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$1. INTRODUCTION 

LET p: E -+ B be a fibering in the sense of Hurewicz. i.e. the map p has the path lifting 

property or what is the same the covering homotopy property holds for all spaces. As is 

well known, the fibering need not be locally trivial, i.e. 17: E -+ B need not be a fiber bundle. 

On the other hand, one might suspect that stringent conditions on the nature of E and B 

might force the map to be locally trivial. The following seems plausible: 

CONJECTURE. Let p: E + B he afiheriry in the sense of HurercYcz of a mcm{fold E (n.ith 

empty boundary) onto a rceakiy iocail,v contrnctible pnracompact base B. Then thejiberinq is 

locally trivial. 

The conjecture would be false if the manifold E were permitted to have non-empty 

boundary. (Consider the triangle A in the plane with vertices (- I, I), (0, 2) and (I, I). 

Let p: A -+ I where I= (t - 1 I t I l} denotes the image of the vertical projection into the 

real axis. This projection is a fiber map in the sense of Hurewicz and obviously not locally 

trivial.) Also, if the base fails to be locally connected then even when E is the real line the 

conjecture would be false. 

Our principal result is 

THEOREM (2). Let p : E -+ B be a fibering of n connected separable metric ANR onto a 

bi*eakly locally contractible base B. Suppose that E is N (genertrlized) nlnnifold (ocer n principal 

ideal domain) and some fiber hns n component w-hi& is compact nnd of dimension _< 2. Then 

the jbering is locall_v tricial. 

Theorem (I) will, in this case, imply that all the fibers are locally Euclidean as well as 

being homeomorphic. A result of Dyer and Hamstrom is then used to conclude the local 

triviality of p. In addition to providing the key for the proof of Theorem (2), Theorem (1) 

also lends some credence to the conjecture stated above. In order to motivate this recall 

[I 1; Theorem (6)] which states, in particular. that ifp: E -+ B is a locally tririal fibering of a 

(generalized) manifold E onto a Hausdorff space B then the fiber is a generalized X--manifold 

i Supported in part by the Wisconsin Alumni Research Foundation and National Science Foundation 
Grant 21938. 
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(k-gm) and the base is a (n - k)-gm. In other words. although the factors of a locally 

Euclidean space may even fail to be locally Euclidean they must, nevertheless, be indistin- 

guishable from a manifold on the homology level both locally and globally. (n-gms are 

the class of spaces for which Poincare duality holds both locally and globally.) Theorem (1) 

is the analogue of [ll; Theorem (6)] for fiberings in the sense of Hurewicz, (cf. also [IO; 

3.191). 

THEOREM (1). Let p: E -+ B be a fibering oj’a connected separable metric ANR onto a 

weakly locally contractible paracompact base. Suppose that E is an n-gm over L (afield or 

the integers). Then 

(a) eac*hfiber F,, is a k-gm over L 

(b) ifsome component of somefiber is compact, then B is a (n - k)-gm over L. 

Actually we obtain more general results in terms of singular homology manifolds than 

we have stated here and the reader is referred to the remarks at the end of sections 4 and 5. 

By a generalized manifold we mean what Wilder calls a locally orientable generalized mani- 

fold or cohomology manifold. For the pertinent facts and definitions as we shall use them 

the reader is referred to [l I]. Section 2 develops the tools and facts concerning fiber spaces 

while section 3 develops the necessary material on homology manifolds. The last section is 

devoted to an application. 

I wish to express my thanks to Edward Fade11 and M. W. Hirsch for many stimulating 

discussions concerning this material and again to Edward Fade11 for reading a first draft 

and making several suggestions which simplified the preparation of this paper. 

$2. PRELIMINARIES ON FIBER SPACES 

Unless specified otherwise fiber spaces will always mean fiber spaces in the sense of 

Hurewicz [6] as defined by Hurewicz and Curtis. We shall summarize now the results 

needed from [3]. 

Let the map p: E + B denote a fiber space. We shall always assume that p is onto 

(equivalent to B being O-connected if E is O-connected). Then each fiber has the same 

homotopy type and if E is O-connected any two arc components of a given fiber are of the 

same homotopy type. 

Recall that a space B is weakly locally contractible, wlc, if each point bE B lies in an 

open set U which is contractible to b in B. Now suppose that E is (separable) metric and B 

is wlc and paracompact. Then the fibering is regular (i.e. there exists a regular lifting func- 

tion J. which lifts the constant path in B into a constant path in E), B is (separable) metric 

and the map p is an open map. Moreover, if in addition, E is a ANR and B is O-connected 

then B as well as all the fibers are separable metric ANR’s. 

PROPOSITION (2.1) (Fade11 [3]). If (E, B, p) is a fiber space with B wlc, then for each 

b E B there is an open set U containing b such that (p-‘(U), U, p) isfiber homotopy equivalent 

to U x Fb where F,, = p-‘(b). 
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If during the contraction of u to h in B the point b stays fixed and a regular lifting 

function is used then (following the notation of [3]) the fiber homotopy equivalence 

$:p-‘(U) G U x Fb: $ is the ‘identity’ on F,, = p-‘(b) = b x Fb. In particular, ifA is an.v 

subset of Fh, then 

(2.2) C#J : (p-‘(U), p-‘(U) - +(U x Fh, I/ x F, - b x A): I) 

is a homotopv equivalence. 

