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I. INTRODUCTION

This paper is a revised version of part of a previous report (Give’on,
1962) which was prepared for the U. S. Office of Naval Rsearch, In-
formation Systems Branch, under contract No. 62558-2214, at the
Applied Logic Branch of the Hebrew University in Jerusalem, Israel
(February 1962).

This revision was done for the U. S. Office of Naval Research, In-
formation Systems Branch, under contract No. Nonr-1224(21), NR
049-114.

We discuss in this paper the particular properties of the algebra of
square matrices over an arbitrary distributive lattice with 0 and 1
(£,-matrices). Due to these properties, £,-matrices in various special
cases become useful tools in various domains like the theory of switch-
ing nets, automata theory, and the theory of finite graphs.

In addition to this, we develop the theory of invertible £,-matrices,
thus generalizing R. D. Luce’s (1952) discussion on invertible Boolean
matrices.

1I. THE ALGEBRA OF LATTICE MATRICES
A. DEFINITIONS AND IMMEDIATE PROPERTIES

Let £ be a distributive lattice with 0 and 1 (Birkhoff, 1961). The
Lu.b. and gl.b. of @, b € £ will be denoted by ¢ + b and a-b (or ab),
respectively (here, for convenience, we diverge from the usual notations
aUbanda Nb).

Let £, (for n > 0) be the set of n X n matrices over £ (£,-matrices).
We shall use early Roman capitals as variables over £, , and denote by
A or by (A),; the element of £ which stands in the (4, §)th entry of A.
We define:
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A-I—B=C lﬁ C{j:Aij+Bij7
A ﬂ B=C iff Cz’j = Ai;"Bz‘j;

A-B=AB=C iff Cy= 2. Aw By,

=]
AT = C lff C,’j = Aji
fora € &, ad =a-A=0C iff Cy=aAdy,

_ 1t i=j
(I)u‘"{o if 157,

A =1, A" = 4%4
(0);; =0 ()i = L

The following special properties, most of which will be useful in the
sequel, are derived immediately from these definitions:
a. The multiplication in £, :

(1) A(BC) = (4B)C,

(2) Al = IA = A,

(3) A0 = 04 = 0,

(4:) AP A? = AIH’Q’

(5) (Ap)q = A9
b. The multiplication and addition in £, :

(6) A(B+ C) = AB + AC,

(7) (4 + B)C = AC 4+ BC,

(8) f A < Band C £ D then AC £ BD,

(9) A + A = A and therefore if p = ¢ then

q
2 AT = AP + A)
=P
¢. The transposition in £, :
(10) (4 + B)Y = A" + B,
(11) if A < Bthen A”" < B,
(12) (ANB)Y = AN B,
(18) (A-B)" = B"-A",
(14) (A™)" = A.
d. £, as an algebra:
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(15) £, is a distributive lattice with zero (0) and one (E) with re-
spect to the operations of (1 and -+,

(16) £, is a semigroup with the identity element I (hence, £, is a
monoid) and with zero (0) with respect to the multiplication.

B. Somr Basic ProperTiEs OF THE Powers oF £,-MATRICES

One of the most important properties of the algebra of £,-matrices is
given by the following theorem:

TueoreM 1. If S is any nonempty finite set of £,-matrices and £,(8S) s
the minimal set of L£,-matrices which includes S and is closed under mul-
tiplication end addition, then £,(S) s finite.

(£.(8) is in fact the subalgebra of £, generated by S.)

Proor: Let T = {a1, -+, a.} be the set of all the elements of £
which occur in the matrices of S, and let £(7') be the set of all the
elements of £ which are obtained by a finite number of multiplications
and additions of elements of T (clearly, £(7) is the sublattice of £
which is generated by 7'). Since £ is distributive, each element of £(7")
can be represented as a polynomial, i.e., as a finite sum of monomials,
each monomial being a finite product of elements of 7. The multiplica-
tion and addition in £ are commutative and idempotent; thus, every
monomial in £(T) is equal to a monomial of the form a;*-a3*- --- -a;"
where ¢; (forany 1 < ¢ < m) is zero or one. Therefore, there are no more
that 2™ unequal monomials and no more than 2™ elements in £(7)
(i.e., the sublattice generated by a finite set of elements of a distribu-
tive lattice is finite; or, in other words, any distributive lattice is locally
finite). Now, each element of £ which occurs in an £,-matrix which is
in £,(8) is an element of £(7); hence, at most (2™ different £,-
matrices can be elements of £,(8). Anyhow, £,(8) is finite.

CoRoLLARY 1.1. For any £,-mairiz A, the sequence: I, A, A%, --- ;s
ultrmately periodic.

