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1. INTRODUCTION

Let E™ be the n-dimensional real Euclidean space with points
X = (%, %y, ", X,).

Let R and R, be bounded open connected subsets of E* with R C R, where
the bar denotes the closure operation. The boundary S of R is a suitable
manifold. In the Morse theory of the critical points of a real valued function
f(x) defined in R, one distinguishes “regular” and “general” boundary
conditions with respect to R. In both cases it is required that no critical
points of f(x) lie on S. In addition, the regular boundary condition requires
that the vector field

g(x) = grad f(x) (1.1)

is exteriorly directed at all points of S. The general case, not subject to this
restriction was first treated in a joint paper by Morse and van Schaack [1].

The main object of the present paper is to prove at least some of the results
obtained by these authors, for a Hilbert space E in a direct manner, i.e.
without assuming their validity in E2.! Thus the paper may be considered
as a further step towards developing the Morse theory in Hilbert space.
(See [3] and [4].)

* The main part of the research for this paper was done while the author had a
research appointment with the Institute of Science and Technology at the University
of Michigan and, as a consequence, had a reduced teaching load in the Department
of Mathematics. He takes this opportunity to express to the Institute as well as to the
Department his thanks for having provided this opportunity.

1 An exception is Section 9 where theorems on vectorfields in Hilbert space are used
which were proved in [2] by assuming their validity in E™ No “direct’” proofs for
these theorems are known to the author:
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358 ROTHE

For the purpose of exposition it seems best to recall the basic steps of the
procedure followed by Morse and van Schaack in the finite dimensional case.

Under the assumption that all critical points of f(x) in R are nondegenerate
they reduced the general case to the regular one in essentially the following
way: let R, be an open set such that R C R, C R, C R, and such that more-
over to each point x of B; — R corresponds exactly one point & on S such
that the normal 7 to S at & contains x. Let x, be a point on S and let N, be
a neighborhood of x, such that

x = &(u), % = (0), u=(uy,uy, ", Uyy) (1.2)

is a parametric representation of .S valid in the intersection Ny N S. Then
for xe N,

x = &Z(u) + sn(u), (1.2a)

and (s, #) may be regarded as local coordinates at x, . If R, is taken as the
union of R with the set of all points (1.2a) for which 0 <s < s, (s, small
enough) then the modification f of f is defined in R, by

flx) = f(x) for xR
= f(®(n) + sn(u)) + sM(3s2 for O0<s< s (1.3)

where M denotes a number satisfying the inequality
Il e((x)) || < M/2 for xeR (1.4)

with g defined by (1.1) and with || || denoting the Euclidean norm while s,
is a positive constant < s;.
For a suitable choice of s, and s, it is then shown in [1]:

(i) f(x) satisfies regular boundary conditions with respect to R, .
(ii) Let the “boundary function” ¢(x) be defined by

$(u) = f(#u), £eSNN,. (1.5)

Then the vector (1.1) is normal to S at x = x,if and only if # == 0 is a critical
point of ¢(u). The critical points of the boundary function are supposed to be
nondegenerate.

(iii) To each point %, in S in which the vector (1.1) has the direction of
the interior normal there corresponds a unique point x* in R, — R which is
a critical point of f, and the points x* thus obtained together with the critical
points of fin R are the only critical points of fin R, .

(iv) Let x, and x* be as in the preceding paragraph. Then x* as critical
point of fis nondegenerate, and its index equals the index of the critical point
u = 0 of the boundary function ¢ defined in (1.5).



CRITICAL POINT THEORY IN HILBERT SPACE 359

(v) Forj=0,1,---, nlet M be the number of critical points of index
jof fin R, and let R’ be the jth Betti number of R. Then under the assump-
tion of regular boundary conditions the Morse relations

R0<M0
R — R > M — M
R — R+ R2 < M® — M! + M2 (1.6a)

RV R + R2 ... _I_ (_ I)an = MO _ M1 + M?2... + (_ l)n Mn (1.6b)

hold. The results sketched in the above paragraphs (i) to (iv) enabled Morse
and van Schaack to prove that the relations (1.6) still hold under general
boundary conditions if M7 is replaced by

M = M+ M- (1.7)

where, as before, M7 is the number of critical points of index j of fin R and
where M7~ denotes the number of those critical points of index j of the bound-
ary function ¢ at which grad f has the direction of the interior normal.

To carry out in a Hilbert space E the Morse-van Schaack procedure for E*
outlined in paragraphs (i)-(v) above, the first task is to give a suitable defini-
tion of a hypermanifold S in E. For the method of this paper it is essential
that tangent and parameter spaces for S (as in the case of E") are hyperspaces,
i.e. closed linear subspaces of E of codimension 1. Unfortunately the notion of
hyperspace is not invariant under bounded linear | — 1 maps as the example
of the shift operator shows. However, as proved in Lemma 3.2, the notion
of hyperspace is invariant under a map of the special form (3.5). The restric-
tive definition (3.2) of a smooth hypermanifold takes these facts in account
and ensures that tangent and parameter spaces of a smooth hypermanifold
are hyperspaces. An example of a smooth hypermanifold is the boundary .S
of the special domain R C E defined at the beginning of section 9.

It is shown in Section 4 that under certain differentiability conditions a
smooth hypersurface S bounding a domain R C E admits at every point a
unique exterior and a unique interior normal, and that these normals are
twice differentiable (Theorems 4.1 and 4.3).

Using these results and the implicit function theorem ([5]) it is possible to
construct at every point x, of S a local coordinate system which is the analogue
of the “(u, s)” system used in the representation (1.2a). This is done in
Section 5.

Such a local coordinate system makes it obviously possible to define the
modification f of a given function f as in (1.3). The Hilbert space analogous
to the statements (i) and (i1) above are then proved (Lemma 7.6 and Lemmas
6.3, 6.4).
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Section § establishes statements (iii) and (iv) above for the Hilbert space
case. Here the proofs are quite different from the ones given by Morse and
van Schaack for the finite dimensional case. For example their proof of
(iv) {1; p. 569] is based on a classical theorem of determinant theory according
to which the index of a quadratic form Q can be evaluated in terms of the
number of changes of sign in a certain sequence of principal subdeterminants
of the matrix of Q. No such theorem is available in Hilbert space.

As to the generalization to Hilbert space of the Morse relations (1.6), the
present paper is concerned only with (1.6b). In Section 9 we consider the
special domain R =V, — U;Ll V', where each V', is a ball and the bar
denotes closure; moreover for j = 1, 2, ---, g, the V; are disjoint and con-
tained in ¥, . Now for such an R in E".

left member of (1.6b) =1 -+ g(— 1)"L. (1.8)

This quantity does not converge as # goes to infinity. Therefore for the pur-
pose of generalization to Hilbert space we rewrite (1.6b) as follows: denote
by M}~ and M:* the number of those critical points of index j of the boundary
function ¢ which are situated on the boundary S, of ¥, and at which grad f
has the direction of the interior normal and exterior normal respectively;
here the terms exterior and interior refer to R. Then from (1.7)

q
M = Mi + D, My~ (1.9)
i=0

Since the total number of critical points of index j of ¢ situated on V; is
M]~ + M+ application of a Morse relation for the closed Riemannian mani-
fold S; yields

— 1) = E(M’“ MYy (— 1), (1.10)

By elementary computation we obtain from (1.6b) (with M7 replaced by
M), (1.8), (1.7), (1.9), and (1.10)

1—q:i(— % [M"+Mg-—§q‘,M:I+]. (1.11)

=0 i=1

It is this formula in which the left member is independent of the dimension
n which we will generalize to the Hilbert space case.
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2. PRELIMINARIES ON DIFFERENTIALS AND (GRADIENTS

Many of the definitions and lemmas of this section are well known (see
e.g. {6], [5], [7]); they are included for reference, and no proofs of such lem-
mas are given.

E will always denote a real Hilbert space; (%, y) denotes the scalar product
of the elements x and y of E, and || x || is the nonnegative square root of
(x, x).

The differentials occurring in this paper are all Fréchet differentials. We
recall the definition: let N be a neighborhood of the point %, in E, and let f
be a map of N into a Hilbert space E.2 If there exists a linear continuous
map [ = I(h) of N into E such that

- fa + B — flwg) — Ih)
e B ] =0 @1

then I(h) = df(x,; k) is unique and is called the differential of f at x, with the
increment A. If df(x; %) is defined for all x of some neighborhood of x, then it
is called continuous at x, if to every positive € there exists a positive § such
that for x in the spherical neighborhood N = Ny(x,) of x, with radius §,
[l d(x; k) — d(xg; B) || < €| k]l for xe N. d(x, ) is called locally uniformly
continuous at ¥, if there exists a neighborhood N’ of x, such that the above
in quality holds with x, replaced by any x' € N’ provided that || x — ' || < 8.
In this case we also say: d(x, &) is uniformly continuous in N’

If this is the case and if N" is convex then the limit in (2.1) is uniform in N’.
This follows immediately from the mean value theorem [6, Theorem 57:

S5+ 1) = £(5) = [ dfto =+ thi )

If d(x; k) as function of x has at x; a differential with increment % which
is bounded in 4 then this differential is called the second differential of f at
x, and denoted by d2f(x; h, k) provided that, in addition,

lim D0+ R ) — df(3o; ) — Ef(xg; 1 B) _
k0 (RN

k-0

The second differential is called continuous at x, if to each positive ¢ there
exists a neighborhood IV of x, such that

| 2f(x; b, k) — a@%f(xo; B, R) | < ell R IR 15

® In this paper £ will always stand for either E or the real line E’.
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uniform continuity is defined as for the first differential, and a uniformity
statement analogue to the one above concerning the uniformity of the limit
(2.1) holds. fis said to be of class C9in a subset S of E if it is continuous at
every point of S, and of class C’ if it has a continuous differential at every
point of S. The class C” is defined correspondingly. The meaning of the term
uniformly (locally uniformly) of class C" or C” will be obvious. The second
differential of an f € C” is symmetric in the increments & and & [6, Theorem 8].

