
INFO]~M~TION AND CONTROL 7,  477--484 (1964) 

Lattice Matrices 

YEHOSHAFAT GIVE'ON 

Logic of Computers Group, The University of Michigan, Ann Arbor, Michigan 

I. INTRODUCTION 

This paper is a revised version of part of a previous report (Give'on, 
1962) which was prepared for the U. S. Office of Naval Rsearch, In- 
formation Systems Branch, under contract No. 62558-2214, at the 
Applied Logic Branch of the Hebrew University in Jerusalem, Israel 
(February 1962). 

This revision was done for the U. S. Office of Naval Research, In- 
formation Systems Branch, under contract No. Nonr-1224(21), NR 
049-i14. 

We discuss in this paper the particular properties of the algebra of 
square matrices over an arbitrary distributive lattice with 0 and 1 
(2~-matrices). Due to these properties, 2n-matrices in various special 
cases become useful tools in various domains like the theory of switch- 
ing nets, automata theory, and the theory of finite graphs. 

In addition to this, we develop the theory of invertible 2n-matrices, 
thus generalizing R. D. Luce's (1952) discussion on invertible Boolean 
matrices. 

II. THE ALGEBRA OF LATTICE MATRICES 

A. DEFINITIONS AND IMMEDIATE PROPERTIES 

Let 2 be a distributive lattice with 0 and i (Birkhoff, 1961). The 
l.u.b, and g.l.b, of a, b C 2 will be denoted by a -k b and a.b (or ab), 
respectively (here, for convenience, we diverge from the usual notations 
a U b and a N b ). 

Let  2~ (for n > 0) be the set of n X n matrices over ~ (2n-matrices).  
We shall use early Roman  capitals as variables over ~ , ,  and denote by  
Aij or by (A)~j the element of ~ which stands in the (i, j ) t h  entry of A. 
We define: 
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A + B  = C iff C~j. = A ~ - + B ~ j ,  

A < B iff A + B  = B , i . e . , i f fA i j  < Bij ,  

A f3B = C iff C~j = A~5"B~j, 

A . B  = A B  = C iff C~j = ~ A I ~ ' B ~ ,  

A t = C iff C ; j =  A~.~ 

fo r a  C ~,  aA = a . A  = C iff C~ = a . A ¢ i ,  

( I ) ~ j =  if i • j ,  

A ° = I ,  A k+l = A k . A ,  

( o ) , ;  = 0 ( E ) , ;  = 1. 

The following special properties, most of which will be useful in the 
sequel, are derived immediately from these definitions: 
a. The multiplication in ~= : 

(1) A ( B C )  = ( A B ) C ,  

(2) A I  = I A  = A ,  
(3) A0 = 0A = 0, 
(4) A ~ . A  q = A ~q,  

(5) (d~) q = A ~q. 
b. The multiplication and addition in ~ : 

(6) A ( B  + C) = A B  + A C ,  

(7) (A  + B ) C  -- A C  + BC,  
(8) i f A  < B a n d C  < D t h e n A C - <  B D ,  

(9) A + A = A and therefore if p =< q then 

q 

A ~ = A ~ ( I  + A )  q-~. 
V ~ p  

c. The transposition in ~ : 
(10) (A + B )  * = A , + B ' ,  
(11) i f A  =< B t h e n A  ~-< B ~, 
(12) (A N B )  ~ = A , f l B  ~, 
(13) ( A . B ) "  = B * . A  ~, 

(14) (A')  * = A. 
d. ~ as an algebra: 
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(15) £~ is a distributive lattice with zero (0) and one (E)  with re- 
spect to the operations of rl and -1-, 

(16) 2~ is a semigroup with the identity element I (hence, £~ is a 
monoid) and with zero (0) with respect to the multiplication. 

B. SOME BASIC PROPERTIES OF THE POWERS OF ~n-~IATRICES 

One of the most important properties of the algebra of £~-matrices is 
given by the following theorem: 

THEOREM i. If S is any nonempty finite set of 2n-matrices and 2.( S) is 
the minimal  set of £~-matrices which includes S and is closed under mul- 
tiplication and addition, then 2~( S )  is finite. 
(2~(S) is in fact the subalgebra of 2~ generated by S.) 

