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Models for optional stopping in statistics are also normative models for tasks in which 
subjects may purchase risk-reducing information before making a decision. A Bayesian 
model for optional stopping for the two-hypothesis continuous case is developed; it 
takes explicit account of cost of information, values of the possible outcomes of the 
final decision, and prior probabilities of the hypotheses. 

A nonparametric model for choice reaction times is derived. It makes strong pre- 
dictions about times and errors; only one quantity in it is not directly observable. 

A second example uses the model to design and predict results of a binomial informa- 
tion-purchase experiment. 

I f  information needed for a decision is costly, it may not be optimal to decide in 

advance how much information to collect. Instead, it may be preferable to decide 
after each observation whether or not to seek the next one. This strategy permits 
exploitation of good luck; if a small set of observations happens to be sufficiently 
conclusive, there is no need to buy more. The stopping rule should be chosen to 
maximize the expected value of the process, considering both cost of information 
and costs and payoffs that may be incurred as a result of the terminal decision. 

Choice of a stopping rule in sequences of information purchases is a well-known 
problem of classical statistics. More importantly for psychologists, it is a model for 
a number of interesting tasks. In a choice reaction task, for example, a subject must 
decide on the basis of observations which of two (or more) stimuli has been presented 
to him and make the appropriate response as fast as he can. Instructions to be both 

’ This research was supported in part by Contract AF 19(604)-7393 monitored by the Decision 
Sciences Laboratory, Directorate of Computers, Electronics Systems Division, Air Force Systems 
Command, in part by the Advanced Research Projects Agency under Contract SD-97 with the 
System Development Corporation, and in part by Grant AF AFOSR-192-63, monitored by 
the Air Force Office of Scientific Research of the Air Force Office of Aerospace Research. 
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fast and right imply a cost for observing and a payoff for correct decision; in some 

experiments, those costs and payoffs are explicit. For a second example, direct ex- 
periments on information purchase as a preliminary to decision are a part of several 
current programs of research on human processing of probabilistic information. 
And the seeking of costly information is a natural function of every real-world 
system for making important decisions. Although the formal development pre- 

sented here is statistical, I expect the more important applications will not be, and 
in fact neither of the applications to be used as examples in this paper are from 
statistics. 

The names used within statistics for this class of problems are optional stopping 
and sequential decision-making. Wald formulated the problem explicitly in 1947, 

and Blackwell and Girshick (1954) and many others have contributed to it from the 
viewpoint of classical statistics. Blackwell and Girshick also consider it from a Bayesian 
point of view, as do Schleifer (1961) and others. The formal development presented 

in this paper is elementary, both mathematically and statistically. Nevertheless, I 
have not been able to find any explicit presentation of it in the statistical books or 
journals. The problem is formulated, in many far more general forms, in Blackwell 
and Girshick (1954); one exercise (10.5.5, p. 278) invites the reader to find for himself 
the solution for the explicitly soluble case of interest in this paper. After a draft of 

this paper had been circulated for comment, my attention was called to an unpublished 
Ph. D. thesis by Schleifer (1961). Schleifer presents essentially the same derivation 
for the case of two normal distributions with equal variance only, and does not discuss 
the more general problem. Much of his analysis relates his problem to Bayesian 
analysis of fixed-sample-size experiments. The derivation presented in the first part 
of this paper is, then, at most a minor extension of information available from Blackwell 

and Girshick and Schleifer. Nevertheless, it is worth presenting here, both as a basis 
for the psychological applications to be discussed later in the paper and because the 
other presentations are fairly inaccessible, because of mathematical difficulty or lack 
of circulation. 

This paper adopts the Bayesian view that probabilities are orderly opinions about 
uncertain events and that statistics is a set of procedures for revising those opinions 

in the light of relevant information. (For extensive discussions of this approach to 
statistics, see Edwards, Lindman, and Savage (1963) and the books and papers they 
cite.) This paper first presents and solves the formal problem. It next considers two 
nonstatistical applications of the solution. One uses the model as a descriptive model 
for choice reaction times. The second uses the model as a tool for the design of in- 
formation-processing experiments and as a model for the resulting data. 

A major difficulty in sequential analysis and study of stopping rules is that observa- 
tions are discrete. In a Bayesian formulation this means that the posterior odds cutoffs 
that define the optimal stopping rule cannot in general be precisely reached. Much 
of the mathematical difficulty of the problem results from this discreteness. This 
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paper ignores it and instead treats observations as though they were continuous, so 
that stopping points can be reached precisely. Consequently, its computational 
formulas should be thought of as approximations, usually excellent ones. 