Chain rules [5, Section 15]. Let %y, v,, 2, be elements of the Hilbert
spaces E,, E,, E, respectively, and let Ny, N;, N, be neighborhoods of
Xy, Yo » 3 respectively. Let f;, f; be maps of class C":

Jo: Ng— Ny, fi:Ni— N,

with fy(%e) = ¥4, f1(¥e) = 2, . Then the composite map f = f,0 fp : Ny — N,
is of class C’, and

df (xo; B) = df1(yo; ) 22)
where
k = dfy(xg; h). 23)
If, moreover, f, and f, are of class C”, then f is also of class C”, and
d*f(%0; by, hy) = d%1(yo; Ry, ko) + dfy(yo; d%y) 24)

where k; (i = 1, 2) is obtained from 4, replacing % by 4, in (2.3), and where
d%y = dfo(%; by s hy). ,

In order to recall the definition and some properties of a gradient in a
Hilbert space £ [8, p. 67] we return to the notations of the beginning of this
section. If E is the real line £’ then the differential /() = df(x; k) is a linear
continuous functional in /. Therefore there exists a unique element g = g(x)
in E such that df(x; k) = (g(x), A). This g(x) is called the gradient of f:

8(*) = (grad f) (x). (2.5)
LevmmMa 2.1, If the assumptions made for the validity of (2.2) and (2.3)
are satiesfied and if E, is the real line E', then
§(x) = grad f(x) = dp* grad fy(y) at  x=x, Y=y (2.6)
where dy*(h) denotes the map adjoint to the map dy(h) = dfy(x,; h).
Proor. From (2.2) and (2.5) we see that

(grad f(x), h)z=a=0 = (gradfl(y)’ k)y=vo (2.7)

where % is given by (2.3). Consequently the right member of (2.7) equals
(d* grad fi(¥), h)y—y, - This proves (2.6).
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Lemma 2.2. If g(y) = grad fi(y) exists in a neighborhood of y = y,,
and if the differential 1,(k) = dg,(y,; k) exists then f, has a second differential at

¥y =9,, and
&Pf1(Yo; R 5 ke) = (Li(R), ko) (2.8)

Conversely : if the left member of (2.8) exists then I (k) = dgy(vy; k) exists and
(2.8) holds. Moreover if the left member of (2.8) is continuous then dg,(y,; k)
as linear operator in k is symmetric.

Proor. The first part of the lemma is proved in [9, p. 78]. Under the
assumption of the second part of the lemma we have

dfy(yo + kus k) — df1(Dos ko) = @f(¥o; By s ko) + 1(305 Ry s Ro) (2.9
where

’(J’o ’ kl ) kz)
im =222 = e (), 2.10
SR AT A] (210

Now the left member of (2.9) is a bounded linear functional in &, and so is the
first term of the right member. Therefore the same is true of 7(y, , &, , k,).
Consequently there exists a unique element p = p(y, , k) such that

(Yo k1, ko) = (p(30 , 1), Bo)- (2.11)

By definition of the gradient g,(y) the left member of (2.9) is the scalar

product of g,(¥, -+ k) — g1(%,) with &, . Therefore it follows from (2.9) and
(2.11) that (2.8) holds if we define /(%) by

Lky) = &(yo + k) — &1(30) — (Do, R1)- (2.12)

It remains to prove that this /;(%,) is the differential of g,(y) at ¥y =, . The
linearity of /; follows from (2.8) since the left member is linear in %, . To
prove the boundedness of /; we note that

| % (yo; kr Ro) | <o | a1 ] o (2.13)
for some positive p. It therefore follows from (2.8) with k, = /;(k,) that

| (k) 1B << e [ Ay [ 1] Dal(Ry) |
which proves the boundedness. Finally, we have to estimate the remainder
term p(y, , ky) in (2.12). It follows from (2.10) and (2.11) that to every posi-
tive € > 0 there exists a § such that
| p(Yo3 ka), ko) [| << € [l Ry [I-[] Az ] (2.14)

if | &, || and || k, || are less than 8. Obviously (2.14) holds for || k4, || < 8 and
arbitrary %, . Therefore we may set k, = p(¥, , k;), and we obtain from (2.14)
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the estimate || p(y, , k1) || << € || k¢ || for || &, | <C 8. This completes the proof
that the /; defined by (2.12) is the differential of g,(y).

Finally, the symmetry of dg,(vy; &) follows from (2.8) since the left member
of that equality is symmetric in &, and &, .

LemMa 2.3.  With the notations and assumptions used in the statement of
the chain rules, with E = E1, the real line, with g(x) defined by (2.5), and with
&(y) = (grad f) (y) we have

(dg(%; hs), hy) = (dga(y; ko), B)umsetn) + (61(0) @Fol%s B B))ypy@) - (2-15)
where k, , k, are defined as in (2.4).

Proor. We see from (2.7) that for any x € N,

(8(%), 1) = (81(3), dfo(; 1) (2.16)

and (2.15) follows easily by differentiating (2.16) with respect to x and observ-
ing the chain rule (2.2), (2.3) in differentiating the right member.

3. PRELIMINARIES ON HYPERSURFACES IN A HILBERT SPACE

DerinNrTioN 3.1. A subspace E; of the real Hilbert space E is a closed
linear subset of E with the scalar product induced by that of E. The subspace
E, is called maximal if it is the nullspace of some nonzero linear continuous
functional. A hyperplane is the translate of a maximal subspace.

The following lemma states some well known facts.

Lemma 3.1. (a) The subspace E, of Definition 3.1 is a Hilbert space;
(b) the subspace E, is maximal if and only if there exists an element p of E with
|| p I| = 1 such that x € E, if and only if (x, p) = 0, and if there exists such a p
then — p is the only other element satisfying the conditions stated; (c) if E, is a
proper subspace of E and if p is a nonzero element of E orthogonal to E, then E,
is maximal if and only if every element x in E allows the unique decomposition

x = + ¥y, ¥ ek, A real. (3.1)

In what follows N,(x,) will always denote the open ball with center x, and
radius p, i.e.

Ny(xo) ={x € E| [l x — % || <pl; (3-2)
for N,(0) we will shortly write IV, .

DEFINITION 3.2. A subset S of E is called a hypermanifold if to every
point x, of S there exists a maximal subspace U of E, a neighborhood U, of 0
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relative to U, and a neighborhood N(x,) of x, such that there is a one-to-one
correspondence

x=x(u), x,=2x(0) (3.3)

between the points u of U, and the points of S(x) = S N N(x,). Uis called a
parameter space for x,, and the set Uj is called a system (u) of local para-
meters. A transformation

u=f(v) (34)

is called a parameter transformation if it is a one-to-one map between the
points % of a neighborhood of 0 relative to U and a neighborhood of 0 with
respect to a maximal subspace V. Moreover:

(«) S is said to be of class C?if for each x, € S there exists a local para-
meter system (#) such that the map (3.3) is bicontinuous. For an .S of class C?
the parameter transformation (3.4) is called admissible if it is bicontinuous.

(B) S is said to be of class C” if to every x, € S there exists a system ()
of local parameters such that the map (3.3) is of class C’. For an S of class C’
the parameter transformation (3.4) is called admissible if together with its
inverse it is of class C".

(y) S is said to be smooth if it is of class C’ and if to each xy € S there
exists a local parameter system () such that for u, € U, the linear map U into
E given by the differential di(ug; %) of (3.3) is nonsingular, i.e. has a bounded
inverse, and if moreover dx(u,; u) — u is completely continuous.? For a
smooth .S the parameter transformation (3.4) is admissible if it is admissible
in the sense of the preceding paragraph, and if in addition df(0; v) is non-
singular and df(0; v) — v is completely continuous.

(8) S is of class C” if it is smooth and if for each x,€.S and a suitable
parameter system (u) the map (3.3) is of class C”. For an S of class C” the
parameter transformation (3.4) is said to be admissible if it is admissible in the
sense of the preceding paragraph and if, in addition, the map (3.4) and its
inverse are of class C”. If S is of class C” and if the map (3.3) is of class C”
then S si said to be of slass C”.

Remark. The definitions of a hypermanifold of class C° C’, C” and of a
smooth hypermanifold are invariant under admissible parameter transforma-
tions. This follows from the chain rules (2.2), (2.4) together with the fact
that the composition of a continuous map with continuous or completely
continuous map is continuous or completely continuous respectively.

DeriniTioN 3.3. Let S be a hypermanifold of class C’ and let x, & S.
Let dx(0; u) be the diflerential of the map (3.3) at the zero point of U and

® The significance of this restriction will be clear from Theorem 3.1.

409-24
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denote by T'(x,) the image of U under this linear map, and by T(x,) the
translate of T(xy) by xy. Then T(x,) and Ty(x,) are called the tangent space
and tangent plane to .S at x, respectively.

U is by definition a hyperspace but T'(x,) is not necessarily a hyperspace.
However we have

THEOREM 3.1. If S is a smooth hypersurface then the tangent space T(x,)
( Definition 3.3) is a hyperspace.
Theorem 3.1 is obviously a consequence of the following

Lemma 3.2, Let U be a hyperspace in the Hilbert space E. Let d: U— E
be linear and of the form

t == d(u) = u + D(u) (3.5)

where D is completely continuous. Let T be the image of U under d. We suppose
that d is nonsingular, i.e. that 6 = d= : T — U ewists as a bounded map. Then T
is a hyperspace.

