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Summary--lt is shown that a transform technique developed for single-input, single-ouput 
time-varying, discrete-time, linear systems can be meaningfully extended to multivariable 
systems. 

1. I N T R O D U C T I O N  

IN THE last several years the use of matrices to characterize time-varying, discrete-time, 
linear systems has been growing. For example, FRmDLA~D [1] has done much important 
work in this area. CRUZ [2] has shown how this idea can be employed in the design of control 
systems. Recently the author showed [3] that many of the frequency response concepts of 
time-invariant systems can be generalized so that they are meaningful for time-varying 
systems. So far attention has been centered on single-input, single-output systems. It is 
the purpose of this article to show that the previously developed methods can be applied, 
after certain changes and re-interpretations, to multivariable systems. 

The systems considered here are those with m input channels and n output channels 
which can be characterized by the following equation: 

yJ(t,)~ k=x ~ ~=, ~ gjk[tt' ts~ xk(ts) f ~:11, ..... ,Nn t (l.l) 

where j , / ,  m, N are positive integers and 

(i) Y~(h) is the output on j-th output channel at the/-th sampling time, 

(ii) gjk[t t, t~] is the output on thej-th output channel at the l-th sampling time caused by a 
unit input on the k-th input channel at the s-th sampling ~ime, 

(iii) xk(ts) is the input on the k-th input channel at the s-th sampling time. 

* The research reported in this article was supported through the Cooley Electronics Laboratory, 
task 12, The University of Michigan by the U.S. Army Electronics Research and Development Laboratory, 
Fort Monmouth, under Contract No. DA-36--039 sc-89227. 
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It is assumed for convenience and not out of necessity that all input and output channels 
are sampled simultaneously, i.e., at 

t l ,  t2 ,  . . . , t t ,  . . . , t~-.  

It can be seen from (l.1) that it has also been assumed that the state of the system before 
tl is such that zero input yields zero output. In case we can not neglect the initial state, it 
can be incorporated into the input and a development similar to the one presented here can 
be carried out. 

We can also write (1.1) as a partitioned matrix equation as follows: 

y(tl) 

y(t2) 

y ( t r / )  

G [ t l ,  t l ]  

= G [ t 2 ,  t l ]  

G [ t t ¢ ,  t t ]  

• . .  G [ t l ,  tt¢] 

. . .  

• . .  G [ t N ,  h¢]  

X(tl) 

X(t2) 

x(tN) 

(1.2) 

where y(tt) is a vector made up of the outputs in the n output channels at the l-th sampling 
time, x(ts) is a vector made up of  the inputs on the m input channels at the s-th sampling 
time, and G [ t t ,  ts] is an n x m  matrix which relates Y(h) to x(t~). The notation can be further 
simplified by writing 

y = G$, where y =  

y(tOI 

y ( t 2 )  l 

y(tN) [ 

x( tOl  

x(t2) I 

x(tN) [ 

(t.3) 

and G, an n N  x m N  matrix, is the partitional matrix in (1.2). 
Since a physically realizable system is one whose present output is independent of 

future inputs, it is clear that (1.2) represents a physically realizable system if and only if 
G i r l ,  ts] = 0 for all s>  l, that is, if the matrix G is "lower staircase". 

The matrix G represents a time-invariant system in 0.2)  if G [ h ,  t s ] = G [ t j - t ~ ]  for all 
I and s. 

It is, of  course, possible to consider a situation where G is an infinite matrix, that is, 
where an infinite number of sampling times, h, spread over the infinite (or, perhaps, semi- 
infinite) time interval are considered. Although the methods presented here can, with a few 
restrictions, be extended to cover infinite matrices, such an extension is of limited practical 
value for two reasons. First, it is usually very difficult if not impossible to obtain the solutions 
of the equations which arise. In fact, often the only way to handle an infinite G is to replace 
it by a finite G. Secondly, infinite time intervals are rarely of practical importance for the 
simple reason that systems are not operated that long. The main reason infinite time 
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intervals are sometimes considered instead of  finite ones (e.g. when using the Laplace trans- 
form with time-invariant, continuous-time systems) is that the mathematical analysis is 
simplified. Here the mathematical analysis is simplified by maintaining the finite time 
interval. 

2. BACKGROUND TO TRANSFORM METHODS 

At this point it is worthwhile to reconsider the basic goal behind transform techniques. 
Simply stated, the goal is to transform, where possible, a given operation into the operation 
of multiplication by a function (e.g., the transfer function). Let L denote some given linear 
operation such that 

y=Lx,  (2.1) 

where x is an element of the input space* or domain and y is an element of the output space 
or range. L is transformed to a multiplication in the desired sense if an invertible trans- 
formation T and a function ~b(2) can be found such that 

L = T -  l~b(2)T. (2.2) 

Thus, i f L  is a linear transformation of a space/-/1 into itself, T is a linear transformation of 
H 1 onto a space/-/2, and multiplication by q~(2) is a linear transformation of H 2 into itself, 
we have the following situation: 

H1---~L~H1 

T  _L!r-1 
2 

A classic example of  such a transformation to a multiplication is offered by the well- 
known use of the Laplace transform with linear, time-invariant systems. There T is the 
direct Laplace transform; ~b(2) is the transfer function with the complex numbers, 2, taken 
along the Wagner-Bromwich contour; and T-1  is the inverse Laplace transform. Another 
well known example in the same spirit is the diagonalization of  a square matrix by means of  
a similarity transformation. There L is the matrix to be diagonalized; T is a non-singular 
(i.e., invertible) matrix; and ~b(2) is a diagonal matrix. This diagonal matrix can be viewed 
as equivalent to a function defined on the integers from 1 through N(L being an N x N matrix). 
Thus, ~b(1) = ~bl, the first entry on the diagonal; tk(2) = ~b2, the secQnd entry; and so on through 
~b(N) = q~N. If, in similar manner, an arbitrary vector upon which the diagonal matrix operates is 
viewed as a function--say x(2), defined on the integers 1 to N-- then operation with the diag- 
onal matrix can be viewed as a multiplication of the function x(2) by the function ~b(2). This 
latter example leads one to refer to the general process as a "diagonalization of  L"  whether 
L is a matrix or not. Moreover, owing to (2.2) this diagonalization is said to be carried 
out on the basis of a similarity transformation. A detailed discussion of the philosophy 
behind such diagonalization applied to continuous-time systems is given by Z^DEH [4]. 
Finally, it must be emphasized that such a diagonalization is not always possible. 