If B is a ANR it can be imbedded in a locally convex linear space, L. Select bE B and 

take U a neighborhood of b in L. Choose a small convex neighborhood V within U such 

that V can be deformed to B while staying within U. The line segments of Y define a uni- 

form contraction of V n B to any point of V n B. Each contraction of V n B stays within 

U n B. Namely, there exists 

D.VxV+U’ 

defined by 

D(u,, u&t) = r(fo, + (1 - t)u,) 

where r denotes the retraction of V into B (staying within U) and /l‘, + (1 - t)uZ denotes the 

unique line segment joining L‘~ to L:~. 

Let p:E+ B be a fibering such that B is a ANR; bE B and V a neighborhood of the 

form V u B of above. Define a slicing function 

0, : V x p-l(V)-p-‘(V) by 

&4r, e) = J.(e, D(o, p(e)))(l). 

For each 6’ E V, define 

0 Y,b’ : p- l(b.) * V x p- ‘(b’) : Yv,,. 

by 

and 
b,d4 = (de), 44b’e)) 

‘+“,.,,(u, Y) = Mu, y), Y E F,,. 

Note that Bv,b:p-‘(V) TZ? V x p-‘(b): tiyTb is identical with (2.2) of Fadell. 

Thus we have obtained 

PROPOSITION (2.3). (Hurewicz [6].) If B is a ANR then the jbering p: E + B is a 

jbering in the sense of Hu with sIicing functions {Cl,). 

DEFINITION (2.4). An open mapping p: E -+ B of a metric space E onto another space B 

is called homotopically n-regular (Hamstrom and Dyer [4]) if gicen e,, of E and S(e,, E), 

an c-sphere about e,, there exists a 6 > 0 such that each map f‘: Sk + S(e,, 6) np-‘(b) is 

homotopic to 0 in S(e,, E) np-‘(b), for aN k < n, beB, where Sk denotes the k-sphere. (Note 

that we do not require the map p to be proper as is required in [4].) We shall say that the 

map p is locaffy contractible if S(e,, 6) np-‘(6) is contractible in S(e,, 6) np-‘(b) to a 

point in S(e,, 6) np-‘(b) and the map p is uniformly focally contractible if S(e,, 6) np-‘(6) 
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is contractible in S(e,, E) A p-‘(b) to each point in S(e,, S) n p-‘(b) with the given point 

left fixed during the contraction. 

PROPOSITIOY (2.5). Let p: E -+ B be afibrring in the sense of Hu with E metric. 

(a) E is locally k-connected in the homotopy sense, k 5 n or, 

(b) E is locally contractible or, 

(c) E is unijbrmly locally contract ible (e.g. y E is an ANR) then 

(a) p is homotopically n-regular or, 

(b) p is locally contractible or, 

(c) p is uniformly locally contractible, respecticely. 

Proof. Let 0, : Y x p- ‘(Y) -+ p- ‘(V) be a given slicing function. Choose e0 E p-‘(V). 

Then O,(p(e,), e,) = e,. Given E > 0, there exists by continuity a neighborhood W x U 

of (p(eO), e,) in V x p-‘(V) such that Oy(W x U) c S(e,, c). Choose 6, > 0 such that 

S(e,, 4) = U, p(S(e,, 4)) c W. By hypothesis there exists 6 > 0, such that every map f 

of a k-sphere Sk, k I n into S(e,, 6) can be contracted to a point within S(e,, 6,). In par- 

ticular, let F: Dk” + S(e,, 8,) be an extension off: Sk --+p -l(b) n S(e,, 6). The composi- 

tion OY,b 0 F sends Dkf’ into S(e,, L)n p-‘(b) and extends f. This completes (a). Parts 

(b) and (c) are proved very similarly. 

PROPOSITION (2.6) (Fadell). Let p : E -+ B be a regularjbering with B locally o-connected 

(o-lc), then p is an open map. 

PROPOSITION (2.7) Let p: E -+ B be a jibering with E, B metric E locally compact, and 

Bo - Ic. Then the set of points U of B having compact fibers is open and the jiber 

map p:p-l(U) + U is a proper map. 

Proof. Let Fb = p-‘(b) be compact. Let U, and U2 be two open sets with compact 

closures such that Fb c U1 c u1 c U2. Then there exists a neighborhood V of b such that 

p-‘(V)n (VI - U,) is empty. If not, there exists a sequence of distinct points {b,} with 

hi -+ 6, and points {y,} such that p(yi) = bi and yip l-J2 - (II. We may find a convergent 

subsequence {yi,}, yi, + y E ‘Uz - U1. But, p(yi,) -p(y) which leads to a contradiction. 

Choose an arcwise connected neighborhood W of b within V. If b’E W, yip-‘(b’), then a 

path within Wfrom b’ to b can be lifted to E starting at y. The path can never enter aj, - U, 

thus y must lie in U,. 