THE FORMAL PROBLEM AND ITS SOLUTION 

This paper is about the problem of simple dichotomy. Observations are generated 
by a well-defined data-generating process that is known to be in one or the other 
of two states. Hypothesis HI asserts that the process is in state 0i; hypothesis H,, 
asserts that the process is in state 8,. 

A Bayesian decision maker will base his decisions on costs, payoffs, and his current 
probabilities for the two hypotheses. For dichotomies, it is convenient to consider 

these probabilities in the form of odds. Bayes’ theorem says 

(1) 

and 

where p(H, / D) is the posterior probability of HI on the basis of the data, p(H,) is 
its prior probability, p(D / HI) is the probability that the data would have been observed 
if HI were true, K is a constant of proportionality that the likelihood principle of 

Bayesian statistics (see Edwards, Lindman, and Savage, 1963) tells us is irrelevant to 
interpretation of data, and the quantities in Eq. 2 have analogous interpretations. 
Division of Eq. 1 by Eq. 2 yields 

or, in simpler notation to be used throughout the paper, 

Q, = L.c& (4) 

The symbol i2(Hl/Ho 1 0) = Qi stands for the posterior odds in favor of HI over 
H,, on the basis of datum D; Q(H,/H,,) = Q,, is the prior odds. The word odds (here 
used as a singular noun) refers to exactly the concept used at the race track. The 
symbol L(D 1 HI/H,,) = L is the familiar likelihood ratio of classical and Bayesian 
statistics. So Eq. 4 is simply a convenient form of Bayes’ theorem for problems of 
simple dichotomy. 

In Bayesian statistics, or at least in the version adopted here, a probability, or an 
odds, characterizes the opinion of some particular person, That person, called you 
in this paper, is assumed to be remarkably consistent and rational, to have unlimited 
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costless computational abilities, and to have enough money to be able to pay any 
losses he might incur. 

Continuous sequential sampling. Your prior odds may so favor HI or HO that, in 
view of the economic constants of the problem, you will act as though one or the 
other is true without sampling. Or you may buy an observation or batch of observa- 

tions; in what follows, batches of observations will be treated as single observations. 
After observing, you face the same three possible acts as before. Since observing is 
expensive, some value of the posterior odds will be just small enough so that you will 
decide immediately for the act appropriate to H,, , and some value will be just large 

enough so that you will act appropriately to HI. Call these cutoff values Q, and L?* 
respectively. I f  your current odds lies between them, you will continue observing. 

The choice of cutoff odds will reflect both cost and payoff considerations, but will 
be independent of prior probabilities and will not be influenced by 1z, the measure 
of how much observing you have already done on this trial and so of how much you 

have already spent. Money spent observing is down the drain except insofar as the 
observations purchased have moved the odds; you always consider your immediate 
situation as though you had not collected any information previously. The point is 
counter-intuitive, but can be made less so by pointing out that the same thing is 
true of poker. The amount of money you have already contributed to the pot is entirely 

irrelevant to whether you should stay or fold; the only relevant considerations are 
the anticipated value of the pot, your estimate of your chances of winning it, and how 
much more it may cost you if you lose. None of these arguments apply, in poker or 
in this paper, if your resources are so limited that you may run out of money or time. 

Finding optimal cutoffs. Equation 4 implies the following two equations: 

and 

L?* = AQ, (5) 

i& = BL’, (6) 

where A is the likelihood ratio just large enough to transform your prior odds into the 

upper posterior odds cutoff, and B is the likelihood ratio just small enough to transform 
your prior odds into the lower posterior odds cutoff. The conditional probability that 
you will accept HO when HI is correct will be called /3. Similarly, the conditional 
probability that you will accept HI when H,, is correct will be called LY. 01 and /3 are the 
operating characteristics of the test, in classical statistical language. It is convenient 
to compile in a set of equations the relations among the quantities so far discussed. 
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B(A - 1) ___- 
p= A-B 

Q*(Q* - %I) =---, 
t-Q* - Q*)-% 

(9) 

(10) 

Expected sample size. Wald (1947, Eq. 3:57, p. 53) gives a general expression 
for the expected sample size as a function of A and B. It is: 

L(B) In B + [I -L(0)] In A 
E,(n) = __~__ --__ 

-R&) __ ’ (11) 