Proor. If we define 4(¢) by
u=208(t) =t + A(z). (3.6)

then 4 is completely continuous: indeed comparison of (3.5) with (3.6)
shows that 4(¢) = — D(u), and our assertion follows from the complete
continuity of D together with the boundedness of d—! = 5. We claim next
that 7' is a proper subset of E: otherwise 8 would be a map E— E which
moreover by our assumptions is one-to-one. But this latter property together
with the complete continuity of 4 implies by a well-known theorem that the
map (3.6) is a map onto E. Thus U = E, a contradiction since U is a hyper-
space in E. Thus T s E. Since T is obviously linear and is easily seen to be
closed, T is a proper subspace of E. Conszquently there exists a g € E of
norm ! which is orthogonal to T. Our lemma will be proved if we can show
that T and ¢ together span E (see Lemma 3.1c).

To do this we note that by Lemma 3.1 there exists a p of norm 1 orthogonal
to U such that every point x € £ has the unique representation

x = Ap + u, A real, ue U. 3.7)

We now extend the map d to a map d with domain £ by assigning to the point x
given by (3.7) the point

d(x) = Ag + d(u). (3.8)
Using (3.7) this may be rewritten as

dx) = x + D), D) = Ng — p) + D(w). (3.9)
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Now since p has norm 1 it is seen from the orthogonal decomposition (3.7)
that | A | and || u || are both bounded by || x ||. From this together with the
complete continuity of D(u) it follows routinely that D(x) is alsa completely:
continuous. Moreover the obviously linear map d is one-to-one, for d(x) = 0
implies A = 0 and d(u) = 0 by (3.8). But since d(«) is one-to-one we also
have « = 0. Thus ¥ = 0 by (3.7). d is then a one-to-one linear map £ — E
of the form (3.9) with completely continuous D. It follows that the map is
onto, i.e., the range of d is E. On the other hand it is clear from (3.8) that this
range is the set {7, ¢} spanned by the range T of d and ¢. Thus {T, ¢} == E
which we wanted to prove.

Tueorem 3.2. Let S be a smooth hypersurface (Definition 3.2(y)) giveﬁ
by (3.3) in a neighborhood of xy€ S. Let

o = dx(0; u), ue U, ‘ (3.10)y

and let the map fin (3.4) be the inverse & of (3.10). Then:

(i) (3.4) is an admissible parameter transformation (Definition 3.2(v))
(such that the tangent space T(x,) is a parameter space ), and

dx(0;70) = v . (3.11)
where
2,(v) = x(1(v)). (3.12)
(i) If t = t(v) is the projection of x,(v) — x, on T(x;) then H(v) is invertible
and v = o(t) is an admissible parameter transformation; moreover
dxy(0;t) =1t (3.13)
where x,(t) = x,(0(1)).

Proor. (i) Follows immediately from the definitions involved, the chain
rule (2.2) and Theorem 3.1.

(i1) if p, is orthogonal to T'(x,) and of norm 1 then the projection of
x,(v) — x5 on T'(xy) is

t = x,(0) — % + po(x1(v) — %, Po)- (3.14)
Taking into account that (p, , ) = 0 one sees that (3.14) may be rewritten as
t =9+ F(v) (3.15)

where
F(v) =7(2) + po(r(2), po)y  7(v) = xy(v) — % — 2. (3.16)

Now (3.15) is satisfied with ¢t = v = 0. It is well known that then (3.15) for
small enough ||v || and ||t || has a unique solution v = o(t) provided that
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there exist positive numbers 7 and & with & < 1 such that

IF@) —F@) | <klo"—o | for o], le'f<g (17

(See e.g. [5, Section I1]). Now since | p, || = 1 one sees easily from (3.16) that
|Fo") — F@) | <2 | 70") — @) | (3.18)

But using the mean value theorem [6, Theorem 5] and (3.11) we see from
(3.16) that

r(@") — r(@') = j : [dx,(v' + ofo” — 50" — v') — duy(0; 0" — )] dav.
(3.19)

Now by the definition of the continuity of a differential (Section 2) there
exists to given positive £ < 1 a number 7 such that

| dxy(os B) — dy(O; ) [ < || B [[R[2  for  Jo| <9 (3.20)

(3.17) follows now from (3.18), (3.19), and (3.20). Thus the existence of a
unique solution © = o(t) of (3.14) is assured. That this solution is of class C”
follows from the fact that the right member of our equation (3.14) for v(z)
is of class C".

Finally to prove (3.13) we note that by the chain rule

dxy(0; dt) = dxy(0; dv)  where  dt = di(0; dv), (3.20a)

the differential at v = 0 of the right member of (3.14). But the differential of
the third term of this right member equals 0 since by (3.11), d(x,(0; dv) = dv
and dv is orthogonal to p, . Thus we obtain from (3.14) dt = dx,(0; dv) = dv
and therefore from (3.202) and (3.11), dxy(0; dv) = dv which is (3.13) since dv
is an arbitrary element of T'(x,).

DeriNiTION 3.4. A system of parameters (v) € T'(x,) for which (3.11)
holds is called tangential. The system of parameters (¢) defined in Theorem
(3.2ii) (which by (3.13) is tangential) is called normal.

DeriNITION 3.5. Let S be a hypersurface of class C’, and let ¢(x) be a
real valued function defined on S. We then say ¢ is of class C” if the following
is true for every &y € St if (#) is an admissible parameter system at x, and if
the positive number p is so small that the representation (3.3) is valid in
S M N,(x,), then the function $o() defined by ¢q(u) = (x(u)) is of class C’
in some neighborhood of ¥ = 0. ¢{x) is of class C” if $(#) is of class C”.
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Lemma 3.3. Let S, x,, and p be as in the preceding definition. Let f(x) be a
real valued function of class C’ defined in V (x,), and let

bo(u) = f(x(w)) (3.21)
where x(u) is the map (3.3.) Then
df(xg; b) = doo(0; w), k= dx(0; u). (3.22)

If S is smooth (Definition 3.2(y)) and if (u) is a tangential parameter system
we have

df(xg; u) = do(0; )  ue T(x,). (3.23)
If S and f are of class C” then
A2po(0; 1y , uy) = d2f(xg; by , Bg) + df(xy; d%x(0; uy , uy) (3.24)
where for i =1, 2

oo for a tangential parameter system (u)
7

- dx(0; u,) otherwise. (3.25)

The lemma is an immediate consequence of the chain rules (2.2), (2.4),
Theorem 3.2, and Definition (3.4).

DeriniTioN 3.6. With the notations of the preceding lemma let .S be
smooth and f of class C". Then by Theorem 3.1 and Lemma 3.1 we have with
g = grad f the unique decomposition

8(%0) = gA%0) + 8u(%0),  £d%0) € T(xo)
(%)  orthogonalto  T(x,). (3.26)

&4(x,) and g, (%) are called the tangential and the normal part of the gradient
respectively.

Levmma 3.4. With the assumptions and notations of the preceding definition
let

y(u) = grad ¢o(u). (3.27)
Then for a tangential parameter system (u)
&4%,) = ¥(0). (3.28)

Moreover if S and f are of class C”
(dy(u; ha), 1) = (dg(x; k), k) + (g(x), d®x(u; ke, Ry) (3-29)
where x = x(u) and fori = 1,2

_hyif (u) is a tangential parameter system

ki = dx(0; ;)  otherwise.

(3.30)
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Proor. By definition of the gradient, (3.23) may be written in the form

(8(%), u) = (¥(0), ). (3.31)

Using the decomposition (3.26) we see that g(x,) in (3.31) may be replaced
by g4(x,) since u € T(x,). 'The equation thus obtained from (3.31) holds for
all u in the Hilbert space 7'(x,), and therefore implies (3.28) since (0) € T'(x,).
(3.29) is an immediate consequence of (2.15), Theorem 3.2, and Definition 3.4.

4, ON THE NORMALS OF A BoUNDING HYPERSURFACE

In this section S will be always a smooth hypermanifold (Definition
3.2(y)) which is the boundary of a bounded open connected set in the Hilbert
space E. The parameter system (#) used in the local representation

©ox o= x(u) 20) =x, € S (4.1)

of S will always be normal (Definition 3.4). The main object of this section
is to prove the existence of a continuous exterior normal n(x), and if .S is of
class C”, the existence and continuity of the differential dr.

DreriniTION 4.1. Let x, € S, and Iet p, be an element of norm 1 which is
orthogonal to T(x,), the tangent space at x,. If there exists a positive A,
such that all points of the segment

=1+ Ay, 0<A< A (4.2)

are exterior to R, then p, is called exterior normal; the interior normal is
defined correspondingly.

Turorem 4.1. In every point x, of S there exists a unique exterior and a
unique interior normal.

Proor. If N,(x,)denotes the open ball with center x, and radius ¢ then
the representation (4.1) defines for small enough o a 1 to 1 correspondence
between the points of Ny(x)) NS and the points of a neighborhood
U, = Uy(o) of the zero point of T'(x,). But for a tangential parameter system
(Definition 3.4) we can also assert that if § is a positive number less than 1
then for o small enough

[r@)| <6l=l, =eU, (4.3)

where
r(u) = x(u) — xy — u; (4.4)
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for by (4.1) and (3.11) the right member of (4.4) equals x(z) — x(0) — dx(0; »)
such that (4.3) for small enough U, follows from the definition of the diffe-
rential.

From now on we assume a choice of ¢ for which (4.3) is true. We note
that for a normal system (#) (Definition 3.4)

(r(w), u) =0  wue T(xy). 4.5)
Let now p be a positive number such that the ball
U0CU, and p<a/3 (4.6)
We then define the cylinder Z as the set of all points
z = x(u) + Ap, , | <p, A real, [A] <af3. 4.7

It is then easily verified that :
ZC Ny, 48)

We now assert that Z contains a neighborhood of x,; more specifically
Nix)CZ if 0<e<bp)2 4.9)

Indeed, since T'(x,) is a hyperspace any x € E is of the form

x =1y + u+ ppy,  preal u € T(x,). (4.10)
For x € N(x,) we may apply (4.4) to (4.10):
x = x(1) — r(1) + upy - (4.11)
Moreover we see from (4.5) and (4.3) that
W) =mpe  with || <lull, (4.12)
and thus from (4.11) that
x=o(u) +Apy, A=p—pu,. (4.13)

Now from the orthogonality of # and p, in the decomposition (4.10) we see
that ||« || and | u | are both majorized by || x — x, ||. Moreover

M <ipl+iml<ipl+{uld

by using also (4.12). These inequalities and a comparison of (4.13) with
(4.7) show immediately that x € Z if x € N(x;).