* The element x might be a function or a sequence, for example; the corresponding spaces would be 
function or sequence spaces. In the case of the systems considered in this article the element x is a sequence 
and the space is a sequence space. 
[4] L. Z,~EH, A General Theory of Linear Signal Transmission Systems, J. Franklin Inst. 

293-312 (1952). 



214 A.W. NAYLOR 

In addition to the obvious fact that such a "diagonalization" simplifies the represen- 
tation of the operator L (assuming L is "diagonalizable"), several specific aspects should be 
noted. Perhaps the most important of these relates to the combination of two operators, say 
Lj and L 2, which can be diagonalized by the same transform T. In this case, 

L1 = T-l~bl(2) T 
and 

It immediately follows that 

and 

L 2 = T - lq~2(2 ) T 

L 1 L 2 = T -  l~l(~.)~b2(J.)T 

L, + L 2 = T-1 [~b,(2) + q~2(2)] T 

( 2 . 3 )  

(2.4) 

Thus, T diagonalizes L1L 2 and L~ + L 2 ,  and the resulting "transfer functions" are simply 
~b1(2 ) ~b2(2 ) and q~l(2)+~b2(2). Similarly, T also diagonalizes L2L1. Carrying (2.4) further, 
if L1, L2 . . . . .  L n are a set of operators which can be diagonalized by T. then any polynomial 
function*, say P[L 1, L1 - 1 . . . . .  L,,, L, ,-  1], of these operators and their inverses [where they 
exist] can be diagonalized by Tand  the "transfer function" is given by P[q~1(2), 1/~b1(2) . . . . .  
~b,(2), l/~b,(2)]. Moreover, if P is invertible, T diagonalizes it and the transfer function is 
1/P[q~l(2), 1/~b1(2) . . . . .  q~,(2), I/q~,(2)]. Simply stated an operational calculus is obtained. 
An example is, of  course, given by polynomials of the derivative operator, d/dt, and the 
Laplace transform as T. 

It should be noted in (2.3) and (2.4) that a necessary condition for L1 and L2 to be 
diagonalized by the same T is L1L2 =L2La.  Since not all linear operators commute, one 
can not expect to find one T which will diagonalize all operators. Thus, an all-purpose 
transform, in the sense of (2.2), is not possible. On the other hand, it is possible to find T's 
which diagonalize all members of large classes of linear operators. One such class is made 
up of time-invariant linear differential operators. 

In any event, it is true that given an operator L which can be diagonalized by a trans- 
form T, the operator I + L ,  where / i s  the identity operator, can always be diagonalized by T. 
That is, i fL=T-lq~(2)  T then  I + L = T - ~ [ I  + ~b(2)]Tand the "transfer function" is 1 + ~b(A). 
If I +  L has an inverse, then T diagonalizes the inverse and 1/[1 + ~b(2)] is the transfer function 
of the inverse. Needless to say, operators of the form I + L  are of great interest in control 
theory. In fact, the key equation in classical control theory is 

(I  + L1)y = L2x (2.5) 

If LI and L2 can both be diagonalized by Tand  ( I+L~)  has an inverse, (2.5) can be replaced 
by 

~b2(2) '~" - ( 2 . 6 )  
T y =  1 +~bl(2) l x 

Obviously, this simple operational calculus is very useful. Unfortunately, it can easily occur 
that L~ and L 2 in (2.5) can not be diagonalized by the same T; moreover, it may not be 
possible to diagonalize them at all. 

Diagonalization, then, simplifies the representation of the operator and leads to 
operational calculi. 

* This statement is valid for a larger class of functions than polynomials. 
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In the case of linear time-invariant systems it does more. There the form of the transfer 
function, q~(2), yields insight into the nature of  the system under consideration. In particular, 
the magnitude/q~(2)/has significance and yields insight. Roughly speaking, where/4(2) / i s  
large there is large transmission through the system and conversely. The underlying 
mathematical explanation is Parseval's (Plancherel's) theorem. Unfortunately, in the case 
of operators L which represent time-varying systems, the existence of a transform T which 
diagonalize L does not imply that an analogy to Parseval's (Plancherel's) theorem exists. 
In fact, there are many important situations where one does not exist. 

Let us consider generalizations of Parseval's theorem a little further. Returning to 
(2.1) and (2.2) 

y = Lx  = T - ~b(2)Tx 

Assume that L is a bounded linear transformation from a Hilbert space H t into itself and T 
is an invertible transformation of H1 onto a Hilbert space H 2. Let T x =  X(;t), Ty= Y().), 
and denote the inner products on H~ and H 2 by (y,x)n, and (Y,X)n2, respectively. In the 
case of  square-integrable functions these become 

(y,x) n , =fy( t )x ' ( t )d t  

and (2.7) 
t ~ 

(Y,X)m = j  Y(2)X'(2)d2 

where the x'(t) denotes the complex conjugate of x(t). The goal is to relate (Y,Y)n,, the 
"energy" of the output, to Y(2), the "transform domain" representation of the output, and, 
because Y(2)=q~(2) X(2), also relate it to c b(2) and ,t(2). It follows from (2.1) and (2.2) 
that 

(Y,Y)n, =(Lx ,  Lx)n , 

= ( T -  ~b(2)Tx, T- ' (b(2)Tx)n ,  (2.8) 

=(T-1Y(2) ,  W-'Y(2) )n ,  

If the adjoint* of T -* is designated by (T-1)** and (T - l) ** T-1 is designated by Q, then 
(2.8) becomes 

(Y,Y)n, = (Y().), Q Y(2))n~ (2.9) 

The usefulness of the above expression depends on the nature of the transformation Q. 
The desirable situation is that Q Y(2) be easily expressible in terms of  Y(2). For 

example, if T is a unitary transformationt,  then T -  i = T**; therefore, Q = / ,  the identity 
transformation, and (2.9) becomes 

f f (2.1o) 
which is a generalization of  Parseval's theorem. 