We shall not need the next proposition for the proofs of Theorems (I) and (2). It is 

included here because it eliminates the necessity for appealing to a regular convergence 

theorem for an important case of Theorem (1) and because the light it sheds upon fiberings 

with non-empty boundary about which we expect to say something at a later date. 

PROPOSITION (2.8). Let p: E -+ B be afibering in the sense of Hu with E /ocally compact 

separable metric. Then the set offbers of dimension 5 k form a closed subset of E. 
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Proof. Let B, be the set of points of B for whichf-‘(6) has dimension ok. Let b be a 

limit point of Bk. Arbitrarily near fb, there exists fibers of dimension <li. Let C be a com- 

pact subset of Fb. We shall show that dimension C I k. Let z be any finite covering of C. 

The covering r has a Lebesque number 6. Thus any subset of C of diameter <E lies in an 

element of z. Let V be a neighborhood of b and 0, a given slicing function. By continuity. 

since O,(b, e) = e for all e E Fbr and compactness of C choose a neighborhood N’of b SO that 

d(&(b’, e), e) < c/2, b’E ii’, eE C where d denotes the metric in E. For each h’s B, n W. 

there exists an 42 map ~7~~ of O,(b’, C) into a polyhedron Pb, of dimension I k, by Alexan- 

droff’s theorem [7, p. 711. The diameter m,.‘(t) < c/2, t EP,.. Hence O;‘(m,.‘(t)) n C has 

diameter <E. Therefore the set lies within some element of x. Again using Alexandroff’s 

theorem this implies that dimension C I k. Now dimension of Fb is the maximum dimen- 

sion of all compact subsets C of Fb. Hence, we have shown that dim Fb 5 dim Fb8 for all b’ 

in some neighborhood of 6. In particular, B, is a closed subset of B. 

Remark (2.9). The theorem is also true for fiberings in the sense of Hurewicz with E 

locally compact separable metric, B locally O-connected and metric. 

The following proposition will enable us to reduce many arguments to the case of a 

O-connected fiber. 

PROPOSITION (2.10). Gicen n regularfiberirlg p: E -+ B rr*here E is o-comected and o-lc 

and ri,here B is locall~~ o-connected and semi l-connected (small loops rrlcly be shrunk in nil 

of B) then there exists a o-connected corering space B’ and maps p’ : E -+ B’, q: B’ + B such 

that is commutatice. Moreocer p’ is n regular jihering mci7 thnt y’- ’ (b’) is an arc component 

of p- ‘(q(b’)). 

\ 
\ 

iP /4 
\ 

L d’ 
B 

Proof. We shall actually prove a more general theorem than that which is stated above. 

Choose base points bOE B and e,E E such that p(eJ = b,. Let G denote (p#71~(E, e,)) c 

n,(B, 6,). Construct a covering space (B’, b,) such that the natural projection q# : n,(B’, bJ 

-+ x,(B, b,) is precisely G. Then by coverin g space theory there exists a unique lifting 

p‘: E -+ B’ such that p’(e,) = 6, and qp’ = p. We shall now show that p‘: E + B’ is a regular 

fibering. Let i. be a regular lifting function for the fiber map p. Let CIE B”, eE E, such that 

r(O) = p’(e). Define l(r) = CE E’ by 

X(r) = I.(~(c(), e) 

The map (I induces a continuous map from B” x E into B’ x E and 1 is induced by the 

composition of 2. with that induced by cl. Clearly, i(r)(O) = e. Since p(c) = q(r) = qp’(5) 

the uniqueness of lifting a path from B to B’ implies that p’(5) = IY. Thus p’: E --f B’ is a 

regular fibering such that qp’ = p. 

Let b’E B. Then ~‘~‘(6’) c p-l(q(b’)). Let C be an arc component of p-l(q(b’)) that 

meets p’-‘(b’). Since p(C) = b, it follows that p’(C) = b’. 
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So far we have only used the fact that G c q*(~i(B’, hb)) to construct the unique map 

d’. Continuing in this more general situation consider the commutative diagram 

I* I 49 1 1’8 
1 

n,(E, e,,) “* + q(E, 6,) d. %(F,,, eo)- 

As q# is an isomorphism into, p’+(rr,(E, e,)) = G. Thus kernel d, = G, which implies that 

rcO(Fbr eo) has cardinality equal to the index of G in rr,(B’, b,) and Q(F’, eo) has cardinality 

equal to the index of G in n,(B, b,). Thus p’-‘(b,) consists of a certain number of com- 

ponents of FbO. The most significant case is where G = xi(B’, bb) and therefore I-’ is 

precisely one component of FbO and each point of cl-i(b,J corresponds to a component of 

6,. 

Remarks. It is a simple matter to determine which components of FbO map onto a given 

point bb under p’. This is determined of course by the action of the fundamental group on B. 

It is easily seen that if in addition to the hypothesis of (2.10) it is assumed that each 

fiber is totally disconnected, then p: E --f B is a covering map in the classical sense. 