Now x, is a boundary point of R. Consequently N (x,) contains a point &
which is exterior to R. Since & € N (x,) C Z we may write

& =x(d@) +Apy, faEl<p<of3, |X]<o3 (4.14)
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A must be either positive or negative since A = 0 would imply that % is a
boundary point. Suppose first that A is positive. We claim then that p, is an
exterior normal (Definition 4.1), an assertion which obviously follows from
the following one: every 2 € Z for which the A occurring in the representation
(4.7) is positive is an exterior point. To prove this let x, be a point of Z

# = x(uy) +Apy, with A >0, (4.15)
and for 0 <t < 1 let
=l — &) +ut, A=Al —1) + At (4.16)
It is then easily verified that
%y =x(u) +Apo€Z, and A, =min(} ) > 0. 4.17)

The fact that x, is an exterior point follows now by the classical method of
considering the least upper bound T of those 7 in the closed unit interval
which have the property that for 0 < ¢t < = the point «, is exterior: x; cannot
be interior, for every neighborhood of x; contains exterior points since all
points x, for 0 <t < T are exterior. But from (4.17) we see that A; =% 0.
Thus x; is not a boundary point. Therefore x; is an exterior point. Now the
assumption 7' <C 1 leads easily to a contradiction with the definition of 7" and
the fact that the set of exterior points is open. Thus 7 =1, and », = %y
is exterior.

We assumed A > 0. If A < 0 we simply have to write (— A) (— p,) for
Apo in (4.15) to sce that then — p, is an exterior normal. Thus an exterior
normal exists in any case. Similarly an interior normal exists.

Finally the uniqueness assertion of our theorem follows immediately
from Lemma 3.1.

DErFINITION 4.2. p(x) is the exterior unit normal to S at the point x of S.
With the local representation (4.1) by normal parameters (x) we write
n(u) = p(x(w)). For p(x,) we write shortly p,; correspondingly #, = n(0).

THEOREM 4.2. Let S be locally uniformly of class C” and let (4.1) be a
normal local representation at the arbitrary point x4 of S valid in the neighbor-
hood Uy of O in T(x,); then: (a) n(u) is continuous, (b) the differential dn(u; k)
exists, (c) dn(u; k) is uniformly continuous in u (cf. the definition given in Sec-
tion 2 ).

Proor oOF (a). Fori=1,2letu,e Uy, x;, = x(n;), n; = n(u;), and

Ad=ny—n. (4.18)
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We have to prove
lim 4 =0. (4.19)

Uyt
Now by Section 2
dx(ug; B) — dx(uy; B) = d?(uy; 4, —uy , B) + r(uy , uy —uwy, ) (4.20)

where 7 satisfies the uniform estimate

oy~ g B[ < lug— g || Ble  with lime=0. (421)

Since by Definition 3.1 the tangent space 7'(x;) at x; is the range of the linear
map dx(u;; k) we have

(n;, dx(u;; B)) =0 forall heT(x), =12, (422)
If 4, is the projection of 4 on the tangent space T'(x,) at x; then
4 =4, + n(4,n,). (4.23)

In order to estimate 4, we multiply (4.20) scalar by n, =n, 4- 4. Using
(4.22) and the fact that
(4, dx(uy; b)) = (4, , dx(uy ; h))

we have

(— 4y, dx(uy 5 b)) = (ny, dPx(ug; uy — uy, B)) + (ng, 7wy, 4y — g, B)).
(4.24)

Now the map 2 — h; given by h; = dx(u;; k) has an inverse £ = 8(h,) and

maps T'(x) onto T'(x;). Since, in addition, 4; € T(x,) there is a unique

Fy € T(x,) such that dx(ug; hy) = 4, . If we set o = h, in (4.24) and observe

(4.21) we see easily from the assumed uniform continuity of 4% that for a
suitable constant C,

14y 1l < Co llug — y |l (4.25)
To estimate the second term in (4.23) we note first that
24, m) +(4,4)=0 (4.26)
as follows immediately from 1 = ||n, ||? = [|#, -+ 4 ||>. On the other hand
we see from the orthogonality of the decomposition (4.23) that
417 =114, + (4, m)™. (4.27)

Combining this equation with (4.26) we obtain for (4, n;) the quadratic
equation

(4, m)* +2(d, m) + (| 4, | = 0. (4.28)
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Here we have to choose the solution
(A,my) = — 1+ V1T =74, (4.29)

with the positive square root. For it we set 2, = x(uy) + A(n, — 4,), (A > 0),
we see from (4.18) and (4.23) that 2z; = x(u,) -~ Any(1 + (4, ). If now
(4.29) were true with the minus sign in front of the square root it would
follow that

2 = x(uy) — My V1 = 4, B (4.30)

and that for A small enough (say 0 <A << Ag) %, € Z; where Z, is defined
with respect to ¥, in the same way as the set Z was defined by (4.7) with
respect to x,. Now since the coefficient of #, in (4.30) is negative and =,
is the exterior normal a discussion analogue to the one following (4.15)
would show that 2, is an interior point of R. But because of the estimate
(4.25), the point 2; + A4, = x(u,) + An, would for || #, — w4 || small enough
also be interior to R for 0 << A <C Ay . But by Definition 4.1, n, would then be
interior normal against our assumption.

We now see from (4.23), (4.25) and (4.29) that for a suitable constant C,

141 <Cyllug—u . (4.31)
Thus (a) is proved.
To prove (b) we remark first that by (4.26) and (4.31)

201 dm) | =4 P<CPlluy—u P

This implies that the differential of the n,~component (n, , n;) of #, = n(u,)
at u, = u, exists and equals 0:

d(n,n) (u; ) =0 at U=y (4.32)

It remains to prove the differentiability of the projection of 7, on the tangent
space T'(x;) at x, . Using (4.18) we can write (4,24) in the form

(— 4y, dx(ugs h) — (ny, @y 5 4y — uy, B)) = Fuy , up —uy, ) (433)
where we have set
(g, 7(uy , ug —uy , b)) + (4, dx(uy; uy — uy , b)) = F(uy , uy — ., h).

(4.34)

It follows from this definition for 7 and from (4.31) that the estimate (4.21)
still holds if 7 is replaced by #. Now there exist unique elements 4, and
y(uy; uy — 2y) in T(x,) such that

(— my s x(uy; uy — uy , B) = (Y(y; 4y — 3), hy). (4.35)
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Indeed, let again k, = dx(u, ; ) and let & = 8(k,) be the inverse. Then the
left member of (4.35) may be considered as a bounded linear functional
defined for all points %, of the Hilbert space T'(x,). This proves the asserted
existence and uniqueness of A; and y such that (4.35) holds.

Obviously y is linear in its second argument. To see that y is also bounded
in its second argument we have only to set 2, = p(u;; 4, — #,) in (4.35) and
to observe that A = 8(k,) is bounded in &, .

Using (4.35), the equation (4.33) may now be written

(p(wg; uy — wy), hy) = Fuy; uy — 0y, 8(My)) (4.36)
where

pluy; s — uy) = Yugs uy —wy) — 4. (4.37)
If in (4.36) we set A, = p we see from (4.21) with 7 replaced by 7 that

lim P03 %e =) _ o (4.38)

uuy ||y — 1y |

But since 4, is the projection of 4 = n(u,) — n(u;) on T(x;), (4.38) together
with the definition (4.37) of p shows that y(u,; #, — u,) is the differential at
u = u, of the projection of n(x) on T(x,). This together with (4.32) shows that

dnfug; h) = y(u; h), ke T(x,). (4.39)
Proof oF (c). We have from (4.35)
(v(ug; k) — Y(wa; R), By) = (— my, dPu(ug; R, 8(hy) — d®(uy; k, 8(hy)),
ke T(x,), he T(x).

If we set here &, = p(uy; k) — y(uy; k) one sees easily from the continuity
property of d2x in its first argument (Section 2) that to every positive €
there corresponds an % such that

[ y(ug; k) — Y B | < Ml klle i fluy —uy | <.
By (4.39) this proves (c).
Turorem 4.3. If, in addition to the assumptions of Theorem 4.2, S is
locally uniformly of class C" then n = n{u) is of class C”.