* Recall that the adjoint of an operator A which maps Hi into/42 is that operator A**, mapping/-/2 
into Hi, for which (Au, v)Hl =(u,A**v) 1-I2 for all u in H1 and all v in H2. 

q' Recall that L can be "diagonalized" by a unitary transformation if and only if it is normal, i.e. it 
commutes with its adjoint, L**L=LL**. It is not true that all "diagonalizable" operators are normal. 
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Substituting Y(2) = ~b0.)X(2 ) into (2.10) yields 

(Y,Y)n~ =J ~(2)~b'(2)X(2)X'(2)d2 (2.11) 

For  example, in the case of the Fourier transform pair* 

X(2) = x(t)e-i2~a'dt 

and 

where the implied T is unitary and, thus, Q = I. 
Assuming that the operator L represents the appropriate type of  time-invariant system, it 
can be diagonalized by this T and (2.11) becomes 

y2(t)dt = q~(2) ~b'(2) X(2) X'(2) d2 (2.12) 

Thus, at least when T is unitary and Q=I ,  Iq~(2)l 2 directly and simply characterizes the 
energy transfer capabilities of the system. 

On the other hand, in general the transformation Q in (2.9) need not lead to a simple 
characterization of  transfer properties such as (2.11) or (2.12). In fact, if an operator can 
be diagonalized by a transform 7", there is no reason to expect (without further restriction) 
a simple correlation between the "transfer function" ~b(:.) and the energy-transfer capabil- 
ities of the system. Thus, much of the insight and many of the analytic techniques 
associated with the use of transfer functions based on Fourier (or Laplace) transforms 
may not carry over to the general case. Unfortunately, this is usually the case for G- 
matrices corresponding to physically realizable systems. 

In summary, then, the diagonalization discussed above has certain advantages and 
certain disadvantages. 
The advantages are as follows: 
At. If the operators L1 . . . .  ,Ln can be diagonalized by a transformation T, then any 

polynomial function of these operators and their inverses (where they exist) can be 
diagonalized by T. 
Moreover, if the polynomial function itself is invertible, its inverse can be diagonalized 
by T. These properties of diagonalization allow operational calculi to be devloped for 
classes of time-varying linear systems. In any event, if the transform T diagonalizes L 
and the operator (I+L) is invertible, then T also diagonalizes (I+L) and (I+L) -1. 
The resulting operational calculus is often very useful. 

A2. In certain cases, for example when L is normal, L can be diagonalized in a way that 
leads to a meaningful generalization of  Parseval's (Plancherel's) theorem. 

The disadvantages are as follows: 
Dr. Not all linear operators can be diagonalized in the above way. For  example, not all 

matrices can be so diagonalized. 
D2. Given any transformation T, only a relatively small class of  linear operators with the 

appropriate domain and range will be diagonalized by T. 
D3. In many important cases Parseval's (Plancherel's) theorem can not be generalized. 

* Here x(t) is restricted to the intersection of square-integrable and absolutely integrable functions. 
In order to consider all square-integrable functions the Fourier-Plancherel transform must be used. 
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In the next section, a transform is introduced which overcomes some of  the above dififi- 
culties at the cost of sacrificing advantages. Moreover, it adds an advantage which not even 
the Laplace transform as usually applied to time-invariant systems has: for a multivariable 
system, it yields one transfer f unc t ion  instead of a matrix of transfer functions. 

3. TRANSFORM TECHNIQUE 

LANZCOS [5] has shown that all system matrices, G, can be decomposed as follows: 
G = ( Y A f ) A X  r , (3.1) 

where 
(i) A f =  1/Nand is referred to as an increment of generalized frequency. 
(ii) Y is a matrix whose columns are pairwise orthogonal to one another and each is of  

norm x/N. At this point the norm employed is the familiar Euclidean norm. (This 
decomposition can be generalized so that norms based on arbitrary inner products can 
be employed). If  n, the number of output channels, is greater than or equal to rn, the 
number of input channels, then Y is a ( n N x m N ) - m a t r i x .  If  n < m ,  then Y is an 
( n N  x nN)-matrix. 

(iii) A is a diagonal matrix with all non-negative entries. If  n>~ m, A is an ( m N x  m N ) -  

matrix. If  n < m A is an ( n N  x nN)-matrix. 
(iv) X is a matrix (X r is the transpose of X) whose columns are pairwise orthogonal to one 

another and each is of norm x/N. If  n > m ,  X r is an ( m N x m N ) - m a t r i x .  If n < m ,  

is an ( n N  x mN)-matrix. This decomposition (see Appendix) is essentially the same as 
the one used with single-input, single-output systems [3]. The fact that it is valid for 
nonsquare matrices allows the present extension to multivariable systems. 
As in the case of single-input, single-output systems, it is shown below that X r acts as a 

direct transform, A acts as a transfer function, and (YAf) acts as an inverse transform. 
Case 1 : n > m 

Assume for the moment that there are more output than input channels, that is, n > m. 
The matrices in the decomposition are then of the following structure: 

y =  

y t t ( t t )  yt2(tl) 

y21(tl) y22(tx) 

Y"l(tl) Y"2(tl) 

ytt(t2) y12(t2) 

y21(t2) y~2(t2) 

Y"l( t2)  Y~2(t2) 

yt l(tN) Yt2(ts) 

y2t(tN) y22(ts) 

Y"I(tN) Y~2(tN) 

[5] C. LANCZOS, Linear Systems in Self-Adjoint 

• . . yt,~N(tl) 

• . .  y 2  ( q )  

• • • y ~ , ~ N ( t ~ )  

• . . ylm~(t2) 

• . . y2mN(t2) 

• • • y " m N ( t 2 )  

• . . yl,~N(t~) 

• . . y2ms(tN) 

• . .  y " . N ( t , 3  

Form, Amer. Math• Monthly 65, 665-679 (1958). 