In the special case where it is desired that p ‘-I(&) be an arc component of ~~~(6,) 

the description can also be given directly although admittedly in a much more complicated 

manner. Namely for the fibering p: E + B one collapses each arc component of p-‘(b) to a 

single point and takes the resulting decomposition space for E’. In fact, it was this method 

that we originally had in mind but with more restrictions on the fiber and the base. To see 

that the construction that we used for the proof of the theorem agrees with that just de- 

scribed it suffices to check that B’ has the decomposition topology. But, this is clear as p’ 

is open and continuous. 

If instead of having been given a regular fibering in the sense of Hurewicz we were 

given a fibering in the sense of Hu with a given slicing structure then the fibering p’, con- 

structed as above, has a naturally induced slicing structure. Similarly, if p were actually 

locally trivial the resulting fibering map p’ would also be locally trivial. 

$3. PRELIMINARIES ON HOMOLOGY MANIFOLDS 

Let G be an L-module where L is a principal ideal domain. Singular homology of a 

topological space E and Tech cohomology (or equivalently Alexander-Spanier cohomology) 

with compact supports of a locally compact space E will be denoted by Hf(E; G) and 

H,‘(E; G) respectively. The coefficients will be omitted if rio confusion as to what is meant 

can arise. 

A space E is said to be Ici over G (locally connected in the singular sense with respect 

to G) if given e E E, k an integer <n, CT a neighborhood of e there exists a neighborhood 

V of e such that i,: H,“( V; G) -+ H;(U; G) is trivial. A locally compact space E is said to 

have cohomology dimension with respect to G I n, dim,E I n, if H:+‘(lJ; G) = 0, for all 

open subset U of E. It is well known that dim,E I dim,E I dim,E I covering dimension 

E. In fact, if covering dimension E < co then dim,E = covering dimension E. 
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PROPOSITION (3.1). Let E be a locally compact space rvhich is Ici ocer L; let V, U 

be open sets such that Yc U. c is compact. Then the images of the homomorphisms 

and 

i*:H’,(V;L)-+H”,(U;L) 

j,:H;(E,E- CJ;L)-H;(E,E- V:L) 

are finitely generated for all p 5 n. 

Proof. The following direct argument has been suggested by C. N. Lee. One first 

proves the absolute case by paralleling the argument for Tech theory and making use of 

the fact that the Mayer-Vietoris sequence for singular homology is exact when open 

subsets are used. The relative case then follows from the absolute case by diagram chasing. 

A general theory of singular homology manifolds is developed in [IO]. We recall the 

pertinent facts and definitions. 

LEMMA (3.2) [IO; 3.91. Let U be an opera set of a Hausdorff space E, I- a non-trivial 

submodule of H,“(E, E - i?; G) such that the natural inclusion j : (E, E - g) c (E, E - Jj) 

induces an isomorphism of I- onto H,“(E, E - y; G), f or all y E U. Then U is locally a Peano 

space (i.e. U is locally compact, locally separable metric, and locally arc-wise connected 

subspace) with compact closure. 

DEFINITION (3.3) [lo]. A singular homology n-manifbkd ocer G, hereafter referred to by 

n-s-hm, is a Hausdorff space E such that 

I G, r = n 
(1) H,(E, E - .?J: G) = ,o, r ~ ,I for all JJEE; 

(2) There exists a covering of E by open sets (UJ such that j.+: H,(E, E - vi,; G) + 

H,,(E, E - y; G) is an isomorphism onto, for all ye U,; 

(3) dim,_!? < co. 

Condition (2) and Lemma (3.2) show that condition (3) makes sense. Furthermore 

an n-s-hm must be a reasonable space. In particular, if a component of E is paracompact 

then the component is a Peano space. An n-s-hm is what 1 called in [IO] a locally orientable 

singular homology n-manifold over G. Condition (2) can be weakened to having only some 

submodule r c H,(E, E - u’,) mapped bijectively. Since Poincarr’ duality holds both 

locally and globally (possibly with twisted coefficients) it is easy to see that in condition (2) 

each U, must be connected and have compact closure. (Furthermore, a n-s-hm where 

n I 2 is locally Euclidean if an additional, perhaps redundant, condition weaker than 

lcs is added to the definition.) We shall say that an n-s-hm E is orientable if every homo- 

morphism 

j,:H,(E.E-~;G)-,H,(6,E_y;G),yEU 

is an isomorphism where U is an open connected subset with compact closure. If E is a 

compact connected n-s-hm, E is orientable if and only if H,‘(E; G) z G. Similarly, if E is 

paracompact and connected E is orientable if and only if hi(E; G) = G, where hi denotes 

the homology theory derived from locally finite singular chains. 

D 
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We shall need to compare n-s-hms with n-gms. 

PROPOSITION (3.4). Let E be lc,S over L. Then E is an n-gm ocer L (respecticely; orientable 

n-gm over L), if and only ly, E is an n-s-hm over L (respectkely; orientable n-s-hm ocer L). 

Proof. If E is an n-s-hm over L, then Poincart duality (locally) together with Ic: condi- 

tion trivially implies that E is an n-gm over L. The other direction is more difficult. 

The equivalence when L is a field can be found in [12]. This equivalence used the 

equivalence of tech homology with compact carriers and the singular homology theory 

in locally compact lc,S spaces, see [8]. To obtain the general case when L is a principal 

ideal domain the following facts are used. 