E&z) is the expected sample size as a function of 0, the true mean (or other parameter) 
appropriate to the state of the world which in fact obtains. L(B), the operating character- 
istic function of the procedure, is the probability that the sequential process will 
terminate with the acceptance of H, when 8 is the true parameter. Thus it is 1 - (Y 
when Ha is correct and @ when Hr is correct. The symbol z stands for the logarithm 
of the likelihood ratio for one observation. Ee(z) is, then, the expected value of z when 
13 is the true parameter. Only through E@(z) do the distributional characteristics of the 
particular problem enter into the selection of 9, and Q*. But 9, and sZ* can vary 
without affecting E@(z) in any way; that is, E&z) is completely determined by the 
nature of the data-generating process and is not a function of Q, and 52’. It is therefore 
appropriate to treat E,(z) as a constant in determining optimal values of Qn, and Q*. 
Later, the paper examines specific cases and so gives specific definitions of Eo(z). 

Substitution from Eqs. 7 and 8 into 11 produces: 

Eo”(n) = E&) -L [(l - CX) In $& + 01 In *] . 

Selection of (Y and j?. Assume that the payoff matrix for correct decisions and errors 
is the following: 

State of the world 

HO true HI true 

Course of action HO a b 

is appropriate to HI c d 

where a, b, c, and dare amounts of money (assuming your utility function for money 
to be linear over the relevant range). Now the strategic aspects of the situation are 
unchanged (assuming your supply of money is large relative to a, b, c, and d) if you 



OPTIMAL STRATEGIES FOR SEEKING INFORMATION 317 

receive a (possibly negative) present of --a dollars whenever H,, is true and -d dollars 
whenever Hr is true, regardless of your decisions; these presents are simply windfall 
profits or losses, utterly irrelevant to your selection of strategy. Thus the following 
payoff matrix is strategically equivalent to the previous one: 

State of the world 

Course of action 

is appropriate to 

Ho true HI true 

HO 0 b-d 

(= Vd 

HI C--n 0. 

(- VI,) 

For simplicity, the following development uses this second form of the payoff matrix. 
For convenience, define Vi, = c - a and V,,, = b - d. The probability of obtaining 
V,a is the prior probability of H,, , p(H,,), t imes 0~. Similarly, the probability of obtaining 
I’,, is p(H,), times 8. It is assumed that V,, and V,, are negative, that is, they are 
losses, in the formal decision theory sense of that word. 

It is convenient to assume that the cost of n observations is a linear function of n, 
say t + UK Like V,, and I’,, , u is assumed negative. Since t is inevitable, it plays 
no role in strategy selection; the following development simply omits it. If it were 
carried along, it would drop out of the equations as a result of differentiation. Non- 
linear costs of observing complicate things, usually intolerably. 

Now it is possible to write an equation, putting together the parts of the expression 
for expected cost. It is 

(14) 

(Note thatp(H,J and ~(25,) are the prior, not the posterior, probabilities of the hypothe- 
ses,) To find the optimal values of 01 and 8, it is appropriate to differentiate Eq. 14 with 
respect to 01 and j3, set the resulting equations equal to zero, and solve them as a 
system of simultaneous equations in two unknowns. The operations are straight- 
forward and conventional; they need not be exhibited here, 

It is convenient to define 
V&+) 

FE-------, 

Cl&~ 
G= 

u ’ 
and 
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Note that, since Vi, , VOi , and u are all negative, F and G are required to be positive. 
Since both Vi, and u are in dollars (or equivalent measures of cost) and z is the 
logarithm of a ratio, F and G are dimensionless constants. Using these aggregated 
constants, the fmal forms of the equations for the posterior odds cutoffs become 

F-Hlng+Q*-Q* ==O, 
* 

G - H ($- - ir) - In g = 0. 
* * 

Note that prior odds and prior probability do not appear in Eqs. 15 and 16. They 

dropped out in the course of the simplifications following differentiation. As asserted 
earlier, your prior odds are irrelevant to your choice of posterior odds cutofls. 

Equations 15 and 16 are transcendental; explicit solutions are not to be anticipated. 
Nevertheless, they are reasonably simple as they stand. Trial and error methods will 
often produce acceptable solutions.2 

Simplifications resulting from symmetry. The constant H is, of course, designed 

to be 1, and will be so in almost all applications. It will be so, for example, in the case 
of two normal distributions differing only in mean, the case of two binomial distribu- 
tions whose parameters are located symmetrically around 0.5, and some others. 
It will often be true also that Vi, = V,,, , so that F = G. In such cases, symmetric 
with respect to both discriminability and cost-payoff considerations, S, = l/Q* 

and Eqs. 15 and 16 reduce to a single equation 

F-2lnD*+&Q* =O. (‘7) 

Equation 17, though still transcendental, is so simple that trial-and-error iteration 
methods will quickly lead to solutions for any values of interest. I f  52* might plausibly 

be 100 or so, its reciprocal is negligible, and 2 In Q* e 0.869 log &*, though un- 
fortunately not negligible, is small enough relative to it so that it is appropriate to 
think of L?* as equal to a little less than F. If  more refinement is needed, a few trial 
values will quickly pin it down as precisely as the circumstances require. Table 1 
contains values of Q* for some values of F between 0.5 and 1000. 

