T HE UNIVERSITY OF MICHIGAN

Technical Report 9

MAN-COMPUTER SYNERGISM FOR DECISION MAKING
IN THE SYSTEM DESIGN PROCESS

John J. Allan III

CONCOMP : Research‘in.Cénvgféational Use of Computers
F.H. Westervelt, Project Director
ORA Project 07449

-~ supported by:
ADVANCED RESEARCH PROJECTS AGENCY

DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

June 1968

4 A
UMR d9% b

John James Allan III, 1968

©

All Rights Reserved

ii

PREFACE

The subject of this dissertation is the engineering
design process. The purpose of the investigation was to delin-
eate some basic implementation principles for a computer-based
interactive design system which would enable the designer to
be more effective in his work.

The thesis of the work is: design tasks must be done
within time and economic constraints. A designer makes his
decisions based on his best available information which is,
in part, a function of how well he can communicate with his
environment. His information interchange with his environment
can be facilitated with the proper computer interface, thus al-
lowing the designer an opportunity to make a greater number of
effective decisions per unit time. More decisions per unit
time means that some otherwise ignored or grossly estimated
component interactions of the system which the designer is de-
signing may now be evaluated more quantitatively.

To the extent that the design process has been iden-

tified, a design system to augment the effort of the engineering

designer is postulated. An implementation of the postulated
design system has been built and used. The conceptual method
of operation is described in Chapter 5. The implementation

1s discussed in the Appendices.

This research itself was approached using the method-
ology of Chapter 2. The original needs statement was: '"'What
does it take to do a better job of designing a complex, real-

world system?" The key elements of an answer to that question

iii

seem to be:
1) a fast graphical way of manipulating design problem
topologies,
2) an implementation of the Vari-port link concept,
3) an associative central computer data structure for
speed, and
4) a file-oriented central computer system to provide

adaptability.

Some "solved engineering problem results'" are dis-
cussed in Chapter 6, along with several aspects of the rele-
vance of the work to practicing engineers. Conclusions and some
open problems are presented in Chapter 7.

This research was carried out with the cooperation
and assistance of many people. The author is most grateful
for the advice, continuous interest and counsel received from
the members of his doctoral committee. The author is especially
indebted to his Chairman, Professor Frank Westervelt, for his
friendly encouragement, helpful criticism and most importantly
for providing constantly stimulating intellectual challenges
in areas related to the work. The reviews of the work by Pro-
fessor Bernard A. Galler and Dr. Marvin T. Ling, Graphtek
Corporation, are also sincerely appreciated.

The author will always be indebted to Dr. Gordon
J. Van Wylen who as mentor has also been a constant source of
encouragement since the start of the author's graduate work.

Mr. James H. Jackson of the Systems Engineering Labor-

atory, the University of Michigan, has been an invaluable friend.

iv

In addition to giving the author the algorithms for the SEL/338
executive of which Mr. Jackson is originator, he spent many
hours of his own time to help insure that the system was oper-
ational.

Mr. Jack R. Guskin has been a very goad source of
ideas relative to the central computer implementation. The
author is very grateful for his enthusiasm and devoted assis-
tance.

This work would have been much more difficult
without the continuing assistance of Miss Kristina Hermann,
who in all matters of computer file updating and typing was
able to assist while keeping the material in context. The
typing and outstanding draftsmanship of Mrs. Heide Malhotra
is sincerely appreciated, as are the many helpful suggestions
from other Concomp Project staff people.

The author is very grateful for the financial assis-
tance provided during the period of this research by The American
0il Foundation, The Ford Foundation, The University of Michigan
and the Advanced Research Projects Agency of the Department
of Defense, through the Concomp Project (contract number DA-
49-083 OSA-3050, ARPA order number 716) administered by the
Office of Research Administration, The University of Michigan.

Finally, kudos are due the author's wife Ferne, who
continued her career as an outstanding research engineer while
doing much more than her share to keep our family on an even

keel during the sometimes trying time periods experienced.

PREFACE
LIST OF
LIST OF

LIST OF

Chapter

1.

TABLE OF CONTENTS

FIGURES
TABLES

APPENDICES

INTRODUCTION

1.1 Background
1.1.1 Systems and Networks
1.1.2 Information Theory

1.2 Considerations of the Design of a
Design System

1.2.1 The Designer's Quest for Aid

1.2.2 The Type of Problems Belng
Considered e

1.2.3 The Idea of Ease of Man-
Computer Interaction

THE INFORMATION STRUCTURE OF ENGINEERING
DESIGN

2.1 Information in the Design Context

2.1.1 The Designer as an Information
Processor

2.1.2 Interpreting Flow Through the
"Working Interface" .o

2.2 The Meaning of "Structure'" Relative
to Design Information

COMPUTER AUGMENTATION OF DECISION MAKING
FOR DESIGN

3.1 Developments Necessary for Effective
Computer-Augmented Decision Making

vi

Page
ii

viii

Xi

10

13

15

16

17

22

22

23

26

30

34

36

Chapter

3.2 Some General Considerations
3.2.1 The Notion of Excess Information
3.2.2 The Notion of Binding Time
3.2.3 Attention Spans

3.2.4 Kinds of Graphic and Printed
Communication e e

3.3 Influence of Design Systeh Structure
3.3.1 Data Structures
3.3.2 Computational Capacity
3.3.3 Teaching Machine Capability

3.3.4 Hardware

THE STRUCTURAL ORGANIZATION OF A COMPUTER-
BASED DESIGN SYSTEM .

4.1 Considerations Which Precipitate from the
Class Structure of Design Information

4.1.1 Inter-Class Communication

4.1.2 Some Specifications for the
Structural Organization

4.2 System Characteristics Required for
Synergism

4.2.1 A Two-State Interface

4.2.2 'Set' Orientation for All
Information Classes

4.2.3 An Adaptive Capability
4.3 The Structural Organization

4.4 Using This Organization to Process
Design Information

vii

42

43

44

45

48

51

52

53

55

55

55

56

57

57

58

62

62

64

4.4.1 Description of the Given Data

4.4.2 Interpreting the Given Data

Chapter
5. THIS DESIGN SYSTEM (TDS)
5.1 The Structural Organization
5.1.1 An External View
5.1.2 An Internal View
5.2 Implementation Basics
§5.2.1 O0Of the Interface
5.2.2 O0f the Central Computer
5.3 A Fundamental User Consideration
6. SYSTEM DESIGN IN AN INTERPRETIVE ENVIRONMENT

6.1 Commented Examples of TDS
Implementation SN

6.1.1 Design of a Simple Refrigerator

6.1.2 Simulation of the Calibration of
an Instrumented Cantilever Beam

6.2 A Comparison with Conventional Practice
6.3 Significance of the Work
6.3.1 For Industry
6.3.2 For Engineering Educators
7. CONCLUSIONS AND OPEN PROBLEMS
7.1 Conclusions
7.2 Open Problems

BIBLIOGRAPHY

viii

78

78

78

80

82

82

84

85

87

87

88

91

96

97

97

98

99

99

103

190

LIST OF FIGURES

Figure

2.1 The Designer as an Information Processor

2.2 The Customarily Conceived Design Process

2.3 Categories of Information Flow, and the
Classes of Information in the Design Process

2.4 The Structure of Engineering Design
Information

3.1 Computer Code to Convey a Small Square That
W1ll be Displayed on a Cathode Ray Tube

3 2 A Small Square Drawn on the Face of a
Cathode Ray Tube

3.3 Two of the Possible Communication Channels
Between a Designer and the CPU of a
Computer-Based Environment

3.4 Graphics Conveying Topology

3.5 Graphics Conveying Data

3.6 Graphics Conveying '"Feeling for the Layout"

3.7 The Man-Computer Display Loop

4.1 Interface States of a Computer-Based
Design System

4.3 A Typical Graphic Instance

4.4 The Structural Organization

4.5 A Problem Information Network

4.6 A Cyclic Information Network

4.7 An Example Information Network

5.1 The External View of TDS' Structural
Organization

6.1 A Simple Refrigeration Cycle

6.2 The Graphical Definition of the Compressor

6.3 The Defined Menu

ix

Page
24

27

31

33

39

39

41
46
46
46

48

59
60
63
64
70

74

79
88
89

89

LIST OF FIGURES (CONT'D)

Figure

6.

Al.

Al.

Al.

Al.

Al.

Al.

Al,

Al.

Al.

A3.

A3.

A3.

A3.

1

A Wheatstone Bridge Simulation

Man-Computer Physical Configuration
Sample TDS Signon

Sample TDS Coaching Comments
"SUPPLY-T/I" Picture Frame

"CREATE" Picture Frame

Defining a Graphic Instance
"LABELS" Picture Frame

"CONNECT" Picture Frame

"SKETCH" Picture Frame

TDS/338 Control Section Flow Chart

General Scheme of User Graphic Storage

(Peripheral Data Structure)

A Typical Graphic Instance and Some of the
Corresponding Data Structure

Flow Chart of Routine to Transmit N-Tuples

Page
92

107
108
109
113
114
115
116
117
118

135

136

137

139

Table

A3.1

A3.2

LIST OF TABLES

"Next" List and P-List Entries for an
Example Implementation of the Interpretation
Algorithm

SEL/338 Transfer Vector

N-Tuples Transmitted by the Graphic
Routines to the Central Computer

xi

74

134

138

LIST OF APPENDICES

Page
A User's Guide to TDS 107
1.1 The Basic Modes « 107
1.2 The Command Language Interpreter 121
1.3 Explicit Commands 122
1.4 Central Computer Command Analyzer 126
1.5 User Specifyable "Attributes" 126
The History of Computer Graphics 128
Details of TDS' Implementation 132
3.1 The SEL/338 Executive System 133
3.2 TDS/338« v e oo oo .. 134
3.3 TDS/360 . . .«« . v v v+« v .« v v . . 140
Division of Labor Between the Peripheral
and Main Computers « + +« « +« « + . . 158
A Quantitative Discussion of Excess Information . . 160
Computer Output for Example in Section 6.1.1 . . . 162
Computer Output for Example in Section 6.1.2 . . . 180
Example of Entering an Analysis Program into
TDS' Library . . .+ .+ « « « « « « « v+« « « W« . . 187

xii

CHAPTER 1

INTRODUCTION

"...engineering design is a particular kind of prob-
lem solving—science-based problem solving with social-human

awareness.'" "This application of knowledge is every bit as
respectable an intellectual challenge as is the acquisition
of knowledge. The application of knowledge requires under-

standing and purpose."

John R. Dixon

Engineers are continually required to solve problems.
The solutions to these problems are usually new ways of adapting
our surroundings to our needs. If these problem solutions
come to fruition as physical contrivances, one tends to say
that the engineer must have done some design work. 1In recent
years it has even become acceptable to use the word "design"
in connection with esoteric solutions.

The engineer who tackles problems so broad and com-
plex that most specifications of need are not initially obvious
has come to be called a systems engineer. He brings order to
problem definitions, and devises operations to match the func-
tions that add up to solutions. He sets criteria on the func-
tions so that intelligent tradeoffs can be made, and operates
from a point of view that recognizes functional similarities.

In Chapter 2 the information interchange between

the designer and his environment is interpreted. One of the
designer's major efforts seems to be the synthesis of alter-
1

John R. Dixon, Design Engineering: Inventiveness, Analysis
and Decision Making (New York, McGraw-Hill, 1966), P. V.

native methods of implementing an idea. This leads to trial
solu~zions in attempts to make the system ocutputs meet the
overall specifications of the problem. Another major effort
seems to be the analysis of these alternatives to fortify his
decisions.

A wide variety of analysis techniques is available
to help the designer examine the synthesized solutions. Hence
students of design should devise tools
that will allow other designers to consider the many inter-
component interactions that result from the multi-component
nature of many contemporary design problems. Engineers should
have a system with which they can interact in the design situa-
tion so that more of these feedback aspects of complex problems
can be quantitatively considered. The need for this inclusion
of more component interaction in the design process is the
theme of systems engineers.

Consider that design tasks must be done within time
and economic constraints. A designer makes his decisions based
on his best available information which is, in part, a function
of how well he can communicate with his environment.

Prior to beginning this work, it was assumed that
the designer's information interchange with his environment
could be facilitated with the proper computer interface. This
would allow the designer an opportunity to make a greater num-

ber of effective decisions per unit time.

1.1 Background

In the past twenty years or so, two of the more im-

portant concepts which have

emerged, are information theory and system theory. Each of
these concepts is extremely important in its own right and
has many different applications. The theme of this work is
that they should be considered together. By a joint study,
each concept can gain from the other; each concept can make
large contributions to the other.2 "For example, analysis of
the information required for the various phases in the life of
a new system reveals some tasks that computers might perform,
some that human beings will always have to perform, and some
that either may perform depending on the circumstances.”2
"...in theory, computers can perform any specified task that
does not contain physical impossibilities or logical contra-
dictions.”3 According to the definition of the word '"machine,"
computers are machines; hence, computers should be able to

perform some of the tasks of system design.

1.1.1 Systems and Networks

Mechanical networks are members of a far more gen-
eral class of objects called physical systems. Physical sys-
tems exist in the real world and have the common characteristic
that certain forces, called inputs, are transformed in real
time by the system into responses called outputs.

Men such as Leonardo da Vinci, when designing his

woodworking machines, performed many of the functions of today's

2 Ira G. Wilson and Marthann E. Wilson, Information Computers

and System Design (New York, Wiley, 1965), p. ix.
3

Ibid., p. 10.

-4-

system designers. It is true that some contemporary systems
are more complex, and possibly even spread over far larger
areas; however, the fundamental design steps are much the same
today as they were in earlier centuries.
While systems have been used for centuries, the
"systems concept'" is only about twenty years oldﬂ' This con-
cept considers all the components of one system instead of
individually considering separate subsystems. 'The system con-
cept 1s useful because it integrates the separate requirements
so that the resulting overall ... system ... (can be) optimized."
A system 1s a set of operations organized to satisfy
definable user requirements. An "operation,'" here, means per-
forming a practical work involving the application of principles
or processes. Therefore, this definition of a system includes
not only structures of tangible black boxes, but manual proce-
dures and computer programs—intangible but very real struc-
tures. The definition also implies satisfying human users
and a way of measuring the effectiveness of a system. The
value of the '"procedure'" in system design is that it shows
that solutions can be made to depend on successful information
retrieval, logical operations, and computations, rather than
on inspiration.

Why Systems Came to Be

In order to deal with physical systems in any mathe-

matically meaningful way they must be abstracted. The usual

Ibid., p. 182, 198

4

-5-

process of abstraction is to decompose the system into an
interconnection of idealized components, each of which is
precisely defined mathematically.

Most engineers are aware that the physical phenomena
they study are composed of sheets of metal, pieces of glass,
etc., with electric, thermal and other fields filling the whole
of space. But such systems can usually not be described con-
tinuously when communicating to other people the values of the
fields' strengths and other properties at every point in space.
Potentials, fluxes and other magnitudes can be measured only
at a finite number of places. These '"places'" form the set
of data for discussion. Hence, "...quantization into a finite
set of attributes is a logical necessity of description.”5

Lumped mechanical and electrical networks form such

quantized abstractions; they possess a finite number of

elements and a finite set of relationships between
them. When expressed mathematically, the equations have a
finite set of variables and coefficients. This process is

called "modeling," and is a necessary part of any real engin-
eering systems problem. The abstract system may then be defined
in more mathematical terms, as, for instance, a set of ordered
pairs of vector-valued functions of inputs, outputs and time.
When a system is described in this manner, we say it is charac-
terized by an input-output relationship. In essence, then,

network or system theory is the study of how interconnected

> Proceedings of the Symposium on Information Networks
(Brooklyn, Polytechnic Institute of Brooklyn Press, 1954), p. 177.

-6-

components perform as a group for various topological arrange-
ments which we will call topologies.

In the early 19th century, XKirchoff recognized the
uses of topological and matrix methods for the calculation of
the properties of electrical, mechanical and fluid networks.
The mathematics associated with this calculation relates to
graph theory. The first paper on this division of mathematical
topology had appeared in 1736 by Euler. First attempts to
develop Kirchoff's suggested methods were slanted toward elec-
trical network analysis and date back to the 1920's and the
works of Kron. However, prior to Kron, Maxwell developed his
field concepts in the mid-19th century. Poynting extended
Maxwell's recognition of the energetic aspect of fields to the
consideration of energy transport in an electrical network.