(a) If E is an n-gm (respectively; n-s-hm) over L, then it is an n-gm (respectively; n-s-hm) 

over L’, n,here L’ is a principal ideal domain and also an L-module (respectivel_v; where L’ 

is an L-module). This is a direct consequence of the universal coefficient theorems and 

diagram chasing. 

Let L, and {L,} denote the field of quotients of L and the set of all fields formed by 

taking L modulo a prime ideal of L. 

(b) For any locally compact Hausdorff space E, dim,E I max,~q{dimLOE, dim4E} + 1. 

The proof again is a consequence of the universal coefficient theorems. 

(c) Let E be cohomology locally connected (clc) over L, (respectively; Ici orer L). Then 

E is an (orientable) n-grn (respectively; an (orientable) n-s-hm) over L ifE is an (orientable) 

n-gm (respectively; (orientable) n-s-hm) ocer L, and all L,. The proof, which will appear 

elsewhere, is obtained by careful and rather delicate use of the universal coefficient theorems. 

However, a sketch of what we have in mind can be found for the case of E an n-gm and 

L = Z in KWUN and RAYMOND: Generalized cells in generalized manifolds. Proc. Amer. 

Math. Sot. 11 (1960) 135-139. 

If E is an n-,sm over L, then by (a) it is an n-gm over L, and each L,. Since L, and L, 

are fields E is an n-s-hm over L, and L, by [ 121. Restrict E to an orientable part, if necessary, 

then by (c) E is an n-s-hm over L. We remark that in [9; $41 a proof can be found for 

separable metric E and L = Z; however, the method used doesn’t seem to extend to the 

general case. 

(3.5). One of the forms of PoincarP duality for an n-s-hm E over G which we shall 

repeatedly use is that 

H’,(E, E - F; G) z H:-P(F; G) 

for any closed subset F contained within an orientable part of E. Furthermore, the iso- 

morphism is natural with respect to inclusions [lo]. 

Proposition (2.10) is a technical device which often permits one to replace an arbitrary 

fibering by one with a connected fiber. In a similar vein, if p: E -+ B is a fibering where E 

is a n-s-hm or an n-gm it is often useful to replace this fibering by p’: E’+ B where E’ is 

orientable. In general one can do this by taking the universal covering E’ of E and then 



LOCAL TRIVL%LITY FOR HUREb’ICZ FIBERINGS OF .LLASIFOLDS 51 

composing the covering map with the fiber map p to get p’. However we would like to 

obtain a minimal such E’ for application in $3. 

PROPOSITION (3.6). Let 9 denote a local system of algebraic objects (say groups or 

L-modules) on a O-connected space E which admits a universal cocering space. Then there 

exists u minimal cocering space E* for ,r,hich the induced .s>,stem is simple. 

Proof. Let q: E’ -+ E be the projection of the universal covering E’ of E onto E such 

that q(eb) = e,, where eb E E’, and e, ._ = E. The group of covering transformations rrl(E, eo) 

acts as a group of homeomorphisms of E’ and hence as a group of automorphisms on the 

simple system 9”. 9” is the local system on E’ induced from Y on E. Let h: n,(E, e,) --f 

Aut(P’l,;) be the induced representation and let Kc ;i,(E, eo) be the kernel of h. Clearly K 

is the set of elements of ;r,(E, e,) which induce the identity automorphism on Y’. The 

regular covering space E* = E’IK has K as fundamental group, i.e. x,(E*, ez) = K and 

rc,(E, e,)/K as its group of covering transformations. Clearly, E* is minimal with respect 

to the induced system Y* being simple. Furthermore, note that n,(E, e,)/K E h,(x,(E, e,)) 

c Aut(9’/;). 

As an application, let E be a O-connected, locally arcwise connected and semi l-con- 

nected n-gm or n-s-hm over any L. Then the orientation sheaf Y, i.e. the sheaf of local 

homology groups in dimension n, is locally constant and under the conditions given forms 

a local system of L-modules where each module is isomorphic to L. Let E* be the minimal 

covering space constructed above for the local system 9’. Then E* is orientable and is 

called the minimal orientable corering of E. E* = E if and only if E is already orientable. 

If L is the integers Z, then as AutZ = Z,, E* is the orientable double covering of Eif E is not 

orientable. If L is a field of characteristic p, p + 0, then q*: E* + E has at most (p - l)- 

sheets. This follows immediately from above and the fact: 

A space E is a n-gm or a n-s-hm over L (respecticely; orientable) where L is a field of 

characteristic p, if and only if E is an n-gm or a n-s-hm over Z, (respecticely; orientable) 

where Z, denotes the f;eld of integers module p, p =/= 0, and Z, denotes the rational numbers. 

$4. PROOF OF THEOREM (1) 

Let E be a O-connected (separable metric) ANR and also an n-s-hm over a principal ideal 

domain L; let p: E -+ B be a fibering of E onto B where B is paracompact and wlc. We have 

seen in $2 that the fibers F, and base B are all (separable metric) ANR’s, that there exists a 

regular lifting function and in fact give rise to slicing functions {O,} which make the map p 

into a fibering in the sense of Hu. Choose b, E B, Ua neighborhood of b, and V a neighbor- 

hood of b, such that V contracts to any point b E V, b remaining fixed, and the contraction 

staying within U. Let 0,: i’ x p-‘(V) --+ p-‘( V) be the corresponding slicing function. 