Since Eq. 17 does not involve Q,, , prior odds need not be symmetric for it to apply. 
But Eqs. 12 and 13 for the expected numbers of observations, the other important 

’ For extensive work with asymmetric cases, a table of solutions to Eqs. 15 and 16 is indis- 

pensable. A table of such solutions, using as values of F and G all possible pairs of the values 

of F used in Table 1 of this paper, has been deposited as Document No. 8342 with the 

American Documentation Institute Auxiliary Publications Project, Photoduplication Service, 

Library of Congress, Washington 25, D. C. A copy may be secured by citing the Document 

number and by remitting $6.25 for photoprints, or $2.50 for 35 mm microfilm. Advance 

payment is required. Make checks or money orders payable to: Chief, Photoduplication Service, 

Library of Congress. 
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TABLE 1 

Q* FOR SELECTED VALUES OF F IN THE SYMMETRIC CASE 

F Q* F n* 
~ -̂ - ~.- 

0.5 1.13296 20.0 14.69328 
1.0 1.28238 25.0 19.1478r 
1.5 1.44878 30.0 23.71035 
2.0 1.63244 40.0 33.03513 
2.5 1.83327 50.0 42.52341 
3.0 2.05096 60.0 52.11238 
3.5 2.28495 70.0 61.76937 
4.0 2.53453 80.0 71.47529 
4.5 2.79886 90.0 81.21804 

5.0 3.07705 1co.o 90.98950 
5.5 3.36816 120.0 110.59725 
6.0 3.67129 140.0 130.26848 
6.5 3.98555 160.0 149.98559 
7.0 4.31009 180.0 169.73739 
7.5 4.64412 200.0 189.51633 
8.0 4.98690 300.0 288.67288 
8.5 5.33774 400.0 388.08015 
9.0 5.69602 500.0 481.62297 
9.5 6.06118 600.0 587.25080 
9.96620 6.40737 800.0 786.66566 

10.0 6.43268 1000.0 986.21327 
15.0 10.41044 

working equations of the model, do depend on prior odds, and important simplifica- 
tions result if all three symmetry conditions apply. In presenting them, it is convenient 
to define 

P* P* P* Q* and ____ P, -__ 1-p* =4*= l-p* =4*= Q*. 

If  EeO(z) = -J?&~(z) so that H = 1, V,, = I’,, so that F = G, and Q, =I 1, it follows 
that fin, = l/Q*, B = l/A,p* = q* , q* = p, = a: = p, and EB1(n) = EBO(n). For 
this utterly symmetric case, it is convenient to define 

VV’ 01 10 = 
u u 

= v, E,,(Z) = --Eoo(z) = Z, and &l(n) = b,,(n) .= N- 

In that notation, Eq. 17 may be written 

VZ-21n -f&$-+*=0, (18) 
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and Eqs. 12 and 13 simplify to 

NZ = (p* -q*)ln$. 

The expected sample size function. Consider several situations all having the same 
cost-payoff structure and the same prior probabilities for the two hypotheses, but 
differing from one another in E&z). As the impact of each observation on your opinion 
increases, other things remaining the same, should you buy more or less information ? 

Intuition is inconsistent. On the one hand, it should take fewer observations to reach 
a specified level of certainty, so you might expect to purchase fewer observations. 
On the other hand, observations are an increasingly good buy, so to speak, so you 
might choose to buy more of them. 