ProoF. In this proof ¢( ) will denote any function which tends to zero as
its argument tends to zero. Thus the symbol ¢() may stand for different
functions. With this notation we have to prove the existence of an I(u; 2, k) € E
bilinear and bounded in 2 and % such that

dn(u + 2 k) —dn(u; k) — l(u; 2, k) = e(3) = | kIl u,3,keT,,.
(4.40)
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Now as in the proof of Theorem 4.2, we T, and x; = x(1,), 7, = n(u,).
Moreover for any ¢ € E we denote by [£], the projection of £ on T, such that

£ = [€ly + m(é, m), (4.41)
(€, &) = (€, [€l) + (£, m)™ (4.42)

We will first prove the existence of a y(u; 2, k) € T, , bilinear and bounded
in 2 and % such that foru = u,

[dn(u + z; k) — dn(u; R)], — y(u; 2, k) = «(2) |z | [ R]l.  (4.43)
Secondly, we will show that for v = u,
(dn(u + z; k) — dn{u; k), n)) + (dn(u; 2), de(u; R)) = €(2) |z ||| R {. (4.44)

Obviously (4.43) and (4.44) together with (4.41) imply that (4.40) is satisfied
with [ = y + ny(dn(u,; 2), dn(uy; k)), in other words that

a*n(u; z, k) = y(u; 2, k) — n(u) (dn(u; z), dn(u; k)). (4.45)

For the proof of the existence of a y satisfying (4.43) we start from the
relation

(dn(u; k), dx(u; h) = — (n(u), d*x(u; &, h)), uh keT, (4.46)

obtained from (4.35) and (4.39). Replacing here by u 4 z (with € T, )
and subtracting the relation thus obtained from (4.46) we see by elementary
calculation that

(dn(u + =, k) — dn{u; k), dx(u; h))
= — {(dn(u; k), d®x(u; 2, h)) + (dn(u; 2), d*x(u; k, h))

+ (n(u), d3x(u; 2, k, b)} — (R, + Ry + Ry)
(4.47)

where
Ry = (dn(u + 2; B) — dn(u; k), dx(u —+ =3 h) — dx(u; k)
+ (dn(u; k), dx(u + 2; B) — da(u; h) — d%(u; 2, k)
R, = (n(u + ) — n(u) — dn(u; =), d%(u; k, b))
Ry = (n(u + 2) — n(u), d®x(u + 2); b, k) — d®(u; b, k)

+ (n(w), d®x(u + z; h, k) — d%x(u; h, R) — d®x(u; 2, h, k)).
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From these expressions, from our assumptions on x(x) and from our pre-
vious results on n(x) and its differential it is easily seen that

Ry =e@) |zl liIkl, =123 (4.48)

Let now u = %, . As in the proof of Theorem 4.2 let h, = dx(u;; k) such that
h e Tx1 while A, &k, z € T% . Since this map % — /4, has an inverse £ = §(#,)
the expression contained in { } at the right member of (4.47) is a bounded
linear functional defined for all %, in the Hilbert space T, . Therefore there
exists a unique y = y(u; k, 2) in T, such the expression in { } equals the
scalar product of — y with A,; therefore (4.47) may be written in the form

([dn(u + =; k) — dn(u; R)];, — y(u; b, 2), ) = — (R, + R, + Ry), u=u;.

(4.49)
{4.43) follows now from (4.48) and (4.49) if we set & = 8(h,) in (4.48) and
then set %, equal to the first factor in the scalar product at the left member

of (4.49).
We now turn to the proof of (4.44). We set

Uy =1, + R, uy =u + 2, Uy =u, + 2 + A, (k,zeT,)
n,=mn(u) for =123  n’ =nu)
=n, —ny, 4'=mn'—mn,
A=ny—ny—n) +n=n—A+4)—mn,. (4.50)

Squaring n; = 4% + 4 + 4" + n,, taking into account that > = n2 =1,
applying (4.42) to £ = 4%, and finally using (4.26) we obtain by elementary
calculation the following quadratic equation for (42 n,)

(42, n,)? + 2(4% ,n)) + 2B+ R=0 (4.51)
where

B=(4,4), R =2(4%, 4) 4 2(42, 4') + ([4%], , [4%],). (4.52)

Obviously, |2B + R| <1 for ||k, [[k], || 2] small enough. We then
conclude from (4.51) that for some positive § < 1

o S R (2B + Ry
@m) = —1+VI—QB+R) =~ B — 5 — g Yop— pypa
(4.53)

or, adding (dn(uy; k), dn(u,; 2)) to both members
(42, n,) - (dn(uy; k), dnuy; 2)) =r (4.54)
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where
r = (dn(us; B), dnfy; 2)) — B — (5 -+ i j(;(;z; i)R))m') . (459)
We claim:

r= k12 ) ((3) + (B (4.56)

Postponing the proof of (4.56), we remark first that (4.56) together with
(4.54) implies (4.44). Indeed: replacing & by 7k where 0 < = < 1, and divi-
ding by = we obtain from (4.54), (4.56), and from the definition (4.50) of 42

( nuy + & + 1h) —n(u, +2)  n(uy + 7k) — n(uy) "1)

+ (dn(ugs B), dnfu; 2) = — = [k || | % | (e() + <(rh)).

Letting T approach zero we obtain (4.44).
We now turn to the proof of (4.56). From the definition of 42 and from
the mean value theorem we see that

4% = n(uy + k + 2) — nluy + k) — (n(uy + %) — n(w))
= J-l (dn(u, + k + tz; 2) — dn(u, + tz; 2)) dt.

This proves that

42 = (k) |2 | (4.57)
since dn is continuous. Moreover by symmetry
A% = ¢(2) || R |I. (4.58)
Obviously (cf. Theorem 4.2)
2]l <Const. k[, [|4"|| <Const.[z], |BI < Const fi&]=z].
(4.59)

It follows from (4.58) and (4.59) that R and also the expression contained in
{ } at the right member of (4.55) is of the desired from || & || || 2 || (e(2) + <(&)).
It remains to show that the same is true for the difference of the first two
terms at the right member of (4.55). This however follows easily from the
identity
B= (n(u, + k) — n(wy), n(u, 4 2) — n(wy))

= (dn(uy; k), dn(uy; 2)) + (n(uy + k) — n(u,) — dnfuy; k), n(uy + 2) — n(y))

+ (dn(augs &), sy + 3) — n(a) — dn(us; ).

This finishes the proof of the existence of the second differential of n(x).
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This differential is given by (4.45). It remains to prove its continuity. Now
from previous results concerning 7(x) and its first differential it is clear that
the second term at the right member of (4.45) is continuous. It remains to
prove the continuity of the first term, i.e., to show that

(U -+ w; 2, k) — y(u; 2, k) = e(w) | 2 ||| & ]|. (4.60)

Now taking into account the definition of y given in the paragraph following
(4.48), the assumptions made concerning the differentials of x(x) up to and
including the third one, and the properties of dn and dn already proved one
sees easily that for all 4y € T,

(A + w; &, 2) — (w5 ky 2), by) = e(@) T2 LI N2 |-

(4.60) now follows upon setting

hy = y(u + w; k, 2) — y(u; k, 2).

5. A LocaL COORDINATE SYSTEM FOR
Points NEIGHBORING THE HYPERSURFACE S

A smooth enough hypersurface S™-! in the m-dimensional space E™ has
the following property: if the point x € E™ is near enough to S™-1 then there
exists a unique point £ € S™! such that x lies on the normal to S™1 at &.
Consequently if (#) is a local parameter system for S at the point x, of S
then every x in a small enough neighborhood of x, may be expressed in the
form x = (u, s) where u is the parameter point corresponding to &, and
where s = - || — & ||. In their paper [1] Morse and van Schaack construc-
ted, and made essential use of, such a coordinate system (u, s).

It is the object of the present section to construct such a coordinate system
for hypersurfaces in the Hilbert space E. To this end we prove the following.

Traeorem 5.1. Let S be a hypersurface in the Hilbert space which satisfies
the assumptions of Theorem 4.2. Let xy € S, and suppose that the normal repre-
sentation (4.1) is valid for

lull <up,  u(0)=x. (5.1)

Then there exist two positive numbers oy << uy and p, of the following property:
to each x in the ball V', (%,) there corresponds a unique couple (u, s) = (u(x), s(x))
with

|2 | + s < 0%, ue T(x,y), s a real number, (5.2)
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such that
x =& + sp(&) (5.3)

where % is the point of S which under the representation (4.1) is the image of
the parameter point u = u(x), and where p is as in Definition 4.2. Moreover
u == u(x) and s = s(x) are of class C".

Proor. By Definition 4.2, p(%) = n(u). Therefore (5.3) is equivalent to

¢=§E+smw), ¢(=x—x, E=%—x,. (5.4)
Now since 7(x,) is a hyperspace with unit normal n, every 2 € E has the uni-
que orthogonal decomposition

3 =u+ nyzny), ue T(%). (5.5)

Applying this to # = £(u) and observing that  is the projection on T(x,) of
£ = & — x, the parameter system () being normal we see that (5.4) is equiv-
alent to

£ = u + ny(E(w), ny) + sn(u). (5.6)

We now consider the couple y = (%, s) as an element of the Hilbert space
II, which is the product of T(xy) with the real line, the norm of y being
defined by ||y || = /]| #2 || + s% Since &(u) and n(x) are given functions of u
we may define

G(¢, ) = € — u — no( (), n) — sn(u). .7

We see then that our theorem is equivalent to the following statement:
there exist positive o, < #, and p, such that to every & with || £ || < p, there
corresponds one and only one ¥y = y(¢) with ||y || < o, which satisfies the
equation

G(¢,»(§) =0, (5.8)
and this y(¢) is of class C".
We recall that the following conditions (H,)-(H;) are sufficient for this
statement to be true [5, p. 150]:

(H,) G(0,0) =0.
(H,) Gis of class C’ as function of the couple (£, y).
(H;) The differential d,G(0, 0; ) of G with respect to y at §{ =y =0

is nonsingular, i.e., has a bounded inverse.

We proceed to verify these conditions. (H,) follows from (5.7) by inspection
if one observes that ¥ = 0 is equivalent to # = s = 0 and that

E0) =2y — x, =0.
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Due to the fact that G(£, ¥) depends linearly on ¢ it will for the proof of
(H,) be sufficient to show that d,G(&, y; %) exists and that to each ¢ >0
there corresponds a 8 > 0 such that

1d,G(¢+ &y +53m) —dG(&yin) [ <elinll  for €N 1T <8
(5.9)
Now setting n = (v, o) we see from (5.7) that

d,G(¢,y;m) = — v — ny(dE(u; v), ny) — sdn(u; v) — on(u). (5.10)

Keeping in mind the definition of continuity of a differential (Section 2)
and the fact that &) is of class C” and that dn is continuous one concludes
easily from (5.10) that (5.9) holds.