Recall that the Cartesian product of the pairs (X, A) x (Y, B) is defined to be the pair 

(X x Y, A x Y u X x B). The relative Kiinneth theorem for singular homology states that 

the sequence 

(4.1) 0 -+ zi+,=,Hf(X, A) @ H;(Y, B) + H;(X x Y, A x Y u X x B) + 

xi+j=r-rHf(X, A)*H;(Y, B) + 0 
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is e.xacr (and splits) provided that the triad (A x Y u ,Y x B; A x I’. X x B) is excisire. 

Note that if A and B arz open subsets of X and Y. the triad is excisive. 

Let eE Fb, = F: A a closed subset of F. The triad (( K - b,) x F u V x (F - A); 

(Y - b,) x F. V x (F - A)) is excisive. 

(a) Tbe fiber 

Let C be a compact subset of F which is the closure of an open (in F) connected neigh- 

borhood of e and contained within an orientable part of E. Consider the commutative 

diagram 

~i+j=rHf(V,V_b,)OHj(F,F_C)~H:‘(YXF,I/XF-(6,XC)) ~ H:(p-‘(V),p-l(V)-(b,XC)) 

(4.2) 
I I tiV,bO I 

~i+j=,Hi(V,V-b,)@ i-fT(F,F-e)-+H~(VxF,VxF-(b,xe)) 2 H:(p-‘(~),p-‘(~)-(boxe)) 

The vertical maps are induced by inclusions, the first horizontal maps are injections 

given by the Kiinneth sequence, the second horizontal maps are bijections given by (2.2). 

Consider now the second row since p-‘(V) is a n-s-hm over L, the local groups H;(p-l( V), 

p-‘(V) - (6, x e); L) are 0 except for r = n, and there it is isomorphic to L. Using the 

splitting of the Kiinneth sequence it follows that the Tor term must be trivial and hence the 

first injection must be bijective. Thus it is easy to see that there exists an integer k such that 

If,,_,(I/,~-b,;L)ON,(F,F-e;L)~L 

and 0 for any other combination. In dimension n, 

j* : Hz(p-‘(V); p-‘(V) - (b, x C); L) + Hi(p-‘(ti’), p-‘(V) - (6, x e); L) 

is bijective (zL), see (3.5). Thus we have by a similar argument and the commutativity 

of (4.2) the existence of the bijection (=L), 

Hn+(K V - b,; L) @ H,(F, F - C; L) 

1 
Hnek(T/, V - b,; L) @H&F, F - e; L). 

However, j*: H,(F, F - C; L) -+ H,(F, F - e;L) must be finitely generated by (3.1). Using 

facts about tensor products and that L is a principal ideal domain, it follows that 

Hn_k(V, Y.- b,;L) M Land therefore thatj,: H,(F, F - C; L) -+ H,(F, F - e;L) is bijective 

z L. By Poincart duality (3.5). j*: H,(p-‘( V), p-‘(V) - C;L) ---f Hi(p-‘( V), p-‘(V) - C’; 

L is bijective for any closed connected subset C’ of C. From (4.2) and the facts just deduced 

above, j*: H,(F, F - C; L) + H,(F, F - y; L) is bijective for all y E C. Thus F is a k-s-hm 

over L and by (3.4) a k-gm over L. It is not too hard to see that any component C of F is 

orientabie, if and only if C is contained within an orientable open subset of E. 

We shall now show that the integer k does not depend upon the point 6,. Let us assume 

for the moment that E is orientable and F is connected. Let h be any point in B and (bi} a 
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sequence of points converging to 6. Since p is uniformly locally contractible (7.5), the 

sequence {Fbi]- certainly converges regulurl,v to Fb oL;er L in the sense used by Floyd in [2: 

Chap. VI, section 21. We now apply Theorem (2.3) of [2; Chap. VI] and conclude that for 

sufficiently large i,dim,F’,,, = dim,F,, = k(b). Since B is connected, this implies that the 

integer k is independent of the points of B. If E is not orientable choose E’ to be any 

connected covering of E which is orientable. By (2.10) one can choose a connected covering 

space B’ of B such that the fibering E’ --t B’ has connected fibers. Since dim,F, = dim,F,., 

and dim,F,. does not depend upon the point 6’ E B’, we have found that the integer k is 

independent of the points in B. 

(b) The base 

A consequence of the paragraph above is that B now satisfies all but condition (2) of 

the definition of a (n - k) - s-hm. In particular, by a variation of (3.4), it is a Wilder 

(n - k)-manifold over L, i.e. B is a (n - k)-gm without assuming anything about local 

orientability. Hence if (n - k) I 2, or if II - k = 3 and B is triangulable, then B is locally 

Euclidean. Similar statements, of course, hold for each fiber if k I 2, or if k 5 3 and each 

fiber is triangulable. 