Intuition can be clarified by considering extremes. One extreme arises when ob- 
servations are worthless, that is, &B(z) = 0 for both values of 0. Clearly if observations 
are worthless, you should buy none: The other extreme arises when each observation 

is utterly definitive, that is, &(z) approaches plus and minus infinity, with the sign 
depending on which hypothesis is true. In that case, you should buy exactly one 
observation (or, in the continuous case being considered here, the number of observa- 

tions you would buy should approach 0 as l&(z) approaches infinity). Only for inter- 
mediate values of E&z) should you buy larger amounts of information. That suggests 
that the functions relating Z&(n) to Z&(z) should each pass through the origin, rise 
to a maximum, and thereafter fall and approach zero again asymptotically. In general, 
there will be many such functions. But in the completely symmetric case, it is possible 
to write the function in a way which makes it unique. Divide Eq. 19 by Eq. 18: 

N (P* - 4*) W*/q*) - = ---_-__ 
V 2 ln(p*/q*) - l/p* + l/q”. 

TABLE 2 

NZ, VZ, AND N/V FOR SELECTED VALUES OFT*. 

(20) 

P* NZ vz N/V P* NZ vz NIV 

0.55 0.020067 0.80538 
0.60 0.081093 1.64426 
0.65 0.185712 2.55676 
0.70 0.338879 3.59916 
0.75 0.549306 4.86389 
0.80 0.831777 6.52259 
0.85 1.214221 8.95940 
0.86 1.307009 9.61065 
0.864 1.346012 9.89337 
0.86490 1.354946 9.95892 

__- ~~~ 
0.0249162 
0.0493187 
0.0726356 
0.0941551 
0.1129355 
0.1275225 
0.1355248 
0.1359959 
0.1360519 
0.13605349 

0.86495 1.355444 9.96258 0.13605346 
0.865 1.355942 9.96625 0.13605341 
0.866 1.365945 10.04004 0.1360497 
0.87 1.406709 10.34480 0.1359823 
0.88 1.514247 11.18183 0.1354203 
0.90 1.757780 13.28334 0.1323297 
0.95 2.649995 24.83625 0.1066987 
0.97 3.267533 39.25460 0.0832395 
0.99 4.503218 108.18014 0.0416270 
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Since V is a constant in Eq. 20, the maximum value of N will occur where N/V is a 
maximum. Table 2 presents calculations of the quantities involved for interesting 
values of p*, and Fig. 1 presents a plot of N/V as a function of VZ. 

Inspection of the table and figure makes it clear that the maximum value of N/V 
occurs when the cutoff posterior probability is 0.8649, which it will be when VZ is 
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FIG. 1. N/V as a function of VZ. The indicated points are listed in Table 1. Note that 
VZ is on a logarithmic scale. This graph is a source of quick approximations; exact work 
requires more precision. 

9.95892 a 10. This is smaller than the typical VZ of statistical practice, but 
well within the range of Z’Z’s likely to be encountered in psychological experiments 
on information seeking, choice reaction time, and the like. An application of this 
function to psychological models that consider man as a degrader of data is 
presented later. 
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APPLICATIONS 

A nonparametric and a normal application: two models for choice reaction times. 

Recently Stone (1960) has used the classical version of the statistical treatment of 
optional stopping as a model for choice reaction times. In a choice reaction time 
experiment, the subject is shown one or more stimuli, and must as soon as possible 
make the response appropriate to the stimulus presented. He is instructed both to 
minimize errors and to respond as fast as possible. It is a reasonable idealization of 
such an experiment to think of the time between the stimulus and the response as 
being sampling time, in which the subject is gathering information to choose among the 

several hypotheses about what response is appropriate this time. (Or perhaps it might be 
better to think of some part of that time as simple reaction time and the rest as sampling 
time; both models lead to the same equations, though their use may differ depending on 
which model is being considered.) Stone’s treatment is, and this one will be, confined to 
the case of two simple hypotheses, since the mathematical difficulties of extending 

the idea to more than two remain an unsolved problem of mathematical statistics. 
A Bayesian version of the same kind of model provides explicit and formal treatment 

of the costs, payoffs, and prior probabilities used in such experiments, in contrast 
to Stone’s informal treatment of these topics. Choice reaction time experiments using 
explicit costs and payoffs are now becoming more frequent (e.g. Fitts, 1964; Fitts, 

Peterson, and Wolpe, 1963). 
The subject looks at two lights. Between trials, both are off. At the beginning of each 

trial, one is turned on; the subject must press the button appropriate to it. The proba- 
bility that each will turn on is fixed and known to the subject. The experimenter has 
specified and taught the subject about a cost-payoff structure that rewards him for 
correct responses, punishes him for incorrect ones, and makes it important to be 
quick rather than slow by charging him for time at a cost that is linearly related to the 

time used. The subject is assumed to maximize expected financial return. 
In this model, H is assumed to be 1. L&(Z), the ease of discrimination between the 

two lights, is an intervening variable. It is convenient to call the cost of a second of 
observing k, and to call the duration of an observation in seconds 6; by definition, 
u = KS. Of course k is specified by the experimenter, but 6 and u are unknowable 
intervening variables. Now, define a new parameter 

In the new notation 
V F=A!?h 
k 



OPTIMAL STRATEGIES FOR SEEKING INFORMATION 323 

F and G are functions of known experimental arrangements and of a single intervening 
variable X. 

