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ELECTROMAGNETIC SCATTERING FROM CERTAIN
RADIALLY INHOMOGENEOUS DIELECTRICS

by
Nicolaos Georgiou Alexopoulos

ABSTRACT

In this research, the phenomenon of electromagnetic wave propagation
through, and scattering from, radially inhomogeneous dielectrics is studied
for very high frequencies. The dielectrics are considered lossless, radially
inhomogeneous in the spherical coordinates system, and of the converging or of
the diverging type. The lens problem is studied by the geometrical optics tech-
nique and the radar cross-section of perfectly conducting spheres coated with
radially inhomogeneous dielectrics is investigated. By assuming a plane wave
as the incident electromagnetic field, the contribution in the backscattering
direction due ‘o the reflected field and the creeping waves is determined by
applying asymptotic theory. This necessitates the use of the WKB and/ or
Langer's method for the solution of the pertinent differential equations,
depending on whether there exist transition points in the range for which the
solutions are required. Also, the integrals of Scott (1949) are needed in order
to determine the reflected portion of the field.

Such a studyis interesting not only from the theoretical but also from
the practical point of view, in that it lends itself useful to the understanding
of radio wave propagation in radially inhomogeneous dielectrics and of the
effect of coating perfectly conducting spheres with radially inhomogeneous
media. It also has applications to problems of wave propagation in the iono-
sphere and around the earth.

To begin with, a general outline of the problem and the methods of sol-
ution is given. Then, a new class of radially inhomogeneous dielectrics is

introduced and it is studied by the ray tracing technique. This new class of
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radially inhomogeneous dielectrics is also treated as the coating of a perfectly
conducting sphere and the monostatic cross-section is examined when the
dielectric is of the converging or diverging kind. Finally another class of
radially inhomogeneous media, previously discussed by Nomura and Takaku,
is considered and its effect in reducing or enhancing the radar cross-section

of a perfectly conducting sphere is determined.

iv



TABLE OF CONTENTS

Page
LIST OF TABLES vi
LIST OF ILLUSTRATIONS vii
CHAPTER ONE: GENERAL CONSIDERATIONS 1
1.1 Introduction 1
1.2 Scattering from Radially Inhomogeneous Media 5
1.3 Outline of Research 8
CHAPTER TWO: A NEW CLASS OF RADIALLY INHOMOGENEOUS
MEDIA 22
2.1 Introduction 22

2.2 Solution for the Eigenfunctions when e(’g"):(l-’y)z/ (.E-'y)2 24
2.3 Geometrical Optics Approach for the New Ciass of
Lenses 29

CHAPTER THREE: HIGH FREQUENCY BACKSCATTERING FROM
A PERFECTLY CONDUCTING SPHERE COATED WITH THE
NEW CLASS OF RADIALLY INHOMOGENEOUS DIELECTRICS 36

3.1 Introduction 36
3.2 The Asymptotic Solutions of S, (§) and T ,, (§) 37
3.3 The Reflected Electric Field * /2 v 41
3.4 Derivation of the Reflected Electric Field by

Geometrical Optics 50
3.5 Scattering Cross-Section Computations 54
3.6 An Outline for the Creeping Wave Contribution in

the Backscattering Direction 55

CHAPTER FOUR: HIGH FREQUENCY BACKSCATTERING FROM
A PERFECTLY CONDUCTING SPHERE COATED WITH A
DIELECTRIC WHOSE INDEX OF REFRACTION IS N(§) = &P 69

4.1 Introduction 69
4.2 The Radial Eigenfunctions in their Asymptotic Form 70
4.3 The Reflected Electric Field 73
4.4 The Geometrical Optics Approach 80
4.5 Numerical Computations 83
4.6 The Creeping Wave Contribution 86
CHAPTER FIVE: CONCLUSIONS 94

BIBLIOGRAPHY 96



LIST OF TABLES

Table Title Page

4-1 Computations of oy for Various 8 and p 85
. .

vi



Figure

3-3
3-4
3-5
3-6
3-17
3-8
3-9
3-10
3-11
3-12
3-13
4-1

LIST OF ILLUSTRATIONS

Title
Geometry of the Problem
Contour C in the Complex v-plane
The Deformed Path in the Complex v-plane
Case 1: 0< v<1
Case 2: v>1
Case 3: v<0, 'ye -h, h>0
Ray Path through the Inhomogeneous Dielectric
Deviation Angle vs. Angle of Incidence
Deviation Angle vs. Angle of Incidence
Maximum Deviation Angle vs. h
The Geometry of the Problem (c = a7)

Contours of Integration and Different Regions Considered
in the Complex v-plane

Paths of Incident and Reflected Rays when 0 < v<1
o.. vs. B, for 0< v<1

N,
o, vs. B, for1.1< v<2.0

Ny .

D vs. ka for v = B/4

D vs. ka for v= /4
Dvs. ka for v= B/2

D vs. ka for v= B/2

D vs. ka for v = 3B/4
D vs. ka for v = 38/4
D vs. ka for y= 0.998
D vs. ka for v = 0.998

Paths of Incident and Reflected Rays

vii

Page

26
27
28
30
33
34
35
40

44
92
56
57
28
59
60
61
62
63
64
65
81






CHAPTER I
GENERAL CONSIDERATIONS

1.1 Introduction

The problem of electromagnetic scattering from radially inhomogeneous
media has been considered in the past by many authors. On the subject there
exist some books such as Brekhovskikh's (1960) and Wait's (1962) and numerous
articles published in technical journals. The problem in its most general form
was considered by Gutman (1965)., Gutman assumed the electromagnetic
properties of the medium to be inhomogeneous in the angular as well as the
radial direction. He applied a modified form of the Hansen-Stratton vector
wave-function method due to Kisun'ko in order to solve the vector wave equation
and thus to determine a representation of the electromagnetic field in the
medium. The solution which he obtained, however, is of a purely formal
nature since it involves an infinite set of first order linear ordinary differen-
tial equatiuis. Explicit results can be obtained if the inhomogeneity is only
in the rad:al direction and it is with this case that this research is concerned.
Marcuvitz (1951) gave a rather systematic treatment of the electromagnetic
field representation in a medium whose index of refraction depends on the
radius in the spherical coordinate system. Nomura and Takaku (1955)
studied the radio wave propagation around the earth. They considered both
the earth and the atmosphere radially stratified with the permittivity being

K, p <-1, k = index pertaining to the k th layer of

given by e(g) =(§)2p
stratification. Tai (1958a) applied the vector wave-function method of
Hansen and Stratton to obtain a complete representation of the electromag-
netic field by superposing electric and magnetic types of waves each of which
he expressed in terms of two vector wave functions. He then applied these

general results to the particular case of a sphere whose index of refraction

1/2
f(1)-(-5

[\V]
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is that of the Luneburg lens and obtained the complete representation of the
electromagnetic field inside the sphere, as well as the scattered and total
fields, when the excitation source is a dipole of moment Py in the x-direction
and located at (r,6,0) = (b, 7,0 ) in the spherical coordinates system. Flammer
(1958) gave asymptotic solutions for the case of the conical Luneburg lens.
His approach is not complete in the sense of comparison with the method
developed by Tai and also the solutions he obtained are not exact, but asym-
ptotic. Other radially inhomogeneous media which have been studied are

the Maxwell fish-eye by Tai (1958b) and a Gaussian type of inhomogeneity by
Yeh and Kaprielian (1960). Arnush (1964) studied the case of scattering when
the dielectric constant vanishes on a spherical surface by using a phase-shift
analysis method. Fikioris (1965a) examined the behavior of a bi-conical
antenna immersed in radially stratified media and performed detailed cal-
culations for small-angle and wide-angle biconical antennas. Farone (1965)
used the Rayleigh-Gans approximation to determine the scattering by a
radially inhomogeneous sphere whose index of refraction is close to unity.
Finally, Uslenghi(1967) extended Tai's method for media whose permeability
is also radially inhomogeneous. He established general results for the pre-
sense of resonances and dips in the low-frequency backscattered cross section.
Uslenghi (1968) also studied the high frequency backscattering problem from
the inverse square power lens by applying asymptotic theory.

In this dissertation, the case of high frequency electromagnetic scat-
tering from radially inhomogeneous media in the spherical coordinates system
is considered. The relative magnetic permeability is taken to be unity and
the excitation field is assumed to be a plane wave. Particular emphasis is
placed upon the study of backscattering from perfectly conducting spheres
coated with a radially inhomogeneous medium and on the computation of the
monostatic scattering cross section. This study is of practical importance
in that it lends itself useful to the understanding of electromagnetic wave
propagation in dielectric lenses at microwave and optical frequencies, the
propagation of radio waves around the earth, and the effect of coating per-

fectly conducting spheres with radially inhomogeneous dielectrics.



In assuming the incident field to be a plane wave, it is implied that the
more general case of an arbitrary incident electromagnetic field can be sim-
plified by decomposing it into the sum of plane monochromatic waves by
Fourier analysis, and therefore the simplest case only is considered. In
what follows, the rationalized MKSA system of units is used and the time
dependence e~iwt js omitted. The following symbols are listed for.con-
venience.

w = angular frequency,

k = 21 w Y€ uy = wave number in vacuo,

A
electric permittivity (dielectric constant) in vacuo

€
o

Ho

magnetic permeability in vacuo,

7 =yl :J“o/ €, = intrinsic impedance of free space (= 1207 ohm),

€, u = relative permittivity, permeability inside the inhomogeneous
medium (functions of r) ,

i =y-T = imaginary unit,

E and H = electric and magnetic field vectors,

X,V,z = rectangular Cartesian coordinates,

r,6,P = spherical polar coordinates.

Vectors will be underlined and unit vectors will be denoted by carets.

Maxwell's equations are recalled and in the notation considered they
are
Vx H= -ikY€E, (1.1)
Vx E = ikZuH,
with the constitutive relations
Ve €E =0

V. H <0 (1.2)

2

and € = u = 1 in the case of vacuum. The general geometry of the problem is
shown in Fig. 1-1 with region I representing the scatterer and II the free
space. The superscript i indicates the incident field while , later on, s

indicates the scattered field.
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FIG.1-1: GEOMETRY OF THE PROBLEM

The electric field of the incident plane wave is
-4 (1.3)

The scattered field is required to satisfy Sommerfeld's radiation condition

at infinity throughout the free space region, specifically the condition

S

xl'inoo r x (Vx)+kr ;Is =0 (1.4)

must hold uniformly in 2. This is known as the Silver-Muller condition.
Also, at the interface of regions I and II the appropriate boundary con-
ditions, i.e. the continuity of the total tangential electric and magnetic fields,
are applied for the determination of any constants pertinent to the solution of
the problem. In order also are the following definitions in regard to the
scattering cross-section of the body. The differential scattering cross-

section or bistatic radar cross-section off, §) is given by

2

Ll
o(6, ¢):r1ir>noo drr >
|

(1.5)




The total scattering cross-section is defined by the ratio of the time averaged
total scattered power to the time averaged incident Poynting vector, and is

related to the bistatic cross-section by
T 27

RS f f o0, )sin6dodp. (1.6)

6=0 *§=0

Since the research herein is concerned primarily with backscattering, the

definition of the monostatic radar cross-section is given for reference as

S2
E

.|2
i

(1.7)

= lim 2
a(6, ) i drr

E

It is also mentioned here that the methods of solution to be applied are the

0=m
geometrical optics method, exact solutions and asymptotic determination of
formal solutions. The approach employed in each of these methods is well

known (e.g. Uslenghi, 1967) and therefore detailed description is omitted.

1.2 Scattering From Radially Inhomogeneous Media

Assume a plane wave incident upon a radially inhomogeneous sphere of
outer radius a whose index of refraction is N(§) where £= r/a (see Fig.1-1).
Applying the pertinent boundary conditions at r=a and at r=o the far zone
(r-> ) bistatic scattered electric field produced by the incident field of Eq. (1. 3)

is given by the well known expression
ikr Pl(cos6) ap!l
£S5 i & 2n+1 oS n 5 2 | cos g é\_
= ! - Z n(n+1) n sin@ n do

n=1
dpl  Pl(cosh) A
s n,,S ' n .
- E +b ] sinp ¢ ), (1.8)

n do n sinf

which in the backscattered direction becomes



(00)

o " z (-1)" (n+1,) [az-bz] . (1.9)

n:

These expressions are the Mie series for the radially inhomogeneous scatterer.