On the basis of Poynting's work, Steinmetz laid the foundation
of electrical engineering circuit analysis and design. By the
beginning of this century the analysis of the macroscopic be-
havior of multi-component problems on an energetic basis had
become quite acceptable. However, the advent of quantum and
relativistic mechanics diverted attention from the theory until
the 1940's when interest renewed.6 These methods of energetic
system analysis received continued attention in the 1950's

and early 1960's giving rise to the works of Darlington,

6 The rationale of the above discussion was derived from the
following works: Henry M. Paynter, Analysis and Design of
Engineering Systems (Cambridge, Mass., M.I.T. Press, 1960);
Oystein Ore, Graphs and Their Uses (New York, Random House,
1963); W.H. Kim and R.T. Chien, Topological Analysis and Syn-
thesis of Communication Networks (New York, Columbia University
Press, 1962).

-7-

Huelsman, Kim and Chien, Seshu and Reed, and Wineberg, which
are oriented toward electrical networks.7

Although Kirchoff had looked at general networks,
most of the applied work up to the mid-1940's was in the elec-
trical network area. One can postulate that the problems
created by World War II, from which operations research evolved,
were also of concern to the scientists and engineers dealing
with non-electrical multi-component problems. It would have
been natural to take a well-developed method for handling a
specific kind of network and want to apply it to networks in
general. Schaenfe1d8published the development of the universal
analogy between hydraulic, mechanical, acoustic and electrical
systems in 1954.

Since the mid-1950's the network approach, or more
explicitly the notion of considering the component intercon-
nections of a multi-component problem, has been given much
attention in non-electrical circles. Works representative of
these efforts that are specifically oriented to discrete com-

ponent problems are those of Fenves and Branin, Lind, Paynter,

7 W. Darlington, "A Survey of Network Realization Techniques,"
I.R.E. Transaction, CT-2 (February 1965); R.G. Huelsman, Cir-
cuits, Matrices and Linear Vector Spaces (New York, McGraw-Hill,
1963); W.H. Kim and R.T. Chien, Topological Analysis and
Synthesis of Communication Networks; S. Seshu and M.B. Reed,
Linear Graphs and Electrical Networks (Reading, Pa., Addison-
Wesley, 1961); L. Wineberg, Network Analysis and Synthesis

(New York, McGraw-Hill, 1962).

8 J.C. Schoenfeld, "Analog of Hydraulic, Mechanical, Acoustic
and Electrical Systems,'" Applied Scientific Research, Sec. B,
Vol. 3, No. 6, (1954) pp. 417-450.

-8-

Pullen, and Shearer, Murphy and Richardson.9

Finally, works began to appear several years ago
by a group of authors who view all engineering problems as
important and complex enough to have relevant component inter-
connections. These authors are the systems engineering writers
whose ideas are directed to the worthwhile and necessary goal

of more 1inclusive analysis as the key element of better engin-

eering design. Their idea is that the designer can make better

decisions if he has better information on which to base them.

Representative of the more concrete of these philosophically-
10

oriented works are those of Eder, Hall and W. Wilson.

System Constituents

System analysis encompasses the integration of the
study of the effect on systems of both material and information
inputs and outputs. "In mathematics, the term 'canonical forms"
refers to the simplest and most significant forms to which
general equations may be brought without loss of generality..."
"...using this meaning of the word canonical, it is ... possible

to represent a canonical model of a complex system. If

9 S.J. Fenves and F.H. Branin Jr., "A Network Topological

Formulation of Structural Analysis," (IBM Technical Report

No. 00.979-1, September 1964); N.C. Lind, "Analysis of Struc-
tures by Systems Theory,'" Journal of the Structural Division,
A.S.C.E., 88 (April 1962), p. 1-22; H. Paynter, Analysis and
Design of Engineering Systems; K.A. Pullen, Theory and Application

of Topological and Matrix Methods (New York, Rider, 1960); J.L.
Shearer, A.T. Murphy, H.H. Richardson, Dynamic Systems, Pre-
Publication Edition (Reading, Pa., Addison-Wesley, 1965).

10 W.E. Eder, Mechanical System Design (New York, Pergamon,
1965); A.D. Hall, A Methodology for Systems Engineering (Prince-
ton, N.J., Van Nostrand, 1962); W. Wilson, Concepts of Engin-
eering System Design (New York, McGraw-Hill, 1965).

-9-

viewed broadly enough, all complex systems have both inputs
and outputs of zero entropy energy, information carrying energy,
and material objects. Hence, it follows that system differences
more or less depend on the interests of the system designer.”11
In the next section, the ideas of information and
entropy are discussed in greater detail; however, several points
relevant to the present discussion should be made at this point.
When energy flows from a source to a receiver, if no new know-
ledge is gained by the receiver, then no information has been
transmitted. Further, the word entropy has a probabilistic
connotation with respect to information just as it does with
respect to thermal systems. It refers to '"...the average lan-
guage information per symbol or per message as the case may be.”12
"All systems must have an input of information-
carrying energy—even if it is only to start the operation.
All systems must (also) have an input of zero entropy energy
because by definition, information-carrying energy is modulated
zero entropy energy. All systems must have an information
output which may be either in the form of information carrying

energy or of observable changes ...”13 in material objects.

All systems must have a zero entropy energy output too, because

11 Ira G. Wilson and Marthann E. Wilson, Information Com-
puters and System Design, p. 114.

12 Stanford Goldman, Information Theory (New York, Prentice-
Hall, 1953), p. 43.

13

Ira G. Wilson and Marthann E. Wilson, Information Com-
puters and System Design, p. 114.

-10-

all systems have unwanted losses. However, because unwanted
losses can be observed, they may convey information to another
system. When examined closely, all systems have an input and
output of material,because in order to create zero entropy
energy, some fuel must be used.lSConsequently, system analysis
can be said to encompass the integration of the study of the
effect on a system of both the material and information inputs

and outputs.

1.1.2 Information Theory

Today, information theory is still basically commun-
1cation theory whose fundamental '"...problem is to reproduce
at some point or points, either exactly or approximately, a
message selected at another point. The important word is selec-
ted, because the actual message is assumed to be selected from
a set of possible messages. Stated another way, the trans-
mitted message must be unexpected and hence unpredictable be-
cause if the receiver knew what it was beforehand, no infor-
nation whatever would be gained by receiving it. Thus, the
amount of information conveyed by a message depends on the
unexpectedness of that information."14
In 1948 Claud E. Shannon, research mathematician

for the Bell Telephone Laboratories, published a paper en-

titled "A Mathematical Theory of Communication'" and thus be-

came the father of the new discipline. In the same year,
Norbert Wiener published Cybernetics. Both works arose to
14

Ibid., p. 254.

_11-

some extent from the authors' occupations during World War II.
Existing information theory is based on mathematics.
Definitions are precise and theorems are proved rigorously.
However, system theory is in quite a different state. Mathe-
matical computations are used 1n some cases, but today, system
design and development are really more an art than a science.
If studying system design in terms of non-rigorous information
theory can be allowed, some answers might be suggested to the
problems arising in designer-environment communication.
Whitehill points out that, '""One test of the plausi-
bility of borrowing from one discipline to enlighten another
is to investigate the extent to which the small terms—the
building blocks—of the one may, without forcing, be taken
as analogs to similar terms of the other. For example, the
language, dimensions and relations of perfect fluid hydraulics
were early found analogous to the partitive terms in electri-

nls Students who first learn the principles of hydraulics

city.
find the principles of electricity easier to learn. 'The
usefulness of that analogy is not diminished because it breaks
down when higher frequency alternating currents are studied:
it has already served its purpose.”15

The following lines are paraphrased from Claud

Shannon's article on information theory, in the 1967 edition

of the Encyclopaedia Britannica:

15 Joseph Whitehill, '"Reappraisals: II - Samuel Taylor Coler-

idge: Prisoner and Prophet of System,'" The American Scholar,
37, 1, (Winter 67-68) p. 151.

-12-

A study has been made of the distribution of lengths
an< frequency of occurrence of different words in

a language such as English. The analysis results of
this experimental data can be explained as a conse-
quence of the assumption that a language gradually
evolves under continued use into an efficient commun-
ication code. These results suggest that the human
being may tend to adopt something like the ideal en-
coding occurring in communication theory.

These results further suggest using simple one-to-
one analogies between the equipment and processes of communi-
cation theory, and the graphic devices and means of engin-
eering language. That is, good technical prose is more effec-
tive communication than bad technical prose, and drawings are
more effective than either; and information theory might offer
a way not only to tell the good from the bad, but also to
tell why.

Of all the designer's tools, the one of singular
pre-eminence is graphics, for through graphics he can communi-
cate more effectively, and only through communication does he
progress. The management of language and graphics is part
of the science of communication. The study of the manage-
ment of design language and graphics is an effort to develop
an i1nformation structure of design.

It would seem odd if mathematics had nothing to
contribute to the art of engineering design. The idea is so
obvious that many have tried to evoke the entire field of de-
sign from mathematics. This seems to be a doubtful endeavor
in that 1t tends to look at material entities rather than at

the human beings who work with and appreciate them.

-13%-

1.2 Considerations of the Design of a Design System

When considering the problems of the design of a
design system, the concern arises that one may not only devise
a system focused outside man on the end product, but one may
also so rigidly structure the enquiry, the analysis, and the
decisions, that all hope of freedom of decision is gone for
the ultimate user or designer who it is hoped will be served.

What is really sought is a system with two charac-
teristics: (1) the system itself will not structure either
the user's view of the environment of his problem, the formu-
lation of the problem, or the solution of the problem; (2)
the design and decision processes will be designer-oriented,
and an integral part of each problem itself. In the construc-
tion of a computer-based system for aiding the designer, it
is important that the constraints that the system imposes on
him are not so severe that the man who originally programmed
the computer actually dictates the designer's problem solu-
tion. Only the user/designer can perform the function de-
scribed as "invent-discover-develop."

Esherick points out that the physical sciences,
with their isolatable phenomena are, no matter how complex,
far simpler than the problems in the social sciences; they
are less ambiguous, more testable, and the entire process can
be communicated with an entirely different kind and degree
of precision. '"The very ambiguity of the social science prob-
lem, and design is a social science problem, is its woolliness,

its vagueness, and its unwillingness to be pinned down. All

-14-

of these elements of the problem are, in fact, elements in
life itself, and whatever is done in the design of a design
system must preserve this capacity for ambiguity.”16

Thus, while mechanical systems adapted from the
physical sciences may be useful for certain well-defined and
restricted parts of any design system, their very nature pre-
vents their use for the entire design system. Certain human
acts are indispensable. A human must conceive the need for
the new system. He must decide whether to start doing some-
thing about it. Estimating the odds for success, the costs,
and the times required for complex design tasks is to some
extent an art. A human must decide on or choose the system
requirements, and he must put the system requirements in prefer-
ential order. This implies not only that the design of a de-
sign system should be generated from within the domain of de-
sign, but that the system users must be incorporated in the
design system plan.

In further commenting on the system design process,
Esherick feels that there are two general purposes for design.
The first is when '"the entity to be designed is to be used
directly or overtly for known or knowable processes.”17 The
second is when the entity "is designed for complex and contra-

dictory functions where the entire future growth process 1is

16 Joseph Esherick, "Problems of the Design of a Design

System,'" Conference on Design Methods (New York, Pergamon,
1963) p. 76.

17

Ibid., p. 78.

-15-

unknown and unknowable, ... where the primary objective is
to minimize control, to generate maximum freedom of communi-
cation, freedom of motion, freedom of choice, and where the
maximum conflict and contradiction will be possible .”17
Consequently, a system to aid the designer must be conceived

so that it is open and flexible, itself possessed of the ability
to grow—adaptive. This can be accomplished, it seems, if

the design goals of the system are themselves open.

1.2.1 The Designer's Quest for Aid

For centuries designers sought better ways to ex-
press their ideas and better ways to perform analyses to for-
tify their decisions. Early drawings were of the "layout"
type. In fact, they were carvings not drawings. As units of
measure were agreed upon, the physical dimensions of drawings
took on a new significance—they became data.

As the fundamental principles of element design
were developed in more recent times, another whole new area
of concern began to evolve. If calculations could be made
to substantiate the validity of a drawing's dimensions, one
would then have to know the physical properties of the entities.
Hence, the designer began a search for better ways of handling
his reference data—today known as information storage and
retrieval.

The analyses referred to above have become more
sophisticated over the centuries as mathematics has been de-
veloped to allow a closer description of the physical world.

Accompanying this trend has been an effort to mechanize the

-16-

solution of the ensuing mathematical expressions. Much time
elapsed between the inception of the abacus and the early mechan-
1cal computer. However, relatively little time has passed
since the electronic digital computer became a reality and
progressed to the state of multi-user multi-programming capa-
bility.

In all of the above discussion, the underlying drive
has been man trying to adapt his surroundings to his needs.
It is also interesting to note that his problem categories
are still the same today—analysis, data storage and retrieval,
and the expression of ideas.

1.2.2 The Type of Problems Being Considered

In general systems parlance, a system is a group
of elements which bear some relation one to another. In the
work considered here, a system is several real components which
are coupled energetically. Energetic coupling implies, of
course, both material coupling and information coupling. The
design of these types of systems is not styling, but involves
parametric selection, iterative analysis and also form design
as 1t affects analysis. The analysis involved is relevant
to things that can be built, which in turn are composed of
things that are or have been built. The former statement can
be carried to very simple parts which probably have no analysis
connected with them at all.

Things made of elements are called subsystems. Things
made of subsystems are called systems. A system for one de-

signer may be a subsystem for another. Therefore, a system

-17-

can be made of simple parts with no individual analyses, al-
though the system in toto might require some analysis. Hence,
the type of systems under consideration here is one made

of one or more discrete components each of which may have one
or more analysis considerations connected with it.

Because interconnected analyses are under considera-
tion, and further, given that analysis is information processing,
1t is interesting to see what this view of problems could mean
to a design system's information flow. Quite obviously the
independent analyses must be able to communicate with each other
in addition to being accessible to the user. Herein lies the
challenge. The analyses' ways of divulging the same variable
(formatting) are undoubtedly not matched. The physical units
might need conversion. Further, one analysis may produce
more information than the next cares to take in, or vice versa:
a previous analysis may not have provided enough information.
These are some of the major concerns that will be discussed
in depth in Chapter 4.

1.2.3 The Idea of Ease of Man-Computer Interaction

Decision making is governed largely by economics
in the design process. If a designer elects to employ a com-
puter, the constraint of having to reduce input and output
to character strings makes the use of computer facilities very
difficult, if not impossible, for some problems. Communication
in pictorial terms, however, can many times be rapid. Since
inputs and outputs can conveniently be specified in two dimen-

sions, or even higher dimensions projected onto a two-dimen-

-18-

sional surface, new problem areas can be attacked. Thus, through
the use of display consoles, new freedom is provided.

In addition to providing new convenience and free-
dom, and better approachability, computer communication through
display consoles makes possible an entirely new method of
problem-solving. Under this arrangement, with the display
surface serving as a common working area, the man and computer
can work 1n prolonged, intimate, interactive contact. The
display surface serves as a broad-band communication channel
through which the user can rapidly ask questions and the com-
puter can rapidly provide answers. The rapid answers presented
directly to the man by the computer can stimulate the man's
thoughts more than if the functions of the man and the computer
were separated in time, or by intermediate personnel. The
apparent reason for this is that with an unbroken chain of
thought, a designer seems to be able to expend his energies
on developing creative associations for the problem at hand,
as opposed to re-initializing himself to his current state of
achievement every time he is interrupted. Thus, a partnership
of the man and the computer now becomes possible. Within this
partnership, since significant time and economic penalties
do not result from making a few wrong sorties, or from ex-
ploring paths that do not produce immediate results, a new
freedom in problem solving arises.

In the previous section, the type of design problems
being considered was outlined. In Chapter 3 the principles

of computer augmentation of decision making are discussed in

-19-

detail. It is pointed out that the computer must play three
roles if it is to augment the efforts of the engineering de-
signer. Those are the roles of: (1) a teaching machine,

(2) an analyzer, and (3) an information storage and retriev-
al systenm.

Before discussing these three roles, it should be
noted that in each case there are two distinct connotations to the
phrase describing that role of the computer. To the author's
knowledge, these important and definitely distinct connotations
have not previously been clearly identified or possibly even
recognized.

As a Teaching Machine

First, engineering designers are generally not well
versed in the intricacies of computer programming. It is
difficult to design a system which does not require some know-
ledge of the digital computer or its input/output devices—
as a trivial case: even '"'signing on" is work for a novice.
Hence, in order to reduce the time which it takes an unini-
tiated user to become familiar with the system or to recover
from an error which he has made, the system must coach and
prompt the user as the needs arise. Therefore, one 'teaching
machine'" consideration of a computer-based design system has
to do with the operation of the system itself.