The number of observations, n, multiplied by the duration of an observation in 
seconds, 6, should give the reaction time in seconds, R, for any single trial, assuming 
that each observation takes a fixed length of time. So, taking expectations, 

Eqs. 12 and 13 may be rewritten 

&I(R) =;[/3ln&&+(l -@In+] 

E,~(R) = k [-cl - a) ln & - 01 In ‘:“-I . (22) 

The fact that h, the single intervening variable of the model, is concerned with 
both duration and evidential value of an observation means that pure discriminability 

cannot be disentangled from rate of taking observations in the model; there is no hope, 
for example, of estimating S separately and so determining how long it takes the 
organism to make a single observation. In fact, the notion of a single observation is 
ill-defined in such continuous-observation models; it is really definable only as the 
smallest unit of observation large enough so that successive observations may be 

treated as independent-a rather mystical notion. 
The model makes very strong predictions. Once h is estimated, either from reaction 

times or from error data, all other dependent variables are precisely predicted. (It is 
possible, though somewhat complex, to predict standard deviations of reaction times 

from the same model.) It also makes a number of quite specific predictions that do 
not depend at all on X. Any manipulations of costs and payoffs that leave F and G 
unchanged will also leave reaction times and error rates unchanged. Multiplying all 
costs and payoffs by a constant is one such manipulation. Furthermore, V,, and V,,, 
are differences between pairs of payoffs, rather than themselves being payoffs; any 
transformations on the payoffs themselves which leave these differences unchanged 
(such as addition or subtraction of a constant amount from all four payoffs) will not 
affect predicted behavior either. 

When H = 1, dividing Eq. 15 by Eq. 16 produces 

F VI, Q* - Q, + ln(Q*/Q*) -=- =-- 
G vol (l/-Q,) - (l/Q*) + ln(Q*m . 

(23) 

This prediction about a relationship between costs of errors and error rates is, of 
course, not dependent on any estimated parameter. 
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A similar ratio prediction can be derived from Eqs. 21 and 22; it is 

EoI(R) 
E,,o=- 

B ln[B/(l - 41 + (1 - B> W - BV4 
(1 - 4 ln[B/(l - 41 + 01 ln[(l - bW-4 (24) 

Perhaps the most startling prediction of the model arises from the same arguments 
that lead to Table 2 and Fig. 1. In the completely symmetric case (QO = 1, H = 1, 
Vi,, = Vai), the model predicts a maximum expected reaction time that is a function 
of the cost-payoff conditions but not of X. Specifically, the maximum expected reaction 

time in seconds is O.l36V/‘lk, where I’ is the cost of an error and k is the cost of a 
second of reaction time. If  V = k, a plausible condition, the maximum expected 
reaction time is 0.136 sec. The prediction is wrong; choice reaction times are not 
so short. 

A slightly more sophisticated model is needed. The observed times can be thought 
of as sums of sampling times plus simple reaction time. The model as presented is a 
model for sampling times only; simple reaction time should be added to its predictions 

before they are compared with observed times. An implication is that experiments 
designed to test the model should include appropriate conditions for estimating 
simple reaction time, which may include movement time as well. The simple reaction 
time should not be orders of magnitude different from 0.1 sec. 

Since the most important feature of this model is its intimate link between predic- 
tions about errors and predictions about reaction times, it is important in testing the 
model to make sure that both can be examined. For that reason, the very low error 
rates that have characterized many previous choice reaction time experiments are 
undesirable, since they make estimation of Q* and Q, difficult and inaccurate. Error 
rates can, of course, be raised by making the cost of time relatively high and the costs 
of errors relatively low, or by making the two stimuli hard to discriminate, or by 

doing both. A probability of error of at least 0.1 (p* < 0.9) is desirable, though 
lower probabilities of error can be tolerated if the amount of data available 
is large. 

No model that makes so many specific and easily checkable predictions has any 
possibility of being consistent with substantial amounts of data; only vague models 
or models with plenty of fittable parameters survive such confrontations. The functions 
of models like this one are to provide interesting dependent variables, to stimulate 
theoretical intuition about what variables are important and how they might work, 
to provide first approximations to more complex processes-in short to be wrong in 
interesting ways. 