S S
The scattering coefficients an and bn are given in their general form by

g (ka)-M (ka) § (ka) ¢} (ka)-M (ka) ¥ (ka)

S-— -
& Py () i)

n (1) (ka)-M (ka)§(1)(ka)

(1.10)

(ka)- M (ka)C (ka)

where

(1) 7rka (1)

7rka
Vlka)= = 31 Oca) s 8 )= E Ly ca)

and the primes indicate differentiation with respect to ka, The constants Mn(ka)
and ﬁn(ka) are determined from the boundary conditions at r=a and r=0, if the
scatterer is a radially inhomogeneous sphere throughout the range 0gKrga, or
by the boundary conditions at r=a and r=b if the scatterer is a perfectly con-
ducting sphere of radius r=b coated with a radially inhomogeneous medium of

outer radius a. For these two cases, these constants are given respectively by

- 1 [e . 0 )
M_(ka)= [ag <EE]§=1 M_(ca)- al},& <s]§=1<1.11)

and by
B )

M_(ka)= k BEIC(EAB) - ,
D (1.12)
9 cn(S,B)

T ]
9 C_(,B)
o lg=1

and they are true only if €(1)=1 which is the case in this research. The para-

meters involved in the previous expressions are defined as

=T )
—a: B:a, (1-13)

0 (2)

C (€.h)-= S (E’)S (B) 8, B8, , (1.14)



and
~ _m(1) (2) (1) (2)
C (ER=T "(O T (A - T (AT (8 . (1.15)
The functions SS)(E), TS)(S); j=1,2, are any two linearly independent solutions
of
2
d's _(§)
—2 s Xe- 22D s (8 <0 (1.16)
d§ (ka)“&
and
2
d"T (8) dT (&)
—2 L gp—E—+ ) de(- BT T (@=0 (1.1
d& (ka)“&

where €(€)=N2(§). The functions Sill)(S) and Till)(g) which are used to

determine Mn(ka) and ﬁn(ka) in (1.11) are required to be finite at § = 0.
The differential equations (1.16) and (1.17) arise as follows. Consider the

vector wave equation

[V2‘+k2(’§)] F-0 (1.18)

H

with k2(§’)=w2u e§), F= {E' inside the radially inhomogeneous medium.
The vector wave equation is reduced to the scalar wave equation
(m)
[v2+ kz(S)] A (1.19)

(m)

by defining, after Tai (1958a), vector wave-functions M= Vx(rxp(m)) pro-

portional to the electric field for magnetic type or transverse electric modes,

and M(e)

= Vx.(r (p(e)) proportional to the magnetic field for electric type or
transverse magnetic modes. Separation of variables in the spherical polar
coordinates system yields (1.16) and (1.17) for the magnetic and electric type
of waves correspondingly. Superposition of the two types of waves gives the

complete representation of the electromagnetic field in the medium.



1.3 Outline of Research

The backscattered field given by (1.9) is amenable to numerical calcula-
tion for ka not too large. When ka >> 1, Eq. (1.9) is extremely slowly
convergent and it is necessary therefore, since this research is in regard
with high frequency backscattering, to subject expression (1.9) to a Watson
transformation. Thus the summation is firstly transformed to a line

integral by applying Cauchy's residue theorem. The backscattered field
is then given by

b.s. A eikr i,s .s 1 vdy s s
.S, e __{¢L - -= VvV - 1.20
E-~x kr )2 (ao bo) 2 cos Ty [av—1/2 bV'l/z] ’ ( )

C

where V = n+é and v and ka are assumed complex with 0 < Imk << 1.

The path C in the complex v-plane is shown in Fig. 1-2,

Imy
)
> >
3/2 7/2 11/2 > Rey
1/2 5/2 9/2
- -
C

FIG. 1-2: CONTOUR C IN THE COMPLEX y-PLANE



By observing that

S S

M 1/(ka)—ﬁv _y, (ka)

a 1 —b
v-Yy v- / (l)‘ (1) ((1) (1)
( / (ka)-M 1/ (ka) f 1/ (ka)) / (ka) M 1/ (ka)§ / (ka))

the path C is deformed in such a manner that it accounts for the contribution

of any poles of the integrand in the first quadrant of the complex v-plane.

These poles occur at the zeros of

(1) (1)

Cv_l/z(ka)-MV_l/z(ka) g -y, (ka) = 0 (1.21)
and
D' (ka) M k) e (k) = 0 (1.22)
v-a /2 /2
The new path is shown in Fig. 1-3.
Imv
4
Iﬂ
\
\
\
\
_——3
-» Rev
="
|
_

FIG. 1-3: THE DEFORMED PATH IN THE COMPLEX v-PLANE
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Expression (1.20) can now be rewritten as

b.s eikr i, s . s, 1 v S s
Ex ~ ‘E— E(ao— bO)-E ‘Ir: COST U [ay_l/z— b]/—l/z] dv -
1
d A d+2.z( id
2 Jn cosTv v-Y,” v, v+2mi residues
2

in 15 quadrant) . (1.23)

Further computation of (1.23) is achieved through asymptotic

analysis. The integral along l"l together with the term i/2 [a(s)- b(s)] gives

the major contribution to the backscattered field. It physically corresponds

to the reflected portion of the field. The integration over I, is performed by the

1
+
1/2 6with 6>0 but 6 << 1 and

saddle point method over the range v=0(ka)
the major contribution arising near v =0, In performing the integration
one needs the appropriate Debye expansions for the spherical Bessel and
Hankel functions in the proper regions of the complex v-plane, The
integrations are carried out with the aid of the formulas of Scott (1949) to
(_1 /2(§) and
(€) need to be computed to O[(ka) ] . This can be achieved by

[(ka)—Z] . This implies that the radial eigenfunctions S
(J)
T /2

either solving (1. 16) and (1. 17) exactly and then developing the asymptotic

expansions valid in the regions of interest or by obtaining the asymptotic
solutions directly from the differential equations. The latter is achieved

by operating directly on the differential equations by the WKB method
provided that the Stokes phenomenon is not present in the regions of interest.
Otherwise, Langer's theory of transition points is to be used.
TG

(§), j=1,2, equation (1.17) is put first in the normal form

To obtain the pertinent asymptotic expansions for S
(J)
11 /2
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2
du (&) 2 2
_V_]‘Lz_ +(ka)2 {e(g) - V_1/4 + 1 d 6(8)

ag? Pk’ 2e(E)ka)®  dE?
5 1 de(8)] 2
-= U =0 1,
* [e®)] 22 [dg] v-1/29 -2
by setting
T, 158 = f€® U@ (1.25)
By defining now
2
o - LU o
_ £ (ka)
21/4 1 dce®) 3 1
) - =5+ 2 2 4 2 *
£%(ka) 2e(E)ka)”  dE [eto)]
x L M)z-wz (1.26)
(ka)2 \ df ’ )

the asymptotic solutions for (1.16) and (1.24) are found directly by applying
the WKB method provided that the Q(i)('g") have no zeros and that the

following conditions hold

2 2
5 dQ(i)(%’)) ) d°Q;(®) . NG
A\ "aE 2 —
L dg « | —% __ |«
8(ka)2 [oy®]° ) o @]
(1.27)

throughout < § < 1 . The solutions are
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(J) -1/4 !————

dQ(i)(S) d Q(i)(s)

3 i
4 aE 22 Sw® ,
+ 2 d§ 1+O[(ka) ] (1.28)
8(ka) Q(i)(E)
with
() e s
_1/2(8) if i=1
vl - (1.29)
(i) (,)
1/2(5) if i=2
W @ f@ v (1.30)
v-1/2 ME R ,

It remains now to develop,with the aid of (1.28),the asymptotic expansions

to O[(ka)_2] of M (ka) and ﬁy—l /2(ka). From the definitions of

v-1/2

Cy-l /2(ka) and 61/-1 /z(ka) and from Eq. (1.28) it is found that
_ (1) (2) (1)
Cv—1/2(§’ B) = V(l)(S) V(l)(B (1)(6) V(l)('é’) (1.31)

and asymptotically

: -1/4 ) . _
C,y/plE: B ~2i [, @10y ®)] " sin [1ka F (&,8]

X [1 +0 [(ka)'2] ] . (1.32)

Likewise

% ] (1)1 A2) AL 1 (2)
CRMRCIRS EGEE [V(z)(‘s‘)v(z)(ﬁ) Vg BV (2)@)] (1.33)

and asymptotically
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~ . -1/4
Cy—l/z(g’ B~ 2i V e(&)e(p) [Q(z)(S)Q(z)(B)] sin [1ka F(Z)(E, B)] x

X [1+o[(ka)'2]] , (1.34)
with

3
F(i)('g’, B) = f 'VQ(i)(E) [1+ f(i)(&‘)] d& (1.35)
B

and

5 9B aQ, @

4 dg d,g,z Q(i)(g)
( )(E) = 3 (1.36)
2
aka)” [Q,(6)]
Fron: the definitions of My_1 /z(ka) and ﬁy—l /2(ka) in terms of Cy_l/z(ka)
and Cy_1 /2(ka) one obtains
1 d -1/4 .‘,———
Mv_l/z(ka) { & In Q(l)(S)] +i Q(l)(S)
% cot 1kaF (&,8) [1+o [(ka)'z] ] . (1.37)
(1) £=1

Mv-l/z(kaw{é; EdE fo ({Jg‘) 6] 1/4) ¥
(&)
R [ o o

'\, (8) k ( )] r1+ 0[(ka)'2]] (1.38)
Q(2) tan [1 a F (2) & B e [ .

From expressions (1,37) and (1.38),the difference of the scattering coefficients

follows:
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8 ’ 4 " HQ(D )cot(lkaF(l)(S B))+vQ(2)(§‘) tan (ika F(Z)(S ,8))]
- (1 . '
v V=2 [{’V_)l/z (ka)-{VQ(l)( )cot(1ka F(l)(S’B))+E; 5 ln[Q(l)(g)] 1/4}"

Q (S)
- as <<Q(1)(§’) [‘5)]_1/2
2)

Qo (8)
X§1(/l_)1/2 (ka)] [ (1)/ (ka) - {k_ 5§£n( €(§) Q(Z)(S)] U?;JQZ;(B) [ n(v(f(ﬁ) X

el 1l T e

X
X [Q(Z)(B)]'l/ 4)]secz(ikaF(2)(§,B))—i“’Q(z)(S) tan (ikaF(z)(s B))} (1)/ (ka)] 3
X [”O[(ka)_z]]- (1. 39)

and (as —b(s)) is obtained when v = 1/2. By substituting in (1. 39) the appro-
priate Debye expansions for the spherical Bessel and Hankel functions in the
proper regions of the complex v-plane and by carrying out the algebra to
O[(ka) _2],the reflected portion of the field is immediately obtained after the
integration is carried out along I"l with the aid of the integrals of Scott (1949).
The advantage of this last result is that the final form of the integrand in (1.23)

is determined for arbitrary €(£) and one can, with direct substitution of the

functional form of €(£) in expression (1.39), carry out the algebra asymptot-

)]
(i)

ically and perform the integration without solving for the V ('g") eigenfunctions,
in order to determine the reflected field.

The contribution of the integral along l"2 has been shown to be zero for
the general case (Goodrich and Kazarinoff, 1963) as R -» o, and the verifi-

cation for the particular cases considered here is therefore omitted.
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The summation over the residues in (1.23) gives the contribution in the
backscattering direction due to creeping waves. In order to determine this
contribution, asymptotic expansions are needed for the radial eigenfunctions
which are valid for v near ka. These asymptotic expansions are derived
directly by the WKB method if Q( )(S) has no zeros in the interval B EK1.

In case there exists a single turning point at B < S <1, then Langer's metlil:d 1/3
),

is used to solve the differential equations. By wr1tmg v = mt+ka with m= ( 5

Langer's scheme gives, with the following definitions

¢m(§) =]I Q(i)(S) (1. 40)

€
€
0® = 1% @ o/ @ (1.42
A(i)(S) = ka¢(i)(§’) (1.43)
and E
u(i)(S) =f A(i)(S) e, (1.44)
SO
the solutions
v (eym 1/3 ()
()(S) _.( )(S){ I)( )(E)} 1/3 ( )(S)) (1. 45a)
or |
1/6

:
f ]’Q(i)(%’) at . 1/3
vey ~ R ka f Q. (5) dep X
Vi) 174 ‘/ (1)
[Q(i)(g)] %’0

(J)
1/3 f V (&) dt (1.45b)

1, 2,

withi, j =1,
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If one now defines:

5 & 2/3
C(i)('g“) =<§ A ]IQ(i)(S) dg (1. 46)

o
and
_2 -3/2
u(i)(S) =3 [x(i)('é‘)] (1.47)
it follows that
. 2/3

and the solutions can finally be written in the form

1/4
v (g~ g(i)(g) w3 @), 1= 1,2 (1.49)
Yo P \q @ (1) W= '

The w(j) {(ka)z/3 C(i)('g") are Airy functions in Fock's notation and they
are related to the Airy functions of Miller (1946) by

Wélg(t) =Y7 [Bi(t + iAi(t)] ) (1.50)
2

The creeping wave contribution to the backscattering direction now becomes
ikr
b.s. e v (1) 9 (1)
[Ex ]cr.w.ﬂ - {Z pp— (v /(k) [ 1, (ka) -
v

-1

v (1) 9 (1)
‘Zm< 00 5 [£, 3y, G -

-1
~ (1)
_Mv—l/z (ka) CV_},Z (ka)] ) } , (1.51)

with v ) and '17[ being respectively the roots of
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=M (ka)
V'l/z
and of

=M v, (ka)

with Imy, > 0, Im?, > 0.