To verify (Hy) we notice that by Theorem 3.2, d§(0; v) = d#(0; v) = v.
Since, moreover, v is orthogonal to n, we see from (5.10) that

dG(0, 0; ) = — (v + om). (5.11)

Obviously, this proves (Hj).
DerinNiTION 5.1. The Hilbert space II;, defined in the lines directly
following (5.6) is called the normal local coordinate space at x,. The com-
ponents u, s of the point y = (, 5) €Il corresponding by Theorem 5.1

uniquely to the point x € V, (x,) are called the normal local coordinates
(at x,) of x. '

6. CriTicAL PoiNTs AND TANGENTIALLY CRITICAL POINTS

Let R be a bounded connected domain in the Hilbert space E whose
boundary S is smooth (Definition 3.2(y)). Let f(x) be a real valued function
defined and of class C’ in a bounded connected domain R, which contains
R and whose boundary S, has a positive distance from the boundary S of R.

DerFINITION 6.1. A point x, of R is called a critical point of f if

§(x) =0 (6.1)
where g(x) = grad f(x).

DerFINITION 6.2. A bounded linear operator

d:E—E

409-25
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is called nonsingular if d(#) = 0 implies £z = 0. Otherwise d is called singular.
A bounded bilinear form g(%, ) is called degenerate if there exists a &k, # 0,
such that ¢(, k;) = 0 for all 4 and if the statement obtained by interchanging
h and ks also true. If no such &, exists g is called nondegenerate. If the bilinear
form ¢ is symmetric then the quadratic from ¢(#, %) is called nondegenerate if
g(h, k) is nondegenerate.

Remark. If (k) is a bounded linear symmetric operator then it is easily
seen that the bilinear form (I(%), k) is degenerate if and only if / is singular,

DErFINITION 6.3. A critical point %, of f is called nondegenerate if f is of
class C” in some neighborhood of x, and if the second differential d?f(x,; h, k
is nondegenerate as bilinear form in 4 and k.

The following lemma is an immediate consequence of Lemma 2.2:

LemMa 6.1.  The critical point x, of f is nondegenerate if and only if the
differential I(x; k) = dg(x; k) exists in some neighborhood of x, and if I(x,; k)
as linear operator in k is nonsingular.

THEOREM 6.1. Let x, be a nondegenerate critical point of f. We assume that
the differential (k) of the gradient g of f at x = x, has a bounded every where
defined inverse. Then x, is an isolated critical point, i.e. there exists a neighbor-
hood V = V (x,) of &, such that x, is the only critical point of fin V.

Theorem 6.1 is obviously a consequence of the following

Lemma 6.2.4 Let g be a map defined in some neighborhood of the point x,
which is a zero of g. Suppose that g has a differential | = I(h) at x = x, which
has a bounded inverse A. Let m and p. denote the norm of | and A resp. Then there
exists a positive v such that

2mllx — x|l = &) || = [l 0 — % || 2p)~" for |2 — x| <.
(6.2)

Proor. Since by assumption g(x,) = O we have by definition of the dif-
ferential
&%) = g(x) — g(xo) = I(h) + R(xg; h), h=2x—x,,
where

11m R(xo > h) —

lim =2 = . (6.3)

+In this lemma g, is not necessarily a gradient. The proof given is essentially the
same as the one given for the finite dimensional case in [10, p. 477].
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Therefore
IR 1| 4[| R(xo» B) || 2 1l g(%) | = 1B || — | R(xo; £) [l (6.4)
Since by definition of m and p the inequalities
I ON S o

hold, (6.2), for small enough 7, follows easily from (6.3) and (6.4).

DrrINITION 6.4. Let xy € S, and let ¢4(x) be defined as in (3.21). Then ,
is called a tangentially critical point of f if u = Q is a critical point of ¢, .
The tangentially critical point x, is called non degenerate if # = 0 as critical
point of ¢, is nondegenerate. (Application of the chain rules (2.2) and (2.4)
to two admissible parameter systems shows the invariance of these definitions
if one notes that the second term at the right member of (2.4) equals 0 at a
critical point.)

Lemma 6.3. Let the assumptions of Definition 3.5 be satisfied. Then:
(a) xo€ S is a tangentially critical point of f if and only if gx,) =0;
(b) #f x, is a tangentially critical point then x, ts nondegenerate if and
only if d grad ¢o(0; v) as map T(x,) — T(x,) is nonsingular.

ProoF. (a) is an immediate consequence of Lemma 3.4, and (b) follows
from Lemma 6.1 (applied to ¢, instead of f).

LemmA 6.4. In addition to the assumptions of the preceding lemma we
suppose that f has no critical points on S. Then at any tangentially critical point
Xo€ S we have

8(xo) = gul%) # 0, (6.5)

i.e., the gradient at such a point x, is normally directed.
This lemma follows immediately from the preceding one in conjunction
with (3.26).

7. 'THE MODIFICATION f OF f AND 115 CRITICAL POINTS

Let R, S, R,, S,, and f be as described in the first paragraph of Section
6. Moreover S is suppsed to be of class C”. Then there obviously exists a
positive number s, such that if x; is an arbitrary point of S, and if p, denotes
the unit exterior normal to S at x, .

X =%y + pSE R, for O0<s<s. (7.1)
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Let now

x = &(u), #0) =x,, (7.2)

be the representation of .S in a neighborhood of %, by the normal parameter
system (u) (Definition 3.4). The local normal coordinate system (u, s) (Defini-
tion 5.1) is then valid in the spherical neighborhood ¥, (x} of x, if p is small
enough. We now make the new assumption that p can be chosen independent
of x, . Then positive numbers s; and 8 independent of x, exist such that, in
addition to (7.1) the representation

x = X(u) + sn(u)  holds for lufi<s, 0<s<s. (1.3)

We denote by R, the union of R and all points (7.1) obtained as x, varies over
S, and by S, the boundary of R, .

The function f (see Section 6) is defined in R,. We now make a number
of additional assumption about f.

AssumPTION (A). fis of class C”, and its second differential is uniformly
bounded, i.e., there exists a constant N such that

| d2f(x; b k) | <N k| |k| forall xeR,. (7.4)

Levmmva 7.1. Let x and h be such that x + the R, for 0 <t < 1. Let
g =grad f. Then:

(a) lgx +h) —g) | <N A (7.5)

where N is the constant appearing in (7.4). (b) g is of class C’ and dg(x; h) as
linear operator in h is symmetric.

ProoF  (a) By definition of the gradient, the scalar product of
gle -+ A) — g(x) with an arbitrary element 2 of E may be written as
df(x -+ h; k) — df(x; k), and by the mean value theorem [6] this difference

equals
1
f &f(x & thy b, k) dt.
0
Applying (7.4) to the integrand we see that
l(glx+ ) —gx), I <N A||R] forall &  (7.6)
This inequality implies (7.5) as is seen immediately upon setting

k=glx+h) — g(x)
in (7.6).
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(b) By Lemma 2.2, I(x; k) = dg(x; h) exists and

(e + & B) — I(x; B), B) = d3f(x + & b, B) — &% B, ),

From assumption (A) we see that the norm of this difference equals
(E) MR & Setting &k = I(x 4 & h) — I(x; k) we obtain

(= + &) — U= R) | =€) I 2]

which proves the continuity of / = dg. The symmetry of dg follows also from
Lemma 2.2.

AssuMpTION (B). f has no critical points on S.
AssumPTION (C). g(x) = % + G(x) where G is completely continuous.

Lemma 7.2, In addition to satisfying the conditions imposed previously on
8y (¢f. (7.3) ), this number can be chosen such that there are no critical points of f
n R, — R

Proor. By assumption (B), g(%) # 0 for £ € S. It is well known that this
together with assumption (C) implies the existence of a constant 7 such that

ig® || >m >0 forall FeS. (1.7)

We now subject 5, to the new condition s; < m/2N where N is as in (7.5).
We claim that then g(x) # 0 for x € R, — R. Indeed for such x, (7.3) holds;
moreover all points of the segment between x and & = #(x) on the line deter-
mined by #{x) lic in R, . Applying Lemma 7.1 to these points we obtain
from (7.7) and (7.5)

le() I = I g®) | — 1 8(%) — g(*) | =m — Ns > m — N5, > m|2.

Levma 7.3. There exists a positive constant M such that
leg(x) | < M2  forall xeR,. (7.8)

ProOF. Since R, is bounded the statement that g is bounded on R, is
(on account of assumption (C)) equivalent to the statement that G is bounded
on R, . The latter statement is obvious from the complete continuity of G.

DeriniTION 7.1. Lets;, R, be as in Lemma 7.2, let M be as in Lemma
7.3, and let s, be a number satisfying

0 <sp<<s- (7.9)
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For x € R, the modification f of f is then defined as follows:

7o _J(%) for xeR
1) T f(x) + Ms3/3s,2 for xeR,—R (7.10)

where the relation between x and s is given in (7.3).
Remark. In what follows s, and s; will repeatedly be subject to new

conditions. It is then understood that all conditions imposed previously are
still satisfied. In particular (7.9) will always hold.

DrerFinrTION 7.2, If x € R, — R is given by (7.3) we set
Plu,s) =g(x),  aln, 5) = galx) = n(w) (&(x), n(w)),
Yol §) = gdx) = g(*) — ga()- (7.11)

" fa(u, 5) = Fu(x) and §y(u,s) = F{x) are defined correspondingly for
= § = grad f. (Note that for x = x,, i.e, u = 0, Definition (7.11) agrees
with the one given by (3.26).)