A second and entirely separate consideration has to
do with the way in which the subject matter is accepted from
and presented to the user. There is a fine line between the

teaching machine characteristics under this title and some

-20-

of the characteristics generally attributed to an information
retrieval system. In this case the message interchange is
automatically context-dependent. The designer is actually
helped with his engineering fundamentals.

As an Analyzer

The computer's role as an '"analyzer'" is sometimes
the only role envisioned, and surely even for those who recog-
nize the other roles outlined above, this role usually means
mathematical analysis. To be sure, the computer deals only
with symbols; however, the analysis or "interpretation" of
"high level" (see section 3.2.1) input-output is a second and
separate kind of "analysis'" task. In this case the analysis
1s for the purpose of supdementing input or output information
to make it readily communicable to the user.

As an Information Storage and Retrieval System

Here, the first and most commonly conceived mission
of the computer is the deposition and recollection of stored
facts. When using the information retrieval capabilities of
a design system, a user knows a priori that he is going to
exercise discrimination on the data that he is trying to re-
trieve. Consequently, he needs a system which will allow
him to specify attributes of the desired information and se-
lectively retrieve sets of it. Implementing this capability
1s discussed in Chapter 4, where it is also pointed out that
the design system should accumulate information with use.

"2

The second notion of "information retrieval'" relates

to the collection not of stored facts, but of parameters being

-21-

"picked up" (transducer monitored) from physical models for
the purpose of having '"'real'" parameters in the mathematical
model. In this case, the computer helps '"observe'" the real
models which designers use. This is not what is generally

called "process control."

TDS (This Design System) Is These Three Ideas Combined

What the computer has done in the past to ease the
burden of engineering calculations '"will be done in the future
for the whole area of engineering communications, decision-
making and systems design.”18 This statement assumes that
highly responsive automated systems based on powerful and
large-scale information networks and totally new kinds of
programming for manipulating the data will be available. The
experimental work described in Chapters 5 and 6 is an effort
in this direction.

TDS has been conceived as a blend of the three func-
tions outlined in the above sections. Although in the experi-
mental work reported no real-time data are monitored, provision
for this capability is allowed. The basic criteria as each
of these aspects of the system was designed and developed
was that of tight coupling between man and computer. In this
way, the man and machine taken together increase each other's

effectiveness, the thought conveyed by the word synergism.

18 C.L. Miller, "Some Comments on the Future Practice of

Engineering,'" Proceedings of the Conference on Impact of
Computers on Education in Engineering Design, Commission
on Engineering Education.

CHAPTIER 2

THE INFORMATION STRUCTURE OF ENGINEERING DESIGN

In Chapter 1 the point was made that flows in and out
of engineering systems consist of both materials and informa-
tion. Of course, nothing precludes the existence of a system
whose flows of interest consist predominantly of materials
or of information. Historically, mechanical engineers, for ex-
ample, have looked at material flows. There generally are two
classes of flows in their considerations: (1) those of a ther-
mal nature, and (2) those of a '"mechanical" nature. Only in
the area of automatic controls do these engineers begin to
intentionally process information. However, this is quite
logical because the notion of handling information quantitatively
has only existed since the late 1940's. Furthermore, informa-
tion processing hardware for these engineers to "build into"
their designs has only recently become readily available, and
physically and economically feasible.

The computer-based system described in Chapter 5
and Appendix 3 is, quite obviously, an "information handling"
system. In fact, as will be discussed later, the structural
organization of TDS has been developed from the following cus-
tomarily conceived concept of the design process, and this

very development has been according to this same concept of the

design process.

2.1 Information in the Design Context

Design is an information handling process. Conse-

quently, as a process, it must have a structure. Hence, if

-22-

-23-

one is to build a system to augment the effectiveness of the
designer, the information structure of design must be known.
This structure is not the same as the customarily conceived
sequence of activities used to describe the design process.

In the balance of this chapter, by looking at the
design process, the elements of information that are brought
to bear on a design problem are first delimited. The struc-
ture of that information is then outlined, and the notion of
"processing'" it is discussed.

As will be pointed out below, the design task is one
of decision making. After discussing computer augmentation of
decision making for design in the next chapter, general prin-
ciples for developing the structural organization of a computer-
based design system will be developed in Chapter 4 by melding,

in perspective, Chapters 2 and 3.

2.1.1 The Designer as an Information Processor

Recalling that an engineering system is a group of
components that bear some relation one to another; there are
people called engineering designers who conceive of and develop
systems of varying degrees of complexity. Given that a designer
can be considered as an entity in an environment, then as in
Figure 2.1, the designer may be depicted as a control volume.
Several paths for information exchange with his environment are
shown. Quite obviously, the graphic representation of the model
could have been presented differently and still depict the in-
formation processing situation for design. However, represented

here, and shown more explicitly in Figure 2.3, are the fewest

-24-

°I0SS920Xd UOTIjBWIOFU] uB SB JoudTsoe@ @yl T-z 2andty
\\II -
/ ™ —
/ ~
[/
/ -
_—
’ ALIAILVHEYD ////
\
\ JONTIYIdXA \
\ /
INIWOANr \

swal1s4AS [eOTSAYd
1e8y JO UOT3IBAXSSQQ
TeADTI}9Y

UOTJBWIOJFUT JO S31Insay 'c \ \\
STOPON [®BOT ’, NOILININI _~
-3BWAYIBN JO STISATeUY °7 y
suotrledrjyroedsg | / /
Rde \: \ Siovd agvols Y,
i\ \\ (zou8tsaq oyyl)
1) / y SUNTOA TOIJUOD
suoI3IN(o0g 7 ,, e

induf
910 I0J s3sanboy

‘1 _ ~_ -
sandang __

JOVAYILNI ONINYOM

-25-

number of meaningful design information flow categories that
make this model usable for study. That this is true is demon-
strated by an existence proof. Namely, this model has been
used as the basis for developing the principles on which the
design of TDS itself is based. The model is sufficient as TDS
does indeed fulfill its basic objectives. That these flow-
categories are necessary becomes obvious at the end of Section
2.1.

Now, with a designer viewed as a control volume, the
flow through any control surface (in and out of any control
volume) consists of information. Subsequent input information
will convey a current problem of the designer's environment,
and he will process information from several sources in order
to generate output information which conveys a solution to the
environment. These sources are: environmental inputs, intui-
tion, creativity, experience, judgment, and stored facts about
the physical world.

Exactly what goes on in the control volume is unknown.
Furthermore, most systems' problems are difficult enough that
the designer's first output is not the solution. Usually an
information interchange with the environment takes place, i.e.,
the "input'" source is activated by requests from the designer.
The input that he then receives is either qualitative or quan-
titative, and consists of specifications, physical facts, or
the results of tests.

These test results are the observed actions of acti-

vated models. These models are either entities in the physical

-26-

world (to some scale), or they are mathematical approximations.
Models which are mathematical approximations require informa-
tion processing by the designer in order to realize the input.
This is known as analysis.

This quantitative information processing (analysis)
governed for the designer by physical laws, often takes him
a long time, or is impossible, "in the control volume.'" Re-
lieving him of much of the analysis task, and allowing him to
convey his ideas more readily, would leave him free to allocate
the majority of his information processing abilities to other
aspects of the problem under consideration. Because engineering
problems must be solved in a finite time, and considering that
information processing takes time, less time spent on analysis
would mean more time for other things. These'"other things"
would be the processing of information previously neglected,
or the values of which were assumed. Being able to take more
system component interactions into account quantitatively would
improve the effectiveness of the designer.

To this point, nothing has been said about a struc-
ture for the information that is brought to bear on a design
problem. However, looking at Figure 2.1 once again, this
information interchange manifests itself at the working inter-
face as a five-step process. These steps are delineated in
Figure 2.2.

2.1.2 1Interpreting Flow Through the "Working Interface'

It is very desirable at this point to interpret the

delimited information flow categories in terms of the custom-

-27-

*ssod0xq ultseq peAIsAuo) AJTIBWOISN) SY]

POATOAUT
sIeMpIeY

"7z ean3t4

MOTJ UOT3BWIOJFUT 3Snl SOATOAUT

/

juswdoTaAsa(

\

pue 1S9]L BUTTIT®3SQ

STSATRUY
9AT1BIOLT

UOTI1BINWIO] uor3ztTudooay
9ATIBOID

P3SN

Ve

jxed sTY3l Soss2Ippe SdL

-28-

arily coenceived design process as depicted in Figure 2.2.

The design process is seen basically as a sequential
set of five steps. There usually exist feedback loops in this
process between some or all of the steps. The correlations
between some of the designer's information inputs and the steps
in the design process are fairly obvious. For instance, the
first pass through Need Recognition generally consists of
specifications from the designer's environment. However, the
usual case is that some time before arriving at the Test and
Development stage a truer picture of the '"real'" need is achieved
and significant feedback takes place.

It can be argued that ''need recognition'" is not a

step in the design process. The basis would be: no need—no
problem. However, in most cases the stated need does not de-
scribe the crux of the problem. It is the task of the designer

to spell out the real problem that must be solved before an
overall solution can be sought.

In recognizing the essential need of a design problem,
some process goes on in the designer's mind, and is a function
of his understanding of the physical world, his intuition, etc.
Weighing alternative problems as being the "key'" ones is done
"in the control volume'" too, just as conceiving them was.

He might decide which one(s) is (are) significant with the

aid of a pencil and paper or a computer, but these latter tasks
are immediately 'analysis.'" So, for this step of '""need recog-
nition," what goes on in the control volume with respect to

information manipulation is an unknown set of '"mental processes';

-29-

however, it can be said that z:zy facts involved were previously
input information.

Creative formulation is by definition a process in-
ternal to the control volume. However, there is information
flow through the working interface when candidate concepts are
to be related to the environment for the construction of models.

Shifting attention to the ''detailing'" step, one can
see that if creative formulation can be considered analogous
to layout drawing while detailing is considered analogous to
detail drawing, then what is actually involved here are varying
degrees of conceptual refinement.

The word "iterative'" in the iterative analysis step
implies the feedback-causing nature of the decisions involved.
In broadest terms this can mean changing variables in a mathe-
matical model, varying the parameters of a real physical system,
or manipulating model topologies. Changing the variables in a
mathematical model further implies the notion of information
retrieval. This latter consideration is generally ommitted
from discussions of the design process. However, as was men-
tioned in section 1.2.3, the designer, in assigning values to
variables, usually exercises discrimination on available data
as a function of his current knowledge of the physical world.
The key word of course is '"available."

The last step of the design process to be considered
is test and development. This input to the designer is essen-
tially the same as the real physical models discussed above,

except that there are no scale effects since the scale is unity.

-30-

In summary for this section, some of the customarily
conceived steps of the design rrocess have little or no informa-
tion flow through the working interface. In fact, as far as
information flow between the designer and his environment is
concerned, it exists in two situations. Namely, for: (1) con-
veying varying degrees of conceptual refinement and the asso-
ciated iterative analyses, and (2) interaction with real phys-

ical models.

2.2 The Meaning of "Structure'" Relative to Design Information

As pointed out in the previous section, processes
have structure. Hence, for delimiting the structure of design
information one logically looks at the design information that
relates to processing. As shown in Figure 2.3, information
interchange is involved with mathematical models of physical
systems, and with physical models inasmuch as real variables
are retrieved to become model parameters.

The classes of information that are brought to bear
on a design problem are shown in Figure 2.3 by the dotted en-
closures. Those classes within envelopes A and C are the
structural elements of design information that relate to pro-
cessing. (Envelope B will be discussed in Chapter 4.)

When these classes '"'communicate'" among themselves,
the information flow dictates the arcs of a network whose nodes
are these classes. Consequently, the structure of design in-
formation is as shown in Figure 2.4. These relevant classes
of design information are connected by lines indicating the

dependence of one class on another in order to be of use to

-31-

“BUWIOFUI JO S9SSBI) 2yl pue

N

T —

—

- =~

SNOILONNA)
LNINgITH

"Ss8d0aq udrsaq ayz urt uoIl

‘MOT4 uoT3lBWIOFUT FO satx08038) ¢y 2andty

A
dd0THANET

— —

SYHLINWYIVI V

_ \
~N— - \\ﬁmmHuoqoaoHv)

\ SLdIDNOD /
— < \ dlLvaranvo /

N 7
\,/

-~ ~

\\\
(siNIvVYISNOD
A

-

STHAONW
TVOISAHd [/
b/

dd0TAANT

STHAONW
TVOILYWIHLVYNW

TVIy

-32-

the designer. The arrows should be interpreted as meaning
"the possibility of using or achieving the class at the tail
of the arrow, depends on the existence and character of the
class at the head of the arrow."

In Chapter 4 the communication of this network will
be analyzed, as the information processing operations that

work on these classes of information are structured.

-33.-

uorjewroyuy udtsaq SutiesutSug FJO 2an3onxig oyy

SYILINVIVd

SLdHONO0D
dLVAIANVYD

"tz @andry

CHAPTER 3

COMPUTER AUGMENTATION OF DECISION MAKING FOR DESIGN

In the past ten years, the computer has brought about
profound changes in the way engineering analysis and design
are performed. In analysis, the computer has become a vital
adjunct to theory. Theory establishes the foundation of the
subject matter; computation provides clarity, depth, and in-
sight. However, theory is not the only essential ingredient
for analysis. In order to bridge the gap between theory and
practice, an algorithm or approach is needed. Indeed, the very
process of devising an algorithm enables the engineer to under-
stand more fully the analytical bases of his problem. In de-
sign, the computer has thus far made trial and error and var-
lous optimization procedures practicable. It is one intention
of this work to show that the computer can make a large addi-
tional contribution by making graphic input of problem topol-
ogles practicable.

It has often been said that the computer age will
do for man's mind what the industrial revolution did for his
muscle. The fundamental point here is not that machines light-
ened man's work per se, but machines were able to take over
mundane tasks and allow man to use his muscle for other new,
and more sophisticated endeavors. Further, machines have pro-
vided men with very high-leverage transducers for interacting
with material objects. And, reflecting again for a moment on
any real world system, there are two types of inputs: those

known as materials or objects, and information. Now, if the

-34-

-35-

computer is going to do for man's mind what the industrial
revolution did for his muscle, actually what is going to happen?
It is proposed here that first, the immense retrievable storage
capacity of the computer will provide the very high leverage
needed to process the quantities of information associated

with a complex system. Further, graphic, voice, and '"high
level' language man-computer communication will relieve the

designer of mundane communication tasks by decreasing the ex-

cess information (see section 3.2.1 and Appendix 5) required

to convey his messages. Thereby, the designer is left with

more time per unit working hour to consider the true problems
associated with his system design. Hence, the part that the
computer will play begins when the designer wants to communicate
with his environment, and wants to have very low excess infor-
mation in his message, yet he wants to discuss a very complex
system. The computer will then supply the storage capacity

and it will also supply a method for communicating at a '"high
level."

As pointed out in section 1.2.2, computer augmenta-
tion of decision making is a combination of teaching machine,
computational, and information storage and retrieval charac-
teristics. These capabilities, when properly blended in an
interactive computer-based system, provide a new dimension to
the designer's environment which allows him greater degrees of
freedom for the act of decision making.

A difficulty arises when one wants to apply the power

of digital computers to design problems in this context. That

-36-

difficulty is: getting engineers and scientists who are trained
in design, analysis or other specialties to use computer aids

in their every-day work. The major contributor to this usage
barrier is the typical requirement that the user be fairly well
trained in computer technology. A specialist in one field cannot
be expected to divert effort from the pursuit of his primary
work to devote himself to detailed computer training. If, then,
computer problem-solving aids are to be employed by non-computer
specialists, how might the designer's approach to these aids

be made easier? One promising answer is to use computer-con-
trolled display consoles as the user-computer communication

interface.

3.1 Developments Necessary for Effective Computer-Augmented

Decision Making

Forming the basis for effective computer-augmented
engineering design involves the development of:
1) computer hardware
2) operating system software
3) general-purpose user-oriented software
4) application software
Historically, the engineering designer has been well
into the process of design before taking advantage of computer
power. The reason for this is as follows. Once computer hard-
ware and operating system software was available, user-oriented
compilers such as FORTRAN became available. These were based
in some kind of batch, or more recently, time-shared system.

Engineers were glad to have the routine analysis burden lifted

-37-

from them by being able to develop application software within
this framework. They have since developed many analysis routines
for discrete elements in the systems that they were designing.
However, to this time, there has not existed much general-pur-
pose, user-oriented, non-discipline oriented software which
comes under the consideration of item number 3 above. The
reason 1s: it has taken the development of a time-sharing en-
vironment to allow a reasonably economical approach to both
complex analysis and information retrieval. The implementation
described in this paper falls in the realm of general-purpose
user-oriented software in that it is for the design of discrete

element systems, but is otherwise context-independent.