(3.2) 
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An equivalent, simplified form of this matrix is 

y =  

where 

Yx(t,) y2(t,) 

Y,(t2) y2(t2) 

YI(tN) y2(tN) 

y'j(tk) 

y2j(tk) 

y i ( tD  . . . .  

y"j(tk) 

An even more concise notation is 

. . ° 

• . . 

. ° ° 

. ° , 

where 

YmN(tl) 

Y,~N(t2) 

YmN(t~) 

(3.3) 

(3.4) 

Y = [ y , ,  Y~ . . . . .  Y,. , , ] ,  

Yi(t,) l 

Yj(t2) I 

yi(tN) l 

(3.5) 

(3.6) 

Thus, the vectors yi, j =  1, 2 . . . . .  mN, are mutally orthogonal and of norm x/N, that is, 
(Yj, Yk) = 6j'k 1/Af= 6ikN, where Jik = Kronecker delta symbol. 
H. re 

. . . d l  ~ t !  (Yj, YK)=Ylj(q)YtK(tl)+Y2j(tl)vZ~(t,)+ . +)  i( N)Y k(tN) (3.7) 

The matrix is an (mN x raN) diagonal matrix with non-negative main diagonal entries, 

A =  

that is, 

21 

22 

~3 

)'mN 

(3.8)  

where 2i > 0, i=  1, 2 , . . . ,  mN. 
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The matrix X r is an ( m N  x mN)-matrix with mutually orthogonal rows of the form 

xl l ( tO,  x21(11) , . . . ,  xml(tl), Xll(t2), X21(t2) . . . . .  Xm1(t2) . . . .  

. . . .  x 1 l(tN) . . . . .  X 'x( tN)  

Xl2(tl), X22(tO . . . . .  xm2(tl) ,  Xt2(t2), X22(t2) . . . . .  XmZ(t2) . . . . .  

X r . . . . .  Xt2(tN) . . . . .  xm2(tN) 

xi,.r~(t,), xZms(t0 . . . . .  x%.s ( t l ) ,  XtmN(t2) . . . . .  Xmss(t2) . . . .  

. . . .  x l . , , ( t , , )  . . . .  , x % ~ ( t N )  

This matrix can be simplified to* 

or  

X =  

xl(t0 xz(t0 

Xl(t2) Xz(t2) 

. . .  xsN(t0 

• . .  XsN(t2) 

Xt(tN) x2(tN) . . .  X,,N(tN) 

(3.9) 

(3.10) 

* Note that here X and not X T  is written. 

X ~-. [ X l ,  x2  . . . .  , Xmb!], (3.117 

where substitutions analagous to those used with the Y-matrix are employed. Moreover 
the vectors ~ ,  j =  1, 2 . . . .  , rnN, are mutually ortbogonal and (xi, xk)=6~dAf=cSJk  N" 
It is important to note that G-~i=2~Yi, i =  1, 2 . . . . .  m N .  This relation and the orthogon- 
ality of the ~i-vectors and the yi-vectors is the key to what follows. 

It can be seen from (3.1) that the first step in the operation of  a decomposed G on an 
arbitrary input, ~, is Xr~. It will now be shown that this first step can be interpreted as 
taking the direct transform of ~ to obtain its generalized frequency domain representation. 
First note that the orthogonal set of vectors, ~1, • • •, ~mN, spans the linear space of all 
possible inputs. 
Thus, an arbitrary input, g, can be uniquely represented in the form 

mN 
= Y , . ~ j a . f  (3 .~2)  

j = l  

where the rj's are constants• Taking the inner product of  both sides of(3.12) with ~ yields 

r~ = (~, xi) i = 1, 2 , . . . ,  rnN  (3.13) 

for the determination of the r~'s. In a manner similar to that employed in the single-input, 
single-output ease [3], the sequence made up of  the r[s  may be considered to be a "frequency 
domain representation" or transform of ~. Moreover, a pieeewise constant function 
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R~(f), of generalized frequency can be introduced as the frequency domain representation 
of~. This function is obtained by associating an increment Afof generalized frequency with 
each ~i-vector. Thus, R~(f) is defined as follows 

{r~ for ( i -  1)Af<f< iAf, i = 1, 2 . . . . .  mN 
Rx(f)= 0 for m<f<n (3.14) 

where, again, Af= 1IN. An illustration is shown in Fig. 1. The frequency domain is defined 
to include the interval m < f <  n and Rx(f) is defined to be equal to zero on this interval so 
that the input and output frequency domain representations can be compatible. In general, 

A f =  _.1 

~ f 

f = r ~  

= n N A f  

FIG. 1. Typical generalized frequency domain representation of an input. 

the generalized frequency domain is defined to be 0 ~<f< max[m, n]. Since it can be seen from 
(3.11) and (3.13) that 

I t 
r l  

1"2 

x r ~ =  r 3 (3.15) 