PROOF: Let T = {a~, . - .  , am} be the set of all the elements of £ 
which occur in the matrices of S, and let £ ( T )  be the set of all the 
elements of £ which are obtained by a finite number  of multiplications 
and additions of elements of T (clearly, £ ( T )  is the sublattiee of £ 
which is generated by T).  Since £ is distributive, each element of £ ( T )  
can be represented as a polynomiM, i.e., as a finite sum of monomials, 
each monomial being a finite product of elements of T. The multiplica- 
tion and addition in £ are commutat ive  and idempotent;  thus, every 

el e2 ~m monomial in £ (T)  is equal to a monomial of the form al .a~ . . . . .  a,,~ 
where ei (for any 1 -< i -< m) is zero or one. Therefore, there are no more 
tha t  2 TM unequal monomials and no more than  2 (2"~') elements in £ ( T )  
(i.e., the sublattiee generated by a finite set of elements of a distribu- 
t ive lattice is finite; or, in other words, any distributive lattice is locally 
finite). Now, each element of £ which occurs in an £ . -mat r ix  which is 
in £~(S)  is an element of £ ( T ) ;  hence, at  most  (2~2"~) ~ different £~- 
matrices can be elements of £ . ( S ) .  Anyhow, 2~(S) is finite. 

COI~OLLAaY 1.1. For any 2,~-matrix A ,  the sequence: I,  A ,  A 2, . . .  ; is 
,ultimately periodic. 

DEFINITION 1. Let  a C £. We shall use the notation 

a -3 (Ak)i j  

whenever a = Ai~,~,Ah~ ~ . . . . .  A~k_~,i~, io -~- i and ik = j ;  for some 
i l ,  . . .  , ii:_l. 

REMA~E. Clearly 

.-~(÷~l:)ij 
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LEM~.a 1. I f  a --3 (Ak) i i  where k, >= n, t h e n  t h e r e  a r e  in t ege r s  m l ,  

m2 , m3 and ~ (all of them dependent on a) such that 

0 < m2 <= n, m ~ + m 2 +  m~ = k, 1 <_ ~ < - n ,  

and such that for each m: 

a <= (A'~I)i~.(A . . . .  2)o~.(A'~3),~. 

PROOF: L e t  a = Aio~l.A~li~_ . . . . .  A~_l ik .  Since  ]c -]- 1 > n, t w o  

indices  a m o n g  t h e  k + 1 ind ices  i0 ,  i~, • • • , ik ; m u s t  be equa l ,  s a y  i~ = 

i~ w h e r e  r < s. M o r e o v e r ,  we  can  f ind such  r a n d  s so t h a t  i ,  --  i~ ,  

r < s a n d  s - -  r ~ n. So l e t  m~ --- r, m2 -- s - r, m3 = k - -  s a n d ,  = 

i~ = i~, a n d  c l ea r ly  t h e  l e m m a  fol lows.  

COROLLARY. I f  a ~ ( Ak)i5 where t~ > n, then there are natural numbers 
ml , m2, m3 and v (all of them dependent on a) such that 

ml + m3 < n, 0 < m2 <= n, 1 <_ ~, < n, 

and such that .for each m: 

m .  m 2 rrt 3 a =< ( A ~ ) ~  . (A )~,.(A )o~. 

PROOF: I m m e d i a t e .  

THEOREM 2 : I f  k >= n then A k < A ~ holds for an infinite set qf values qf 
r. I n  particular, for each p: 

A k < A k+È(n~) 

A k PROOF: S u p p o s e  t h a t  a -3 ( )~¢. B y  L e m m a  1, t h e r e  a re  n a t u r a l  

n u m b e r s  m~,  m~,  m~ a n d  , (a l l  of  t h e m  d e p e n d e n t  on  a )  such  t h a t  

0 < m2 = n,  m~ -t- m2 ~- m3 = k, 1 -< v -< n a n d  such  t h a t  for  e a c h  m :  

a < ( A ~ ) i ~  • (A  . . . . . . .  = )~.(A )~. 

H e n c e  

a < ( A ' ~ +  . . . .  2+* ,~ .  : (Ak+(~- l ) . ,~ )~  \ ~  ] ~3 " 

N o w ,  s ince  m is a r b i t r a r y ,  we  c~n rep lace  m - 1 b y  p.  (n! /m2)  w h e r e  

p is an  a r b i t r a r y  n a t u r a l  n u m b e r ,  a n d  o b t a i n  t h e  t h e o r e m .  

THEOREM 3. If]c ~ r then A ~ <= A ~ ( I  -~ A )  ~-~. 
k 

P a o o F :  S u p p o s e  t h a t  a -3 ( A ) , . .  I f  k < r ÷ n - -  1 t h e n  c l ea r ly  

) ) i j .  I f  not ,  t h e n / ~  _>- n holds .  I n  th is  case,  by  L e m m a  a <= (A~( I  + A ~-~ 
1, t h e r e  a re  n a t u r a l  n u m b e r s  m l ,  m2 ,  m~ a n d ,  such  t h a t  0 < m~ -< n, 

m~ + m ~ +  m~ = k, 1 < , < n a n d  a < (Am~)i~(A"~)~ < ~ + " ~  = 
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( A k - ' ~ ) i j .  I f  ]c -- m2 =< r -k n -- 1 then the theorem is proved since 
0 < m2 =< n. If  not,  then  we apply  L e m m a  1 successively until  we get 
a = (A*)ij for some r < s =< r + n - 1 and the theorem follows. 