3.2 Some General Considerations

Many considerations related to computer augmentation
of decision making are related to the problems of human factors
engineering. This is of utmost importance because an interac-
tive system, or an interactive portion of the user's environ-
ment, which frustrates or otherwise annoys the user is really
of no practical value. Consequently, the following self-evident
considerations are almost rules to be satisfied. First, there
should be nothing that the user can do in the way of in-putting

information to a computer-based system to cause the system

to abort completely. Second, the system should coach the user
when errors are made. Third, distraction should not be caused
by slow interface response. And finally, any language used

(especially its syntax) should seem natural.

-38-

3.2.1 The Notion of Excess Information

A first introduction to the notion of excess infor-
mation can be made with the aid of Figures 3.1 and 3.2. In
Figure 3.2 the screen of a cathode ray tube is depicted with
a small square drawn approximately in the center. In Figure
3.1 is a sequence of computer instructions (DEC-338) which,to those
knowledgable in the language, also conveys a small square at
approximately the same position on the screen. The point here
is that in both cases there is at least the following amount
of information for someone familiar with the computer instruc-
tions: a one-inch square exists, approximately centered on the
screen. It takes quite a bit more information on the part of
the person conveying the notion of the square to the computer
to convey that notion in a method as depicted in Figure 3.1.
What one must know in addition to how to draw a square are the
following: the notions of iteration, vector modes, data states,
core locations, statement labels, scale values, point modes,
sector bits, intensity levels, and several other notions—all
in the realm of "computerese.'" Consequently, the fact that
excess information is involved in the representation in Figure
3.1 seems to be intuitively obvious. This is discussed in a
quantitative fashion in Appendix 5.

Following the discussion as in Appendix 5, the lower
number of bits of information that would be generated by the
designer when he expressed the square as in Figure 3.2, would
mean that an observer is not surprised that the designer can

draw a square. Finally, it seems that if the designer imparts

-39-

EXCESS INFORMATION COMPARISON

HIGH

LOW

SQ SC117
PMCSED
0100
4220
VEC+EDS
4000
1300
5300
0000
4000
3300
7300
4000

JMP SQ+4

Figure 3.1, Computer Code
to Convey a Small Square
that will be Displayed
on a Cathode Ray Tube.

Figure 3.2. A Small Square
Drawn on the Face of a
Cathode Ray Tube.

-40-

more information to an observer by conveying the idea of a
square in computer instructions, which means he has conveyed
more notions most of which were not expected of him, then he
has put more effort into getting his idea across. Hence he has
exerted greater effort by conveying his idea via Figure 3.1
than by using the "higher level'" language in Figure 3.2.

In Figure 3.3, two of the possible communication
channels are shown from a designer to the central processor
of his computer-based environment. The idea here is that the
engineering designer, functioning with the proposed Terminal
Design System, bases his human response on his reaction to
the information channel that links him with the screen.

The designer need not be concerned with specifying
the complex computer operations performed as a result of his
picture language statements. This internal detail is handled
by the "aiding programs'" existing in the computer. The designer
need be concerned solely with specifying a logical sequence of
operations within the framework of these programs. To do this
he need only know how to use a simple picture language which,
since it can be oriented toward his specialty, can generally be
easily learned.

Consequently, a channel requiring less excess infor-
mation does exist if he can communicate a figure to the computer
by merely drawing it. It is acknowledged that this does not
cut down the information content of a message which goes from
the designer to the central processing unit (CPU). The '"aiding

programs'" interpret the inputted graphical message and supple-

-41-

-42-

ment the information to put it in a form acceptable to the CPU.
Another notion when considering excess information
is the idea of definitions. A "definition'" is an entity which
suppresses detail. If one can allow suppression of detail,
then once a designer has achieved a certain level of success
in the design of a system, he can call that segment or that
subsystem by merely declaring a name which he has associated
with it. In general, definitions are used to suppress detail
which is constant for some identifiable duration, and which
is, can, and should be supplied automatically. Since the choice
of which details are to be constant and thus suppressed is a
personal one, it should be under control of the designer.1
One further notion of excess information has to do
with using the highest level languages that are practical for
a particular purpose. A slight amplification of this is in
order. For instance, if a designer wants to employ some in-
dividual operation, but the relevant operator in the available
language collectively employs a small population of individual
operators of which the desired is a member, the language could

then be considered at '"too high a level" for his current pur-

poses.
3.2.2 The Notion of Binding Time
In the previous section it was pointed out that defi-
nitions suppress detail. This means that some amount of infor-
1

B.A. Galler and A.J. Perlis, "A Proposal for Definitions
in ALGOL," Communications of the ACM, 10, 4, (April 1967) p. 204.

-43-

mation is to be considered a constant. Therefore, this infor-
mation is considered to be '"bound."

The essence of the design process is decision making.
The more information that can be simultaneously brought to
bear on an aspect of a problem, the more effective the decision
will likely be. Using definitions, or binding details, allows
more information to be considered. However, binding reduces
flexibility. The designer wants to be as flexible as possible
in order to leave ways open for attacking other problems as
they arise. A similar concept is mentioned by Wilson and
Wilson, and is called the "Principle of Minimum Commitment."
They state the general principle as follows: "At each stage
in synthesizing the design of a system, make no commitment
beyond that necessary to solve the problem at hand.”2 Thus
the notion of time is implied, and binding time can be inter-
preted as tying the concepts of designer effectiveness and
designer flexibility together.

In section 7.1, being able to conveniently "un-bind"
most any decision and iterate on a new set of conditions is
discussed as being a very powerful characteristic of the design
system described here.

3.2.3 Attention Spans

Distraction should not be caused by slow computer
response. This tends to create a period of time which is not
fruitful in the interactive sense. The attention of the de-

sign system user begins to wander as the attention spans re-

2 Ira G. Wilson and Marthann E. Wilson, Information Computers

and System Design (New York, Wiley, 1965) p. 194.

-44-

quired of him get longer. However, the actual interaction
time is only one of many aspects affecting attention spans of
the user. Another, wi:ich has been frequently un-treated in
existing systems is the notion of cutting down the excess in-
formation required to convey an idea either from the user to
the computer or in the reverse direction. The whole point of
cutting down the required attention span is not, indeed, to
save the user time. Rather, the point is: it seems that in
the engineering design process, the less conscious effort that
the designer has to bring to bear on the communication of his
problem, the more free his mind apparently is to conceive of
creative alternatives to the design problem at hand.

3.2.4 Kinds of Graphic and Printed Communication

Design information is conveyed by signs, and with
few exceptions, the signs must be suitable for communication
between human beings. These signs are one of the subjects
considered in information theory. Usually, desired objects,
and the operations for producing and assembling them, are de-
scribed in these '"designer's signs'" as placed on "drawings"
and/or in "instructions." Engineering drawings use their own
peculiar signs and conventions that are quite unintelligable
to a person without adequate training. In fact, the amount
of information represented by the conventional signs and text
of the engineering drawing is very difficult to determine.

In the future, the ability to measure the amount of infor-
mation in a designer's drawing will make it possible to com-

pare different approaches to inputting the essential infor-

-45-

mation. Future work on this subject is discussed in section
7.2,

There are several purposes for which graphics can
be employed. First, as shown in Figure 3.4, the lines indicate
either entities or connections. However, these 'graphics"
do not convey ''data'" as they do in the full-scale drawing of
Figure 3.5. The third purpose for graphic communication is
demonstrated in Figure 3.6 where transmitting the configuration
or ""feeling for the layout'" is the goal of the graphics.

There are other notions related to communication of

graphic symbols. In relational relationships, of which a good

example is an equation, one side of the equation is related by
some symbol to the other side of the equation. This implies
that, when treated mathematically, an implicit or explicit
relationship holds. In graphic or printed communication, there

is the positional relationship, a good example of which is

having the characters "3 ohms'" being in the proximity of what
is generally conceived to be a resistance symbol. And this
resistance symbol, is itself an example of an explicit rela-

tionship.

3.3 The Influence of Design System Structure

In a typical situation the designer of discrete ele-
ment systems submits a system network to the computer for anal-
ysis. The results from the computer provide the designer with
insight and additional information which he uses to generate
a new or modified network for investigation. Also interwoven

here are periods of information retrieval. Until very recently,

-46-

13 (L Ja—

Figure 3.4. Graphics Conveying Topology.

4,250u-
3.000" 7Z
— N
875 7‘L .050°R
TYP.
y
375"
MAT'R.= ALUM. - 757D
Figure 3.5. Graphics Conveying Data.

|
/NN
NN

N\
S\

Figure 3.6. Graphics Conveying "Feeling for the Layout"

-47-

the designer had to prepare his input to the computer on punched
cards or tapes, and then submit his job for a batch run the
results or which became available only after an always present
delay, '"the turn-around time," which is typically one to two
hours.

The above mode of man-computer interaction has had
two major defects:

1) these formerly conventional forms of input to the com-
puter, that is, cards or tapes prepared according to
formats specified by the programs, are basically alien
to the design engineer. The designer is usually plagued
by input data errors until he develops a familiarity
with the particular programs; sometimes, only to find
out that he has been working on the wrong program.
These errors due to improper input data preparation,
disrupt the design iteration cycle and frustrate the
designer.

2) more importantly, the delay due to a relatively long
turn-around time in feeding back computational results
to the designer, makes it impossible for him to try
out ideas rapidly. This delay undermines the effec-
tiveness of the iterative design process.

One factor which would help bypass these man-computer
communication problems would be the use of on-line consoles
which have graphical input and output (I/0) capabilities.

Now, on-line graphical (I/0) capability can be implemented

in a myriad of ways. The following discussions elaborate on

-48-

some of the major points involved. First, however, the man-
computer displz: loop is depicted in Figure 3.7 below.
Computer Y Displays
r . v
Input Devices Designer

Figure 3.7 The Man-Computer Display Loop

The parts of the picture on a graphical console
represent both commands to activate certain programs (for
example, light button service); and, once the programs are
activated, arguments or data for the programs. Of course,
this principle of dual function is also true of the inter-

active typewriter.

3.3.1 Data Structures

Several times above, "interactive graphics'" and the
""interactive typewriter'" have been referred to. The following
discussion relates to those structural features of a design
system that make the "—active'" connotation a reality.

Graphic Data Structures

A graphic data structure must support both the graphic
command language (light buttons and comments), and an inter-

pretable user-generated symbolic topological representation

-49-

of the current design problem. The reason for this dual func-
tion is obvious—both are required. Many considerations are
implicit in the word "interpretable." The reason that the graphic

structure must be interpretable in the first place is explained
by again looking at Figure 3.3. When that figure was discussed,
the point was made that the net information flow from the de-
signer to the CPU of his computer-based environment was the

same on either channel A or B. However, on channel A, the de-
signer operates with less excess information by merely express-
ing his graphics thoughts by drawing. The drawing is then

interpreted by his environment and processed (supplemented)

according to some conventions in order to convey the required
information to the CPU.

The significance of the data structure relates to
"interpretation'" and is explained by stating some of the kinds
of questions that the environment must be able to ask about
the portions of a sketched problem topology. They are:

1) To what other system elements is this element
topologically connected?

2) Is the relationship active or relational?

3) What direction is the information flow between
instances (system elements)?

4) What is the name of this instance?

5) What are this instance's port label names?3

6) Which of all the defined instances are germane to

3 For the definition of '"port label" see Figure 4.3 and

its related text.

-50-

the current problem (i.e., which ones constitute the
network being analyzed)?

Operational Data Structures

Engineering systems are inherently combinations of

subsystems. Because one task of the designer as pointed out
in the discussion of Figure 2.3 is the suggestion of candidate
concepts, the structure of any design system must allow the
user to manipulate the elements under consideration. This
not only means add them to and delete them from the valid prob-
lem network, but also modify their individual properties. In
order to do this the data structure in which the element in-
formation is imbedded must be able to quickly answer many ques-
tions about the problem's components. For example:

1) What elements are defined?

2) What are their port labels?

3) What are the associated units?
A method of achieving this is outlined in Chapter 5, and the
operators employed here are listed in Appendix 3.

Information Retrieval

Similar to the considerations above, the designer
must be able to interrogate his environment about material
properties, currently defined entities and value-ranges quickly,
conveniently, and possibly with some sort of generalized coach-
ing. The reason for being able to do this is that an available
wealth of relevant data can enhance the performance of the
designer. Over a long time period the quantity of information

in a message going through an element cannot be increased.

-51-

In a design system, however, any individual user does not see
the system for a long enough time span to be considered '"long
time." Hence, if each individual user is in essence on a short-
time basis, the stored information when coupled with his input
can, indeed, apparently increase the information content of

the messages transmitted between the computer and the designer.
Obviously, the amount by which message content can be increased
would be a function of calendar time, as the library would be
built up with continuous usage. Because the nature of engin-
eering information is class oriented, (e.g., units and unit
conversion), an associative data structure very naturally al-
lows the kind of retrieval envisioned (see Appendix 1, section
3.1).

3.3.2 Computational Capacity

In Chapter 2 the point was made that design informa-
tion amenable to processing is associated with mathematical
models and their related analyses. These analyses are gener-
ally performed by "applications programs.'" Today, an abundance
of these programs exists; however, they are of varied languages
and formats. Furthermore, these programs have been based on
a myriad of assumptions and perform to varying degrees of
accuracy. All of this is to point out that flexible computa-
tional capability must be available.

Another consideration is the size of these indivi-
dual analysis programs. Many of these available routines are
very large. A design system requires computational flexibility

that will allow arbitrary analysis routines to be employed.

-52-

This can be provided by a sufficiently general (which implies
large) operating framework. What this says about the overall
structural organization of a design system will be covered

in Chapter 4.

3.3.3 Teaching Machine Capability

In section 1.2.3 the two connotations of '"teaching
machine'" were explained. The way that system structure affects
each of these is discussed below.

Relative to Engineering Content

In this case the message interchange is context de-
pendent. The messages to the user have the effect of increasing
his understanding of the engineering principles involved in the
current problem. The idea here is that the structure in which
he operates must be able to allow retrieval of user-specified
classes of information. It is possible with set-theoretic
operations such as '"intersection'" to correlate entity and unit
synonyms. For an example of this see section 3.2 of Appendix 1.

System Performance

The other meaning of '"teaching machine'" has to do
with the actual operation of the design system. The structure
must allow the user and the computer-based environment to
"parenthesize'" comments to each other. That is, a dialog must
be allowed about the system's operation—while the system is
processing a design problem, and without process interruption.
The principle for achieving this is discussed in the second

section of Chapter 4.

-53-

Furthermore, because it has been established that
a design system must be adaptive, it also follows that the
allowable coaching dialog must also be adaptive. Frequently,
documentation of this kind is not well done because it is a
task in parallel with the system growth. Hence, initiation
of changes should be done automatically.

3.3.4 Hardware

The influence of hardware can be covered in blanket
fashion. The basic characteristics necessary for the implemen-
tation of a system for design are:

1) a large directly-addressable memory space. Re-
call that in section 3.3.2, one system design prin-
ciple that gives a designer flexibility is allowing
him to employ large analysis programs without having
to alter them to "fit" his computer-based environ-
ment. The operation envisioned requires that a
memory space many times larger than the real pro-
grams be available.

2) direct access, as opposed to sequential file capability
for performance. The performance of the system described
here probably could not justify the system's existence
if the central computer's peripheral storage was on
tapes instead of discs.

3) the ability to reproduce multiple copies of some graphic
picture part. This can be done either with a sub-
routining capability or with large storage; however,

the latter is inefficient in a limited-size peripheral

-54-

computer when all the graphics is based peripherally.
4) the facility of "picking'" or selecting a graphic pic-

ture part.

CHAPTER 4

THE STRUCTURAL ORGANIZATION OF A COMPUTER-BASED DESIGN SYSTEM

This chapter explains the establishment of a struc-
tural organization (processing configuration) that will syner-

gistically handle the design information of reticulated systems.

4,1 Considerations Which Precipitate from the Class Structure

of Design Information

In Chapter 1 the notion of systems and subsystems
was established. Further, any system design task can be de-
scribed as: finding the entity or entities that will transform
a given set of inputs into a desired set of outputs. In Chap-
ter 2 the point was made that the classes of design information
depicted in Figure 2.3 '"communicate" such that the net informa-
tion flow among them proceeds from a set of inputs to a de-
sired set of output goals.