Stone’s model treats the two hypotheses being considered as two normal distribu- 
tions having the same variances but different means on some underlying subjective 
continuum, in the spirit of signal detectability theory (e.g. Swets, Tanner, and Birdsall, 
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1961). The same procedure could have been followed here. In that case, Wald (1947) 
has given the expression for &(z) (Eq. 3:60, p. 54): 

Ed = & 2~8, - eo)e + e; - ef. 

This expression can be much simplified by redefining the origin to be midway between 
the two means, 0, and 0, , and by using (J as the unit of measurement. 

The assumption of equal variance is equivalent to the assumption that H = 1, 
and the assumption of normality leads to a redefinition of the single parameter of the 

model, /\, as follows: 

x = 2e,2k/u. 

The parameter X still must be fitted from data, and all the working equations of this 

version of the model remain as before. Nothing has been gained by the extra para- 
metric assumption of normality. In this model, the subject is certain to end up at 
one of two points on the posterior odds axis. The probabilities of error are the ratios 
of ordinates at those points; no integration under a distribution function is required 

to find them, so no assumptions about the form of that function are needed. 
A binomial application: design of an experiment. Phillips, Hays, and Edwards 

(see Edwards and Phillips (1964)), in a large and complex experiment, have shown 
that subjects are unable to extract as much certainty from information as Bayes’ 

theorem would permit. Since their experiment was large and complex, Edwards and his 
collaborators (in preparation) asked essentially the same question in a much simpler 
situation. Subjects saw two bookbags, one containing 60% red and 400,; blue poker 
chips, the other containing 40% red and 60% blue. One was chosen at random. 
Subjects sampled from it, with replacement, and estimated after each observation the 
posterior probability that the preponderantly red bookbag had been chosen. The 

results indicated the same conclusion as those of the Phillips-Hays-Edwards ex- 
periment; subjects do not extract as much certainty from information as Bayes’ 
theorem would permit. A Bayesian posterior probability of 0.98 might be produced 
by information that would lead a subject to estimate 0.80 or so. 

But probability estimation is an unfamiliar task. Before firmly concluding that 
people are unable to extract as much certainty from information as they should, it is 
appropriate to make sure that the same inability appears in decision making as in 
probability estimation. In a task where information capable of reducing the risk of a 
terminal decision can be purchased, the amount of information purchased should 
be related to the amount of certainty a subject can extract from each item. The book- 
bag-and-poker-chip situation is well-suited to such an experiment. A subject can be 
required to decide whether the bookbag is preponderantly red or preponderantly 
blue, with a reward for being right and a cost for being wrong, and can be permitted 



326 EDWARDS 

to buy as many samples as he wishes before making his decision. But what costs 
and payoffs should the experiment use? 

First, consider the binomial case of optional stopping. The two bookbags have 

red chips in them in proportions 0, and 0,; abandon for the moment the restriction 
that 8, + 0, = 1. Since the probability of getting a single red chip from the 0, bookbag 
is 0s , the probability of getting Y red and n - r blue chips in a particular order in n 

draws is 8,r(l - 0O)n-r, and similarly for the 8, bookbag. So the likelihood ratio 

appropriate to the datum r reds in n draws in that order (or regardless of order) is 

(25) 

If, as in the experiment, 8, + 0, = 1, Eq. 25 reduces to 

Kate that 2r - n = Y - (rr - r) is the difference between the number of red and the 
number of blue chips observed; when 0, + 8, = 1, only that difference is relevant 
to posterior opinion, and so 1004 red chips and 1000 blue ones have the same impact 
on orderly opinion as 4 red chips and no blue ones. 

Equation 25 gives the likelihood ratio for Y reds in n draws, while &(.z) is the 

expected value of the logarithm of the likelihood ratio for one draw. If  that one draw 
were a red and the true parameter of the bookbag were either 8, or &,, the logarithm 
of the likelihood ratio would be In 8,/0,. I f  the draw were a blue, the logarithm of the 
likelihood ratio would be In [(l - Q/(1 - e,)]. I f  the true parameter of the bookbag 
is 0, then the probability that a red will be drawn is 0 and the probability that a blue 

will be drawn is 1 - 8. So the expected value of the logarithm of the likelihood ratio 
for the general two-hypothesis binomial case is: 

jqZ) = e ln 3 -+ (1 - e) In fz+ . 
0 0 

A sufficient condition to make EB,(z) = -Eel(z) is that the hypotheses be symmetrically 
located around 0.5, that is, that B. + 8, = 1. (If the degenerate case of B. = 8i is 
excluded, that condition is also necessary.) I f  that condition applies, then Eq. 26 
reduces to 