£ !
With the asymptotic forms

(1) 1/2 (

Cv—1/2 (ka)~ -im wip) t)

L -1)2
§V'1/2 tka)a im (1) (t)

and the substitution v = mt+ka, the creeping wave contribution gives

2 {em
cosTv

[Eb.s} o elkr
X m kr
CTr.w.

1 aM(t) 2]t
T ot - [M(tﬁ)] B

5 o) fef] ]

where the index £ scans the zeros of

y

wi(t)
—-ﬂ% = —mM(tE),and

Wiyl Wi

£

zl)(tlz)

)

cosw?

y/

t

!

[vytp] [ m?

2

[v Mt AN [

13

b

m

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

(1.57)
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It remains to evaluate M 1, (ka), M 1, (ka) and then put them in the form

M(t ) and M(t ) for the solutmn of equations (1.57) for the zeros tﬂ and tl

The following explicit forms can be written down for My Y (ka) and My y (ka)
=12 =12

for the case where v is near ka:

. 8¢ 1)(8) L o9 1)(8)} .
g1

My i {r(l)@) B QB

+

' 2/3 2/3 ) 2/3

L %y® {w(l) D) c(l)(a] Wi [060)7 ¢ ()] wiy [0 % (8] x
1/3 o0& 2/3 2/3 2/3

() weyy [0 ] e [0 B 0] w [0 0]

' 2/3

2/3
W(2) [(ka) Y l)(8)]

(1.58)

g=1

and
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98, o (8) (&)
~ dL 9 ’-—— 1 1 (2) " (2)

, 2/3 2/3 2/3

! az(z(gf) {Wm [(ka) / TG R (RGN (O RATNG )
1/3 9§ 2/3 2/3 2/3

(ke ) CCRANE) PN CS R AT ) BN (U ES

" 2/3 /3 98 5)(8) 3% 0\ (A)

TN
Y@ [‘ka) G [aﬁ enye® +a)®/® —E—

-2
g [0 Pt ©]wi [0 P o 8] vy [0 5 @] w [0 2 00])
w6 Py @] iy [0 5 0] -, [0 e 0]
wiyy [0 ¢ @] wy [0 Py 0] - o P 0]

-

>l (1.59)

s, [ % (o]
(2) [ (2) > (a% (B - o5 tn g(z)(g))]
XWio) [(ka) C(Z)(E)] j

£=1

where to arrive at the forms (1.58) and (1.59) use has been made of the

Wronskian

(1)(t) w(z)(t) - w(l)(t) w(2)(t) =2i . (1.60)

Primes above indicate differentiation with respect to the argument and it is

assumed that



20

2/3 2/3 i 2/3 2/3
woy [0 e @) w gy [ ™ e @] -w [0 e @] wp [k e ()] # .

(1.61)

By substituting v = mt+ka in (1.58) and (1.59),M(t£) and IT/I(?I) can be
simplified asymptotically and then equations (1.57) are solved numerically

for the first few roots when t lies in the first quadrant. Finally for particular
ka, expression (1.56) will give a numerical value for the creeping wave
contribution in the backscattering direction.

From the theoretical expressions which will be obtained for the reflected
electric field, the monostatic cross-section based on this reflected field will be
derived and it will be computed for various thicknesses of the radially inhomo-
geneous coating as a function of ka, for two types of radially inhomogeneous
dielectrics.

In Chapter Two, a new class of radiallyinhomogeneous dielectrics is dis-
cussed. The exact solutions for the radial eigenfunctions are derived and the
geometrical optics technique is applied in order to determine the ray path of
an incident ray through the medium in the optical limit (ka -» ). Detailed
numerical computations of the deviation angle as a function of the angle of inci-
dence and other pertinent parameters, are given. In Chapter Three, this new
class of radially inhomogeneous dielectrics is considered as a coating of a
perfectly conducting sphere. The detailed asymptotic computations for the deri-
vation of the reflected electric field are presented, beginning with the application
of the WKB method for the asymptotic determination of the radial eigenfunctions.
The expression for the reflected electric field obtained by this method, is carried
out to O[(ka) _2] . As a means of comparison, the reflected field is also obtained
by application of geometrical optics to O[(ka)_l] . The results of the two methods
are compared and the monostatic cross-section is computed for both cases with
ka varying from ka = 50 to ka = 1000. Then the percentage error in
considering only the geometrical optics solution is examined. Finally, in

this chapter, the creeping wave study is outlined.
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In Chapter Four, the Nomura-Takaku (1955) radial inhomogeneity is
considered, as in Chapter Three with the exception that a more detailed
study is carried out for the creeping wave contribution in the backscattering
direction. This type of radial inhomogeneity has an index of refraction
N(&) = Ep (with p> -1, for reasons which will become apparent from the

discussion of the exact solutions of the radial differential equations).



CHAPTER II
A NEW CLASS OF RADIALLY INHOMOGENEOUS MEDIA

2.1 Introduction

In the study of electromagnetic wave propagation in, as well as
scattering from, radially inhomogeneous media, one of the difficulties is
the: determination of exact solutions for the eigenfunctions SS)(S) and
T;J)(S), and especially for the latter. Generally speaking, these eigen-
functions are expressed in their exact form in terms of hypergeometric
and/ or confluent hypergeometric functions, which are chosen to be finite
at the origin. Although asymptotic solutions for the differential equations
in the radial direction can always be found, by either applying the WKB
method or Langer's uniform asymptotic theory under certain restrictions
on the coefficients Q( i)(8), it is with the exact solutions that one has most
of the difficulties. In this chapter, a particular technique is presented,
which simplifies the problem of finding exact solutions for (1.16) and (1.17)
considerably and which at the same time gives rise to a new class of radially
inhomogeneous dielectrics.

If the differential equation (1.16) and the normal form of (1.17) are

considered, it is seen that they reduce to one and the same differential

equation if
Q(l)('ez) = Q(Z)(S) , (2.1)
which implies that one needs to solve only one equation, since in this case

T;j)('é') = VYe(§&) SS)(E) =V€(E) US)(E) . Relation (2.1) is satisfied if and only
if

1 de® 1 (de(§)>2 - (2.9)

3
2¢(E) ac? T4 [e(g)]z dg

which is rewritten as

22
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2
4 [izn e(g)] — (de(g’) =0 . (2.3)
d¢ | dE 2[?(8)]2 d&

By substituting w(£) = d/d€ [ln e(S)] in (2.3), the following Riccati differential

equation is obtained in w(£) :

If variables are separated in (2.4), then upon integration one obtains

fd§=2f:-l—vg or §=—;V2-+'y , (2.5)

where v is an arbitrary constant. From the substitution

w(g) = d/de Ezne(s)] and (2.5), it follows that

2 1 de(®
WETE T WD) a (2.6)
which finally gives a solution for €(£) . This solution is
® = —2— (2.7)
(E- v

where A is another arbitrary constant. For the cases of interest in this
research, i.e. for radially inhomogeneous media, the constant A is
determined by choosing a continuous transition from free space to the

inhomogeneous dielectric, i.e. e(§)| =1 , which yields A =(1- 7)2, and

£=1
1Y’
= [== . 2.8
e(®) <§_Y> (2.8)
This type of functional dependence for the permittivity encompasses a large
family of inhomogeneous media. Depending on the choice of 7, it lends

itself to both converging and diverging types of dielectrics. Its most
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valuable importance rests however in that it facilitates the theoretical
study of the problem by reducing the two differential equations essentially

to one.

2.2 Solution for the Eigenfunctions when e(§) = (1- 7)%%’—7)2

In this section, the exact solutions for the radial eigenfunctions are
determined when e(£) is given by (2.8). The various possible applications
with such a permittivity function are also discussed briefly.

By investigating the differential equation for the SS)(S) eigenfunctions,
when e(£) is given by (2.8), it is found that it has three regular singular
points at £=0, E=v and €= . This differential equation is easily reduced

to a hypergeometric type with its Rieman P-symbol given by

) v 0
SS)(S) = P a' b? c' & s (2.9)
all b" cl'

with a',a'; b',b'"; and c', c" being the exponents or solutions of the indicial
equation at the singularity points 0, v and oo, respectively. In particular,

these exponents are

a'=14+n , a"=-n ,(at'g“=0) , (2.10)
. 1+‘f1—;1(ka)2<1-y)2 s 1—'!1—4(2ka)2(1—7)2,(atSzy), .10
and
e -1+’/1-4[(ka)2(1-y)2-n(n+1)] e -1-1[1-4[(ka)z(l-y)z-n(nﬂ)]

2 ’ 2 s

(at £ = oo) . (2.12)

By reducing (2.9) to its canonical form, the result is
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1+V1—4(ka)2(1—L)2 0 1 ©
S(If)(’é‘) =§n+1(‘é’-7) 2 P 0 0 o Elv (2.13)
1-a3 a3—a1-a2 a2
where
a1=n+1+Ji-(ka)2(1—'y)2 + ‘/(n+1/2)2—(ka)2(1-7)2 (2.14)
2
and
03 = 2(n+1) . (2.15)

The functions represented by the canonical P-symbol are well known, and
a solution is chosen which is finite at the origin. Then the radial eigenfunctions

are given by

1+ 1 1-4(ka)%(1-7)2
3

sill)(%‘) = Snﬂ('g‘—v) oFy (afl,ozz; 2(n+1); £/7) (2.16)
and
(D)o . 1y (D
T (§) = Ey S, (§) . (2.17)

(1)

A second solution Silz)(&’), linearly independent from Sn (€), is obtained

by replacing in (2. 16) with any other solution of the hypergeometric

2Fl
differential equation satisfied by 2F 1 which is linearly independent from

2F1 itself.
Now €(&) is investigated for various choices of 7.
Case 1 The constant v is chosen so that 0L v < 1. The dependence
of €(&) is plotted vs. & as shown in Fig. 2-1. It is seen that as § tends to v,

€(&) approaches infinity (i.e. lim. €(§) = o). This implies that the dielectric
E>y
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sphere acts as a penetrable barrier at §£=+v and therefore allows
energy penetration for £ <v. When v=0 then €(§)= 1/ 82. This

case corresponds to the inverse square power lens which has been

studied by Uslenghi (1968).

(&)

<—1—;-j>2_

uvy

10 1

FIG. 2-1: Casel: 0L v<1

Case 2 In this case 7> 1 (see Fig. 2-2) and €(§) < 1 for 0< £<I1.
This case may be useful in studying diffraction of waves by plasma coated
spheres or scattering from plasma clouds of spherical nature surrounded

by an external medium with €(§)> 1.,
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(&)
A
1 T
v>1 A
2
-1
&)

> -
=1 =1 €

FIG. 2-2: Case2: v > 1

Case 3 Under this case (y < 0, see Fig. 2-3) the lens has been studied

from the point of view of geometrical optics in section 2, 3.
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(&)
'}

FIG. 2-3: Case 3: v<0, 'yé—h, h>0

For a spherical lens of radius r=a made of a radially inhomogeneous

dielectric with

_ Lth
N(§) = £+h (0<&<1 , (2.18)

and h > 0, the exact backscattered field when the incident field is a plane

wave is still given by expression (1.9) with



29

1 o, D)
M (ka) = [ag tns! <s>] l _ (2.19)
E=1
and
~ B 1
Mn(ka) = Mn(ka) " i) (2.20)

(1)
where Sn (§) is given by (2.16) with y=-h, It is observed here that

Mn(ka) - i\\/fn(ka) is a known quantity and that it is independent of n.