4.1.1 Inter-Class Communication

Physical systems are composed of elements which are
transfer functions for forces, voltages, etc. Their corres-
ponding analysis routines (element functions) quite obviously
constitute one required class of design information. However,
these element functions usually represent the characteristics
of a set of physical elements. To make them unique for a
physical element, parameters must be specified. Hence, an-
other class of information is the set of possible parameters
to be used with the element functions. An example of this
might be a gear reducer analysis routine for which face widths,
shaft diameters, speed, torque and other parameters must be

specified.
-55-

-56-

The usefulness of element functions therefore depends
on the existence of the required parameters. However, the mere
existence of the necessary parameters is insufficient; they
must exist in units compatible with the rest of the element
function whether they are retrieved from storage or monitored
"live."

Element functions have inputs and outputs just as
physical elements do. The fact that all members of the '"con-
straint" class are inputs, but that all inputs are not con-
straints alludes to the input specification problems of neces-
sity and sufficiency. Also, the class of goals is mapped onto
the element function outputs, and quite obviously, if their
intersection is a null set, no solution can exist.

The remaining class of information, candidate con-
cepts, describes the '"layout" of each design problem. This
class must exist for physical significance.

4.1.2 Some Specifications for the Structural Organization

Some of the classes of design information in Figure
2.3 immediately have relevance to the structural organization.
First, those classes in envelope B are to be stored for use
by subsequent designers. This requirement for storage capa-
bility means that a design system must have a library facility.
More than this though, the '"librarian'" must accept additions
while giving due consideration to the formats required for
future element function communication.

Another needed aspect of the structural organization

is a topology (candidate concept) interpreter. There must

-57-

be a facility which takes the designer's candidate concepts
and interprets them for use in determining the inter-element

information flow.

4.2 System Characteristics Required for Synergism

The characteristic operation of a design system must
be such that the effectiveness of the user/designer is in all
respects enhanced. 1In practice this means several things.

4.2.1 A Two-State Interface

First, at all times the designer must have absolute
control of the progress of his problem solution. Two situa-
tions must be considered. The first, is when the designer is
inputting new data, and the second situation is when the de-
sign system is struggling to develop a solution from the given
data. Here, the user must be able to monitor the information
flow with the option to interrupt at any time. Consequently,
a two-state interface is required.

As a Controller

In order for a computer-based design system to offer
the user preemptive rights at any time while supplying or request-
ing information, every message must be filtered. For example,
while working in the "Library'" mode, a sequence of characters
such as $T (which is a command to go to the topology specifi-
cation mode) is constantly being looked for. Further, in the
event of trouble, an attention signal must be allowed which
supercedes all previous commands and has immediate interrupt

priority.

-58-

As an Interpreter

The other state for the user interface comes into
use whenever the system must interpret and manipulate data.
Here, the '"attention'" property must still exist, and the user
must be able to monitor all system functions. Further, the
capability of the system to interpret '"alteration'" commands
must be available so that the user can spontaneously pose ques-
tions to the system or alter some already-specified portion
of his problem.

From the above discussion it is clear that the inter-
face must possess the properties of a transformer at certain
times, and a modulator at others. This idea is shown in Fig-
ure 4.1. Borrowing from the terminology of network theory,
the interface must at some times act as a two-port device and
at other times as a three-port device. 1In essence it must be
a variable multi-port device. This idea will subsequently be
referred to as follows: the user interface must possess the
characteristics of a Vari-port 1link (VPL).

4.2.2 'Set' Orientation for All Information Classes

The second requirement for synergism is that there
should be as fast a response as possible to all user requests
and commands. This is in keeping with the previous discussions
of the effectiveness that is lost when a designer's train of
thought is broken by slow interaction.

It is well known that retrieval from an associative
(set oriented) memory can be faster than list searching for

many applications. The writing of payroll checks from employee

-59-

—
USER INTERFACE SYSTEM
)
AS A TRANSFORMER
USER
—_— s
SYSTEM INTERFACE SYSTEM
. -
AS A MODULATOR
Figure 4.1. Interface States of a Computer-Based

Design System.

-60 -

personnel files would probably be faster if implemented using
list searching (in this example sequential selection). Yet,
if the question "How many married male employees over forty
years of age subscribe to our hospitalization plan?" were to
be asked, a random access method of retrieval would provide
the answer quicker than 1list searching. The design process
is such that retrieving one piece of design information gives
zero information about what might have to be retrieved next.
Hence, if the structure of a design system is built to operate
associatively the response will probably be faster.

The consideration is: how does one represent each
of the classes of design information in associative form?

An Instance Is a Relation

A mathematical relation is a set of ordered pairs.
Furthermore, the graphic instance of Figure 4.3 can be re-
presented by the relation:

= {<COMPRS,L,>,<COMPR5,L >,<C0MPR5,L3>}. (4.1)

NcoMmpRs 1 2

COMPRS f— L

Figure 4.3 A Typical Graphic Instance

-61-

An instance can be defined as a relation the domain of which
is the instance name, and the range elements of which are the
port labels.

Taking this concept one step further, a system is
a relation. Consider the following relation:

S = {<<N1,L1>,<N2,L3>>, AU N (4.2)

Here, each element of each ordered pair is itself an ordered
pair. In fact, each element (Ni,Lk) is a unique port label,
if no two instance names in the same problem are identical.
This relation S describes the entire topology of the system
because connectedness is given by the pairs and directionality
is given by their order.

An Associative Library

The first reason for having a library in which the
information is stored in associative form is so that nested
questions can be asked by the designer and quickly answered.
For instance: What element functions are available that have
the word HEAT in the title and have a specifyable mass flow
rate input?

Another reason is that if references to the stored
element functions and parameters are themselves in relational
form, then set theoretic mathematical operators can be used on
them. This allows quick checks for unit format and conversion.
It also readily allows mapping of instances onto their proposed
element functions to check for compatibility.

Finally, with associative storage, high-level user-

directed correction and editing routines can be written (see

-62-

Appendix 1) that allow the designer to alter material already

processed by the design system.

4.2.3 An Adaptive Capability

The final required characteristic is that the system
be adaptive. In Chapter 2 it was mentioned that this very
research has been conducted according to the design approach
outlined there. Quite obviously, the possibility for feedback
exists for this problem as it does for others. Given that,
it must then be possible to have the system adapt to new user
requirements. This means that the embryo structural organi-
zation must be capable of restructuring itself to accommodate
future user needs.

Furthermore, given that a system is adaptive, because
it has teaching machine capabilities its documentation must
also be adaptive. This is difficult because these are essen-

tially parallel tasks that must be done sequentially.

4.3 The Structural Organization

Based on the above, the basic elements of the struc-
tural organization, as shown in Figure 4.4, are:

1) Vari-port Link (VPL) - to help make possible syner-
gistic communication

2) Library - for the storage of element functions and
parameters.

3) Topology Interpreter (T/I) - for interpreting a
possible method of information processing from a

given problem network.

-63-

USER

VPL

LIBRARY

figure 4.4. The Structural Organization.

-64-

4) Problem Staging Area (PSA) - for construction of
problem solution instructions.

5) Storage

6) Coaching and Error Comment Generator (CECG) - for
providing '"teaching'" type assistance.

7) Newmode - for adding new user-specified modes of

operation.

4.4 Using This Organization to Process Design Information

Processing the information associated with the system
networks of mathematical models means considering networks of
information flow.

4.4.1 Description of the Given Data

Given a system relation of the form of Equation 4.2,
an information network of the type shown in Figure 4.5 can
be derived. Regardless of the nature of the real physical

system being modeled, the corresponding information net of the

R\

Figure 4.5 A Problem Information Network

-65-

mathematical model is a directed graph, which can be represented
as indicated by the arrows of Figure 4.5. This is referred to
as the topology of a design problem.

4.4.2 Interpreting the Given Data

It is fairly easy to conceive of an information net-
work such as the one shown in Figure 4.5 being derived from a
system relation. At this point, element functions have al-
ready been made to correspond to the physical system elements
(this is accomplished in the implementation discussed here as
shown in Appendix 6). This network is ready to have a pos-
sible processing method interpreted from it. To begin process-
ing, the set of nodes that can be starting points must be iden-
tified. Further, the remaining nodes or element functions
must then be ordered for processing. This leads to the fol-
lowing.
* k% Definition 4.1
Given the non-empty sets B,C --- A(B,C) is an
algorithm from B to C if and only if it is of the
following form:
A(B,C) = {<x,y>:(xeBAyeC) §

<X,y>eA A<X,z>eA » y=z}

Note that this formulation says the following:
1) The domain of A is B, which is a set of "input-sets"
(each input-set is an element of B and has an asso-
ciated element in C).

2) If the null set is an element of B (i.e., if PeB),

3)

-66-

then it has an associated element y in C (i.e.,yeC).
This allows an algorithm which will simulate an in-
finite source.

If x¢B, then x as an input-set is meaningless, and

the notion of "specified" can be defined as follows.

*okk Definition 4.2
An input-set is specified relative to A if and only
if it is an element of the domain of A.
As an example of the above, consider the mathematical
operator SIN as an algorithm. If its domain B is the set of

real numbers R, then

SIN : R >~ R

X is specified relative to "SIN" if and only if it is a real

number.

* k%

* %k %

* k%

Definition 4.3
An input-set can be processed by A if and only if

it is specified relative to A.

Definition 4.4

An element function is a set containing a single

ordered pair {<B,A>}, where B is any input-set and A

is an algorithm.

Definition 4.5

An element function Q is parameterized if and only

if its input-set is an element of the domain of its

algorithm. [i.e., Q is parameterized iff D(Q)eD(R(Q)),

-67-

where D(A) = {xe By) (<x,y>eA) },
and R(A) = {y: (3x)(<x,y>eA)}]
de ko Definition 4.6

To execute an algorithm A is to have it process

an input-set.

* ok ok Definition 4.7
The list of parameterized element functions of an
information network ordered for execution is called

the priority list (P-1list).

* ok %k Proposition 4.1
An element function G = {<B,A>} can be executed if
and only if it is parameterized.
PROOF:
1) If an element function is not parameterized, then
by Definition 4.5 its input-set must not be an element
of the domain of A. Hence, by Definition 4.2 the input-
set is not specified, by Definition 4.3 it cannot be
processed, and by Definition 4.6 the algorithm cannot
be executed.
2) Because the domain of an element function either is
or is not a member of the domain of its range, an ele-
ment function can be executed if and only if it is

parameterized.

If every element function (node) in the network has
at least one input which is "known'" only as a result of the

execution of another element function, then at some point in

-68-

the network at least one node is required to have all of its

inputs of this type known (possibly by estimation) so that

execution can begin. This idea leads to the following defin-
ition.
*kx Definition 4.8

A trial value is that estimated value which is

assigned by the designer to a member of an input-set
when that member is also a member of an "output-set"
of another element function in the network.

The idea of developing a computer-based design system
is to enable the designer to observe '"system'" effects while
treating more component interactions quantitatively. However,
if he has to estimate or guess many of these interactions, the
design system is no improvement over conventional interactive
analysis. Consequently, it seems that the interpretation for

a possible processing scheme is dependent upon trial values.

The Role of Trial Values

* ok % Theorem 4.1
The minimum number of trial values required for an

acyclic network is zero.

-69-

1) By the definition of "acyclic," no arc progression
exists which terminates on itself; hence, the first
parameterized element function of each arc progression
satisfies the hypothesis of Proposition 4.1.

2) From the definition of an arc progression, the kth
element function is reached by exiting from the
(k—l)th element function; hence, no other element
in an arc progression of parameterized element func-
tions will violate the hypothesis of Proposition 4.1.

3) Therefore, with the first elements of each arc pro-
gression completely specified, and subsequent elements

dependent only on these first elements, no trial

values are required.

*ox % Theorem 4.2
The minimum number of trial values required for a

non-acyclic network is one.

1) By definition, a cycle is an arc progression whose
beginning and ending vertices are coincident.

2) With no trial values, then there exists at least
one cycle in which all elements violate the hypothe-
sis of Proposition 4.1, because each element is de-
pendent on the previous one in the cycle for at
least one input.

3) If there were no cycles the graph would be acyclic,

-70-

but with the minimum of one cycle, the minimum number
of trial values is one because any element in the
cycle to which the trial value is applied is completely
specified thus making the rest of the cycle an arc
progression of element functions which satisfy the
hypothesis of Proposition 4.1.

4) Hence, the minimum number of trial values required

for a non-acyclic network is one.

X

Y
A 1 2 [—PB
Figure 4.6 A Non-Acyclic Information Network

* Kk Definition 4.10

An elementary cycle is a cycle in which while tra-

versing the cycle each vertex is encountered only once
(except, of course, the initial and terminal vertices

which are coincident).

* Kk Definition 4.11
Two cycles are disjoint if and only if they are

without common arcs.

* x ok Definition 4.12
A cycle is open when one of its arcs is cut thus

making it an arc progression with no common vertices.

-71-

*ox K Theorem 4.3
The minimum number of trial values required to form
a P-list is equal to the number of disjoint elementary
cycles in the network.1
PROOF:

1) If the network is acyclic, then by Theorem 4.1 the
number of trial values equals the number of cycles,
namely zero.

2) Consider a network having n disjoint elementary cycles.
With all of these cycles open the graph is acyclic
and we have the case above. If n-1 cycles are opened
using trial values, then there must still exist
exactly one cycle in the network. In this remaining
cycle, none of its elements can be a starting point
for processing because they all violate the hypothe-
sis of Proposition 4.1. However, by cutting oﬁe arc
of this cycle and parameterizing the first element
function of the arc progression with a trial value,
this cycle too can be ordered for processing. Hence,

total number of trial values required is n, the number

1 This Theorem has been discussed with Professor Frank
Harary, Mathematics Department, The University of Michigan, and
pointed out that a stronger theorem has been proved in an-
other form.
The Theorem: If a digraph is strongly connected, with p
nodes and q arcs, the number of arcs that must be
snipped to make it acyclic is: q - p + 1.

For the proof of the above theorem see: Frank Harary, Robert
Z. Norman, and Dorwin Cartwright, Structural Models: An
Introduction to the Theory of Directed Graphs (New York,
Wiley, 1965).

he

-72-

of disjoint elementary cycles in the network.

* oKk Theorem 4.4
A unique ordering for the P-list can exist only if
the number of trial values is a minimum.
PROOF:
1) Let the minimum number of trial values required be
one (1).
2) Let two (2) trial values, x and y, be assigned to two
(2) element functions.
3) If one would have sufficed, and two elements are
now completely specified, either of these element
functions by the hypothesis of Proposition 4.1 can be
the starting point for processing.
4) Hence, with neither one depending on the other, no

unique ordering exists.

The Interpretation Algorithm

Interpretation of the given data for a possible pro-
cessing scheme, or P-list, is totally dependent on the exis-
tence of sufficient trial values if the network is cyclic.

The following algorithm will analyze a system relation to
see if a P-list can be derived.

1) From the set of instance relations for the system
under consideration retrieve all instance relations
which have a trial value input port, and all those
which are parameterized. If one or more instance

relations are retrieved, put it (them) on the '"next"

-73-

list, if not, go back to the designer.

2) If a "trial value instance'" does exist, and if all
of its input ports are specified, remove it from the
"next" list and put it on the P-1list, otherwise put
a parameterized instance on the P-1list.

3) Put all of the instances to which that P-1list entry
provides information on the '"next" 1list if they have
not already been put on.

4) Pick the first item from the '"next'" 1list and see if
it is either parameterized, or the ports from which
it gets its information are the outputs of instances
already on the P-1list. If so, put it on the P-1list,
perform (3), and remove it from the '"next" list. If
not, try the next item on the '"next" list.

5) Continue (4) until the '"'next'" 1list is empty and all
instances are ordered on the P-1list. Then return to
the designer—indicating success.

6) If an item or items cannot be put on the P-1list,
which is signified by a pass through the '"next" list
that results in no additions to the P-1list, then

return to the designer.

As an example, consider the information network of
Figure 4.7, where "P's" indicate designer-specified parameters,
and "T's'" indicate designer-specified trial values. Table 4.1
shows the '"next'" 1list and P-1list entries that correspond to

the steps of the Interpretation Algorithm.

-74-

Figure 4.7 An Example Information Network

Status of
Step No. "Next" List P-List
1 a,f (empty)
2 a,f a
3 d,f,e,c a
4 d,f,e,c,b a,f
4 A, f,e,¢,b,g,d a,f,c
5,4,3 d,.f, ¢, ¢,b,g,d a,f,c,e
5,4,3 A,f,¢,¢,6,g,d,h a,f,c,e,b
5,4,3 A,f,é,¢,p,g,d,1 a,f,c,e,b,h
5,4,3 A f. ¢, ¢, b,g,4,1 a,f,c,e,b,h,d
5,4,3 A, f,é,¢é,p,¢6,4,1 a,f,c,e,b,h,d,g

Table 4.1 '"Next" List and P-List

an Example Implementation

Entries for
of

the Interpretation Algorithm

-75-

The Interpretation Theorem

From the previous algorithm, the following theorem

immediately follows without proof.