Eel(z) = (28, - 1) In Gii- , 
1 

E@,,(z) = -(20, - 1) In & 
1 

Note the similarity between Eq. 27 and Eq. 19. 
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As a guide to choice of payoff values we wanted to get a feeling about the relations 
among possible levels of discriminability, payoff, and errors. Table 3 exhibits some 

illustrative calculations from Eq. 18 for the case Vi, = V,,, . Under the further 

TABLE 3 

VI& FOR 12 POSSIBLE EXPERIMENTS 

Composition 

of bookbag 

60-40 
70-30 
80-20 

4 

80.43 
19.24 
7.84 

Desired value of s2* 

17/3 9 

98.15 163.80 
23.48 39.19 

9.57 15.97 

19 

306.27 
73.28 
29.86 

restriction that L?a = 1, Table 4 presents the expected number of observations 
required to reach the posterior odds cutoffs under these various conditions, calculated 
from Eq. 19. Inspection of these tables and consideration of the fact that a few fixed 
levels of an independent variable like Via/u are preferable to many, while there is no 

comparable advantage in fixing levels of so hypothetical a quantity as the optimal 
X2*, led us to use only 6040 and 70-30 bookbags, to fix II = $0.01, and to use 
Vi, = I’,, values of $0.50, $2.00, and $3.50. (At the time the experiment was de- 
signed, we had not yet realized the nonmonotonicity of the relationship between 
discriminability and expected sample size, and the consequent importance of using 

values of VZ less than 10 as well as values greater than 10. Only two of the chosen 
payoffs for the 6C40 bookbag, and none for the 70-30 bookbag, yield VZ values 
less than 10.) 

If  men extract information from Bayes’ theorem inefficiently, what might they be 
expected to do in this experiment ? One very simple model for this kind of inefficiency 
is suggested by the results of posterior probability estimation experiments. If  such 

TABLE 4 

EXPECTED NUMBER OF OBSERVATIONS TO REACH P* WITH OPTIONAL STOPPING 

Composition 

of bookbag 

60-40 
70-30 
80-20 

4 

10.26 
2.45 
1 .oo 

Desired value of 0” 

1713 9 

14.97 21.68 
3.58 5.19 
1.46 2.11 

19 

32.68 
7.82 
3.19 
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estimates are reduced to inferred log likelihood ratios (the likelihood ratios necessary 

to produce those estimates if the estimator were perfectly Bayesian) and then plotted 
against true log likelihood ratios, the results are often a straight line through the 

origin with less than the appropriate slope. Such a finding suggests, and would be 
predicted by, a model which supposes that a subject treats each observation as though 
it had a fixed percentage less evidential value than it objectively has. In the symbols 
of this paper, the subject replaces Es(z) with E&z’) = w EB(z); w might be called the 

inefficiency parameter, and is assumed to lie between 0 and 1. Estimation experiments 
suggests values of w ranging, for different subjects, from 0.05 to 0.50; 0.20 might be a 
convenient representative value. Since the experiment being contemplated is fully 
symmetric, it is convenient to define 2’ = WZ in order to replace 2 with 2’ in Eqs. 
18 and 19. 

Will a subject characterized, say, by a w of 0.20 buy too much, too little, or just 
the right amount of information ? Fig. 1 says that any of these three possibilities 
may occur. By means of that figure, it is possible to estimate that such a subject will 

buy too much information if VZ is greater than 24, just the right amount if VZ equals 
24, and too little information if VZ is less than 24. (Actually, the critical value of VZ 
that goes with a w of 0.20 is slightly less than 24.) Of course critical values of VZ 
larger than 24 will go with values of w smaller than 0.2, and vice versa. Computational 

alternatives to estimating critical values from Fig. 1 exist, but are unreasonably 
tedious, in view of the poor precision with which w can be determined. 

It follows that a subject with a w of 0.2 will buy too much information whenever 
v  > 131 and too little otherwise for 60-40 situations; the corresponding critical 
payoff for 70-30 situations is 71. Thus the experimental design actually used should 
lead to both findings, depending on V-at least for subjects adequately defined by the 
likelihood ratio degradation model with a w of 0.2. Of course that model cannot be 

taken seriously; it is far too simple. Still, preliminary results suggest that it is a good 
first approximation for some subjects. 
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