This is of great advantage in the determination of the high-frequency
backscattered field, because whenever €(1)=1 (as is usually the case for
dielectric lenses), the leading terms in the high-frequency expansions of
Mn and ﬁn are equal, and since (Mn—IVIn) appears in the numerator of
all terms of the infinite series representing E 'S; two terms are generally
needed in the expansions of M and M to obtain the leading term in the

b.s.
expansion of E S.,

2.3 Geometrical Optics Approach for the New Class of Lenses

In this section it is assumed that the wavelength is infinitesimally
small,i.e. ka —» o for finite a, Under this condition, the electromagnetic
wave propagation properties through the dielectric sphere are examined with
the aid of optical ray theory. By considering Fig. 2-4, one traces any
incident ray making an angle of incidence o at the surface of the dielectric

sphere. The following parameters are also defined in Fig, 2-4;

6 = 6(e, h) = deviation angle
y=y(); v =«a

w(smm> =7/2

p =p(&)

and

0 =2p (gmin)
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tangent at P

>
incident ray

FIG. 2-4: RAY PATH THROUGH THE INHOMOGENEOUS DIELECTRIC.
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The generalized Snell law for the index of refraction is given by

EN(E) sinyy = constant. When £=1, N(1)=1 and ¥ =a. Then it follows that

1+h  sina

NO = T Tamy (2.21)
and when & =Emin
1+h sin o sin o
NE . ) = = : = (2.22)
foin Emin+h Eminsm m/2 Emin
or
£ h sin o (2.23)

min = 1+h-sin o

Therefore, Smin #0 unless h=0. If h=0, then agreement results
with the inverse square power lens, where Eminz 0. In order to investigate
how the refracted rays leave the lens, one considers the differential equation

for the ray trajectory,which is

%% - _Ecoty . (2.24)

Upon integrating (2.24) one obtains the following expression

0 (E) = f gdi—t@ . (2.25)
1

With the aid of (2.25) and the relations 6 =0+ 2a-7 , 6 = 2p(§min) and

‘[g‘E(Hh)zcscza - (§+h)2'

coty = E+h , the deviation angle is given by
“min (E+h) dE
§(a,h) =20 -7 -2 , (2.26)
1 SVEZ( 1+h)2 csc2a - (E+h)2
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which upon completion of the integration yields

2 sina h+ coszoz + cos o V(l+h)2- sinza

6la,h) = —————— log . (2.27)

h sin o
.‘/ (1+h)2- sinzoz

From the latter expression, the quantitative behavior of (e, h) has been

computed for different values of @ and h. In Figs, 2-5 and 2-6, &(c, h)

has been plotted vs. . In these figures it is seen that 6 increases from

zero at =0 (with a slope (%)
a

then it decreases toward zero, which is reached at « = 7 /2 with a slope

(@) =2 . Also the maximum deviation angle is shown as a function
a=m[2

=+ 00 | toa maximum value §
-0 max

do h
of h in Fig. 2-7. As h diminishes, 6max increases to infinity which
indicates that the ray trajectory inside the lens follows a logarithmic spiral
toward the origin in agreement with the inverse square power lens. On
the other hand, as h increases indefinitely, the maximum deviation
approaches zero in agreement with the fact that

lim N(§h) =1
h—-» o

i.e. the lens assimilates free space.
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FIG. 2-5: DEVIATION ANGLE VS, ANGLE OF INCIDENCE
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CHAPTER III

HIGH FREQUENCY BACKSCATTERING FROM A PERFECTLY
CONDUCTING SPHERE COATED WITH THE NEW CLASS OF
RADIALLY INHOMOGENEOUS DIELECTRICS

3.1 Introduction

In this chapter, a theoretical study is carried out in order to determine
the electric field in the backscattering direction, for high frequencies, when
a plane wave is incident upon a perfectly conducting sphere, coated with the
new class of radially inhomogeneous dielectrics. By high frequencies it is
implied that ka >>1 or A << a, where A is the wavelength of the incident
field. The analysis follows the discussion of section 1.3 in chapter one.
The perfectly conducting sphere is of radius b and the outer radius of the
coating is a. The electric field of the incident plane wave is given by (1.3)
and the geometry of the problem is shown in Fig. 3-1. Following the
development in chapter one, the Mie series (1.9) is transformed into a
contour integral in the complex v-plane, where v=n+1 /2. Then, the
reflected portion of the electric field is determined a(s;;mptotically t(o

i 1)

o) [(ka)_z] . This is accomplished by solving for S~ y (§) and T, 1/(5)
~T2 =72

+
with the WKB method for v = O [(ka)l/ 2 6] , then computing aj y -byS y
“lT2 V=2
to O[(ka)—z] with the aid of the Debye expansions for Csjl_)l /(ka) and

! 2
Cf/l_)l /(ka) in the proper regions of the complex v-plane and finally by per-

formzing a saddle point integration using the integrals of Scott (1949). It is
recalled that the main contribution results near v=0 on the l-} path of
integration. The expression thus obtained for the electric field is then used
to find the monostatic cross section, which is normalized to the monostatic
cross section of a perfectly conducting sphere of radius b. This normalized
relation is then used for numerical computations for 0.2 < < 0.99,

0.256< ¥<0.998, 1.1 <v< 2 and 50 < ka < 1000. The ray tracing

36
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technique is also applied to determine the reflected electric field to O Eka)_l] .
This is accomplished by considering the conservation of energy between
incident and scattered fields in order to find the amplitude of the reflected

field ,and the eikonal relation in order to determine the phase. The result
is then compared to the first term of the electric field obtained by the

use of asymptotic theory. Finally, using this geometrical optics

expression, the monostatic cross section normalized to that of a perfectly
conducting sphere of radius b is computed, for the corresponding values
of B and vy considered previously. From these numerical data, the
monostatic cross section as determined by geometrical optics is plotted
vs. B. Also,the percent error in using geometrical optics instead of the
rigorous asymptotic theory to O [(ka)_2] to determine the cross section
is plotted vs. ka for 50 < ka < 1000,

The last section of this study is devoted to outlining the creeping wave
contribution in the backscattering direction. The differential equations (1. 13)
and (1.24) are solved for v near ka by applying Langer's uniform asymptotic

theory, since in this case it is found that Q(i)(S) has a zero 80 in BS EL L

3.2 The Asymptotic Solutions of S ;,(§) and T ().
V-, V-1,

The asymptotic solutions to O [(ka)—z] for the radial eigenfunctions
3)1/(*5) and Ts)l/(%’) are obtained in this section, by applying the WKB
=72 =72
method directly to Egs. (1.16) and (1.24). Firstly, it is recalled that for
(3)

this class of radially inhomogeneous dielectrics Sz/ 1 /(S) = U(])l (§) and
=2

S
V="f9
therefore

vz- 1/4
(ka)2§°2

2
- _(1x) .
@ - 0 - (£) (3.1
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for i =1,2. From (3.1) it is seen that Q(§) has a zero at

v(1-y) ka vy2—1/4 - 1(1/2-1/4)

(1-14ka)? - W2-1/4)

(3.2)

which is almost zero. It follows, therefore, that if B8 < §<1 such that

B> Eo the WKB method can be used. By restricting B to values greater
than 'g“o it is seen that conditions (1.27) are also satisfied, and this further
justifies the use of the WKB method. The solutions which are obtained

here are valid for v~ O [(ka)l/2+ 6] with 6§ >0 but §<< 1. These

solutions are given by

(J) ( (J)

from (1.28) with Q(§) as in(3.1) and
™ () - (—1) s 3.3b
/(E) V_1/2(§) . (3.3b)

To obtain these solutions in their final form, one has to develop the asymptotic
expansions. To this end, it is found with the aid of the binomial series

expansions that

[Q(%’)]_l/4= Vi"l exp
-y 4:(ka)2%=2

4
+ o[ta®] + o l:——”—z]] (3.4)
(ka)

and that
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2
5 d(§)  d Q) oE) |
d§ ) A

3
2
exp{i ikaf VQ(E) 1+ 4 dg dg

8(ka)’ Q(£)

2
~v €Xp {_t i <ka(1-’Y) n (§-v) - 2k:(1—'y) [zng+ %:D} X

i ( 1) . A
Xl-T-—-————(!n 1- -")'T'i 3. 3 <1n§+
8ka (1-7) &/ & a(ka)(1-7)°

7 2 £> < [ v ] [v“ ]
+ 3X_ 3 + 1+ 0 + o|X—| +
§ g2 g (ka)® (ka)
6 8
+o[”5:| + O[UG} ) (3.5)
(ka) (ka)

By combining (3.4) and (3.5) the solutions in their final form are

1-y

2 .
v o' R S AT
2ka(1-7) <“€+ g)]} <1 T 8ka(1-7) [“ (1' {:‘?)

1] V2 ( v 2 _ iv4
_ . v 1_—)+—————[12n§+
§ a(ka)X(1-7)° § 8(ka)>(1-7)°

2

2 3 2
+§]f_i'r_+_L]> l+0[(ka)2]+[oy:|+
I3 2 3 3
28 3& (ka)
[l R b I P
+ 0 + 0 + 0 (3.6)
(ka)4 (ka)5 (ka)6
(3)

and TV 1 /(S) is given by (3.3b). These solutions are valid provided that
=72
£+ 0, Efv and |2ka(1—7)| > 1,
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FIG. 3-1: THE GEOMETRY OF THE PROBLEM. (c=ay)
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3.3 The Reflected Electric Field

With the asymptotic forms of SS)I/ (&) and Tg)ll(‘é’) one easily
=72 =2

proceeds to determine the reflected electric field to OEka)-zj . Itis

pertinent, that first of all the asymptotic expression for ai y - bs y
~l2 V772

be derived. To this end, a step by step procedure is employed in deter-

mining these coefficients. Firstly, the definitions for 1\% y (ka) and
=72
M 1y (ka) are recalled in terms of C (&,B) and T (&, B). In this
v-Y, v-1/, V-1,

case ﬁv 1/(ka.) is simplified in the following form.
=72

oC (E,B)
/(ka) R S \:c (&P - (B __1/___]

“ka(l-7)  ka |oE B
£=1
(3.7
From (3.6) :
c o~ YEnE-m e v (gi)zl—+
v, £,B > -Y)(B-7) exp \; (ka) 1oy 52
2 4 6 8
(?——) —2> sing(s,B)[H O[(ka) 2]+ 0[ 3]+ o[ L 4]+ o[ V5]+O[V 6]] .
g (ka) (ka) (ka)"]  L(ka)
(3.8)

From this derivation for Cv y (&,B) one obtains
=2

wl—>2t 4 L 0g(&.B)
M,y B 550 F ka (°°tg(§’3)) o8 (‘H
g=1

2 4 6 8
+ o[(ka) 2] + O[ 3]+ o[ 4 4]+ O[ ]+ O[ Y 6] (3.9)
(ka) - L(ka) (ka) (ka)
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~s 1 1 g(‘s‘} @)
My_l/z(ka) ~ {— 2ka(1—’y) (cot g (&, B)) +

- 2 og(E,B) 0glE,B)
1 (B-v) esc g (§,7) Y. 50 } [1+
ka 2 2
2-2 X %(ﬁ*{) - (p-fcot g (5, |28
(ka)” B £=1
4 8
+ O[(ka) ] + O[(k )3]+O[(11/a)4]+O[(ka)5]+o[(ka)6] ] (3.10)

where 1 E-v 1 1/2 X
(&, B) = <ka(l-7) - 8ka(1-7) ‘n (B—'y) T2 ka(1-v)

3
3 2 1 1) v (1 1)]
- - ¥ —_— - + = —_- (3.11)
2 52 .32 3 §,3 33
and henceforth g(&, B)| =g(1,B) =g . (3.12)
=1

By observing that

9 4
1 9g(5,B) 1y 2] [,, }
~1- + 0] (ka) + 0 (3.13)
ka 98 |eg 2 (ka)? (ka)*

and by simplifying (3.10) after the term (B—'y)(cot g (S,B))Qg;—%-@ is factored

out in the denominator, the following expressions are derived:

M o (ka) Ao + [(1-12 S tg)[1+o[(x 2] +
v-Y, a 2ka(1-v) T2 (ka)z cotg a
+ 0O +0 +0 +0 (3,]_4)
k)  Lkat] L]  Likalf

and
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Mv—llz(ka) ~ " 2kay) oka(iy) SC€\l"p ) tang <1+
(ka)
-2 7V2 V4 -l 1/6 y8
+ O[(ka) ] + 0[(ka)3]+0[(ka)4_|+0[(ka)5]+O[————(ka)6 ) . (3.15)