REMARK AND DEFINITION 2. For  r = 0 we get t h a t  A k _-< ([  + A) ~-1 
holds for any  k; hence we can define }-~k%0 A k to be ( I  -t- A)  "-1 and to 
denote  it by  A*• Note  t h a t  the existence of this infinite sum is implied 
independent ly  by  Corol lary 1.1. 

COROLLAnY 3.1. / f k  >= r then A k <= A ~ . A  * <= A" .A*•  
PROOF : hmnedia te .  
T~EOREM 4 (Lunts ,  1950; H o h n  and Sehissler, 1955; Yoeli, 1959). 

I f  I <-_ A then A k <= A k+~ holds for any k; in particular, A k = A ~-~ holds 
for ]c >= n, hence A*  = A ~-~. 

PROOF: If  I __< A then  I + A = A and therefore, for e a c h k :  
( I  -~- A )  ~+1 = A k+~ and thus,  A k < A ~+1. Moreover ,  I __< A implies 
A* ~-1 A k A~-I = A , and  so < holds for k > n. Since ]c > n implies, in 
our  case, A k > A ~-~, we get  A k = A ~-~ for any  k => n. 

THEOREM 5. A k ' A ~ ' A  * = A'~-A * holds for any lc. 
PROOF: For  each i, 1 -< i _< n, there is, by  Theorem 2, a qi such tha t  

k + n ÷ i < q i a n d A  n+~-~ < A q~.Hence 

A ~.:~* = A~+i-~ =< Aq~ = Ak.A~}--~ A ~  . . . .  k. 
i=1 i=1 i= l  

But  Theorem 3 implies t ha t  for each i:  A q~-~-k <= A *  and therefore, 

n 
Ak.A~}-~'~ A qi-n-k <= A k A ~ A *  

i = l  

Hence A n . A  * < A ~ . A n . A  * and by  Theorem 3 this theorem follows. 
k 

COROLLARY 5.1. (A  )~j ~ 0 holds for an infinite set of values of ]~, 
i f f  ( A ~ . A * ) i j  ¢ O. 

PROOF : hmnedia te .  
COROLLARY( 5.2. There is a ]c such that A k = 0, i f f  A ~ = 0; i.e., A is 

nilpotent if f  A ~ = 0. 
PROOF: A is ni lpotent  iff A k = 0 for any  lc > k0 and for some k0. 

Hence A is ni lpotent  iff A ~.A* = 0. Bu t  A ~ _-< A ~.A* and  therefore, A 
is ni lpotent  iff A ~ = 0. 

C.  INVERTII~LE AND ORTHOGONAL ~ n - M A T R I C E S  

In  this section, a generalization and development  of R.  D.  Luce 's  
discussion on invertible Boolean matr ices is given• 
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DEFINITION 3. An £~-matrix A is called a u n i t  iff there is an £~- 
matrix B such that  A B  = B A  = I .  A is called orthogonal  i f f  A A  ~ = 

A~A  = I .  

LEMMA 2. (i} / f  C B  = E then E B  = E ;  

(ii) I f  E A B  = E t h e n E B  = E ;  

(iii) E A  = E iff I < A ~ A .  

PROOF: (i) I t  is always true that  E B  < E and C -5_ E. Therefore 
(by property 8 in section 2)  C B  < E B ,  i.e., C B  = E implies E < E B .  

Thus, C B  = E implies E B  = E .  

(ii) This is a special case of (i) .  
(iii) E A  = E holds iff for each i and j 

n n 

1 =  ( E A ) ~ ¢  = ~ E i ~ d ~ j  = }--~d~j 

v=l v=l 

hence E a  = E holds iff I <- A ~ A  holds. 
REMARK. Note that  by Lennna 2(i), I =< A~A implies E A  = E ;  

since I <= A ~ A  implies E I  <= E A ~ A ,  that  is, I <= A ~ A  implies E A ~ A  = E .  

THEOREM 6. If A is  a u n i t  then A i s  orthogonal .  

PROOF: If A is a unit then there is a B such that  A B  = B A  = I 

and therefore B*A  ~ = A * B  ~ = I too. Hence, E = E A B  = E B A  = 

E B ~ A  ~ = E A ~ B  ~, and therefore, by Lemma 2, we have I < A ~ A ,  

I <= A A  * , I  <= B ~ B a n d I  <= B B  ~. 