DermvaTioN 1, Let o € £. We shall use the notation

a3 (A%)y

whenever @ = Ay Ay -0 4, 2o = ¢ and 5 = j; for some
Ti, " y Te1 .
ReMmark. Clearly

(flk)ij = Z a.

a=s{4%);
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Lemva 1. If ¢ 3 (A");; where k = n, then there are integers my ,
my , my and v (all of them dependent on o) such thai

O<m2§n; m1+m2+m3=k1 léyén’
and such that for each m:
a = (Aml)if (Am'mz)w' (Am3)vj .

Proor: Let ¢ = A Aqs- -+ Adi_js . Since k + 1 > n, two
indices among the & 4 1 indices %, 41, - - - , % ; must be equal, say 7, =
1, where r < s. Moreover, we can find such r and s so that 7, = 7, .,
r<sands—r=<nSoletmy=r,m=s—r,m=k—sandy =
i, = 1;, and clearly the lemma follows.

CoroLLARY. If ¢ 3 (A%),; where b = n, then there are natural numbers
my, me, ma and v (all of them dependent on a) such that

my + my E n, 0 <m £ n, 1=2v=5m,
and such that for each m:
a é (Aml)iv' (Am.mZ)vv' (Amz)uj .

Proor: Immediate.
THEOREM 2: If k = n then A* < A" holds for an infinite set of values of
r. In particular, for each p:

Ak é Ak—?-p("f)-

Proor: Suppose that ¢ 3 (4%),;. By Lemma 1, there are natural
numbers m;, mq, my and » (all of them dependent on a) such that
0<m En,m+ me+ my =k, 1 £ v = nand such that for each m:

a é (Aml)i"_(Am‘mg)w.(Amg)yj .
Hence

a < (Am1+m-m2+m3)” — (AkJr(m—l)-mz)_,
= 7 ij -

Now, since m is arbitrary, we can replace m — 1 by p-(n!/ms) where
p is an arbitrary natural number, and obtain the theorem.

TuroreM 3. If k = rthen A* < AT(I + A)"".

Proor: Suppose that ¢ 3 (4%),;. If k < r + n — 1 then clearly
a £ (A"(I 4+ A)"™Y); . If not, then % = n holds. In this case, by Lemma
1, there are natural numbers 7, , m., m; and v such that 0 < mqy = =,
mAEm+ms=k1=<y=<nand a = (A4™)u(4™),; £ (4™, =
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(A¥™); . If k — my < 7 + n — 1 then the theorem is proved since
0 < me £ n. If not, then we apply Lemma 1 successively until we get
a £ (A%);forsomer £ s £ 7+ n — 1 and the theorem follows.

Remark AND DErFINITION 2. For r = 0 we get that A* < (7 + 4)"™*
holds for any k; hence we can define Y sy 4% to be (I 4+ 4)" " and to
denote it by A*. Note that the existence of this infinite sum is implied
independently by Corollary 1.1.

CoroLrary 3.1. Ifk = r then A* < A* A* < A7 A%,

Proor: Tmmediate.

TreoreEM 4 (Lunts, 1950; Hohn and Schissler, 1955; Yoeli, 1959).
If I £ A then A® < A™ holds for any k; in particular, A* = A" holds
for k = n, hence A* = A"

Proor: If I = A then I + A = A and therefore, for each k:
(I + A)*™ = A" and thus, A* £ A", Moreover, I £ A implies
A* = A" and so A® < A" holds for k = n. Since k = n implies, in
our case, A" = A", we get A* = A" forany k = n.

TraeoreM 5. A*-A™- A% = A™- A" holds for any k.

Proor: For each 7, 1 £ ¢ < n, there is, by Theorem 2, a ¢; such that
k4+mn+ 1< g and A" < A% Hence

AnA* = AT < 3 A% = 4R AR AN
i=1 =1

i=1

But Theorem 3 implies that for each i: A% "™ < A™ and therefore,

AR AT ATTTE < AR AT AT
g=1

Hence A" A" < A"-A™ A and by Theorem 3 this theorem follows.

CororLary 5.1. (A%); # 0 holds for an nfinite set of values of k,
iff (A™-A%),; # 0.

Proor: Immediate.

COROLLARY 5.2. There is a k such that A* = 0, iff A = 0; d.e., A is
nilpotent 1ff A = 0.

ProoF: A is nilpotent iff A* = 0 for any k& =
Hence A is nilpotent iff A”- 4% = 0. But A™ < A"
is nilpotent iff A" = 0,

ko and for some k.
-A* and therefore, A

C. INVERTIBLE AND ORTHOGONAL £,-MATRICES

In this section, a generalization and development of R. D. Luce’s
discussion on invertible Boolean matrices is given.
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DeriNtTiON 3. An £,-matrix A is called a wniéf iff there is an £,-
matrix B such that AB = BA = I. A is called orthogonal iff AA™ =
A'A = 1.

Lemma 2. (i) If CB = E then EB = E,

(i1) If EAB = E then EB = E;
(iii) FA = E iff I < A"A.