It remains now to obtain the asymptotic expansions for the spherical Hankel
function of the first kind and its derivative in the proper regions of the complex
v-plane. The regions in the complex v-plane are shown in Fig. 3-2 (Watson,
1952). For the case of the reflected electric field the Debye asymptotic

expansions are needed in region one. These expansions are

T
(1) 1 4 i ) v
CV_1/2(ka) ~ ]/Smhn e 1- ik 1+ O[(ka) ] + O[(ka)3] (3.16)

and

Q-i I 2
(1) i T4y 1 i -2
oy k)~ Yoy, © eaT2 2 1+ ofear®] +

2
+0 [ Y 3] (3.17)
(ka)

with the following relations being recalled

v=kacoshn , Q=v(tanhn-n) , (3.18)
the restriction

—g< arg (-i sin h n) <

T
3 (3.19)

and the requirement that E

while it runs close to the imaginary v-axis in the second quadrant. It is

is sufficiently far from v=ka in the fourth quadrant

noted here that the notation has been changed somewhat from that of Watson
(e.g. Watson uses v instead of n ) for convenience. If now the following

asymptotic expressions are taken into account:
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Imy

FIG. 3-2: CONTOURS OF INTEGRATION AND DIFFERENT REGIONS
CONSIDERED IN THE COMPLEX v-PLANE.
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20 2 4 6
6~ exp iw-ilf—a-izka 1-1-~% 3+o[”5] , (3.20)
12(ka) (ka)
L2 4 6
sinhn~ i41-3 L - 1+o[" 4:|+ o[” GJ , (3.21)
(ka) (ka) (ka)
1 1 1/2 1
/(ka) - /(ka) Tl +4{1- 3 - )2 (2 csc Zg) - 2ka(1-y)x

9 9 2 4 6 8
X secgffil+ O[(ka)_ ] + O[Lg] + O[V 4]+ O[v 5] + O[ L 6] (3.22)
(ka) (ka) (ka) (ka)

then together with (3.14, 15, 16 and 17) the difference of the scattering

coefficients is found to be

2
a° : . Voo, . i iv
1 1 iexp qimv - 7—-i2ka +i2g 1+ = - -
% /2 vy, " ka dha o003

sin 2g

_ _tang i
2 ka(1-vy)

ka(1-v)

2/
ka
. 2
+ o [(kar?] + ol:” 3] +o[ ] [ ] l: ] . (3.23)
(ka) (ka) (ka) (ka)
\I

By substituting in (3.23) :

exp i2g exp (imv- - i2ka + i2g 1+

g=¢ te, (3.24)

where

2
] 1), 1 1
€ = ka(l-'y)ﬁn(B__)/) + 5 fa(i) InB+vy (B— ) , (3.25)
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4

—”———3— [£n3+3'y('[1§-1) +

(ka)>(1-7)

3
3 2( 1 v (1
+ -y ('——) - ("—1):] s (3.26)
2 BZ 3 BS

such that €2 <L €

2 . 4
s s v i v
- - iTy - i— - i2ka + i I + - i +
a,,_1/2 by_1 y ~/ < iexp [mv 11 i2ka 1261 {1 T

. . 4
+ - In By + 2 l:ﬂnB+37(l->+§'yz<—l-—1)-
4ka(1-v) (1-7) 4 (ka)3(1—7)3 B 2 B2

_'l’i ) (tanel)[exp (1261)]
R (Eé’ >] i ka (1-v) i

2
v
. iTy- i— - i2ka + i
1 (sm 261)exp[17r1/ i i2ka 1261] N i sin 2¢ sec2 exp L iTy -
: Kalioy) 4ka(1-7) 196¢ € &P

v2 -2 1/2 1/4
- iy - i2ka + i2¢, 1+O[(ka) ] +0[—§ +o[ 2|t
(ka) (ka)
6 8
+ o[” 5:] + o[—'—’—g] ] ) (3.27)
(ka) (ka)

If v=1/2in(3.27),then

IR I o~ 12ka [1—(1—7)£n (1—’}'/[3—')’)]{1 _ _}_} l:l + O[(ka)-z:l N
o o

4ka
=)l
+0 +0 + 0| X~
(ka)’ (ka)* (ka)’

ool

€9~ 8katl-'y) ’Zn([f:z)*

then (3.23) is given in the following simpler form:

8
+ O[V 6] J results. (3.28)
(ka)
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If now one writes

b S. ei if s .s ye_imj s s
) —— -
Eren. ™ * iz 2(&10-b0>- L4 gi2mY [3‘1/_1/2 by_l/z:] dv e, (3.29)
I1

then by substituting (3.27) and (3.28) in (3.29) and by performing the inte-
gration along I—; with the aid of the integrals of Scott (1949), the re’ﬂected
electric field is obtained in an explicit but asymptotic form.

It is recalled that the integration along r‘ is a saddle point integration
over the range v = O [(k ) 1/2+ 6] with the major contribution arising for
v near zero. Scott (1949) evaluated such a class of integrals which in their

general form are

toe -ew
+
E = f —e—_- w2q 1 dw (3.30)
1y

with q =0,1,2,3,. .., 0<y< 7/2. By performing the saddle point
integration for v << ka Scott found that the major contribution arises
for v near zero. Some of the integrals which he computed and which are of

importance here are

1 7r2 1
E ~ —-—/+ O¢) (3.31)
0,0 2e 6

1 o
E ~ — + 0O(e) (3.32)
o,1 2

2¢e

and

E _~+1 + 09 (3.33)
0,2 E3

Scott used these integrals in order to determine the backscattered electric

field from a perfectly conducting sphere, when the incident field is a plane
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wave, for ka >> 1. Throughout expressions (3.30) - (3.33), € and w
are given by
i

47r2ka

and w = i2mv. In the problem considered here, expression (3.29) is
reduced to several integrals of the type (3.30) by substituting the asymptotic
expression for aj_l/z— bzs/_l/2 in (3.29) and by letting w = i27v. In this
case, in each occurringintegral € is a function of the 8 and y parameters
as well as of ka, A typical integral e.g. results if the first term of (3.27)
is considered.i.e. the term -iexp {ifrv - i(vz/ka) - i2ka + i261} . The

integral along ["1 in this case becomes :

. . 1-
[ 22 ey o i SEeeE
2 VY,

. a_1 - = e
. (g2 v Y/ 4n2
1

iy
+2 1y
Tve we—ewz | -iZka [1-(1-7)111 (B— )] L2 .
X oy WV e ¥ "5 +0(€”)
i 1+e 47

(3.34)

where for this particular integral, € = - L 1-foB-v/p and
47r2ka s

)1/2+€

v =(ka . By proceeding in a similar manner, the following expression

is finally obtained for the reflected electric field:



49

b.s.NAeikr _[ ka(1-v) :le-iZka[l-(l-'Y)fn—é?Y/—]
2 )}

Ereﬂ. * Tk (l-ﬂnB-I X
B
i By _xy_,_4{, , 5.2
X 1+4ka(1_7) lnB(l_Y) 8 1 3(1 4nB B) +
2 3
24 2 Y3 Y 20
. 3+4'y'y BB+SB 3 B 212nB+
2
(l—lnﬁ-%)
1-
exp |i2ka(1-v) fn =X
+<1-1n‘8-1) [ B”Y] +
P 1+ -2 (fnp+ %)
. 1-v
exp | -i2ka (1-y)4n —
¥ l-v 5'7] + o[xay?] , (3.35)

The correctness of this expression is checked with the known result for the
perfectly conducting sphere. It is thus observed that if (=1, i,e. if the
thickness of the radially inhomogeneous coating is zero, then (3.35) reduces
to
E—Eefsl ~ 2 (_ _za?) eikr—iZka
* b=a

which is the well known result for the reflected field by a perfectly con-

1- 5+ o2 ]}, (3.36)

ducting sphere. It is also observed in (3.35) that since Imk << 1 but positive,

in the limit B=y the expression (3.35) reduces to

Eb. s. A i ikr-i2ka

_1
Zrefl.™ 7 8kr(1-y) © 1+ O[(ka) ] (3.3

which indicates that if B=v the reflected field contribution is very small.
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3.4 Derivation of the Reflected Electric Field by Geometrical Optics.

Although the geometrical optics contribution can be determined from
the first term of expression (3. 35), it is of interest to derive this contri-
bution by the ray tracing technique. Such a derivation gives not only a
means of comparison with the results obtained by rigorous asymptotic
theory, but also a physical insight into the problem.

In considering the geometrical optics solution for the reflected electric
field, it is implied that ka -» 0. Furthermore, the reflected electric field

b.s.= :)\{Eb.s.

is polarized as the incident one, i.e. E , and it satisfies the

vector wave equation. This vector wave equation easily reduces to

[Vzg+(ka)2N2(§)] ED %= 0 (3.38)
where
_ 4
VE, =& - (3.39)

A solution is assumed for EZ S in the form

[00) b.s.

. 3 E
g0 8o 1kO(E) +im Z L (3. 40)
X ik
£=0

whose leading term is

. i i
Eb. s.,, Eb S e1k8(€) i

< o (3.41)

and which is the geometrical optics solution for the reflected electric field.

The amplitude EE' S is easily determined from the principle of con-
servation of electromagnetic energy between the incident and scattered
electromagnetic fields. This of course implies that the inhomogeneous
dielectric is assumed to be lossless. The phase (&) is determined from
the eikonal equation

1 2 .2
[; Ve e<s>] = N(® (3.42
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which follows from substituting (3. 40) into (3. 38), performing the differen-
tiations and then equating terms in powers 1 / k2 to zero.

In order to determine Eg' S explicitly, a tube of rays of cross-sec-
tional area 7Td2 is assumed incident upon the coated sphere in the +z-
direction. By considering the amplitude of the incident plane wave to be

unity, the electromagnetic energy carried in the incident tube of rays is

given by
s 2
51nc1dent _md_ (3. 43)
27
On the other hand, the energy of the scattered field is
2
T s L
scattere 0
= ds 3.44
T-2 [a+-p]

where € = electromagnetic energy.

From the last two relations, it follows that

L

2
EP 5= lim ad

d-»0 2r o
ds (3. 45)
0 T-2 [a+p]

where dS is the element area in the spherical polar coordinates system. The

limits of integration can be understood from Fig. 3-3. Upon completion of

the integration, the denominator inside the radical of (3. 45) is

2w T
[ f ds = 2mr’ [1~cos [2(a‘+p)]] (3. 46)
7-2 [ao]

and therefore the magnitude Eg' 5 becomes

I
2r sin (o4p)

b.s

E"7=lim (3.47)



92

<N

*T>A >0 NIHM SAVYE AILOTTATY ANV LNIJIONI 40 SHLVd :¢-¢ "DId

D

o

A
]

—| O je—

v
/1

<™



53

From the definition of p(£) as given by (2. 25), one obtains

B B
o =f dp(§) = -sina f g&’-'y)dz'g" =35 . (3.48)
X L £V an 92 sinla

By observing that d = asine, it easily follows that

asina
Eb' S~ lim
0 B

a—+0 2r {sin a—sinaf > (5—;)d§ — ) (3. 49)
L A-v e-nsina

and finally by carrying out the limit

b.s._ _a 1-v
Eo T 2r J1-4nB-v/B (3.50)

results.
In'determining the phase O(§), it is first mentioned that the factor of 7
in (3. 40) is added in order that the 180° phase shift, from the total reflection
of the incident rays at r=b, be taken into account. The explicit form of 6(&)
is evaluated from (3. 42). By taking the origin (§=0) as the zero phase reference

point, the solution of the first order linear differential equation

ae(§) _ (1-v

& a(ﬁ-’Y) (3.51)
is

8(§)=a8—2a[1—(1—7)£n(ﬁ)] . (3.52)

It follows then from (3. 41) together with (3.50) and (3.52) that the reflected

electric field is given by

. 3 —-—1-’}/
ikr -i2ka [1-(1—‘}’)£n ]
Eb.s:v_g ek ka(1-v) o (B"Y (3.53)
X oo [1—£n3-%]
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It is observed that this latter expression is in agreement with the first order

term of (3. 35).