* ok ok Theorem 4.6
Given a system relation with attributes (i.e., trial
values, parameters, inputs, outputs), there exists an
algorithm which will reveal whether or not a processing

scheme exists for the given data.

* ok k Corollary 4.1
System relations can be processed (the network solved)

if and only if a P-1list can be derived from the given

data.

Keeping in mind that the designer should have a com-
puter-based system which will allow him to consider his problem

per se, and not what is required to enter it into the computer,

the following axiom is relevant.

* kK Axiom 4.1
As the number of trial values required to begin
processing increases, the number of decisions that the
designer must make increases. Hence, if any of the
trial values that a user specifies is not required,
some effort is being wasted in addition to the distrac-

tion involved.

Note that because the system has a designer in the

feedback loop, nothing is said about when to terminate a trial

-76-

solution. Depending on the current purposes of the designer,

terminating processing is left completely to his discretion.

* ok Proposition 4.2
Considering other variables as temporarily fixed,
the designer must make fewer decisions to begin a solu-
tion if the P-list employed is uniquely ordered.
PROOF :
1) By Theorem 4.4, the P-list can be uniquely ordered
only if the number of trial values is a minimum.
2) By Axiom 4.1, the number of decisions to be made
increases with the number of trial values required.
3) Hence, if the P-1list is uniquely ordered, considering
other variables temporarily fixed, the designer makes

fewer decisions to begin a solution.

In Chapter 7 this work is again discussed in terms
of "Conclusions and Open Problems.'" The current Interpretation
Algorithm does not yield a P-list based on a minimum number
of trial values because the number of trial values is "dic-
tated by'" the designer not '"suggested to'" him as envisioned
for the NEW BUILD.

The Model

The model or template which determines the necessary
and sufficient specification for the processing of an infor-
mation network is the n-element P-1list and the algorithm to
derive it, where n corresponds to the number of element func-

tions in the problem topology.

-77-

One can imagine that even a unique P-1list might well
represent a maximal amount of computation; however, this design
system was conceived to reduce the effort required of the de-

signer, not the effort required of the computer.

CHAPTER 5

THIS DESIGN SYSTEM (TDS)

The goal of this chapter is to explain how TDS oper-
ates conceptually. How to use the existing prototype is covered
in Appendix 1, "A User's Guide to TDS." The details of the

implementation are covered in Appendix 3.

5.1 The Structural Organization

Chapter 3 established the idea that a computer-based
design system should enable the designer to consider more
component interactions quantitatively than previously possible,
and do this with less effort. Further, while the computer has
been used for interactive analysis, another connotation of
"analysis'" relates to the "interpretation'" of input infor-
mation. This interpretation is to reduce the effort required,
and distraction caused by, methods of data input with high
levels of excess information. '"'Least excess information'" was
also discussed with respect to several other forms of design
information. Hence, the structural organization of TDS has
"interaction with least excess information'" as its primary
design objective.

5.1.1 An External View

The "external'" view of the structural organization
of TDS does not mean the physical appearance of the implemen-
tation. Rather, the meaning is closer to what is convention-
ally called a flow chart. However, Figure 5.1, while it does

give the external view of TDS' structural organization, is

-78-

-79-

‘uortlezIuedag

TBIN3odNnIls ,SAL FO MOTIA [BUIL1IXY 9YL T1°S @2an8ty
49VY0LS
AAILVIDOSSY
I1/1
oL) AIVILIT
VSd mu<mOHML
NCTLSINO
31n0dX4 —
Y4TT049INOD |— — —— dILIYAUTLINT
aling
JA0W MAN

-80-

actually a '"macro-component'" diagram. It is not a flow chart
in the conventional sense of the word because the boxes connote
tasks and not functions. The similarity between Figures 5.1
and 4.4 is more than a coincidence.

5.1.2 An Internal View

The "internal'" view could more aptly be called the
menu of the division of labor. Following are the descriptions
of the tasks performed by the major components.

The Interface Executive (See Appendix 3 - SEL/338)

This component is the operating support device for
the interface. It provides all services for input-output de-
vices such as the teletype, data communications link, light
pen, etc. Further, it queues tasks so that all jobs are as-
sured of completion in their proper priority. Probably its
most important service is providing basic operators that build
an interpretable graphics data structure. It is this data
structure which allows a designer to have a problem topology in-
terpreted by the "aiding programs'" referred to in Chapter 3.

The Interface Support (See Appendix 3 - TDS/338)

As far as graphics is concerned, this component
constitutes the "aiding programs.'" The service provided here
first enables the designer to define graphically (in free for-
mat) system topologies, including names, and then interprets
the topology so that the implied analyses may subsequently
be performed. Any time that this component is in service it
performs many bookkeeping tasks that enable the designer to

conveniently manipulate graphical entities.

-81-

The Central Computer (See Appendix 3 - TDS/360)

Within the central computer several significant tasks
are handled by various components. The controller component
embodies most of the Vari-port link concept. It monitors all
communication, keeps track of where the last information inter-
change took place, and how any other system component should
be approached at any particular time.

When acting as a transformer with respect to the
library, it insures that new library entries are channeled to
the proper documentation area. The library itself controls
format, size, units, names, etc. For example, when a new ele-
ment function is entered into the library, the port names
must be entered with their corresponding units. Further, for
each port name, the starting column, field length and mode are
requested (e.g., floating point). This latter is an example of
certain Vari-port link transformations that are performed ex-
ternal to the controller. Also, the controller channels all
element relations to the topology interpreter. However, their
format is insured by the Interface and only interpreted by
the T/1I.

When acting as a transformer, the controller performs
two other tasks. First, it recognizes requests for error com-
ments and gives the return message a priority status without
disrupting the current state of the system. Second, any tasks
that can be broadly classified as "examining" are handled in
the "transformer mode." These include interrogating the 1i-

brary, examining previously stored problems, etc.

-82-

When acting as a modulator, the controller keeps
tabs on the library, the problem topology and the stored in-
formation as they are used by the topology interpreter to de-
velop a possible method for processing. Essentially, the con-

troller operates as a modulator in the "Build" mode.

5.2 Implementation Basics

Certain basic principles have been followed in the
development and implementation of TDS. An outline of the im-
portance of each of these follows.

5.2.1 Of the Interface

Task Scheduling (with I/0 Device Allocation)

A synergistic man-computer system must allow either
party to initiate a request or command (a '"task'") at any time.
If the system disallowed the initiation of a new task until
a former one was finished one or both of the following unde-
sirable situations could occur: (1) the designer might be
forced to wait, or (2) the central computer may be unable to
convey an answer to the designer until a prior task is com-
pleted.

The most desirable effect of task scheduling (or
time-sharing between tasks) is that the user always has com-
mand, and the mundane tasks are performed more or less trans-
parently to him.

High Speed Tracking

If a light pen is used, all light pen tasks (graphics)
rely somehow on the tracking services provided by the interface

executive. For drawing to be natural, the tracking must be

-83%-

very fast and provide the '"location'" data required for drawing
system networks. The design criteria must not be for the "av-
erage' man, but for the user who requires the greatest speed.
Fast tracking implies that the speed and versatility of the
service are worth the increased size and complexity. Of course,
this assumes the existence of a high speed tracking service
(measured in this implementation at approximately 100in/sec).

Operator-Interpretable Graphics Data Structure

When all the graphics is in the peripheral machine
there are three good reasons for having a graphics data struc-
ture which has a canonical form.

First, only a small number of operators is then
required to dynamically operate on the data structure.

Second, it is possible to design operators to '"ask"
graphics questions such as "to what other instance are you
attached?"

This means that system networks can have their ele-
ments readily altered, traded, and interpreted for connected-
ness and directionality.

Third, the peripheral machine is of a limited size.
Yet, 1t 1s desired that the designer be able to manipulate his
designs. Hence, unless machine capacity is exceeded, there
is some '"'used" '"scratch'" area existing. An interpretable data
structure allows an easily employed housekeeping operation to
be in operation continually, insuring that only 'good" graphics

is retained.

See Appendix 3.1.

-84-

5.2.2 O0f the Central Computer

The Controller

The importance of having a point through which all
communication flows cannot be overemphasized. By following
this principle it is possible to screen every inter-component
message. This seems natural when designing the "transformer"
mode, but must be forced so that a '"modulator" mode exists.

NEWMODE

The adaptation of the design system configuration
to user's needs is one of many characteristics required to
insure that the original configuration does not '"constrain"
user solutions. The fundamental property required is a file-
oriented operating system. This not only means that files or
sections of them can be executed, but that they can read and
write on, and direct the execution of each other. With the
capability of being able to write on each other, the future
connections to the system are ''system specified." This means
that a user cannot extend the system incorrectly. However,
the content of the extensions is up to the user, so in a sense
he can attempt to add anything.

Associative Storage

The reason for storing design data associatively
is so that random access retrieval will be reasonably econo-
mical. For example, engineering constants and their units
are particularly suited to associative storage, as 1is the
documentation of analysis programs. Further, if the question

arises as to what elements are connected to the output of a

-85-

particular element, the answer is simply the range of the set
of output connections.

Necessary and Sufficient Check

The need for this check is obvious in a sense, but
the location of the check in the sequence of design events
is important. It is undesirable to let the designer think
that a network is ready for execution and then have him receive
major operating error statements. He should have the specifi-
cation checked (as described in section 5.1.2 under '"The
Central Computer') as soon as he tries to use his input de-
sign information. In TDS, the specification is checked any
time that a match is to be made between some topology and the
corresponding analysis programs.

Miscellaneous Source Languages

The idea of saving the designer work is greatly ex-
tended if the many currently existing analysis programs can
at least be tried by him. However, they are generally in dif-
ferent languages, formats and with incompatible units. There-
fore, the design system must have unit conversion, a general-
ized format template, and allow those languages whose compilers

are available.

5.3 A Fundamental User Consideration

The analysis capabilities of this design system in-
terpret network nodes as element functions. The design could
have been based on network arcs being interpreted as the ele-

ment functions. This fact must be borne in mind when problem

-86-

topologies are being described to TDS. For example, in a par-
allel electrical network, the passive and active elements have
historically been represented graphically as the arcs. The
"nodes" in these representations are locations at which the
"flow" divides. 1In this design system, information flows.

The computer cannot be expected to know how to divide a stream

of information. Hence, problems must be formulated so that

network nodes are element functions. Kirchoff's laws hold

for information networks just as they do for electrical, mechan-

ical and hydraulic networks.

CHAPTER 6

SYSTEM DESIGN IN AN INTERPRETIVE ENVIRONMENT

"... in theory-construction one is concerned with
information and then knowledge; in design one is concerned
with information and then action.'l

Joseph Esherick

The first two sections of this chapter discuss the
performance of the prototype system. First, the way in which
it interacts with the designer to solve some problems, and
then some remarks on its apparent effectiveness. The chapter
closes with some points about the significance of the work to

both engineering educators and engineers in industry.

6.1 Commented Examples of TDS' Implementation

The following examples have been selected to demon-
strate several points. First, the disciplines represented
are varied, demonstrating that This Design System is context
free. The only common characteristic among the systems is that
they are all discrete element, or reticulated. Second, the
systems represented are, in reality, series, parallel or
"mixed" networks. Third, the formats of the analysis programs
used are varied. Finally, these examples '"use'" the library
to varying degrees.

One final note should be made concerning these ex-

amples. Although each individual analysis is almost trivial,

1 Joseph Esherick, "Problems of the Design of a Design System,”
Conference on Design Methods (New York, Pergamon Press, 1963)
p. 79.

-87-

-88-

the solution of these problems as ''nmetworks'" by other means
could be very laborious.

6.1.1 Design of a Simple Refrigerator

In this problem, the horsepower required to drive
a compressor is unknown. The compressor is part of a simple
refrigeration cycle as shown in Figure 6.1. One of the graphic
instances (network elements), the compressor, is shown in

Figure 6.2 just as it was defined graphically.

108
CONNECT

RENOVE CONNECT DETACH TRANSLATE ESCAPE

Figure 6.1 A Simple Refrigeration Cycle

-89-

DELETE AdJuST : ESCAPE

Figure 6.2 The Graphical Definition of the Compressor

DS
CREATE

DELETE

ADJUST ESCAPE

Figure 6.3 The Defined Menu

Given:
(a)
(b)
(c)
(d)
(e)
(£)
(g)
(h)
(1)
(i)
(k)

Analysis:

(a)

(b)

-90-

The formulation of the problem is as follows.

Copper tube I.D. = .2 inches, 0.D. = .25 inches
Heat Load = .3 tons

Refrigerated Space Temperature = 36
Ambient Temperature = 74°F

The valve is an orifice.

Evaporator Pressure = 24PSI
Compressor Inlet Temperature = 0°F
Forced Air Convection at both heat exchangers
36 feet of tubing in each heat exchanger
Compressor Outlet Temperature = 140°F

Constant mass flow rate = 5 1lb/min, F-12

(Steady State, negligible kinetic and potential
energy changes for flowing Freon-12.)

Compressor

X0
ISt Law:)ﬂ‘+ mihi = P + mehe
m. = m
i e
he = hi - P/m
Condenser
t 0
S . .
1 Law: Qi + mihi -)ﬁ+ mehe
m. = m
i e
Qi = hAAT = hLTrDO(TAVE - TAMB)
he = hi - hL'!(DO(TAVE - TAMB)/m

-91-

(c) Valve
15t Law:){!+rh.h. =/\+Iﬁh
i ivi e e
m, = nm
i e
h = h,.
e i
(d) Evaporator %0
1St Law: Q. + m,h, =/ﬁﬂ+ m_h
i ivi e e
m. = nm
i e
he = hi + Qi/m
Algorithms
INSTANCE PROGRAM
NAME NAME INPUTS OUTPUTS ALGORITHM
COMPR FCOMP H1,P,MDOT H2 H2=H1-P*2545/(MDOT*60)
COND COND1 H1,HBAR,L H2 H2=H1- (HBAR*L*3.,14*0D
MDOT,OD,DELT *DELT)/ (MDOT*60*12)
VALVE VALV1 H1l H2 H2=H1
EVAP EVAP1 H1,HTLOAD, H2 H2=H1+HTLOAD/ (MDOT*60)
MDOT

For the computer solution to this problem, see Appendix 6.

6.1.2 Simulation of the Calibration of an Instrumented

Cantilever Beamn

The idea of this problem is to simulate an instru-
mented cantilever beam so that a workable instrumentation con-

figuration can be determined for various beams.

~92-

D8
CONNECT

RENOVE CONNECT DETACH TRANSLATE [314.143

Figure 6.4 A Wheatstone Bridge Simulation

In the above figure, the configuration is not com-
pletely connected because the core space in the peripheral
computer which is allotted to graphics has been exceeded.

This is a good demonstration of the yet-to-be-improved divi-
sion of labor noted in Appendix 4. Consequently, the solution
which follows was done in the $T[TTY] mode of TDS.

The formulation of the problem is as follows.

Conventionally

-93-

Ry,q = R*OR = R(1+57p5) G = 25;5 - 2BLE
R, 5 = R-OR = R(1-2ELC s = e = B2C g
s - RGELC

Egp I.(Ry + Ry)

Ey - B, = I.R,

I, = I,

Ep - Ep = Epp ﬁ%fiZ

Ec - Ea = Eps E%%ﬁ:

€o = Ep - B = EBB[RTiRz Rfqu] = EBBég = EEE;;EEE
Example

For Parameters:

G=2; L=10; B=1.5; E=10,000,000; H=.25; EBB=6;

R=120; F=10

From set up: \\\\\\\\ »

>~

DR1 = +1
DR2 = -1 \\\:::;
DR3 = -1
DR4 = +1

R11 J”//

R1 = 120(1 + 1 * .00125) = 120.12 =

R2 = 120(1 +(-1%*.00125)) = 119.85

R3 = 120(1 +(-1*.00125)) = 119.85 = R31
R4 = 120(1 + 1 * .00125) = 120.15

IL = 6/
IR = 6/
EX = 6-
EY = 6-
EO = EY
Using TDS

-94-

(240) = .025
(240) = .025
.025(120.15)

.025(119.85)

- EX = .3(.025) = .0075V

1) Eight element functions are required.

2)

(a)

(b)

(¢)
(d)

(e)
(£)
See

Note

(a)

(b)

Calculate the strain gage resistance values as
a function of gage orientation, materials, geo-
metry and force for a 4 gage bridge on a canti-
lever. [W1]

The current draw on the battery of a Wheatstone
bridge. [W2]

Ohm's Law with voltage drop dependent. [W3, W4]
An oscilloscope whose output is a difference of
two inputs. [W5]

A node whose outputs equal the input. [W6, W7]
Calculate C & I for a rectangular beam. [W8]
Figure 6.4

s:

Not only can the applied force be changed, but
so can gage mounting and all geometry.