I rmN/ 

it follows that Xr~ can indeed be viewed as the direct transform, that is, Xr~ yields R~(f). 
Next, it is easily shown that this generalized frequency domain representation leads to a 

meaningful generalization of Parseval's (Plancherel's) theorem. In fact, trivial calculations 
show that 

mN I n 
(~, ~)= ~ rj2Af= RxZ(f) df, (3.16) 

./= I JO 

that is, R=2(f) can be viewed as "energy" per unit bandwidth. 
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In a similar manner, the generalized frequency domain representation of an arbitrary 
output, y, is given by 

mN 

y= ~ c/y/Af, (3.17) 
j = l  

and it follows that a function Cr(f), analogous to Rxff), can be defined in the generalized 
frequency domain, 0 < f <  n, by 

{ci for ( i - 1 ) A f < y <  iAf, i=  1, 2 , . . . ,  mN (3.18) 
C r ( f ) =  0 for m<f<n 

so that 

(,, ,)= f :  Cr2(f) df (3.19) 

and Cv(f ) can be viewed as the transform of y. It should be noted that an arbitrary vector 
in the nN-dimensional vector space which contains the output vectors, y, need not be a 
linear combination of the y~-vectors as in (3.17). The yfvectors span only the raN-dimen- 
sional subspace which is the range of the G-matrix under consideration. Therefore, this 
transform is not, as presented here, applicable to the whole nN-dimensional vector space. 
Cr(f) has been defined equal to zero for m <~f< n in order to emphasize the fact that the 
range of G is a proper subspace (recall that here we are considering the case m < n). 

The functions Rx(f) and Cr(f), then, are the frequency domain representations of the 
input and output, respectively. The subscripts X and Y indicate that the transforms are 
with respect to the xi" and yi-vectors, respectively. It is now easy to introduce a generalized 
transfer function relating Rx(f) and Cv(f). It is clear from the decomposition (3. I) that the 
output corresponding to an input ~i is 2i~ ~. Thus, in the spirit of the definitions of Rx(f) 
and Cy(J), the transfer function for the system can be defined by 

A(i)={~,for(i-1)Af<f<iAf, i = l ,  2 , . . .  , ,nN 
for m < f <  n. (3.20) 

It follows that the generalized frequency domain representation for the system operation is 
given by 

Cr(f)=A(f)Rx(f) O<f <n (3.21) 
and from (3.19) that 

(Y, Y)= f: A2(f) Rxe(f) df (3.22) 

This equation along with (3.16) and (3.19) is, of course, one of the primary justifications 
employing the present decomposition of G. It can be seen l~y comparing (3.22)with (2. I 1) 
or (2.12) that it is the desired generalization ofParseval's (Plancherel's) theorem and A(f) 
simply and meaningfully characterizes the "energy" transfer properties of the system under 
consideration. 

Finally, it follows from (3.5) and (3.17) that the matrix multiplication of AXr~ by 
(YA.f) is equivalent to transforming Cr(./) to the time domain by the "inverse transform" 
( Yajq. 
Case II: m >~ n 

So far it has been assumed that n>m; if m>n it is merely necessary to interchange the 
roles of m and n. The frequency domain becomes 0 < f < m .  The matrix Y becomes an 
(nNxnN)-instead of an (nNx mN)-matrix, A becomes an (nNxnN).instead of an (mNx 
mN)-matrix, and X r becomes an (nNx mN)-matrix instead of an (mNx mN)-matrix. 
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ADVANTAGES AND DISADVANTAGES OF DECOMPOSITION 

In the foregoing section the original operation has been transformed to a multiplication 
by a function A(f )  defined on the interval O<~f<n (or O<~f<m depending on Case I or II). 
However, this has not been accomplished by means of the similarity transformation 
discussed in Section 3, for the inverse transform implied by (YA[') is not necessarily the 
inverse of the direct transform implied by X r. The question is how do the advantages and 
disadvantages of  this transform method relate to those listed at the end of Section 2. 

What about  an operational calculus? Consider the following salient points. First, 
consider tandem operation of two systems Gt and G2. Given that 

G1 =(YIAf)A1Xt ~ 
and 

G 2 =(  YeAf)A2X2 T 

for operational calculus purposes the desirable situation is to have* 

GxG2 =(Y1Af)AIA2Xz r 

A sufficient condition for this reduction to take place is )'2 = Xx, for then X~r(Y2Af)=I. 
When GI and G2 are invertible this condition is necessary, for then 

(YxAf)A1A:Xz r =(Y~Af)A~Xtr(Y2Af)AzX2 v 

which yields 

and 
A1A2=AtXtr(Y2Af)A2 

X,T(Y2Ay)=t 

which implies that )'2 = X1. In case G t or G2 or both are not invertible, it again follows that 

AIA2 =A1Xa 7(yAf)A,_ 

When A t and Az are both invertible (this can happen in spite of  G t and/or GE not being 
invertible), Y2 = X1 is still a necessary and sufficient condition. 

If either At or A z or both are not invertible, that is, have zero entries on the main 
diagonal, then Yz = X~ is no longer a necessary condition for some of  the rows in X1 r and 
some of the columns of Y2 may be multiplied by the possible zero entries in As and A2, 
respectively. It follows that the necessary condition becomes that Y2 = X~ except for the 
columns multiplied by zero. However, since these latter columns are not uniquely deter- 
mined and can be chosen so that the corresponding ones in Y2 and X1 are equal to one 
another, it can be said that the desired reduction takes place if and only if Y2 and X t can be 
selected so that they equal one another. Finally, note that this is a general statement that 
applies in all cases where the decomposition of  G~ or G2 is not unique. 

It follows from the foregoing remarks that given Gt = ( Y1Af)At "r~rl T, one  representation 
for the set of  all G2's for which GtGz=(YIAf)AIA2X2 T is 

G2 =(XIAf)A2X2 r , 

where A 2 and X 2 are arbitrary or constrained by the requirements of  physical realizability. 

