of 

(74) 

Now use these eigenfunctions of B for a series representation of F(0) and H (which, 
in the present instance, may be considered to be time-independent). We find that 

~70 = &o(Oh~o' + $ &CO) ew L-(4 + &)~IY~Y~ 

(not’both zero) 

+ thoovwo’ + &hij 1 - exp [-(A + i,)t] 
& + 2j 

YiY~~ (75) 

(not both zero) 

where the Aij’s and hij’s are the coefficients in the expansion of F(0) and H respectively. 
Evidently, asymptotically we have 

(76) 

and hence no stationary doublet density exists (unless, of course, h,, = 0 which would 
seem to be purely fortuitous if ever the case). 

Since this result is not obtained by well-defended arguments, it is perhaps unwise 
to struggle too hard to interpret it. However, we will demonstrate a similar conclusion 
from an explicit argument below, and we note that this conclusion is either explicit or 
implicit in the point-reactor-kinetics studies of the doublet density-even if delayed 
neutrons are taken into consideration (see, for example, HARRIS, and also PLUTA. 
Thus it is tempting to argue that the critical state of a reactor is a mathematical 
fiction (which seems intuitively reasonable, since, if it is realized at an instant it is not 
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so immediately thereafter). Of course, these remarks are premised upon the applica- 
bility of the present theory which has explicitly neglected the influence of the neutrons 
upon the distribution of ambient atoms. If, in fact, this influence were not neglected 
and the response of the atomic distribution, as well as its correlation with the neutron 
distribution, were properly accounted for, these issues including the very notion of 
the critical state itself might be radically altered. 

The second illustrative solution for the doublet density will be obtained from 
equation (59)-the steady-state, P, equation. To find a fairly general solution which 
is of more than purely formal interest, we imagine a cubical region of edge length I 
interior to a materially homogeneous region. The eigenfunctions of the Laplacian, 
subject to periodic boundary conditions on the surface of the cube, are a complete, 
orthonomal set suitable for the series representation of arbitrary functions defined 
within the cube. In terms of these eigenfunctions we may readily construct the 
Green’s function for the differential operator in (59) which acts on the doublet density, 
N, i.e. 

2a - D(V2 + V’,) + bD2 
2(a f b)” 

(02 -- ,“)’ 1 G = 8(x ~- .x”)6(x’ -- x”‘), (77) 

and 
exp [ik . (x - x”) + ik’ . (x’ - x”‘)] 

2a + D(k” + k’2) ~ bD2 
2(a + b)” 

(k2 __ k’“)2] 
(78) 

The vectors k and k’ have components which take on the discrete values 

,J&?, 
1 

nj = 0, +l, $2,. . . (79) 

If we designate the inhomogeneous term on the right-hand side of equation (59) by 
Q(x, x’), then 

N(x, x’) = 
s 

d”x” d3x”‘G(x, x’, x”, x”‘)Q(x”, xl”), (80) 

where the integration runs over the volume of the cube. It is important to note that 
the Green’s function (78) does not exist for a = 0, the critical condition in the infinite, 
homogeneous medium. 

In order to express (80) in more explicit terms, we assume that our cube is embedded 
in a sufficiently large system that both the neutron source and singlet density may be 
presumed constant over the volume of the cube. Designate these constants by S and 
n respectively. In this case we find that 

Q(x, x’) ---f 2nS + (S + Cn)S(x - x’) 

D 

where 

-- s+ 
a+b i 

C’ = 26 - rc f (j” - 1) rf. 
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If we further assume that the edge length of our cube is very large compared to any 
characteristic neutron length (mean-free paths, diffusion lengths, etc.), we may 
approximate sums over k by integrals. The solution (80) now becomes 

1 
N(x, x’) = &-ye s 

d3x” d3x”’ d3k d3k’ exp [ik . (x - x”) + ik’ . (x’ - x”‘)] 

2a f D(k2 + k”) - 2(abp+Dzbjz (k2 - k’2)2 

(x)[2nS + (S + Cn)S(x” - Xrn) 

D _- 

a+b i 
s + c + C’ n 

2 
(VU2 -t V”‘2)8(X” - x”‘)]. 

Introducing the new variable of integration r = x” - x”’ and approximating 

ss 
d3./ d3x”’ e 

ss 
d3r d3xn’, 

we find after some straightforward manipulations that 

N(x, x’) = !f? + 2s +$yb;“n 6(x - x’) 
a 

+ 
[ 

S + Cn a 2S + (C + C’)n --- 1 exp [- Ix -- x’] J(a/D)] 
. 20 D 2(a + b) 4a Ix - x’] 

Throughout the region in which this solution is valid we have S = na. Also, 
generally, b > a. Consequently, equation (84) may be well approximated by 

N(x, x’) N n2 + nqx - x’)+ W -- l))r,n ew [- Ix - x’l JWD)l 
. 20 47r lx - x’] 

(82) 

(83) 

(84) 

quite 

(85) 

Another convenient way to display this result is in terms of a correlation function 
defined as 

G(x, x’) = 
N(x, x’) - n2 

x2 
3 

which, by virtue of (85) is 

G = 1 S(x - x’) + W - l))r, exp [- Ix - x’l J(dD>l 
* n 2Dn 47r Ix - X’I 

(87) 

A few aspects of (85) or (87) deserve comment. In the first place these solutions 
may not be presumed applicable to the infinite, homogeneous, critical system for 
which a = 0. This point was made explicitly above when it was observed that the 
Green’s function (78) and hence the solution (80) [or (84)], does not exist in that case. 
This is an explicit realization of the earlier surmise that the doublet density has no 
meaning in a critical system (or that the critical system itself has no physical meaning 
in the dynamic sense). Secondly we observe the appearance of a characteristic length, 
J(D/a), which measures the range of correlation in some sense. This length may be 
rewritten according to 

&D/a) = U&l - k), (88) 
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where L is the conventional diffusion length and k is the infinite medium multiplication 
constant in the absence of fast fission and fast absorption. Thirdly we note that 
spatial correlation is proportional to the factor rf, and hence depends strongly upon 
the multiplying properties of the medium. Also, as is perhaps to be expected in- 
tuitively, it is seen that this correlation decreases as the singlet density increases. 
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