The solution is not iterative, it is exact for
the assumed potential drop across the

battery.

-95-

Algorithms
INSTANCE PROGRAM
NAME NAME INPUTS OUTPUTS

LOAD W1 F,R,G,XL,C,E, R1,R2,
XI,DR1,DR2, R3,R4
DR3,DR4

BATT w2 EBB,R12,R2, IL,IR
R32,R4

Gl W3 IL,EBB,R11 EX

G2 W4 IR,EBB,R31 EY

SCOPE W5 EX,EY EO

D1 Wé R1 R11,R12

D2 W7 R3 R31,R32

MOMI W8 B,H C,I

 ALGORITHM
DELTAR=(G*F*L*C)/(E*I)
R1=R* (1+DR1*DELTAR)
R2=R* (1+DR2*DELTAR)
R3=R* (1+DR3*DELTAR)

R4=R* (1+DR4*DELTAR)

IL=EBB/(R12+R2)

IR=EBB/(R32+R4)
EX=EBB-(IL*R11)
EY=EBB- (IR*R31)
EO=EX-EY

R11=R1

R12=R1

R31=R3
R32=R3
C=H/?2

I=(B*(H**3))/12

For the computer solution to this problem see Appendix 7.

-96-

6.2 A Comparison with Conventional Practice

In the following comparisons ''conventional'" is taken
to mean either paper, pencil and slide rule or interactive
teletype. The context will make the meaning clear.

In comparing TDS to conventional methods it be-
comes clear that an interactive design system forces the de-
signer to determine a quantitative ''good enough ... I'm done"
criteria. This leads to a saving in time. On the other hand,
many of the small tasks that could be performed by a designer
on TDS would be too much trouble if not done conventionally.
Usually the criteria for enough iterations on a design is that
it "seems right."

When considering some '"design'" systems that do not
have their own library or extensive specifyable coaching, both
of these capabilities in TDS seem to be valuable assets. A
library that can be interrogated brings to the designer's at-
tention existing programs (even in a miniscule library) that
would possibly help. Further, having the opportunity to add
element functions of personal relevance by merely answering
a sequence of queries is a nice feature.

The one feature that is outstanding is the ease with
which a problem topology can be manipulated. All the processing
related to "bookkeeping'" when an element is added, removed or
altered is done by the system. This leaves the designer free
to consider his '"real" problem. In fact, he doesn't hesitate
to try some alternatives because they would be too much bother.

He can afford to sojourn into unknown areas and thereby possibly

-97-

gain some new knowledge. Furthermore, the designer can now
afford to handle some traditionally complex problems in a more
sophisticated manner. For example, certain '"factors'" in en-
gineering equations are based on formulas, but they are gen-
erally taken to have a particular "value" to avoid the labor-

ious evaluation involved.

6.3 Significance of the Work

The author believes that a system of this type can
offer some new opportunities to industry and to the academic
community. All of the following comments, however, assume
a pool of potential users so that the cost of developing and
maintaining such a system can be justified.

6.3.1 For Industry

Industry is constantly forging into new areas whose
technology demands more detailed analyses of ever more complex
systems. A computer-based design system constructed on the
principles outlined, gives the user an advantage while more
is being demanded of him. Namely, the effort that he must
expend to interact on enough ideas so that he can make a de-
cision is decreased. Further, with the communication at a
high level, the designer (1) can affort to "experiment," and
(2) does not have to cast aside some alternatives because they
would be too much bother to investigate.

Another point, considering that the system is adap-
tive, is that a mode can be added to yield numerically con-

trolled (N/C) machine tapes directly from drawings. This con-

-98-

cept by itself has been developed,3 but it is yet to be tied
elsewhere to a general system design capability such as TDS.
In fact, this idea can be carried, using other modes, to the
point that manufacturing specifications are generated auto-
matically, possibly even including the best route through
available production facilities.

Obviously certain individuals in industry sometimes
""design' systems that do not result in manufactured hardware.
For example, plant engineers who are concerned with layout,
or industrial engineers who are concerned with production and
requisition routes and timing do design work. These people
would find a ready use for an easy way to communicate flow prob-
lems to a central computer for some type of data manipulation.

6.3.2 For Engineering Educators

It seems that the fundamental problem facing engin-
eering educators is to take the third year students with sound
technical fundamentals and mold them into engineers. These
students must make the transition from textbooks to actual
engineering (design) problems. The contribution that a Sys-
tem such as TDS would make is that during a short university
term, the fledgling engineer would get an opportunity to make
many essentially costless mistakes with the simultaneous ad-
vantage of his instructor's commentary. The use of TDS in an
academic environment seems to be natural because the analysis
programs developed in the terminal semesters would feed the

design system while certain term projects could extend it.

3 Marvin T. Ling, The Logical and Analytical Structure of the
Computer-Aided Design Process as Applied to a Class of Mechani-
cal Design Problems (University of Michigan, 1964).

CHAPTER 7

CONCLUSIONS AND OPEN PROBLEMS

This study has concentrated on increasing the effec-
tiveness of the engineering designer by providing him with an
interface to a new computer-based environment. The purpose
of the interface is to allow him to consider more problem com-
ponent interconnections quantitatively, thereby getting more
data per unit time on which to base design decisions. As con-
ceived and constructed, the prototype interface is a logical
peripheral device remote from a large central computer. The
performance of the prototype design system seems to be sensitive
to a number of distinct but related parameters: drawing speed,
graphic data structure operator speed, peripheral task switch-
ing speed, central file switching speed, data‘retrieval speed,
time to increase allotted storage and especially the other

simultaneous users on the central computer.

7.1 Conclusions

From the operation of This Design System, it seems
obvious that manipulating the topology of a design problem is
best done graphically. TDS not only allows the designer to
manipulate information readily (unbind and re-bind previous
decisions), but having a constantly up-dated picture of the
problem topology as a whole seems to give him quite a ''feel"
for the problem being considered. Furthermore, it is very
easy in the light-pen mode to manipulate a problem topology

and hence a problem solution. In this implementation,

-99-

-100-

topology specification can be done either graphically or via
the teletype. With this device independence, a designer can
determine for a particular problem what will be most effective
for him.

The notion of giving the designer the right to a
priority interrupt at any time while he is using the system
has proved to be invaluable. It seems that no matter how
familiar a designer becomes with the system, he seems to make
conceptual errors that are relevant to the problem context and
hence inevitably require some back-tracking. In practice, once
the need for back-tracking is realized, the designer wants to
do it immediately. The priority interrupt allows him to do
so, and does not distract his train of thought.

The idea of miscellaneous program coupling has proved
to be valid and valuable. The same person, writing in the
same language, at different times, on the same operating sys-
tem, tends to format his programs differently; so that, even
for this case, which would seem to be trivial, if there is a
mismatch at all, the system would not work unless automatic
program coupling was in effect.

The human factors of file switching as implemented
seem to be very poor. The reason is that while file orienta-
tion for the system is required in this implementation to
obtain the operation desired, the actual speed involved is
so slow as to be distracting. So, while the concept of a
file-oriented central computer system is desired, it seems

that there has to be an entirely different concept for carry-

-101-

ing this out, and somehow that has to be performed at a much
higher rate of speed. The probable solution is to provide for
a high volume of traffic for file switching.

The division of labor, as outlined in Appendix 4,
seems to be quite good. It is without a doubt correct to have
the interpretable graphic data structure in the peripheral
computer. The human factors of drawing seem to require that
in that particular mode, the response be almost instantaneous.
However, because of the limited size of the peripheral computer,
one correction that should be made to the division of labor
is that a concatenated version of the display file should be
kept locally, and the expanded version in the central computer.

The idea of keeping all the design data in an asso-
ciative structure has been demonstrated, within the develop-
ment time of the system, to be a good principle. The reason
is: a certain portion of the system was first built on a list
structure type basis, and when changed to TRAMP1 became much
smaller and faster.

The entire concept of the library as conceived and
implemented seems to be excellent in that it gives good access
to varying levels of library detail. However, there must be
a better way to store not only the information relevant to a
library routine, but the actual routine contents. Unit con-
version, while it is not very difficult to conceive and devel-

op, 1s very laborious to implement. In order to be retrieved

1 W.L. Ash and E.H. Sibley, TRAMP: A Relational Memory with

an Associative Base (Ann Arbor, The University of Michigan,
June 1968).

-102-

in the future, these data must all be entered. It would be

a good future extension of the work to have "key" units readily
retrievable in all their existing combinations so that a de-
signer could quickly determine if his needed units are stored
in some form. (e.g., the designer might say BTU, and receive
BTU/HR, BTU/HR-FTSQ-F).

The Build mode, or the mode in which the Vari-port
link operates as a modulator, seems to work extremely well.
It is a very versatile mode, and, in fact, for the specifica-
tion of reticulated systems, will tolerate almost any user
inconsistancy and handle most any user error.

One of the most illuminating ideas to result from
this work is the notion of '""the NEW BUILD." Following the
development of the proof for Theorem 4.3, and the successful
implementation of the system, it became evident that a more
general system probably could be devised. Using the set-
theoretic definitions developed here, it should be possible,
using macro-operators such as "intersection'" etc., to topolo-
gically order a user-specified cyclic network. This would

reveal to the designer where the trial values should be.

In other words, this algorithm would return to the designer
those points at which he should estimate the values of the
flows between entities. The implication of this is great when
one considers optimization, where an increase in the number of
variables to be handled is accompanied by more than a linear

increase in the effort required to optimize.

-103-

Optimization of systems has not been approached in
this study. Obviously some serious stability problems could
occur as the system variables are related to different element
functions.

Finally, the development and implementation of a sys-
tem based on these principles must be economically justified.
Now that this prototype system has been built, new implemen-
tations will of course follow more inexpensively. The ultimate
test however will be to have the next generation TDS available
to both industrial and academic users so that effectiveness

data can be collected.

7.2 Open Problems

In light of these foregoing conclusions, there are
many problems which would be worthwhile to investigate.

1) How should the execute mode be built so that all use
of formatting is transparent to the user?

2) What should the construction of the central computer
portion of This Design System be so that other type
data structures can be user-requested?

3) What should be the construction of the NEWMODE algo-
rithm so that it has the capacity to redo or rewrite
the executive in the peripheral computer?

4) When one talks of a high-level language for the de-
signer, what can be said about '"high-level" quantita-
tively? Furthermore, what is the contribution of for-
mat to this level, and what is the contribution of

speed to this level?

5)

6)

7)

8)

9)

10)

11)

-104-

What sort of experiments could be devised to test the
percent improvement achieved by future alterations of
a system such as TDS?

What are the relative bit-rates for information trans-
mittal from the user to the CPU for graphics versus
the teletype?

What qualitative way can be used to tell a priori
whether this system will be ''good" for a particular
design problem or not?

The adaptive characteristic already built into TDS
allows new modes to be added to the newly created data
linkages but obviously does not fill them in. Conse-
quently, what type language should be developed for

a user to employ in '"filling in" a newly added data
linkage? Should this preferably be graphic?

Given that many engineering systems are dynamic in
nature, what type data structure and what operators
are required for direct formulation from graphics to
solve differential equations?

Given that in this system as presented, graphics does
not connote data, what type data structure is required
such that, for example, the sketching of blade shapes
to connote data, the sketching of orifices, etc., will
be allowed within the reticulated system environment?
How does the concept of the reliability of engineering
entities enter into the design process, and how is it

implemented in a design system?

12)

13)

14)

15)

16)

17)

18)

-105-

Similarly, how are manufacturing considerations inte-
grated into a design system?

What effect on both the data structure and method of
operation does hybrid data acquisition have?

Given that there are some applications, for example
the design of integrated circuits which require multi-
level graphics (i.e., '"stacked" two-dimensional pic-
tures that can appear one at a time), what type data
structure is required for an ith level subset of what
is described herein as the highest active level?

What characteristics of a design system are required
such that illegal connections based on context inter-
pretation are disallowed?

What is required in the way of automatic documentation
such that an abstract is changed when the designer
changes the algorithm?

How can a library I/0 routine interpret its context
and talk meaningfully about things that it might or
should contain, for example, an implementation of an
ELIZA-type program?

How can the library realize the hit and retrieval rate
on its contents and thereby change the way in which

it retrieves relatively irrelevant material? And,
based on some algorithm, how can the library suggest
to the user the possible deletion of certain totally

irrelevant material?

-106-

19) Where does one begin with trial values to most effec-
tively "home-in" on the solution? (The NEW BUILD.)

20) What is required to have graphically inputted para-
meter values?

21) What algorithms can a reticulated network be subjected
to that will order the P-1list based on a minimum number
of trial values, thereby dictating where the designer
should approach his problem to get a solution based
on the fewest estimates?

22) What does fewest trial values mean to optimization?

APPENDIX 1

THE USER'S GUIDE TO TDS

Figure Al.1 Man-Computer Configuration

The idea of having the teaching machine character-
istics in TDS is so that you can learn about the system, and
ask questions about your own work if and when the need arises.
Examples of this are shown in Figure Al.2 and Al.3. However,
before attempting to use TDS, you should understand its macro
capabilities. An outline of these capabilities follows. Not
included in the following are the constantly changing details
associated with physically loading and starting this develop-

mental system.

Al.1 The Basic Modes

When you are asked to "TYPE DESIRED MODE NAME, OR

-107-

-108-

06-05-68
SIGNED @N AT: 13:05.02

HELLO®, YBU ARE N@W USING TDLDS. D@ YOU NEED
INSTRUCTIGNS F@BR INITIALIZING THIS DESIGN SYSTEM?
PLEASE TYPE ‘''YES' 0OR "N@".

YES

FINE, ARE YOU CALLING FROM A "TELETYPE', A 338"

YR A *2250"?

TTY

G.K.

YOU ARE NOW READY T@ USE TDS UNDER TELETYPE C@NTROL

WOULD YBU LIKE INSTRUCTIONS FOR USING TDS», AND A
SUMMARY OF ITS CAPABILITIES? "YES'™ OR 'N@"

N@
DeKo

TYPE DESIRED MODE NAME, @R INSERT
MBRE INFORMATION INT@ PRESENT MODE.

$T

THIS 1S T/1

IF YOU WOULD LIKE INSTRUCTIBNS

FBR USING THIS MODE PLEASE TYPE
“YES' OTHERWISE °*'NO*.

Figure Al1.2 Sample TDS Signon

-109-

$8UILD
SAVE TASKS WHEN LEAVING SUPPLY-T/1.

IF YOU NEED INSTRUCTIONS ON SELECTING

THE PROPER SUBROUTINE IN THE LIBRARY PLEASE
TYPE YES OTHERWISE NO

THE PRESENT INSTANCE IS COMPRS5

NO
PLEASE MAXE YOUR SELECTION NOW,

=FCOMP
IF YOU WOULD LIKE INSTRUCTIONS ON HOW TO
MATCH THE PORTS OF THE INSTANCE "COMPRS .
WITH THE PORTS FOR SUBROUTINE' "FcomP
PLEASE TYPE YES OTHERWISE NO ',

NO

PLEASE USE THE FOLLOWING
TO MAKE YOUR MATCHES.

INSTANCE INPUTS: MDOT sHI sHPWR /INSTANCE OUTPUTS: H2
SUBROUTINE INPUTS: 056H13056P3056MDOT /SUBROUTINE OUTPUTS: 056H2

H1=056H .
INPUT MATCH NO, 1

MDOT =056MDOT .
INPUT MATCH NO. 2

HPWR =056P i
INPUT MATCH NO, 3

H2=056H2 i}
OUTPUT MATCH NO,. I

Figure A1.3 Sample TDS Coaching Comments

-110-

INSERT MORE INFORMAT:ICN INTO PRESENT MODE,'" as in the last lines
of Figure Al.2, you should type one of the following mode com-
mands. Instructions will follow.

The basic modes of operation (explanations begin
below) are:

1) §T

2) $BUILD
3) $EXECUTE
4) $LIBRARY
5) $NEWMODE

These modes are all independent, meaning that you
can enter any of the modes at will. You are not faced with
a limited, order-dictated (sequential), system. Be sure that
you understand when you get to section Al.3 that those are
explicit commands, not modes. They have arguments!

Al.1.1 '"gT"

Among all the modes of operation, this mode is unique
because it allows you to enter the topologies of your problems
either through the teletype or via the graphic interface.

The proper linkages are made for you whenever you answer the
second question in Figure Al.2.