* Here it is assumed that the indicated matrix multiplication makes sense. 
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In any event, this class of G2's is not empty; therefore, the concept of  the product of  two 
transfer functions representing tandem operation does carry over in a certain sense. 
On the other hand, it is true, for example, that the transfer function of  G z is not necessarily 
A2(f), and this would be true if a similarity transformation were used. 

Next consider the question of the decomposition of I +  G.* If the decomposition of G 
is given by 

G = ( Y A f ) A X  T 

and Y# X, it follows that (YAf) I X r #  L Then 

I + G v~ (YAf)(I  +A)X r , 

which means that except for the special case Y= X, decompositions of I +  G and G cannot 
be carried out by the same Y and X transformations. This is not the case, of course, when 
similarity transformations are used. 

Still on the subject of an operational calculus, the parallel connection of systems is 
also of interest. Let G represent the parallel connection of G1 and G2, that is, G = G~ + G z. 
It can be seen that if G 1 = (  YAf )A1X  r and G2--~- ( YAf)A2 X r, that is, if G1 and G 2 have the 
same Y and X-matrices, than G = ( YAf)(A 1 +A2)X r. Thus, the same transforms ( Y and X) 
are associated with G1, G2, and G, and the transfer function A for the sum GI + G2 is the 
sum A 1 + A  2. 

In summary, when the decomposition presented in this article is employed a multi- 
plication and addition of transfer functions results for certain classes of tandemly and 
parallel connected systems--just as multiplication and addition of transfer functions results 
for certain, presumably other, classes of tandemly and parallel connected systems when a 
decomposition based on a similarily transformation (Section 2) is used. 

In regard to a generalization of Parseval's (Plancherel's) theorem, it is clear from the 
foregoing discussion that a meaningful generalization is always possible. This is an 
extremely important property and one which is not present when similarity transformations 
are employed. 

Another extremely important property of the present decomposition, and one not 
present with a similarity transformation, is that it can be applied to an arbitrary system 
matrix, G. 

One last point: The nature of the transform implied by the matrix X r and its constituent 
~rveetors should be carefully appreciated. Since arbitrary inputs, ~, are represented as 
linear combinations of the ~i-vectors, the ~ ' s  can be viewed'as basic or fundamental inputs, 
and the response to these fundamental inputs completely characterizes the system. A key 
point is that these fundamental inputs can and probably do involve simultaneous inputs on 
more than one channel, which is in contrast, for example, to the approach to time-invariant 
multivariable systems implied when the final system characterization is a matrix made up 
of transfer functions. There each column of the transfer function matrix is the Laplace 
transform of the output when a unit impulse is applied to one input channel while the other 
input channels have zero input. 

Thus, the present approach might be characterized as treating all input channels simul- 
taneously rather than one at a time. Related remarks can be made regarding the (YAf) ma- 
trix and its constituent ~i-vectors. 

* Here G is assumed to be square. 
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5. EXTENSION OF SINGLE-VARIABLE RESULTS TO 
MULTIVARIABLE SYSTEMS 

It has been shown [3] that many important results follow from the matrix decomposition 
discussed in the foregoing section when it is applied to matrices representing two-port 
systems (single-input, single-output channel systems). Since the same decomposition has 
been applied here to matrices representing multivariable systems, it is not too surprising 
that many of the results pertaining to two-port systems also pertain to multivariable systems. 
Some of  these extensions are outlined below: 
Gain: The entry 2~ on the main diagonal of the A-matrix is referred to as the gain over 
the frequency interval ( i -1 )Af_<f<  iAf. 

Gain-squared bandwidth product: 
The gain-squared bandwidth product, *(G), is defined by 

¢<G)=f o 
Moreover, it should be noted that 

rnin [m,n.] 
A2(f)df = Z 2,2Af • (5.1) 

i = l  

i , j ,k , l  

where the gij[t k, h]'s are the elements of G. 

Norm of  G: 

The norm of  G, IIG[I, is defined by 

It can be shown that 

g,7[t,,t,]N 

I[GII =max G II. 
[K =1 

JIGIJ = m a x  :,, (5.2) 
i 

Assuming for the moment that the 2:s  are distinct and that 2~ > 22 > • • • >2.N (or 2,.N), 
it follows that for all K-vectors of a fixed norm, say x/N, the one causing an output vector 
with a maximum norm is i t  and the corresponding output vector is 21y t. Considering all 
input vectors of norm x/N which are orthogonal to ~t, the one which causes an output 
vector with a maximum norm is ~2 and the corresponding output vector is 22y 2. This 
pattern continues through x.N (or x,~r¢) and 2.NY,N (or 2.mYroN). This is an important property 
of the decomposition presented and shows that the ~i and yi-vectors characterize the 
"extremal" inputs and outputs of  the system. 

In case the 2~'s are not all distinct, as assumed above, any linear combination of X~- 
vectors associated with equal 2:s  with a fixed norm (say norm equal ~ N )  yields an output 
vector whose norm is (l) independent of  the linear combination used, and (2) the maximum 
output norm possible over the appropriate subspace of inputs. For  example, if 21 >22 
> . . .  >2j=Aj+1>Aj+2 > . . .  >2,N (or 2,,N) and the input vectors of norm x/N which 
are orthogonal to xl ,  x2, • • •, x~-1 are considered, the ~'s associated with the maximum 
output norm are all linear combinations of  the form a~j + b~j + 1, where a2+ b2= 1, and the 
corresponding outputs are aAjyj + b,~j + lY + 1 = 2y(aYi + byj + 1). 
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It is interesting to note that the foregoing extremal properties of the xi" and Yrvectors 
show that the decomposition of a G-matrix corresponding to a physically realizable system 
is equivalent to a sequence of optimalization problems. Assume that the usual state 
variable description of a physically realizable system is given, that is, 

z(h + 1) = A(h)z(h) + B(h)x(h) 
Y(h) = C(t,)z(h) + D(h)x(h) 

where z(h) is the state of the system at the l-th sampling time, Y(h) and x(h) are as previously 
defined, and A, B, C, D are time dependent matrices. The initial state is assumed equal to 
zero, that is, z( t l )=0.  The system matrix, G, is, of course, implicitly determined by this 
equation• In order to simplify the discussion, assume the 2{s of G are distinct and 2~ > 