Proor: (i) It is always true that EB < FE and C =< E. Therefore
(by property 8 in section 2) CB £ EB,ie.,, CB = E implies F £ EB.
Thus, CB = E implies EB = E.

(11) This is a special case of (7).

(ili) EA = E holds iff for each 7 and j

= (EA)y = ;Ei,A,,j = ;Aw’

= PZ;A,J"ATj = ;(AT>1»'AVJ = (ATA)W ;
hence Ea = E holds iff I £ A"A holds.

Remark. Note that by Lemma 2(), I £ A’A implies FA = E:
since I < A"A implies EI < EA'A, thatis, I < A'A implies EA"A = E.

THEOREM 6. If A is a unit then A is orthogonal.

Proor: If A is a unit then there is a B such that AB = BA
and therefore B’A" = A'B" = I too. Hence, E = EAB = IB
EB'A" = EA'B’, and therefore, by Lemma 2, we have I =
I £ AA, I £ BBand I £ BF'.

Thus, in order to prove that A i orthogonal, it is sufficient to show
that A"A < Tand AA™ = T'hold, i.e., to show that A”"A < BAand AA™ <
AB hold. For this, it is suficient to show that A™ = B holds and to apply
property 8 in Section II, A.

Now, since I £ BB holds, by property 8 in section 2, we have 4™ <
A"B'B, but A"B" = I and therefore A™ = B holds and the theorem fol-
lows.

TaeorEM 7. If AB = I then A and B are roots of 1.

Proor: By Corollary 1.1 there are natural number %, &2, &, and
I, such that ks > &, le > Iy, A" = A" and B" = B". If I = AB then
clearly

=1
TA,

I = ARB" = AMB" = A"B" = A"B".
Thus
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I = A2RB% = A“Bh — Alz-—zl(AllBll) _ Alﬂ_ll,
I = Aszk2 — Alekz — (Alekl)Bkz—kl — Bkr—kl,

Hence A and B are roots of 1.

The proofs of the following corollaries are immediate.

CoroLLARY 7.1. If A has some inverse then A is a unit.

Cororrary 7.2. 4 s orthogonal iff A is a rooi of 1.

CoROLLARY 7.3. A is orthogonal iff one of the following holds:

(1) for each B there is an X such that XA = B;

(11) for each B there is an X such that AX = B.

From Lemma 2 we can derive a structural characterization of the
orthogonal £,-matrices; and furthermore, we can establish a connection
between these and the n X = permutation matrices which arc the
orthogonal £,-matrices whose elements are 0 and 1. '

DermniTION 4. a. A set {a;, a2, -+, @} of elements of £ 1§ a de-
composition of 1in £iff D wya, = 1.
b. A set {a1, @2, -+, @} of elements of £ is orthogonal iff ¢,a, = 0

holds for any u and » provided that g 5 ».

c. A set of elements of £ is an orthogonal decomposition of 1 in & iff
it is orthogonal and a decomposition of 1 in £.

d. An £,-matrix 1s a ®,-matriz iff all its elements are 0 or 1.

e. An &,-matrix 4 is an orthogonal combination of ®,-matrices iff
there is an orthogonal decomposition of 1 in £, {a;, s, -+, an, and
a set of ®,-matrices, {A;, Az, ---, Ay}, such that 4 = D> ™ a,A4,.

From Lemma 2 we can immediately infer that an £,-matrix 4 is
orthogonal iff KA = FA" = E, AA" < Tand 4’4 £ 1. Applymg the
terminology introduced in Definition 4 we get:

Lemma 3. A £,-matriz is orthogonal iff each row and each column of
is an orthogonal decomposition of 1 in L£.

This leads us to the following theorem: :

TraEOREM 8. An L£.-matrix is orthogonal iff it is an orthogonal combma-
tion of erthogonal &,-matrices.

Proor: If A is such a combination, say 4 = 2w a4, , then

m

A4 é ad) (3 6y

i

= Z Z a#aVAuAPT

p=1 »=1



484 GIVE'ON

= > aad,A]

=1

=>al=(>a)=1,
y=1 y=1

hence A is orthogonal.

If A is orthogonal then, by Lemma, 3, each row and each column of 4
is an orthogonal decomposition of 1 in £. Therefore, the set of all the
products of any n elements which occur in different n entries of 4, is
also an orthogonal decomposition of 1 in £ (which is, in fact, a “refine-
ment”’ of the rows and the columns of 4 ). Let us denote the elements of
this set by a1, @z, - - , @ . It is clear that for each g, and for each entry
of A, a,4,, is equal either to 0 or to a, . Therefore, there is a unique ®,-
matrix 4, such that a,A = a.4, holds. Moreover, applying Lemma 3
on A and on 4, , one can prove that A4, is orthogonal. Clearly,

dad, = 2 ad = (2 a)A = A.
y=1 y=]1 y=1

Recrivep: November 14, 1963
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