A connected k-gm or a k - s-hm Fis compact and orientable if and only if H”(F; L) z L 

(closed supports) or if H,“(F; L) z L. Therefore, for the fibering p: E + B, if some component 

of some fiber is compact and orientable then every component of each fiber must also be 

compact and orientable since they all belong to the same homotopy type. 

The existence of some fiber with a compact orientable component implies that B satis- 

fies condition (2) of (3.3), i.e. B is a (n - k) -s-hm. First, by (2.10), we may assume with- 

out loss of generality each fiber is connected. Since the fibers are compact and orientable 

each fiber is contained within an orientable neighborhood of E. Hence by (2.7) the map 

p is proper, and for each b E B there exists an open connected neighborhood V with compact 

closure such that p-‘(V) is orientable. Furthermore choose r’ such that p-‘(V) is fiber 

homotopically equivalent to V x Fb, for any 6~ V. Choose U an open connected neigh- 

borhood of b such that u c V. Let W be any connected open subset of Cr. Consider the 

commutative diagram 

H~_,(V,V-~)~H;(F,)~H~(V~~,,(V-~)XF,)~~~H~(~-’(~/),~-‘(~~--~)) ~ff;(p-~(t?)) 

1 1 ILY,l) .! 1 
H:_,(CJ,U- ~)@H’,(F,)%f;(V x F,,(V- m)xF,) = H”,(p-‘(V),p-‘(V- f?))zH;p-‘( w)) 

The first horizontal isomorphism is the Kiinneth isomorphism, the second is induced by 

the fiber homotopy equivalence and the last by Poincare duality. The vertical homomor- 

phisms are induced by inclusion. However, the last vertical map is bijective with the image 

isomorphic to L. Hence, 

j,Hi_,( V, V - 0) 5 Hi_,(U, U - v) z L, 

which implies that B is a (n - k) - s-hm. 
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For the general case, if some fiber has a compact component and it is not orientable 

then by the technique of passing to the minimal orientable covering (see 3.6) we may 

conclude that B is a (n - k) - s-hm over L provided that L is the integers or a field of 

characteristic + 0. Otherwise it is necessary to appeal to a forthcoming paper of G. E. 

Bredon in which it is proved that every connected non-orientable n-gm has a connected 

orientable double covering. This concludes the proof of Theorem (1). 

Remarks. Theorems 1 and 2 are stated in terms of generalized manifolds. Since 

E, B and F are all ANR’s we may interchangeably use singular homology manifolds by 

virtue of (3.4). 

In case L is a field, the hypothesis that E is a ANR is much stronger than is needed. 

All that is needed in addition to E being a n-s-hm over L, B being wlc and paracompact is 

that during the contraction (in B) of a small neighborhood of‘a gicen point b is that the point 

b should remainfixed. Since (2.2) still holds our method yields that each Fb is a k - s-hm over 

L. We are not able to use Floyd’s theorem to show that k is independent of 6. Neverthe- 

less, we can avoid this difficulty by assuming some component of each fiber is compact. 

Since the components of all the fibers belong to the same homotopy type our method 

now yields the independence of k from b and the fact that B is a (n - k) - s-hm. 

It would be interesting to establish that the homotopies between each fiber are proper. 

This fact, if true, would give a simple proof of the constancy of the integer k as well as the 

local orientability of B without any assumption on f. It appears to be difficult and it is 

false already for fiberings where E is a 2-manifold with non-empty boundary. 

It seems very likely that B is a (n - k) - s-hm over L without any special hypothesis 

of compactness on the fibers. In fact, it is an unsolved problem whether conditions (1) and 

(3) together with lci over L implies condition (2) of the definition of n-s-hm (3.3). (Without 

the lc;T condition (1) and (3) does not imply condition (2).) On the other hand, if a space 

does satisfy conditions (1) and (3) and is triangulable it is easy to see that it must also 

satisfy condition (2) of (3.3). Hence if B is triangulable it must be a (n - k) - s-hm and 

in particular if k 2 n - 3, B must be locally Euclidean. 

95. PROOF OF THEOREM (2) 

Let p: E --+ B be a fiber map of a connected separable metric ANR E which is also an 

n-s-hm over a principal ideal domain L onto a wlc paracompact base B. Assume also that 

the covering dimension of B is finite (which is certainly true if the covering dimension of E 

is finite). By Theorem (I), each fiber Fb is a k - s-hm over L. If k I 2, then Fb is a locally 

Euclidean k-manifold. If in addition, some component of some fiber Fb is compact then 

all the fibers are homeomorphic since compact k-manifolds are classified by homotopy type 

if k 5 2. In order to apply a theorem of Dyer and Hamstrom we need to know that the 

map p is homotopically O-regular, open and proper. We actually verified that p is uniformly 

locally contractible in (2.5). Factor the map p into p’ and 9 as in (2. IO). The fiber map p’ 

is proper (see (2.7)). Hence by [4; Corollary (2)], the fibering p’: E + B’ is locally tricial. 