~2 > . . . .  
The output y~ and the input xi are determined by the following optimalization problem: 
Select that input ~ subject to the constraint I1 11 < 4N which maximizes the norm of the 

output IlYli= 116xll. The selected input is xl and the corresponding output is 21y 1. 
The vectors Y2 and ~2 are determined by the following problem: 
Select that input ~ subject to the constraints I1 11 < 4N and (~, xl) =0  which maximizes 

the norm of the output IlYII. 
This sequence of optimalization problems can be continued lantil all Yi- and Ks-vectors 

are determined. It seems likely that computational algorithms based on these optimali- 
zation problems will be of great value. 
Bandwidth: 

As in the case of two-port systems, a meaningful generalization of the concept of band- 
width is given by 

B , ~ ( G )  w = { ] ~ .  (5.3) 

Physical realizability : 
Let* the columns of the matrix X r be designated by fij(tk), where 

xJi(t~) 

XJ2(tk) 

uj(tk) = xJ3(tk ) ~ k = l ,  2 . . . . .  N (5.4) 
f 

{ j = l , .  . , m 

xJ.N(t~) 

The fij(tk)'s are referred to here as the input ensemble vectors. Let the rows of the matrix 
(YAf)A be designated by ~j(tk):, 

21yi~(tk) 

22YJ2(tk) 

vs(t,) = 

f - -  

j k _ - , ,  2 . . . . .  N (5.5) 
1, 2, , n 

2mN.}'JmN( tk) 

* I t  is a s s u m e d  h e r e  t h a t  n >~ m. I f  m > n t he  s u b s c r i p t s  m u s t  b e  a l t e red  acco rd ing ly .  
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The ~j(tk)'s are referred to as the output ensemble vectors. As mentioned before, the matrix 
G corresponds to a physically realizable system if 

G[tk, t ,]=O for r > k . (5.6) 

This is easily shown to be the case if and only if 

(Vj(tk), Ut(tr))=O for r > k .  (5.7) 

That is, the output ensemble vector at time t k must be orthogonal to all input ensemble 
vectors occuring later in time. Roughly speaking, the output at any time is "independent" 
of all future inputs. 

6. EXAMPLE 

As mentioned before, CRUZ [2] has discussed the design of control systems from the 
system matrix viewpoint. A point in his approach is the selection of the desired system 
matrix, G o (CRVZ uses the symbol "F"),  and the desired sensitivity matrix, S, (a concept 
which is not discussed here). In simple cases, once GD and S are given the appropriate 
compensation system can be determined in a straightforward manner. However, it is not 
often clear what the initial selection for G o (and S) should be. The purpose of the following 
example is to indicate the manner in which the transform technique presented here yields 
insight into this latter problem. In order to simplify the example, questions of feedback are 
left aside and only the filter aspects of the problem are considered. 

Suppose that the plant under consideration is a two-input, two-output characterized 
by the following difference equation: 

yX(k) [ 

.v~(k) l 

k - 1  1 k - I  
l0  - - W  

k - 1  k - 1  

10 10 

y l ( k -  1) 

y2(k-1)  

(k = l ,  2 . . . . .  8) 

(6.1) 

-y~(O)- 

Denote the system matrix implied by this difference equation by Ge. Let the problem be 
to select a compensation system Gc so that GeGc is equal to or some approximation to a 
desired total system behavior characterized by a system matrix Go. 

The desired system Go is selected on the basis of (1) wanting to decouple output channel 
number one (two) from input channel number two (one), and (2) wanting the two uncoupled 
channels to act as ideal filters (see [3]). 

In fact, it is assumed that in the decomposition of Go 
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21 = 1, xl =Yl =[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] 

22 = 1, x 2 = Y  2 =[0 ,1 ,0 ,1 ,0 ,1 ,0 ,1 ,0 ,1 ,0 ,1 ,0 ,1 ,0 ,1]  

23= 1, x3 =y3 = [1,0,1,0,1,0,1,0,- 1,0,-  1,0,- 1,0,-  1,0] 
(6.2) 

24 = 1, ~ - y 4  = [0,1,0,1,0,1,0,1,0,- 1,0,-  1,0,-  1,0,-  1] 

25 = 1, ~ =y5 = [1,0,1,0,- 1,0,-  1,0,-  1,0,-  1,0,1,0,1,0] 

26= 1, x6 =~6= [0,1,0,1,0,- 1,0,-  1,0,-  1,0,-  1,0,1,0,1] 

27 ----28 . . . . .  216 ----0 

Since the remaining ~ ' s  are multiplied by the zero 2~'s, we need not specify them. Given 
the Y, A, X matrices, the implied system matrix (6.3) is shown on the next page. 
Since the entries above the dotted line in (6.3) are not all zero, it follows that the resulting 
G D does not represent a physically realizable system. Thus, it is not possible to obtain the 
originally desired system. At this point there are many ways to proceed. In order, again, 
to keep this example simple, the easiest path is chosen. Replace Go by the matrix GDR 
corresponding to the physically realizable system which is the best approximation to Go in 
the gain-squared bandwidth product sense, that is, GDR minimizes ¢P(Ga-GoR). 

Since 

i , j ,k,I  

it follows that GDR is simply (6.3) with each of the entries above the dotted line set equal to 
zero.  