Thus, in order to prove that  A i orthogonal, it is sufficient to show 
that  A * A  <= I and A A  ~ < I hold, i.e., to show that  A ~ A  < B A  and A A  ~ <= 

A B  hold. For this, it  is suficient to show that  A * =< B holds and to apply 
property 8 in Section II,  A. 

Now, since I <= B~B holds, by property 8 in section 2, we have A ~ < 
A~B*B,  but  A ~ B  ~ = I and therefore A * =< B holds and the theorem fol- 
lows. 

THEOREM 7. If A B  = I then A a n d  B are roots o f  I .  

PROOF: By Corollary 1.1 there are natural number ]c~, /c~, 11, and 
12 such that/c,  > ]c~, 12 > 11, A k* = A k= and B ~* = Bah If [ = A B  then 
clearly 

I = A k ~ B  < = A k 2 B  k2 = AZ~B t~ = A I " B  ~'. 

Thus 
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I = AI~B l~ = A~2B 11 = A~2-h (A l lB  ~') = A l'~-~. 

I = Ak~B ~ = AkIB k~ = (Ak~Bkl)B a-k1 = B k~-k~. 

Hence  A and B are roots of I .  
The  proofs of the following corollaries are immediate.  
COROL~_aR:( 7.1. I f  A has some inverse then A is a unit. 
COROLL_~-RY 7.2. A is orthogonal iff A is a root of I. : : 
COnOL~ARY 7.3. A is o'rthogonal iff one of the following holds: 

(i) for each B there is an X such that X A  = B; 
(ii) .for each B there is an X such that A X  = B. 
From L e m m a  2 we can derive a s t ructural  character izat ion of the 

o r thogona l  £~-matrices;  and  fur thermore ,  we can establish a connect ion 
between these and the n X n permuta t ion  matrices which are t he  
o r thogona l  £,~-matriees whose elements are 0 and l. 

DEFINITION 4. a. A set {a~, a2, " . .  , a~(~} of elements of £ is a de- 
composition of 1 in £ iff ~ = 1  a, = 1. 

b. &set {al, a 2 ,  ' ' '  , am} of elements of £ is or thogonal  iff a,a~ = 0 
holds for any  t~ and , provided tha t  t~ ~ ,. 

c. A set of elements of £ is an orthogonal decomposition of l in £ iff 
it is or thogonal  and a decomposi t ion of 1 in £.  

d. An  £~-matrix is a (g~-matrix iff all its elements are 0 or 1. 
e. An  £ , -ma t r ix  A is an orthogonal combination of 63~-matrices iff 

there  is an or thogonal  decomposi t ion of 1 in 2,  {ai,  a~, - . .  , a,~}., and  
a set of ~,-matr iees ,  {A1, A2, ..  • , A~}, such tha t  A = ~ = 1  avA, .  

From Lelnma 2 we can immedia te ly  infer t ha t  an  £~-matrix A is 
or thogonal  iff E A  = EA"  = E, A A "  <= I and A ' A  < I.  Applying the  
termine]ogy in t roduced in Definition 4 we get:  

L E M ~  3. A £ , -matr ix  is orthogonal iff each row and each column of it 
is an orthogonal decomposition of 1 in £ .  
This leads us to the following theorem:  

T~Eo~m~ 8. A n  £~-matrix is orthogonal iff it is an orthogonal combina- 
tion of orthogonal (B~-matrices. 

PRooF:  If  A is such a combinat ion,  say  A = ~-'~,'%~ a , A , ,  then 

m m 

A A ' =  ( E a ~ A . ) . ( E a u A ~ ) "  

± 
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= ~ a,a,A~A," 
v = l  

v=1 v = l  

hence A is orthogonal.  
I f  A is or thogonM then, by  L e m m a  3, each row and each column of A 

is an orthogonM decomposi t ion of 1 in £ .  Therefore,  the  set of all the 
products  of any  n elements which occur in different n entries of A, is 
also an  or thogonal  decomposi t ion of 1 in £ (which is, in fact, a "refine- 
m e n t "  of the rows and the columns of A) .  Let  us denote  the elements of 
this set by  a l ,  a2, . - • , am. I t  is d e a r  t ha t  for each a, and for each en t ry  
of A, a,A¢~ is equal either to 0 or to a , .  Therefore,  there is a unique 63~- 
matr ix A,  such tha t  a,A = a~A, holds. Moreover ,  applying L e m m a  3 
on A and on A , ,  one can prove tha t  A,  is orthogonal .  Clearly, 

a~A, = ~ a ~ A  = ( ~ a ~ ) A  = A. 
v = l  v = l  v = l  

RECEIVED: November  14, 1963 
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