3.5 Scattering Cross-Section Computations

It is of interest to perform numerical computations, so that the effect
of the radially inhomogeneous coating in reducing or enhancing the monostatic
cross-section of the perfectly conducting sphere of radius b, is determined.
These computations are carried out for different values of 8, v, and ka. The
cross-section of the perfectly conducting sphere of radius b is denoted by
o, and it is normalized to Oc’ where Gc is the cross section of this same

b

perfectly conducting sphere coated with the new class of radially inhomogeneous
Oh

dielectrics with outer radius a. The normalized cross-section oN = G—C- is

determined for two cases. Under case one, ch is derived by considering the

reflected electric field given by geometric optics. Under case two, ch is

derived by using expression (3.35). The expressions for O’Nl and 0N2 are

given respectively by

oy, = Lotodof : (3.54)

and

Ny Bz 1+ 21 5 (141[1_[?;7/3)2 [1+%£I_Y§ sin[Zka(l—‘Y) ﬁn(é—zz)] X
48" (ka) v

2
L 1 .____.L__ B"'Y X _ _1_1 _ _.2/
) (1'7 i 1+7-2[fn3+7/5])] ¥ 16 (12 [“(B(l— ) 871773 (1 {nf B)+

2 | 4yrP8 z+3(ga 2_ -g-(%) 3 _20nB

3 B
(1-£nB-v/B)2

2
(1, 1
(1—7 1+y-2(4nBt+ v/B) )]

+

+(1-tnB-v/P) cos [Zka(l—v)ﬂn(é—'_%)] *

—

-1 (3. 55)
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ch— 0N2
GNz

0.2£B<0.99, 50K ka <1000 and various values of v. The parameter D

Along witho . and o the relation D = x 100 is computed for

N, Ny

gives the percent error in using the geometrical optics approximation, in order
to determine the cross-section, instead of (3.35). The most interesting num-
erical results are shown in Fig. 3-4 through Fig. 3-13. In Fig. 3-4 the

parameter o is plotted vs. B for 0 < Y< 1. For this range of v, - the

inhomogeneolz; dielectric is of the converging type and the coating enhances

the cross-section of the perfectly conducting sphere as one would expect based

on physical reasoning. On the other hand when ¥> 1 the inhomogeneous dielectric
is of the diverging type and as it would be expected the coating reduces the cross-
section of the perfectly conducting sphere. In Fig. 3-5 one observes that this

is the case and that for smaller B and v very close to unity, the reduction of

the cross-section is considerable. The percent error D is presented in the
remaining figures vs. ka for various values of 8 and <. It is deduced

from these figures that the percent error is insignificant for ka as low as 50.
The conclusion then is that the geometrical optics technique is indeed a power-
ful, very accurate and very simple tool in studying the cross sections of per-
fectly conducting spheres coated with radially inhomogeneous dielectrics. An
exception to the above conclusion is the case v = 0.998. It is seen in the last
two graphs that for this case, the error is as high as 74 percent when ka = 50,
However, this should be expected if it is recalled that the radial eigenfunctions
Sf/jzl 2(!‘5) and Tf/jzl 7 (8) as obtained by the WKB method are valid provided that
£+0 and]2ka(l-'y)|>> 1. When v= 0.998 and S= 0.98 it clearly follows that

this latter condition is violated and therefore the error for this case is ex-

plainable.

3.6 An Outline for the Creeping Wave Contribution in the Backscattering

Direction
In this section, part of the analysis required in order to obtain the creeping

wave contribution in the backscattering direction, in an explicit form, is presented.
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(3 (3
v_1/2 (E) and Tv_l/z(g):

which are valid for v near ka, are given in terms of the Airy functions in Fock's

The asymptotic expansions for the radial eigenfunctions S

notation. These expansions must, more accurately, be valid for v = ka+ mt,
where m= (ka/ 2)1/ 3 and t is of the order of unity. Since, in this research,
interest is confined to the contribution of the first few creeping waves in the
backscattering direction, particular attention is paid to those poles in the com-
plex-v plane which are located nearest the Re v-axis. A parameter 7 is,
therefore, defined such that

L
2
m

T (3.56)

which implies that |7§<< 1, and this latter condition corresponds to considering
only the first few creeping waves in the 6 =7 direction.
With definition (3. 56),the coefficient Q(£) of the differential equation (1. 16)

becomes

2 4 2
Q) = (—;::-1) - i Aka) (3.57)
-y 52 §2

In order to examine whether the zeros of Q(£) lie within B £ 1 one first

finds the zeros of

2
1-vy 1
-— - = =0 3.58
which are at
%’01 =1 (3.59)
and y
*g"oz = -2-_7 (3.60)

It follows that since v< 8, 802 is outside ,B<§< 1 and therefore ’501 is the

only simple turning point in that range. By defining a parameter

2
T=r71+1- - L )

4(ka) 2
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then since 7 = O[(ka) -2/ 3] and similarly T = O[(ka) -2/ 3], by a pertur-

bation technique the simple turning point is found more accurately to lie at

g0=1-(1277) T+ 0(T) (3.61)

Since 72 = O(Tz), then to the same order of approximation T~7 and

§, =1~ (12;7) T+ O('rz) (3.62)

This turning point is within B & o <1 and therefore Langer's technique is now

used to solve the differential equation. By writing the coefficient as

2
1-v) _ 147
a0 =(£1) >

the differential equation to be solved is

2

——d- s vy, (&) + (ka) Q8 S(J)/ (&) =0 . (3.63)
d%’
The solutions of (3. 63) are given by
1/4
. £,(8)
) 2/3
Y-, (E)‘(Q (E)) wi5) [(ka) f(%’)] (3.649)
and
e ( ey o1 9 3 65
Dy, (e 1) s @ L i=12 (3.65)
In the above relations
: 2/3
3
8,8 =\ 3 f VQO(S) dg , (3.66)

EO

and therefore one calculates:
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3 . 1
2 1 3
[ Vo= efros o

2 2 2 9 §
N(Y =2v=7) E7+ 27 (1D E=Y (147 +(¥V =2v=1) E+v(1+7) —iYil+7 X

E0
) 3
X ln{é | ) V(vz—zv—ﬂgzwv(lms—vz<1+7> - g<1+7)+(1+7)} -
(0]
-~ (1-v) £n — 1 V( 2—2 - )§2+27(1+ )E— 2(1+;+—AY+1 :
Y FEYCE I A PRV AT Yy :
(0]
(3.67)

In order to proceed in computing numerically (1.56) which gives the contri-
bution of the creeping waves in the backscattering direction, equations (1. 57)

must be solved for the zeros tﬁ and '\t}. This in turn necessitates simpli-

fication of Mv Y (ka) and ﬁv y (ka) asymptotically in terms of 7 or
=2 =/2

t/m2 .

|

SO

From relation(3. 67), the asymptotic expansions to 0(75/ 2) of

1
B
VQO(E’) d¢ and f -"Qo('-;") ds are obtained first. Then ¢(1),
3
0

¢, 088 2Ll

5’ o8 etc., are computed, to give finally the asymptotic forms

~J)
of M(t) and M(t). This work has not been included here due to the cumber-
some expansions. The same technique, however, is carried out in Chapter

Four for a simpler type of radial inhomogeneity, and the constants M(t) and

~
M(t) are there given explicitly.



CHAPTER IV

HIGH FREQUENCY BACKSCATTERING FROM A PERFECTLY
CONDUCTING SPHERE COATED WITH A DIELECTRIC
WHOSE INDEX OF REFRACTION IS N(§) = &P

4.1 Introduction

Nomura and Takaku (1955) considered an interesting class of radially
inhomogeneous dielectrics in their study of radio wave propagation in an
inhomogeneous atmosphere. They assumed the atmosphere to consist of
stratified layers of radially inhomogeneous media. The index of refraction
of the kth layer was taken to be N(£) = Sp", with p> -1. This index of
refraction represents a class of radially inhomogeneous dielectrics which
are ofthe diverging type. The larger the exponent p, the greater isthe divergence
of the electromagnetic rays. Nomuraand Takaku (1955) solved the wave equation
and superposed the solutions of TE and TM modes in order to obtain a com-
plete representation of the etectromagnetic field. The following radial

eigenfunctions were obtained for the corresponding TE and TM modes.

. . ptl
() _}’ T g0 (kaf”
Sy_l/z(E) =\ 2z B ( . > for TE modes

. . ptl
(3 _ p\, T () ( kag
Ty_l/2 (§) =ka& Aop+ 1)E Hv” ( - > for TM modes

with . r———
1/2+ Ez+ p

V'=5-+V—1 and V" = —

From these solutions, the restriction p> -1 becomes clear if one observes
the argument of the Hankel functions. By assuming a dipole excitation source
and by applying the Watson transformation the authors obtained a residue
series, which represents the radio waves traveling around the earth. Nomura
and Takaku also applied geometrical optics to trace the ray paths in the inho-
mogeneous atmosphere, and performed numerical computations by assuming

different values of p for various environmental conditions.

69
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In this chapter, the above mentioned radial inhomogeneity is con-
sidered as being the coating of a perfectly conducting sphere of radius b.
The outer radius being taken as r = a, the normalized index of refraction
is written as N(§) = Ep , p> -1. In the same manner as in Chapter Three,
a plane wave is assumed incident on the coated sphere with its electric field
given by (1.3). The backscattered electric field is put into an integral form
by applying the Watson transform on the Mie series and the explicit asymptotic
expression for the reflected electric field is obtained by integrating along
the path l“1 (see Fig. 1-3) with the aid of Scott's integrals (Scott, 1949).
The creeping wave contribution is given by the sum of the residue series
as in (1.23). The monostatic cross section is finally obtained from the
geometrical optics reflected electric field and it is computed for different

thicknesses and different values of the exponent p.

4.2 The Radial Eigenfunctions in their Asymptotic Form

In solving the differential equations (1. 13) and (1.14) exactly, one may
encounter difficulties in developing their asymptotic expansions to O[(ka) —2].
In this case the exact solutions are Hankel functions of complicated argument
and index and their asymptotic forms may be derived from the well known
Debye expansions of these functions. Nevertheless, it is easier to obtain
these asymptotic expansions by applying the WKB method if possible. In order
to apply the WKB method the normal forms (1. 16) and (1. 24) are considered
in S(Ij)—l/z (&) and U,(,jzl/z(g)' From these differential equations, it is seen that

2

(ka)2§’2

1/2 -1/4+ p(p+1)
(ka)* £

and Quyy(® = 2P _ (4.2)
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have zeros at 1

2 2(pt1)
: =[y —1[4] (1) @3
10 2 .
(ka)
1
2 2(pt+1)
and £ =[v —1/4; p<p+1)] (4. 4)
(ka)

correspondingly. It follows that since v = O[(ka)l/2+ 6] , with 6 <<1 and 6§>0,
then 8 << 1 and S << 1. For finite p, &.. > 'g" and therefore if b > S
() / (&) and

1 / (&§) which are valid throughout b  § 1. It must be mentioned here

20
then the WKB method can be used to obtain solutions of S

e
that in this case the WKB method is applicable because conditions (1.27) are
also satisfied for b £ 1. By considering (1.28) valid over the range

1/2+ 6
V= O[(ka) / ]
and perform the integration and carry the asymptotic algebra in the exponential

term, in order to obtain the explicit asymptotic expressions for S(J) (&) and
(J)l /s (8). In particular, for the functions S(J)l/ (§), bynoting that

, it remains to develop the asymptotic forms of[Q(i)(S)] -1/4

2 4

-1/4 -p/2, |1 v 1 -2 v
Q,,,(8) ~ exp{fn (& ) + = + O} (ka) +o[ ]
o] e ! R (O 2 e

(4. 5)

dQ,.,(8) dQ, ., (&)
(1) )~

g
exp 4+ ika Q,. (& |1+ -
f “ v (k) Q) ()

4
_1/4 1 v 1 s -3
~ exp{+ 1ka + [ ] . =

1)] (pH) [ 2] 1/2 v4 1/6 v8
+ = L_R_" B +0{(ka)” +o[ ]+ 0[ ]+ 0{ ]+O[ ]
Bl pr k) gt lk)® ! lka)®

)
4

d€ ¢ A

(4.6)
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the solutions

ptl 2 4 .
€ LY -1/4 1 v i

+
pil 2k omeP™ T gka)® 3(pi)e

2 2
5i 1 i p(2p-1) 1 1 v 1 -2 v
T 48ka _3p T Zka prl ghtl ! (ka)> 52(p+1)}<1+o[(ka) ]+ 0[ 3] '

D
Sy 1 (8

-p/2 -
3 exp <+ ika 3(pH) F

3 (ka)
4 6 8
+0[V4]+O[V 5]+o[ V6] (4.7)
(ka) (ka) (ka)
are derived, which are valid for p> -1 and b > 820. The superscript j denotes
. _ |1, upper sign
1= {2, lower sign (4.8)
By proceeding in a similar manner for the eigenfunctions Ulf])l/ (%) , it is found
=2
that with -
-1/4 , .-p/2 1 1/2 -2 v4
[Q(Z)(S)] ~ & 1+ 1 22000 1+O[(ka) ]+ 0 — , (4.9
(ka) "€ (ka)

3 pt+1 2
1 —
exp <+ ika Q,., (§)dE) ~exp(+ ika £ +i L T
{ f (2) pH 2ka (p+1)§'p+l

- i

) 4 2
n TR N S L <+O[V—]+
gka(pr1)gPTh T K& PHL T 24 (08 S (ka)®
] of 5] o[ 5] )
+ 0 + 0 +0 s (4. 10)
(ka)* (ka)° (ka)®

and
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2
4Q (8 4°Q ()