The composition 4’~’ is also locally trivial since q is a covering map and the base B is wlc. 
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To extend Theorem (2) to higher dimensions by this method would probably be very 

difficult. First one would have to know that all the fibers are homeomorphic. Then one 

would have to extend the Theorem of Dyer and Hamstrom. Hamstrom [5] has been 

successful for a certain class of 3-manifolds but the extension to higher dimensions is tied 

up with the study of the group of homeomorphisms of higher dimensional manifolds-of 

which little is known. 

However, Hamstrom’s result is strong enough for a very special situation of our con- 

jecture. If p: E + B is as usual and dim,F,, = 3. and each Fb is triangulable then Fb is a 

3-manifold. Now suppose each component of Fb is compact and simply connected. Then 

each component of Fb is a homotopy 3-sphere. Now if the PoincarC conjecture is true in 

dimension 3, each component is a 3-sphere. Assumin, D the truth of the PoincarC conjecture 

we may apply [j; Theorem (6.1)] to obtain the local triviality of the fibering p: E -+ B. 

Related to the situation for compact triangulated 3-dimensional fibers would be an 

attempt to show that each fiber has the same simple homotop_v type. 

Another special situation that seems amenable to attack occurs when E and B are tri- 

angulated and the fiber map p is simplicial. Then, if 5r denotes the interior of a r-dimen- 

sional simplex of B it is easy to see that p-‘(s’) is homeomorphic to s’ x Fb, where 6 is any 

point in .s’. If E also happens to be a combinatorial manifold, then it seems likely that 

Fb for any point b not in the (n - k - 1)-skeleton would be a combinatorial k-manifold. 

Obviously, one must decide whether the covering homotopy property is strong enough to 

imply compatibility on the boundary of each sr. 

,#5. SOME APPLIC.ATIOSS 

For focally triciaf fiberings the vanishing of the homology of the total space imposes 

drastic restrictions on the nature of the fibering. In particular, there are no locally trivial 

fiberings of Euclidean space with compact fiber, [I]. The purpose of this section is to prove 

the analogous results for Hurebvicz fiberings. 

LEMMA (6.1). Let p: E -+ B be afibering such that n,(B) acts trivially upon the homology 

of the fiber F 

and 

H;(F;L)=O, p>k, H;(F;L)=!=O, 

jinitelv generated and torsion free, 

H;(B;L)=O, q>m, H;(B;L)+O 

then 

Hi+,(E; L) = 0, p + q > k + m, and HS,+,(E; L) + 0. 

Proof. A simple spectral sequence argument. 

COROLLARY (1). Let p: E---f B be a jibering of a connected separable metric ANR E 

onto a wlc paracompact base B; let E be an n-s-hm orer a principal ideal domain L with 

H,(E; L) = 0, 1 $ i 5 n, and m the largest integer such that H,,,(B; L) + 0. If either E is 
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simply connected and some component of F is compact, or n,(B, b) operates tririall,v upon the 

homology of a compact and orientable fiber F, then B is a ( n - k ) - s-hm where 

n-k>n+m-I. 

Proof. If xI(B, b) acts trivially upon the homology of F then F must be connected. 

In case F is not connected take the fibering p ‘: E --t B’, nhere B’ is the universal covering 

space of B (see (2.10)). Therefore we may as well assume Fb is connected, orientable and 

x,(B, 6) acts trivially upon Hz(F,; L). By Theorem (I), Fb is a compact orientable k - s-hm 

and hence H,(F; L) x L. Let m denote the largest integer so that Hi(B; L) + 0, m, of 

course, is bounded byn - k. By the lemma it follows that Hl+,(E: L) + 0 and H,(E; L) = 0, 

for all i > k + m. In fact, because F is orientable Hl_I(F; L) is torsion free (by Poincarl 

duality) and so H,+,(E; L) z H,,,(B; L), (or H,(B; L) as the case may be). Thus k + m < f; 

hence n - k > (n + m) - I? n - 1. In particular we have 

COROLLARY (2). If I = 0, p is a corering map and hence a homeomorphism if F is con- 

nected. 

Proof. Bmust be an n-s-hm, hence the fiber F must be a discrete set of points. Therefore 

the map p’ : E -+ B’ is a homeomorphism and the composition 4 gp’ = p a covering map. 

COROLLARY (3). Let E be a separable metric AR and an n-s-hm otter L. Then anyjibering 

p: E + B onto a paracompact wlc base is 

(i) jber homotopically equiaalent to the product B x Fb, ifsomejiber Fb is connected; 

(ii) a homeomorphism if some fiber is compact; 

(iii) an infinite sheeted covering space with no elements of z,(B) offnite order, if there exists 

a compact component of somejiber and no fiber is compact. 

Proof. It follows easily that B and Fare AR’s if F is connected. Hence by (2.1) E is 

fiber homotopically equivalent to B x Fb. Corollary (2) implies that in case (ii) and (iii), 

p: E -+ B is a covering map. But as E is simply connected, E is the universal covering space 

of B and hence the group n,(B, 6) operates freely as a transformation group on E. Smith’s 

theorem implies that z,(B) can not have any elements of finite order since E is a AR. 

Many other results for locally trivial fiberings of manifolds remain valid in the setting 

of Hurewicz fiberings. For example, using these techniques it is not difficult to extend 

known results on singular fiberings. 
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