DerFINITION 7.3. The negative part S— of S is defined by

S™ ={xe S1(gx), px)) <0}

where p(x) is defined in Definition 4.2.
If x,€ S~ is a nondegenerate tangentially critical point of f (Definition
6.4) then (6.5) holds on account of assumption B). Moreover

(8(xo), P(%0)) = (8(x0), n(0)) <O,  x€ S~ (7.12)

The object of the present section is to construct to such an x, a unique
critical point #* of fin R, — R, i.e., a point x* which satisfies the equation

g(x) =0. (7.13)
By Definition 7.2 this equation is equivalent to the two equations
@ $du,5) =0, (b) tuly,s) =0. (7.14)

We consider first (7.14a). By the use of Theorem 3.2 it is easily seen from
(7.10) that
§(#) = g(@) + Mn(u) /s (7.15)

Therefore §, = g, and we will show that there are positive numbers s, and
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8 (independent of s,) such that there exists one and only one continuous
u = u(s) satisfying

biu(s), ) =0, u0)=0, O0<s<s, lul<s (116

It will be sufficient to verify that the conditions (H,), (H,), (Hj) of the im-
plicit function theorem listed (in different notation) in the proof of Theorem
5.1 are satisfied.

(Hy). By assumption %, is tangentially critical. Therefore by Lemma 6.3
and Definition 7.2, 0 = g,(x;) = (0, 0).

(H,). By Lemma 7.1, g(x) is of class C’. Therefore the same is true for
P {(u, s) as is seen immediately from Definition 7.2 (together with an applica-
tion of the chain rule).

(H;). We have to prove that the differential d,i,(u, s; ) of b, with respect
to # is nonsingular at # = 0. Now the tangentially critical point x, is by
assumption nondegenerate. Therefore we see from Lemma 6.3 that the dif-
ferential of grad ¢,(x) is nonsingular at # = 0. Consequently the nonsingu-
larity of d, follows from

LemMA 7.4. With the above assumptions and notations
d 0, 0; v) = d grad ¢,(0; v). (7.17)
Proor. With x given by (7.3) let

H(u, s) = f(x) such that  &(u, 0) = do(u). (7.18)
Then by the chain rule

d,d(u, s; v) = df(x; dx) (7.19)
where
dx = di(u; v) + s dn(u; v), (7.20)

or, by definition of the gradient,
(grad, ¢(u, 5), v) = (g(x), dx). (7.21)

Here grad, indicates that the gradient operation is to be taken for constant s.
Now noting that (n, dn) = 0, we see from (7.20) that dx is orthogonal to n.
Therefore we may replace g{x) by g () (see (7.11) in (7.21). If we apply to the
equation thus obtained the operation d, we see that

(d, grad, §(u, s; v1), ©) = (dugi(x; dix), dx) + (gx), d%)  (7.22)
where d;(x) is obtained by replacing v by o, in (7.20), and where
d%x = d,*%(u, 5; v, vy) + s d*n(u; v, v,). (7.23)
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We now set u =s =0, i.e. x = x,. Using (3.11) and the second part of
(7.18) we obtain from (7.22)

(d grad d, (05 1), v) = (duguXo; 21), ) + (84(%o), @%%).  (7.24)

Now the second term of the right member of this equation vanishes on account
of Lemma 6.3 since x, is tangentially critical. It follows from the Definition
7.2 of , that (7.24) implies (7.17).

This finishes the proof of the existence of a continuous u = u(s) satisfying
(7.16). As already remarked this u(s) satisfies also (7.14). We now turn to
(7.14b) and prove

LemMaA 7.5. As before, let x,€ S~ be a nondegenerate tangentially critical
point, and let s and u(s) be as in (7.16 ). Then there exists at least one s = s*
satisfying

(@) Pu(u(s*),s*) =0, (b) 0<Ts* <so<s. (7.25)

Proor. From (7.15) and the definitions of ¢, , i, we see that J/n = ¢y, for
s =0 and it follows immediately from (7.12) that the scalar product of the
left member of (7.252) with n(u(s)) is negative for s = 0. Our lemma now
follows from the following Lemma 7.6 which implies that the scalar product
mentioned is positive for s = s, .

Lemma 7.6. If x is given by (7.3) and if M is a constant for which (7.8)
holds then
(&), p(®) = M2 for s =5295. (7.26)

Proor. From (7.15) and (7.8) we see that

M

ey > S - T

$o2

(&(x), p(%)) =

which obviously proves (7.26) in the range indicated.
Actually s* is unique if s, is small enough. More precisely we have

TrEOREM 7.1. With the notations and under the assumptions of the last
three lemmas there exists a positive s' < s; of the following property: if

0<sg<s (7.27)
then there exists a unique positive s* < s, such that

x* = F(u(s*) + s*n(u(s*)) (7.28)
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is a critical point of f, i.e., satisfies (7.13). Moreover there exists a positive
number 8, <1 which may depend on s, but not on s, such that

0 <Oy <s* <sp<<8y. (7.29)

The theorem is an obvious consequence of the following Lemma 7.7 in
conjunction with our previous results,

LemmMa 7.7, There exists a positive s’ and a positive 0, < 1 such that for
all sy satisfying (7.27)

(P(uls), 5), n(u(s))) <O  for 0 <5< s, (7.30)

and
% (H(u(s), s), n(u(s)) >0  for Osg <<s <5y (7.31)

Proor. If x is given by (7.3) we see from scalar multiplication of (7.15)
by n(u) that

(8(%), n(w)) = (g(x), n(w)) + Ms*/ss® (7.32)

We now set « == u(s) where u(s) is the function satisfying (7.16). Then (g, n)
is a continuous function of s which is negative for s = 0 since x = x, for
s =0 and x,€ S-. Consequently there exists a positive s’ such that this
function is negative and therefore has a negative maximum — m in the
closed interval 0 <{s <{s’. The right member of (7.32) is then less than
— m ++ Ms?/sg% This latter quantity is in the interval considered a monotone
increasing function of & = s/s, which is negative for ¢ = 0, and there will be
a positive 6, <C 1 such that it will still be negative for 0 < 8 < 6, . On account
of the definition (7.2) of i this obviously proves (7.30).

For the proof of (7.31) we again set # = u(s) and differentiate (7.32) with
respect to s

d 2sM 2sM _

( )_ 32 ds(g’n)> %(g,n)i.

$o2
Now for 8y, < s << 55 and for 0 <C sy < s” the right member of our inequality
is not smaller than

2M8,

(g, n) l

s” 0<.\<s1

Obviously we may choose s” so small that this expression is positive. This
proves (7.31) if with a change in our notation we write s” instead of min (s’, s”).
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8. THE INDICES OF THE CRITICAL POINTS OF f

In this section x, will always denote a nondegenerate tangentially critical
point of fsituated on S~ (Definition 7.3), and x* will be the critical point of f
corresponding to xy by Theorem 7.1. The main object will be the proof of
Theorems 8.1 and 8.2.

THEOREM 8.1.  The critical point x* of f is nondegenerate, and if r* denotes

its index then
r¥ =1, (8.1)

where v, is the index of x, as tangentially critical point of f ( Definition 6.4). It
1s assumed that the assumptions (A), (B), (C), of Section 7 are satisfied as
well as the assumptions (D) and (E) stated following the proof of Lemma 8.4.

We will recall the definition of “index” presently. First we need some
preparatory lemmas,

Lemma 8.1.  Let q(x, x) be a bounded symmetric bilinear form defined on the
Hilbert space E. Then there exists a unique direct orthogonal decomposition of E
into linear subsets

E=E +E°+ E* (8.2)

such that for s~ € E-, s € E°, x* € E+
q(x~, #%) = q(x~, x*) = ¢(=°, x*) =0 (8.3)
q(x% 2%) =0,  g(x*,27) >0;  glx, x7) <O; (8.4)

for the validity of the two inequalities in (8.4) it is of course assumed that x~
and x* are nonzero elements of E— and E* resp.
This is well known, see [11, Theorem 7.1].

Lemma 8.2. The bounded quadratic form q(x, x) is nondegenerate (Defini-
tion 6.2) if and only if E° consists only of the zero element such that the direct
decomposition (8.2) reduces to

E = E- 4+ E*,  E+, E- closed. (8.5)

Proor. (a) Suppose that ¢ is nondegenerate. Let y°e€ E° and let
x = x~ + %% 4 x~ be an arbitrary element of E decomposed according to
(8.2). Using (8.3) and (8.4) we see that

900", %) = q(3° x7) + ¢(0% #°) + ¢(»°, ) =0  forall  x.

By definition of nondegeneracy of ¢ this implies that y° = 0.
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(b) suppose E° consists only of the zero element. Let now y € E be such
that ¢(y, x) = 0 for all x. We have to prove that y = 0. Now under our
assumption the decomposition (8.2) reduces to y =y~ + y* with y~€ E-,
yt e Et. Setting x = y* and using (8.3) we see that 0 = g(y, y*) = ¢(y+, ¥*).
By (8.4) this implies that y+ = 0. In the same way we see that y— == 0. Thus
y=0.

DeriniTION 8.1. The index r =r(q) of the nondegenerate quadratic
form g is the dimension of E~ in (8.5) (thus » = oo is not excluded) (cf.
[11, p. 546]).

DeriNiTiON 8.2. The index 7 = r(&) = (% f) of the nondegenerate
critical point % of the real valued function f(x) is the index of d?/(%; &, &) as
quadratic form in A.

LemMa 8.3.  The index of Definition 8.2 is invariant under a transformation
x = x(y) of class C” which has an inverse of class C’, i.e., if & = () and
H(y) = f(x(y)) and if % is a nondegenerate critical point of f then 5 is a non-
degenerate critical point of ¢, and r(%, f) = r(F, ¢).