5

13 2
, de (_ 5 1
+ika de~ T — +
f 8(ka)2[Q2(§)] 5/2 48ka  3p

B (2"'1) L >(1+o[(ka)'2]+o[ v’ ] + o[ v ]> (4.11)
4ka \ pt+l Sp+1 (ka)3 (ka)4

the solutions

1 2
M /2, e B e 1 i
Uy (E)~vE exp4t ika +1i F +
vl P72k eP? gragprneP
4
o p 1 . 1 .5 1 .p(Zp-l)l
+i +i Fi +1i +
2ka §p+1 24(ka)3 (p+l)§3(p+1) 48ka §3p 4ka \ pt+l EpH
1 v2 < [ 2] [ 1/2 ] 1/4 v6 1/8
+ = —~X——M1+0|(ka) |+ O +O[ ]+ o[ ]+ O[ ]
4 (ka) 22 (ka)° ka) ¥ laa)™d  Lka)®
(4.12)
result and they are valid for the same restrictions as Sz(/])l/ (]). From (4.12),
: /2
(3 _ b (3
Tv_l/z(S) =§ Uv-1/2 (&) (4.13)

is obtained. It is furthermore observed that

(3 _ P . P (3) 414
TV_/Z(E) 3 exp[-%_‘_l 2ka§‘p+l] sy_l/2 (%) . (4.14)

4.3 The Reflected Electric Field

In this section, the reflected portion of the backscattered electric field
is derived. With the aid of the asymptotic expansions for the radial eigen-
functions the parameters C (g, B, C (5, B, M (ka) and

v-l/y v-/y 7/‘1/2

~
My 1/ (ka) are computed. Then the difference of the scattering coefficients
=2



74

is found and finally by integrating along the path F'l in the same manner

as in Section 3.3 the reflected electric field is determined. From (4.7),

(4. 13) and the definitions of Cv 1/ (8, B) and EV 1 (&, P) one obtains:
/2 /2

2 p-
. -p/2 1 v 1 1 )
Cpay, & A2 B T exp {4 (22D Bz(p+1)]} sin [g(l)(g’B)]<1+

4 6] 8
[ Y 4]+ o[ + o[ £ 6] , (4.15)
(ka) k)’ Lika)
~ p/2 T 1
Cpay, &P~ 2L EAT Texp 9y (ka2 L 20D * Bz(p+1)] si“[g(z)(g'ﬁ)]<1+

[ 2] 1/2 V4 v6 ] 1/8
O|(ka) +o[ ]+ o[ ]+ o[ +o[ ] s (4. 16)
ka)  lka)d kel lka)®

where

2
- k ptl_ p+1 v -1/4 _1 1 1

. 2
+0[(ka)” ]+ o[ v 3]+ 0
(ka)

5 ({1 1>+
24(1< )3 p+1(g3(p+1) 3(p+1)) 48ka(g3p g3p

p(2p-1) 1 1
¥ Za(ptl) ( prl p+1) (4.17)
£ B
and
- p 1 1

From (4.15, 16, 17, 18):
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2
Mv-l/z(ka ~ - 51%; + (1 L (k ) ) cot g(l)(«";= ,B <1+O[(ka)_2] +
E=1

2 4 6 8
+o[ "3]+ o["4]+o[ v ]+o[ ] (4.19)
(ka) (ka) (ka) (ka)® ‘

and

2
by SRR I Y PR S Db 2
Mv_l/z(ka) [Zka (1 5 (ka)2> tan g(z)(%’,ﬁ) 2kaBp+1 <1+tan g(z)(E..B))] L X

=1
_2 2 4 6 8
X 1+o[(ka) ]+ o[ v 3]+0[ Y 4]+o[ 4 5]+ o| % 6] (4. 20)
(ka) (ka) (ka) (ka)

result, where the expansions

(5,8 2 4
= 1- 5 =5 + o[t ]+ O[ ; ] (4.21
~ 1l- .21)
ka o€ £=1 | 2 (ka)z [ (ka)4
and
og, (£, [ 98 9 r
(1) 1 ( 1 v [ 1 ]> [ [ ]
~ -5 \-2 1- +o[tka) ]+ 0
ORI N A L Y
(4.22)
have been used to arrive at (4. 20) and (4. 21).
By writing
B~ By TS T T (4. 24)

with

2
_ka _eptly\ v 1 [ 1
€ —p+l (1 B ) oka p+l (1 B—p_‘_l) , (4. 25)
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4
1 1 1 v 1 5 1
€. = - —— (1= + 1- - 1- —] +
2 8ka +1( 1) 3 ( 3 1) 48k ( 3)
p Bp+ 24(ka) B (p+1) a B p
(2p-1) 1
+ Zralpr1) 1 Bpﬂ s (4. 26)
-2 (,_ 1
€2 = Jia (1 p+1) s (4.27)
B
and by using the trigonometric approximations
tan g, ~ tan €, +(€_ +€,) [1+tan2€] (4. 28)
(2) 1 2 3 1 .
and
cotg, .~cote, —c€ [1+cot2€ ] s (4. 29)
(1) 1 2 1 .
the following relationships are obtained:
~ P 2 1 1/2
My oy, 02 =M,y B2M R Snze ) 173 ()2 2€ cote, *

+e tane p + —E— {1+tan2€ }><1+O[(ka) 2+ o[—”—z—]+ o[ /
3 1 ZkaBp+1 L ., (kal)3 (ka)
6
+ o[ v
(ka) (ka)

M Y, (ka) + M (ka)~<s n2e, cos2e, - sin2e, " sin2e

1 1/2 ) ( ) [ ] 2 1/4
- = 1+tan € 140 |(ka) “ |+ O[ ]+ 0[
2 (ka) ZkaBpﬂ . ka)d  Lka)

6 8
vo[ 5o g])
(ka) (k)

and

i)

(4. 30)

.2
20:—:2 2€3s1n El (

il

(4.31)
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2\, 2 4
M, (ka) M (ka)~—<1— L ><1+0(ka)‘2+o[ L ]+o Y ]+
vl v (ka)? [t ka2l ket
6 8
+o[ L4 5]+o L 6] ) (4.32)
(ka) (ka)

(1)

With these expressions and the Debye asymptotic expansions for ¢ i/ (ka) and
2

1 v-
gili y (ka) the asymptotic form for the difference of the scattering coefficients
~/2

is found to be :

imy-i = - i2ka+i2e . 4
2> 1 -b° 1 ~|—ie ka ! 1+ — —i % +2ie_» +
vy vV 4ka 12(ka)3 2
vz 1/2
imy -i— +ide_ -i2ka imy -i— -i2ka
P ka 1 _ P ka -2
+ 2 © 2 © 1+O[(ka) ]+
2 4 6 8

+o[ Y 3]+ o[ v 4]+ o[ Y 5] +o[ v 6] (4. 33)

(ka) (ka) (ka) (ka)

and when v = % s

-i2ka [l— p+_11 (1- Bp+1)

S S _ .5 _ o~ _ i
&y, ~ bv-l/z . =a, ~hyve 1~
V=g
+ —
pt1 2 4 6 8
x [__+Bl ] 1+0[(ka)'2]+0 . 3]+O[ o 4]+o[ — +O{V6]
P (ka) (ka) (ka) (ka)
(4.39)

results.

The reflected electric field is now given by
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4
k [r-2a(1- =L [1 g1 v [1+ 5 ka1 —2— 42 ]
3 2
b. s. f 12(ka)
=+
X kr -i2my
1+e
n
1
2
2 %
v 1 1 -i— |1-
4 Lhe —=—(1- — . 2ka pt1 ka [
ka[ p+1( p+-1)] [1 B ]
B P b ve
e W - 7 © 1+
r!
1
b :
pt+l Bp-l-l 2ka [ -i E

-i2 -
o i2my 4ka e i2my

5 22y gPt 1]
v+ e ptl f &,— dy+0[(ka)-2]
r
(4. 35)
The contribution from each of these integrals is given with the aid of Scott's

integrals (Scott, 1949) as follows:

1/2
- i
ka ) 2mve - ew2
e.g. f Ve_—iZ_;‘u_ dyv =+ 5 f Vle—T dw (4. 36)
r‘l 1+e (27ri) —omvel 1+e
+ .
where v=(ka)1/2€, €= - : , w=1i2m and 0 <y<7/2.

47r2ka

It is easily seen that the integral on the right hand side of (4. 36) corresponds

to E of (3.31). Then
0,0

_IIa— -1 1 2 1
Py — [E—%]+O(e) , (4.37)
I'I 1+e MV (271)
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or
2
X
ka
ve . ka1 -1
o dumi o = ol ] (4.38)

1+e

Another type of integral occurring in (4. 35) is

L2 Ry
' ka ptl gl

-i v5e i 1
- dy = - X
192(ka)° ,[,1 14g 12TV 12(ka)> (20)®

21rvely w5e - €w2
X —_— dw (4. 39)
iy l+e V
- 2mve

The right hand side integral of (4. 39) corresponds to the type (3.30) with
g=2. Then from (3. 33):

. 2mvely 5 -€w2 . . . .
-— 3 : 6 T dw~+ : 3 [—37]+O(€ ).
12(ka) " (2a1) iy e 12(ka)" (2i) €
S (4. 40)
i 1 1
In this case € = [1_ — (1_ __)]
@rifkat P Pt

By proceeding in a similar manner, the saddle point method integrations are

completed and the final result obtained for the reflected electric field is
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v ciokalo L [y _gotl
1 = N
afw o 11y 8. 2 1
a3 pr (1 Bp+l) 373 [1_ ﬁ(l‘ﬁ_;:f)]zx
- =
prl )
b o[ () (- )
 Zka () _gptl
(] o e -
. 2ka ptl
1p+—1(l—B )]
_¢ vofta ] p . (4. 41)
- (- =)

This expression is valid for p> -1 and 3> 520. Furthermore it reduces

to the result (3. 36) for the perfectly conducting sphere when =1,

4.4 The Geometrical Optics Approach

The ray tracing technique, as it was shown in Chapter Three, is very
useful not only because it is helpful in checking the results obtained by rigorous
asymptotic theory to O[(ka)_l] but also because it clarifies to a good extent
the physical phenomena which take place. In this section, the ray tracing
technique is again applied to obtain the optical ray paths in the radially
inhomogeneous coating and the reflected electric field to O[(ka)_l].

It is assumed that a tube of rays of diameter 2d is incident on the coated
sphere. Upon incidence on the inhomogeneous medium the rays diverge away
from the perfectly conducting sphere, as shown in Fig. 4-1. It is expected,

therefore, that, based on physical reasoning, the coating will reduce the
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monostatic cross-section of the perfectly conducting sphere. Indeed, it is
shown in Section 4.5 that this is the case by computing numerically the mono-
static cross-section.

The reflected electric field is now determined. By assuming that it

for ka - oo when a is finite, the amplitude is found first by applying the
principle of conservation of energy between incident and scattered fields. The
factor 7 in the exponent of (3. 41) is due to the abrupt change of phase which
occurs due to reflection of the incident ray at r=b. The relation for Eg' s

is given by (3.45). In this case the angle p for an arbitrary incident ray is

B B
. d€
p= p(§)dE = — sine s (4. 42)
‘/1' jl- SV‘g"z(wl)—sinza
or,by integrating
p=— 1 cos_1 [§_1119_] - cos_1 [sina] (4.43)
p+l go+L

and it is shown in Fig. 4-1. From (3. 45) and (4. 43) one obtains

EE‘ S lim = sina (4. 44)

a0 2r sin{a— p—+ll_ (cos_1 [;if:ﬁ-]— cos-1 [sina] )}

By expanding the inverse cosine terms in a series form restricted to principal

values (4. 44) becomes:
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2252 lim _2%: sin o 3 .
a0 siof(o- L e L )}
{ ptl Bpﬂ 6 633(p+1)
- lim 2 sin o - -
a0 sin a(l—i[l_L.kc_"___a’—ﬁL...)}

{ ptl Bpﬂ 6 6'83(1}*'1)

_ % [1— - 1(1— —1_—)] . (4. 45)

ptl ol

In order to compute the phase O(£), the eikonal equation (3. 40) is considered,

which in this case gives the following differential equation;

de(d) _ P (4. 46)
dg
With the phase reference point being the origin, the solution of (4. 46) is
- _ 1 (;_gptl
O(§) =at-2a [1 e (1 B ) ] . (4. 47)

The reflected electric field is then given by

ikr-i2ka[ - ;}—1 (1- " 1)]

Eb.Sx, % (%) e[ 1 ( - )] (4.48)

and it agrees with the first order term of (4. 41).