At this point it is important to obtain more insight into the nature of the new system 
GDR. This insight is obtained from the decomposition of GDR which is given in (6.4), (6.5) 
and (6.6). 
The ~-vectors in the X-matrix have been arranged according to the number of sign changes 
occuring in the vector. Thus, the k-th E-vector has ( k -  1) sign changes. It happens for the 
system under consideration that this arrangement of the ~ ' s  causes the y~'s to be arranged 
in the same manner. Roughly speaking, a vector with a few sign changes can be viewed as a 
"low frequency" vector and one with many sign changes can be viewed as a "high frequency" 
vector. 

We see that approximating Go with GoR has not destroyed the decoupling between the 
two channels. However, each channel, as was to be expected [3], is no longer an ideal filter. 
On the other hand, each still has roughly the desired characteristics. High gain is asso- 
ciated with "low frequencies", that is, 21, 22 . . . . .  24 are large, and low gain is associated 
with "high frequencies", that is, 27, 28, • • •, 216 are small. Moreover, the ~-and y~-vectors 
obtained are roughly cgmparable with the desired ones. 

Finally, the system matrix, Go for the compensation is obtained from the equation Gc = 
Gp-IGOR, where the matrix Gp -1 is simply a restatement of the difference equation (6.1). 
The resulting Gc is given in (6.7). 
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7. CONCLUSIONS 

It has been shown that multivariable, time-varying, discrete-time, linear systems can be 
handled in a manner equivalent to single-input, single-output systems. A transform tech- 
nique for the latter systems is extended to multivariable systems, and frequency response 
concepts are shown to carry over in a straightforward way to multivariable systems. 
The key point of  the present development has been a de-emphasis of the channelized 
character of  the input or output and the treatment of an arbitrary input or output as a 
single vector in a linear vector space. Thus, much of  the insight associated with single- 
input, single-output systems has validity for multivariable systems. 

Although a connection has been made between the transform technique introduced 
here and certain optimalization problems, it is important to note the philosophical difference 
between the "optimalization" approach to time-varying linear systems and the approach 
presented here. At the risk of gross oversimplification, it can be said that the "optimali- 
zation" approach is based on ignoring all but optimum system behavior. Whereas, the 
approach presented here is an attempt to obtain insight into all aspects of systembehavior, 
suboptimum as well as optimum. 
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(a) 

APPENDIX 

It  is worthwhile to make a few remarks regarding the details of  this decompositon. 
Given a system matrix G the decomposition indicated in (3.1) can be carried out in the 
following manner. Since 

Gr=(XAf )AY  r 
and 

1 
y r y = l-~f 

even for rectangular Y's, it follows that 

GrG =(XAf )A2X r 

Thus, the columns of the matrix X are eigenvectors of GrG and the main diagonal 
entries in A are positive square roots of  eigenvalues of  GrG. Given X and A, the Y- 
matrix is determined from the relation YA---GX. 

(b) If  the matrix G has at least as many rows as columns, the square matrix GrG is the 
same size as the square matrix A2; therefore, all the eigcnvalues and eigenvectors of 
GrG enter into the formation of A and X. 

(c) If G has more columns than rows, the square matrix GrG is larger than the square 
matrix A 2. However, the ranks of GrG and A 2 are the same. Thus, all the nonzero 
eigenvalues and associated eigenvectors of GrG enter into the formulation of A and X. 
IfA is not filled by the nonzero eigenvalues, the remaining entries on the main diagonal 
of A are equal to zero. 
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Note that there are two ways for a G with more columns than rows to have a non- 
trivial null space: (1) it automatically has one of dimension equal to the number of  
columns minus the number of rows, and (2) it has one of larger dimension if the rows 
of  G are not linearly independent. 

(d) The matrix A is uniquely determined. The matrices X and Y are not. If  the entries in 
A are distinct this lack of uniqueness is trivial and arises from the fact that ( -  1) times 
an eigenvector is also an eigenvector. Thus, the matrix X is determined except for a 
sign ambiguity on each of its columns. If the entries in A are not distinct, the lack of 
uniqueness is slightly more complicated. The geometric multiplicity of certain eigen- 
values of GrG is greater than one, which means, of course, that each subspace spanned 
by the eigenvectors associated with each of these eigenvalues has dimension greater 
than one. Therefore, any orthogonal basis for one of these subspace can be used for 
columns in X. An extreme example is given by the decomposition of the identity 
matrix 1, in that case any orthogonal matrix can be used for the matrix X. 

Assuming that A and X are chosen, Y is uniquely determined if A has no zero 
main diagonal entry. Otherwise the columns of Y which are orthogonal to the range of 
G are not uniquely determined but this is very trivial. 

R6sum6--II est montr6 qu'une technique de transformation, developp6e pour des syst6mes 
lin6aires, fi temps discret, variant dans le temps et ~, entree et sortie uniques, peut etre 6tendue 
d'une mani/~re significative,/~ des syst6mes/t variables multiples. 

Zusammenfassung--Gezeigt wird, wie ein ftir einschleifige lineare zeitvariante Abtastsysteme 
entwickeltes Transformationsverfahren auf entsprechende vermaschte Systeme ausgedehnt 
werden kann. 

A6CTlmKT--I'Ioxa3aHO, ,tTo TexHnra npeo0pa3oBaHHHl~, pa3pa6oTaHHaa ~I.qa .rlHHei~HblX 
CHCTeM C ~HCKpeTHblM BpeMeHeM, nepeMeHHblX no BpeMeHH H o6naaa~omax aaxub o~oi~ 
BXO}]HOI~ 14 O.~HO~ BblXO,~HOI4 Koop~HBaTO~i, Mox~eT ~blTb pacnpocTpaueHa ttazi.qe~atutlM 
O(3pa3OM Ha MHOFOKOOp~I,IHaTHble CHGTeMbI. 