Proor. That 7 is a critical point of ¢ follows from the chain rule (2.2)
(with f; = ¢). Thus d¢(§; 5) = 0 for all 5. Therefore we conclude from (2.4)
that

d*f(&; B, B?) = d*¢(F; 0", 7%),
7t = dy(x; h?), R = dx(9; v%), i=1,2. (8.6)

This obviously proves our assertion that §/ is nondegenerate. Finally for the
proof of the equality of the indices it is certainly sufficient to show that

"% f) <75, ¢)- 8.7)

Now (8.7) is trivially true if (%, f) = 0. Let then m be a positive integer for
which r(%,f) > m. Then E~(f) contains m linearly independent elements
hy, hy, ++, by, if E=(f) denotes the space E~ in the direct sum (8.5) corre-
sponding to the quadratic form ¢(k, k) = d2f(%; h, k). Now (8.7) will be proved
if we can show that E—~(¢) has at lcast m linearly independent elements where
the definition of E~(¢) is analogous to the one of E—(f). Since the linear
map k = dy(%; h) is nonsingular the elements k; = dy(%; k;) are linearly
independent. Now k; = k;~ 4 k,* where k€ E~(¢) and k;* € E*(¢). We
claim that the k,~ are linearly independent. Otherwise we would have
21wk~ = 0 for some o; not all zero. We set &+ = X akt, b = Xy ok .
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Then obviously k* = dy(&; k) and k is a nonzero element of E~(f). There-
fore we see from (8.6) that

0 = d¥f(s; h, h) = d2p(§; k", k) = 0

a contradiction.

Levmma 8.4.5 Let I(h) = h + L(h) where L(h) is a symmetric completely
continuous operator. We assume moreover that I(h) is nonsingular. Then no
eigenvalue of | vanishes and the quadratic form q(h, h) = (I(h), k) is nondegener-
ate. Its index v is finite and equals the number of negative eigenvalues of I
(each counted according to its multiplicity ).

Proor. Lete; (i = 1, 2, --) be a full orthonormal system of eigenelements
of L corresponding to the eigenvalues A, % 0 of L. There may be only a finite
number of A; , otherwise lim, , , A, = 0. In any case they are all real and only
a finite number of ¢; belong to the same eigenvalue. Moreover

I(h) = 2 Mk, e e, (8.8)
and there exists an %, € E (which may be zero) such that
h=hy+ D (he)e,, (hy,e)=0 for i=1,2-. (8.9)

It is well known that all this is a consequence of the complete continuity
and symmetry of L. See, e.g., [12, pp. 231, 232]. Now u; = 1 + A; are the
eigenvalues = 1 of the operator /, and lim; ., pu; =lim, (1 +4) =1
if there are infinitely many. Moreover all y, are different from 0 since other-
wise /(h) would be singular against assumption. The nonsingularity assump-
tion also implies that ¢(k, k) is nondegenerate; see the Remark following
Definition 6.2. Now if we add (8.8) and (8.9) we obtain easily for any ke E

(UR), k) = (ko , ) + 2, palls €) (k, €:)

alh, B) = (), B) = li g |1 + 2, palh, i) (8.10)

It is clear from (8.10) that the unique space £~ in the decomposition (8.5)
consists only of the zero element if no y, is negative and otherwise is spanned

5 This lemma is essentially contained in [9, p. 81]. However, in that paper a Hilbert
space, in agreement with the older terminology, was assumed to be separable. No such
assumption is made in the present paper.
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by the e; belonging to negative p, . But since & = 1 is the only possible limit
point for the u; there are at most a finite number of such ¢; and E- is finite
dimensional. By Definition 8.1 this proves the lemma.

From now on we will always assume that the assumptions (A), (B), and (C)
of Section 7 are satisfied. Then I(x; k) = dg(x; #) exists and is continuous
(Lemma 7.1). We now add the following two assumptions

AssumpTioN (D).
U(x; h) = dg(x; h) = h + L(x; h) (8.11)
where L as linear operator in % is completely continuous.

AssumpTION (E). The representation (7.2) of S:x = #(u) is locally
uniformly of class C’, C”, C” (Section 2). Moreover d%x(u; k, k) is completely
continuous in £ and in & in the sense that every bounded sequence of points &
contains a subsequence &* (« = 1, 2, --+) such that to every positive e there
corresponds an integer o, such that

| d*%(u; b, k* — F) | <|lhlle  for  af>a, (8.12)

and such the corresponding inequality holds if the roles of % and % are inter-
changed.

Lemma 8.5. If f satisfies assumptions (A)-(D) and if % is a nondegenerate
critical point of f then the index r(%, f) (Definition 8.2) equals the number of
negative eigenvalues of dg(%; h) as operator in h.

Proor. By Lemma 2.2
a?f(x; B, k%) = (dg(x; BY), B?). (8.13)

It is immediately verified from the assumptions made that the quadratic
form obtained from (8.13) by setting 4! = A% = /4 satisfies the assumptions
of Lemma 8.4 if we identify [ with dg (cf. Lemma 6.1). Thus Lemma 8.5
follows from Lemma 8.4.

Let now x, be as in Theorem 8.1. In order to utilize Lemma 8.5 for the
proof of this theorem we introduce in a suitable neighborhood N, of x,
the normal local coordinate system (x, s) of Definition 5.1. For every point x
in N, we have then the unique representation (cf. (7.3))

x = &(u) -+ s n(u), uel,,, sreal, ||| < 8. (8.14)

On the other hand since T, is a hyperspace every y € E has the unique repre-
sentation

vy =sny, +u, wel,, s real, ny, = n(0), ny 1 1o . (8.15)
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Therefore for some neighborhood V of the point ¥ = 0 we have the 1-1 maps

v = y(x), x=ux(y) : Ny (8.16)
mapping the point x given by (8.14) into the point y given by (8.15) and vice
versa. We recall that the points y given by (8.15) if given the norm

[y lo=Vse+ fulP

form the local normal coordinate space I, of Definition 5.1.
In slight modification of the notation used in (7.18) and (7.11) we write

$(0) =flx(y),  $() = &(x(») (8.17)
and use a corresponding notation for f and §. Moreover we set
y(y) =gradg(y),  dy(y;m) = Ay n) (8.18)
where
n = ngo + o, vel, , o real, (8.19)

and define 7, A correspondingly. We have then from (7.10)

$(y) =4(y) + g‘f—s L) =) + M (8.20)

502

2n,Mso

2
So

Ay m) = A(y; ) +

We now consider the critical point x* of f mentioned in the first paragraph
of Section 8. Let y* be the point corresponding to x* under the mapping
(8.16). We will need the fact that at this point assumption (D) is still valid
in the “y-system,” i.e., we need

LemMa 8.6.
Ag*,m) =1 +A*m), ¥ =y (8.21)
where A(y*;n) as operator on v is symmetric and completely continuous.

Proor. We use the following matrix notation: if % is given by (8.19) and
if m = m(n) = m(ony) + m(v) is a bounded linear map E — F we write

my(any)  my(v)
my(oty) mz('”)) (8.212)

where the indices 1 and 2 denote projection on 7, and T, resp. Then from
(8.20)

m=m(n):(

Soo. \ (2ngMsosgE 4 A(y; ong)  Aly; v)
Moim) = (0 ey xio)) (8.22)
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Now all elements of this matrix are bounded linear maps in o, or in v;
moreover except for Ayy; v) they have either finite dimensional range or
finite dimensional domain and are therefore completely continuous. In
particular the map in the upper left corner may be written as I, + ¢,(y; on,)
where I, denotes the identity map on the space spanned by n, and where ¢,
is completely continuous in its second argument. Consequently for the proof
of (8.21) it remains to show that

Ay v) =0+ Ayy;0), y=y* (8.23)

where A, is a completely continuous map T, — T, . Now since x* is a
critical point of f, (8.6) holds with f and ¢ replaced by f and § resp., and with
& = x*, § = y*, and (cf. (8.19), (8.14)) with

= oing 4+ of, k= di(u*; of) + sdn(u*; o) + o'n(u¥), i=1,2
(8.24)

where v'€ T, , o’ real, u* = u(s*) with s* determined by (7.28). Now by
Lemma 2.2 we see from Definitions 8.11 and 8.18 that (8.6) (with the modifi-
cations indicated) may be written in the form

A*; o), 72) = (™, 1), B2). (8.25)

We now set o> =0 such that 5? = 2. We claim that then h%e Ty, .
Indeed d#(u*; %) € Tyus by definiton, and dn(u*; v*) € T, since
dn(u*; v*) is orthogonal to the normal n(u*) at %(u*). Thus our assertion
follows from (8.24). Moreover from (8.25)

o5 1), 92) = (%3 o), ©) = (U™ 1), Be). (8.26)
We will now prove: if ni = v such that k' is given by (8.24) with ot = 0 then
B o= 4 Clu*, vi), i=1,2 (8.27)

where C is completely continuous in v'.

Proor. Since d#0; v) = v (Definition 3.4) we have
L
di(u*, vi) = vt + J. d2x(tu*; of, tu*) (1 — t) dt, (8.28)
0

and by assumption (E) the integral is completely continuous. Inspection of
(8.24) shows that to complete the proof of (8.27) we have to prove that
dn(u*; v') is completely continuous in ¢%. For this purpose we start from
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(4.46) with 2 = o', h = ¢® and with x replaced by #. We thus obtain for any
bounded sequence of elements v'7 (j = 1,2, ---)in T,

(dn(u*; 0% — o19), dx(u*; v?) = (n(u*), d*x(u*; v/ — v'%, %), (8.29)

Combining this equality with (8.12) in assumption (E) we see that there
exists a subsequence w’ of the sequence v/ such that to each positive €
there corresponds an integer j, such that

[ (dn(u*; w* — w?), di(u*; 0¥ | < €| v? || < €b | dx(u™; 2%) ||, k>,
) J
(8.30)

where b denotes the norm of the inverse of d&(u*; ). Now both factors of
the scalar product in (8.30) are in the hyperspace T (,; moreover since the
second factor is nonsingular we can choose ¢% in such a way that the two
factors are equal. We thus obtain from (8.30)

| dn(u*; w — ) (| <be,  kj>jo.

This proves the completely continuity