4.5 Numerical Computations

Based on the expression for the reflected electric field derived by
geometrical optics, the monostatic cross-section of the coated sphere is

found to be
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.

o, = [1—;%1_ (1_ 7’1:.1_)]2 . (4. 49)

By proceeding as in Chapter Three,the cross-section of the perfectly conducting
sphere Gb is normalized to o, Then computations are performed for
0.1¢B<0.99 and p=1,2,3,4,5. The computed normalized expression is

_ b _Q2l,_ 1 (,__1_
oy =5 —-B[l p+1(1 Bpﬂ)] (4. 50)

and the result is shown in a tabulated form in Table 4-1.

It is seen from Table 4-1 that the monostatic cross-section of the per-
fectly conducting sphere of radius b is reduced considerably, as the thickness
of the radially inhomogeneous coating is increased (3 decreases) and as the
exponent p increases. The calculations of ONZ and D have been omitted for
this case, since it is felt that the results of Section 3.5 give a rather general
idea of the error involved in using geometrical optics down to ka=50 to compute

the monostatic cross-section.
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4.6 The Creeping Wave Contribution

The contribution of the creeping waves to the backscattered electric
field is studied in this section. In chapter one, it was mentioned that this
contribution is given in terms of an infinite summation of residues in the
first quadrant of the complex v-plane, where the residues closest to the
real v-axis occur for v near ka. The strongest contribution in the back-
scattering direction comes from the residues nearest the real v-axis. It
is this case which is examined(h;are. First it is recalled that the asymptotic

J

expansions of Sg)l/ (8) and Tv 1/(8) valid for v near ka are required,
=2 =2

so that M, 1/(ka) and ﬁy y (ka) can be determined from their definitions
-1, -,
in terms of Cv 1/(ka) and Ev 1 /(ka). By considering the differential
~72 ~T2

equations (1. 16) and (1. 17) with Q(l)(S) and Q(z)('g") given by (1.26), (4.1) and
(4.2), it is readily seen that for

(2 '12)" <1, or p finite and (ka)2§2 >> 1, one can define in approximation
(ka)“&

2
v

(4.51)
(ka)2e?

. - _ 2P

By setting v = ka + mt, where m = (ka/ 2)1/ 3 , and by defining a parameter

T = t/m2 (4.52)

such that |7'|<< 1 for the first few creeping waves, it follows from (4.51) that

Q) = £~ s . (4.53)

It is immediately seen that Q(£) has a zero at
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1
- 7 \ptl
§0p-(1+ 2) , p>-1 (4.54)

which is outside the interval < €< 1 but nevertheless very close to it.
Langer's theory is therefore used in order to obtain the solutions. These

solutions are

. . 1/4
() BRI N(t(&’)) 2/3
S,,_1/2(5) U,,_1/2(5) Q5 i) (ka) C(E)] (4.55)
. 1/4
() [y A P (r(%‘)) 2/3
and TV_l/Z(E) 3 () Yi4) [(ka) §(E)] (4.56)

with j =1,2 ., Also

3 2/3
I [a®)
g(8) = <2f Q(E) d8> . (4.57)
E’op

By following the outline in Chapter One, MV y (ka) is still given by (1.58)
=2

with t(i)(g) = §(€), whereas ﬁy_l/z(ka) in this case is:

_ . ae)/? 2D XD
MV_1/2(ka) ol + MV'l/z(ka) - p,1 (—1— PR0E) T 8Q(B))+

B 4a\t® o8 ~ QP 8B
~ (4.58)
x (wplute] sty [ot5] -, [t6] [“"’f’])
+ (/3 2B [“'(1)[“’(5)] o) [‘9(5)] “{p[“tP)] VYz)[w(S)]]
08 | vy [E)] W) [WAB)] W B Wy [)] | |-y
with
o®) = k)2 Pe), W) = e (4.59)

and it is assumed that B # 1 so that
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V) [w(l)] %2) [“’(B)] W) [“’(B)] %2) [“’(1)] Foo.

The asymptotic expansions M(t) and M(t) of (1.58) and (4.58) will be
developed,so that

1(t)
g—l-f?i-) = -M(tz)m
(1)"

and

w' (T )
"('lig' = -M(t,) m

Wity :

can be solved numerically with the aid of the asymptotic expansions and
diagrams of Logan and Yee (1962), to yield the zeros tz and E . To this
end the following procedure is followed. Firstly the integral

§

f VQ(E) d& is evaluated.

Sop

One finds that

2
fg [ s jgmpj_l (1)
Eop
- 1+% sin_l <JE2(p+1)_ (1+ %)2
p+1 . Sp+1 ’

from which

(4.60)



results,

fl-ﬁ{@' .. V- 7(1+-Zl—>
§

J.'VQ—(—)dE

89

1+

ptl

2 3/2
o (-

g=1

from which
1 2/3
- |3 ~
(= |3 f Je® a
gop
results.
1 (1 28E) 1 2Q(E)
ka \§(§) o AE) 0o
and
288  ~ N 3 1/3 (

pt+l

40

T
3
€

L
2ka

2

T3 7"

et (F63)

The asymptotic expansion of (4.61) in 7 yields

+o[72]> ,

e (_[J)

[2(p+1)

With the aid of (4.62) and (4.63) one has

(1-2[]) + 0 (2]

191 2) + ol#]

28800

Other computations pertinent to finding M(t) and M(t) are

B
f Q(E) d& =

3

op

#Z(p-l-l) (1+ 2)2

pt+l

>

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)
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-i X 3/2
2 _BZ(p+1)]

g
f COR A L:,j( =5 [ozo+ a7+ a4 0 [73]] (4.67)
A |

op

with
_ 1 2(p+1)
% 3 [8'35 ¥ ] (4.68)
_ L [Bra0g?PD. ypptetD)
17 10 - oD (4.69)
and (1)
2Ap+l
. _3 B 2(p+1 4(p+1
% % "% [p2P D ]2 [2‘75 ), 45 (pﬂJ : (4.70)
-B
Also
3] :
3 20 2 o
¢p) ~ = 1-5 02/3 14— (2.1 1 72+O[3]
AN Ol A
(4.71)
27T
i<t 1/3
ocp) ,, e ° LZ(P”)L 1+[ - ) al] T+
B Ba01/3 2 [p2PD] T 3a
+|:2 2 % @ 2(pH) ] 2, ol
9 2~ - - — |7 +olr] ], (4.72)
° & e [1-g2PD] 3, [y Ao D]2

and
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P 1 BQLB))N

4ka <§(B) B " QB 9B

o, (et |f_ 1
2 <"‘o [“d 2[1-[32“’”)]]

1 2(p+1)

T 1+pB -
akap [1-271)] {

(prn) PN

[1 Bz<p+1>]

2

) BZ(pi-l)

a a
* ﬂl:_z_+21 ( 21< 1)
% L% %o 1-8 p

) [ Ao

- az 8[1 B2(p+1)]2 ]

_Bz<p+1) ) 4[1-32‘1’*1’] 2

all valid for o $0.

2(pt+1)
pf ]> T + O[ (4.73)

By substituting (4.69) through (4.73) into (1.58) and (4.58), M v (ka) and
M 1/(ka) are obtained asymptotically in 7. Then with 7=t/ m2 and

-4
keeping terms to O |[m ] :

M(t) ~ 1‘:)’5’1—2(5 + C(t)

and

. 3-2p
M(t) T C()

result, where

2T

EIRYE
Clt) ~ 2 m(pﬂ) ‘ <1+ 2

- W [w(B) w! [w(l)]

W E"(B)] Wy [w(l)]

and

(4.74)

(4.75)

ol [l

:l , (4.76)
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27

BEINIRTE Wy [00T] vy [0B] -
~ (pr1) 2t -41 \[_(1) (2)
C(t) ~ E - (1+ i—S- m2 + O [m ]>[ ; :

¥ 0] Wg) [AB)] -

, . 2m
~ iy (0] vy 1] ] Cge 3t <m + 2 o vo[wf] > X
m

= W) [HB] gy [w1)] 15

X<(1)[w(1) Wy (W8] - w ) [B)] wy [t ) (<1>[“’(1] wiy [w8] -

47
4
-y [008)] W [‘*’(”]) = [rrow] <W(1) o] wy [ote]
3
- w(yy [481] W “"”D-l , (4.77)
14 pp2Prl)_ ptl
where a, = 2a1/3 2p + % . (4.78)
3 ) 1_62(p+1) ’

With the expressions given by (4.76) and@.77) the first few zeros t 2 and

'1‘;’1 can be found approximately by solving the following equations numerically

W) op -3

( )(t y = 20m2 -m C(tll) (4.79)
and
(t )
(1)(t - 2p "23 - m &F) . (4. 80)
(1) 20m

Then the approximate contribution in the backscattering direction due to the

first few creeping waves is given by (1.56 ), where the explicit derivatives

5 C(t) aC(t)
5t 20d 53

be noted that in (4.76) and (4.77) the asymptotic expressions for w(1) and

can be determined from (4.76) and (4.77). It must finally

w(B) are given by
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(T
3 2
1) ~ -2 t- t— 1+ o(md (4.81)
(p+1)2/3 60m>
and
4T
e1 3 20p+1)] 2/3 2 2
o)~ 2 [1- gD ] G20 2y Ly
(F*‘l)z/ ° 3a,o
2
20 fo3 2
2 1 9 -
(3& "9 2 t2 + 0 (m™ . (4.82)
(o] Qo m

For large b, it is to be expected that the creeping wave contribution is

small compared to the reflected field contribution. Also it must be men-

tioned that by observing the coefficients al, a, and A , those values

of B must be excluded for which the denominator of these coefficients

becomes zero, i.e. B#1 and p# -1.
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CHAPTER V
CONCLUSIONS

In brief, it has been shown that the monostatic cross-section of
perfectly conducting spheres is enhanced or reduced, when coated with
radially inhomogeneous dielectrics, depending on whether the radially
inhomogeneous dielectric is of the converging or diverging kind. It has
been verified in the case of the Nomura and Takaku radial inhomogeneity
that the greater the gradient of divergence of the coating, the greater the
reduction of the radar cross-section of the perfectly conducting sphere.
Furthermore, the new class of radially inhomogeneous dielectrics has
been determined to be important in analytical studies for radar cross-
sections, because it can present converging or diverging properties depending
on the choice of the parameter v, and because it reduces the two differential
equations (1.16) and (1. 17) essentially to one. When this new class of radially
inhomogeneous media is considered as the coating of a perfectly conducting
sphere, it has been found that when 0 < ¥ <1 it enhances the cross-section,
whereas when y> 1 it reduces it. However, it must be mentioned that the

computations for o, when 7 is very close to 3, based on geometrical optics,

are not very reliabll\re1 since the condition 0 <Imk << 1 is not taken into consi-
deration. This is verified, if it is recalled that when v = B the rigorous
asymptotic theory to O[(ka) _2] predicts a very large reduction of the cross-
section, whereas the geometrical optics based computations for oNl
enhancement of the cross-section for ¥ = 0.998. The introduced error in

predict

computing the radar cross-section by using the geometrical optics solution for
the reflected electric field instead of the solution obtained by rigorous asymptotic
theory to O [(ka) —2] , has been found to be insignificantly small, except for the
case where Y= 0.998 and B near unity. In this latter case, the error is as
large as 75 °/o due to the fact that the asymptotic solutions for the radial eigen-

functions are no longer valid since the condition |2ka(1— ’Y)| >> 1 is violated.
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Since this research has been confined to considering bodies whose radius
is much larger than the wavelength of the incident electromagnetic field, par-
ticular emphasis has been placed upon the study of the reflected portion of the
field. The creeping wave contribution is much smaller than the reflected field,
since these waves radiate as they travel around the scatterer and since in
actuality the dielectric coating presents some losses.

Other possible contributions to the backscattering direction, such
as lateral or evanescent waves are not taken into account. These contributions
are waves with algebraic or exponential decay, respectively, and they are
expected to be much smaller than the reflected field. Such kind of contribution
is given in terms of branch-cuts of S](}jzl/z(s) and Tl(/jil/z(g’) in the complex v-
plane; for example, it is seen from equation (2. 14) that two branch points occur
at v = + ka(l-v).

Finally, it must be mentioned that from the practical point of view the
research in this dissertation has possible applications to the study of the mono-
static cross-section of space vehicles during their re-entry flight in the atmos-
phere. In particular, the black-out phenomenon may possibly be explained by
the formation of a plasma coating around the body, whose index of refraction

behaves as a radially inhomogeneous dielectric of the diverging type.
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