If you state that you are using TDS via a teletype,
then the T/I mode appears to be quite different from a '"338"
sign on. Instead of hitting light buttons and typing six
character names to enter instances and ports, a group of oper-
ators (see below) are defined which perform the same net

function as light buttons in the '"338" display. All operators

-111-

are recognized by a "%" and then the first character of the ac-
tual operator name. Available operators are (see example in
Appendix 7 for a typical implementation):

%INSTANCE/NAME/

%PORT/NAME//TYPE(i.e.,P,T,I1,0) :PORT NAME/

DELETE/NAME//PORT NAME/

%CALL/NAME/

%REMOVE/NAME/

%MAKE A CONNECTION/NAME:PORT NAME/

/NAME : PORT NAME//NUMBER/

%BREAK/NUMBER/

The operators have arguments, each one of which is
contained within two slashes '"/'".

The possible arguments are:

NAME - instance name

PORT NAME - port name

TYPE - type of port (output, input, parameter,

trial value)
NUMBER - a unique number (which you arbitrarily think
of) for each connection

A definition of each operator follows:

%I/NAME/ - is the naming procedure (computer prints

"instance '"name'" is now in the menu'")
%P/NAME//TYPE:PORT NAME/ - enables you to put ports

on an instance previously named by "%I". More

than one port name may be entered at once using

-112-

";" as the delimiter. However, each must have
its own ""type'" specification.

%D/NAME//PORT NAME/ - allows you to delete ports
which have been attached to instances. (no con-
catenation allowed).

%C/NAME/ - calls the instance specified out of the
menu and into the active program.

%R/NAME/ - allows you to remove a program from the
active program and put it back in the menu.

%M/NAME : PORT NAME//NAME:PORT NAME//NUMBER/ - makes
a connection between input and output ports on
instances in the active program. The number allov=«
you to easily break such a connection later, if
desired.

%B/NUMBER/ - allows you to break connections made
with the "%M" operator merely by restating the
number originally stated in the "%M".

Concatenation may be used in only the "%P" operator. In all
others only a single port, connection, or name may be acted
upon in any one statement.

If you state that you are using TDS via a 338, then

you will enter the topologies of your problems graphically.
To do this you need to know how to use the first light buttons
that appear on the screen (see Figure Al.4) when this mode

is declared.

-113-

T0S
SUPPLY-T/]

.
nooIFy
CREATE CONNECY SKETCH ESCAPE

Figure Al.4 "SUPPLY-T/I" Picture Frame

The functions of the light buttons shown in Figure

Al.4 are as follows. (To activate a light button, point at

it with the light pen and open and close the shutter.)

1)

2)

3)
4)

5)

CREATE - switches to the "CREATE" frame.

MODIFY - brings up the menu of previously defined sym-
bols (if any), and puts the one which you point to with
the light pen on the screen, along with the "CREATE"
frame.

CONNECT - switches to the '"CONNECT" frame.

SKETCH - switches to the "SKETCH" frame.

COPY - presently inoperative. The purpose will be

to allow multiple copies (but with unique names) of

the same instance.

-114-

6) ESCAPE - removes all frames and has the teletype re-
quest another mode.
The "CREATE'" frame is shown in Figure Al1.5. Using
this frame you will define your graphic instances as shown in

Figure Al.6.

DELETE ADJUST ESCAPE

Figure Al1.5 "CREATE'" Picture Frame

The functions of the light buttons shown in Figure
Al.5 are as follows.

1) DELETE - allows you to delete any user-defined labels
or vectors on the screen by pointing at them with the
light pen.

2) PORTS - allows you to draw ports on graphic instances.

When each port is complete the frame switches to the

3)

4)

-115-

"LABELS" frame and you can then name the port. Drawing
and naming are described below.

DRAW - this button provides you with a tracking cross
that you drop (by closing the shutter) on the screen
where you want the line to begin. You then pick up the
"speck" which appeared when you dropped the cross and
"stretch" it as you please. Where ever you close the
shutter (i.e., drop the tracking cross) will be the
terminus of the line.

ADJUST - in the event that you want to move a line,

you can move one end at a time using this button.

The end of the line you point to will follow the light

Figure Al1.6 Defining a Graphic Instance

-116-

pen as in drawing.

5) NAME - after "hitting'" this button you will get a
tracking cross which you drop where you want the center
of the six character name to appear. When you drop the
cross, the teletype will request a six character name
(see Appendix 6 for an example).

6) ESCAPE - this button puts the current instance in the
menu and switches to the "SUPPLY-T/I" frame.

The "LABELS" frame is shown in Figure Al.7. This
frame is only called by the "PORTS" 1light button in Figure
Al.5. From all four light buttons you get a tracking cross
as for "NAME'" and drop it where you want the teletype-requested

port label to appear.

TPs
LABELS

ouTPUT PARANETER TRIAL VALUE

Figure Al1.7 "LABELS'" Picture Frame

-117-

The "CONNECT" frame is shown in Figure Al1.8. The

functions of the light buttons are as follows.

1)

2)

3)

4)

5)

6)

CALL - brings up the menu so that you can select (as
you do in MODIFY) another instance that you have de-
fined and have it inserted in the problem topology.

REMOVE - the inverse of CALL.

CONNECT - lets you connect ports of the instance you
have "CALLED" into the topology.

DETACH - the inverse of CONNECT.

TRANSLATE - lets you move instances around (shuffle

them) in the topology.

ESCAPE - takes you back to the "SUPPLY-T/I" frame.

T0S
CONNECT

RENOVE CONMECT DETACH TRANSLATE ESCRAPE

Figure Al1.8 '"CONNECT" Picture Frame

-118-

The "SKETCH" frame shown in Figure A1.9 has the
buttons DELETE, DRAW and ADJUST which work the same way as the
buttons of the same name in Figure Al.5, except that no data
are sent to the central computer; this mode is strictly to
give you a '"scratchpad." The ESCAPE button switches you to

the "SUPPLY-T/I" frame.

T0S
SKETCH

DELETE ADJUST [334,143

Figure A1.9 "SKETCH" Picture Frame

Al1.1.2 "$BUILD"

After having passed through the "$T" mode, you can
enter the "$BUILD" mode. When the teletype says '"Please type
desired mode," you type $BUILD and the teletype will acknow-
ledge by saying "This is BUILD." From that point on, the
comments which come out on the teletype should be sufficient

to coach you through the use of the BUILD mode. The purpose

-119-

of the BUILD mode is two-fold. First, the ports specified on
all the instances must have values and engineering units asso-
ciated with them. BUILD will ask explicit questions as shown
in Figure Al1.3 about a particular instance, and its particular
ports. The other function of BUILD mode is to determine which
analysis program previously stored in the library is to be

considered as corresponding to that particular graphic instance.

Al1.1.3 "$EXECUTE"

After passing through the BUILD mode, you can type
"$EXECUTE" and be admitted to the EXECUTE mode. A confirmation
is required so that the central computer will not be asked to
execute a null program. Between the execution of subsequent
analysis programs, the user has the option, if he so desires,
to monitor the input and output of each of the instances as
the network is analyzed. 1In every case, the information in
the library is sufficient to allow automatic re-formatting of
analysis program inputs and outputs. Hence, there is nothing
that you have to do to couple programs more than merely specify
what program goes with what instance.

Although the above material seems to indicate a $T-
$BUILD-$EXECUTE order, you may immediately type $EXECUTE upon
entering the system. If no prior information exists which
can be operated on, you will be cajoled into requesting another
"available" mode.

Al.1.4 "§LIBRARY"

This mode can be entered at any time. It too is

completely independent of all other modes. Within this mode

-120-

are several sub-modes listed below.

%ESTABLISH

The purpose of this sub-mode of the library is to
enter a subroutine or program into the memory banks of the
library. All pertinent information related to this particular
program are entered at this time, including format, units, and
language. The source and/or object programs are loaded into
storage by merely answering the questions asked by the tele-
type. A permanent record of input and output units and for-
matting is automatically made available by the sub-mode before
loading the source and/or object programs.

%DESTROY

If a program which is documented in the library is
no longer desired, this mode will completely remove it from
library storage. It not only removes every location where
information had been about how to reach this subroutine, but
it also removes the object and the source decks. 1In order to
use this, just follow the questions posed by the teletype.

ALTER

This allows you to alter programs already in the
library, for example, change the number of ports, etc. How-
ever, the program must be reloaded into the library and infor-
mation concerning it changed. This mode automatically "lists"
the program to be altered in the central computer and then re-
loads it exactly where it was.

Al1.1.5 "$NEWMODE"

This mode gives you the opportunity of adding another

-121-

capacity such as NEWMODE or BUILD or LIBRARY to TDS. All that
you need to do is merely to state $NEWMODE and answer the sub-
sequent questions. From that point on, when the teletype says
that your NEWMODE has been entered, you can then say $[what-
ever the name of your new mode happens to be] and you will
have linkages to that routine. The contents of that new mode

are to be provided by you.

Al1.2 The Command Language Interpreter

Certain special symbols, namely "$" and "§" are re-
cognized as prefixes to commands in the central computer por-
tion of TDS. The & is used automatically by the interface,
and never explicitly by the designer. The commands available
are as follows.

Al1.2.1 "$CORRECT"

This provides the capability of correcting your mis-
takes. For example, if you name an instance John instead of
Jack, you need only give this command and then answer the ques-
tions with respect to what you wish to correct.

Al.2.2 "$QUESTION"

This provides the capability of questioning TDS con-
cerning what is in the library and what has been produced or
entered into any mode.

Al1.2.3 "§ALTER"

This mode gives the ability to change parameters
of trial values for the optimization of programs specified
in TDS. 1In the future it will be possible to write an optimi-

zation program which itself calls on this command.

-122-

Al.2.4 "§$TRANSFER"

This allows you to move from mode to mode but always
return to the mode that you just left. Actually, this mode
serves as a bypass.

Al1.2.5 "$ENTRY"

This is a null command which produces a carriage
return and two line feeds. Any comments on the same line fol-
lowing the command will be printed out as '"your inserted com-
ments'" without being acted upon.

Al.2.6 "$CREATE"

This mode allows you to stop whatever you are doing
and leave TDS. In order to return you type $SOURCE ENTRY in-
stead of $SOURCE TDS.

Al1.2.7 '"$BYE"

When you finish completely with a program in TDS,
you need only type "$BYE" and everything that you have done
will be removed from memory and TDS will be completely re-
initialized with all virtual storage removed in the central
computer. You are then signed off the central computer auto-

matically.

Al1.3 Explicit Commands

In addition to the above '"'mode commands,'" there are

explicit commands which involve parameters and give immediate

information to the user. These are NOT modes.

Al1.3.1 '"$CORRECT/01d Association//New "V" part/

Since data is stored by TDS in an associative struc-

ture, the following is the form for any association:

-123-

(A (p) = v}

Where A denotes attributes such as ''value"

or "units"
p denotes objects such as port or sub-

routine '""mame"

and V denotes values such as '"true value" or
"units"
The parts of the association are delimited by a ";". For ex-

ample, a typical $CORRECT command would be"
$CORRECT/A;Q;V1//V2/

Note: This command allows the user to change only the '"value"

portion of the association. As soon as the correction is made

the new addition to the memory will be printed in the form

A(@) = V. The old association must exist. If it does not,

complaint will be made.

A1.3.2 $QUESTION/A;P;V/

This is merely a direct question on the memory.

There are several available forms for this command. In its
full form (above) the question seeks a "yes," '"no" or '"maybe"
(i.e., multiply defined) answer. (It is actually asking—

does this association exist in the memory?) To extract more
information from the memory than just "yes," 'no" or ''maybe,"
the user can leave any one or two of the locations available

empty. Several examples will serve to clarify this point.

1 J.A. Feldman, "Aspects of Associative Processing,"

(Cambridge, Mass., Lincoln Laboratory, April 1965).

1) $QUESTION/;@;/
This says: Give me all the attributes and values of
the object "g."
2) $QUESTION/A; ;V/
This says: Give me all the objects which have the
attribute "A" and the value "V."
The final form is abbreviated and provides faster answers con-
cerning the "VALUE" component of the association. The form
is:
$QUESTION/A; P/
Typical examples are:
1) $QUE/A;p/
This says: Give me all values of object "@" which have
attribute "A." This is exactly the same as "$QUE/A;@;/"
If all three positions are eliminated, i.e., $QUE/;;/, an as-
sociative dump of the entire TRAMP2 memory will be made.
Warning: This can be enormously long and is enormously
expensive.

Al1.3.3 $ALTER/PORTNAME:01d Value;New Value/

or
$ALTER/PORTNAME :New Value/

Both of the above forms of the "$ALT" command have
the same function: to alter the value of some parameter or

trial value in the system. The "PORTNAME" is the subroutine

2 W.L. Ash and E.H. Sibley, TRAMP: A Relational Memory

with an Associative Base (University of Michigan, Concomp
Technical Report, June 1968).

-125-

input which is to have its value changed. The "0ld Value"
is the value the port presently has. The '"New Value'" is the
value the user wishes it to have now.3 If the first form is
used, a check will be made to see if the value stated is accu-
rate. If it is not correct a complaint will be made.

If the second form is used, no check is made, and
the new value is entered into the memory. 1In either case,
acknowledgment of action taken by the system will appear.

Al1.3.4 $CREATE/[a number][a space][a file name]

This explicit command is much the same as the mode
call except that it allows the user to specify where he wishes
everything stored, and what line number this program is to have.

If "file name" is missing, the default for reinitial-
izing is "entry,'" and for memory storage is "memory."

If "a number" (line number of program) is missing,
the number will be automatically set to '"1."

To reenter TDS by reinitializing where you left off,
you need only give the command "$SOURCE" '"file name" '"[number]"
where file name and number are those explicitly or implicitly
stated in the $CRE command.

Note: if '"file name'" is specified, the memory is stored in line
"1000+number" of that file.

A1.3.5 $DEFINE/CONVERT;[this]:[to this];[x by this];[+this]/

This command allows you to define a mathematical
conversion. An example is:

$DEF/CONVERT;IN:FT;12:0/

See Appendix 6 for an example of this command.

-126-

A1.3.6 $TIME, $TIMER ON, $TIMER OFF

This explicit command allows the user to do one of
two things: (1) he can obtain the exact time in the following
form: Hours:Minutes (in 24 hour time), or (2) he can obtain
the elapsed time between a "$§TIMER ON" command and a "$TIMER
OFF" command. Elapsed time is given in minutes and fractional

parts thereof.

Al.4 Central Computer Command Analyzer

If two dollar signs begin an input line, the line
is recognized as a central computer command. Control is auto-
matically given up to TDS and the command is acknowledged by
the central computer. Immediately thereafter (unless it was
a signoff command), virtual memory is cleared and you are given
control. For example:

$$SIG
This would sign you off of the central computer as soon as

you are signed off of TDS.

Al1.5 User Specifiable "Attributes"

The following are legal attributes to be used in
the "A" position of $ALTER, $CORRECT, $DEFINE or $QUESTION.

FORMS - possible forms of a unit's format

UNITS - units for a port

SIPORTS - subroutine input ports

SOPORTS - subroutine output ports

CONVERT - unit conversions

-127-

VALUE - port values
EXTRA - all non-connected SOPORTS (defined only

after one pass through Execute)

APPENDIX 2

HISTORY OF COMPUTER GRAPHICS

The following history of computer graphics is drawn
largely from an article entitled, "Progress in the Computer

Field," L.C. Hobbs, editor, Computer Group News of the IEEE,

Vol. 1, No. 7, July 1967.

Graphic output has been a part of computer technology
almost since its inception. Whirlwind I contained an on-line
display and camera recorder in 1951. As commercial computing
drifted into batch processing in the late 1950's, off-line
graphic plotters were developed in the form of large universal
drafting machines (ink plotters) and film recorders. Plotters
are still unparalleled for large, high-resolution graphic pre-
sentation. Film recorders, however, are much faster but have
limited size and resolution. Where adequate software has been
provided, these graphic devices have become important adjuncts
to the line printer for computer output. In the intervening
years, both these forms of graphic output have assumed more im-
portant roles. In addition, several novel uses of film recorders
to produce movies have demonstrated the versatility of this
form of computer output in communicating to man.

More dramatic development has occurred in the area
of on-line computer graphics, that is, displays. For years,
displays were the foundling child of the military, although
research work in the field was being performed earlier at MIT,
IBM, SDC, General Motors, and similar institutions; not until

1962 was real interest aroused for on-line displays as a tool

-128-

-129-

to aid the problem solver. That year, Culler and Fried demon-
strated their system for aiding in mathematical analysis.
Then, in 1963, Sutherland's SKETCHPAD program illustrated the
power and flexibility of the on-line computer and graphic dis-
play as an input-output medium. These programs awakened the
scientific community, but both were done on equipment that

was not designed for this type of work. It was still terribly
expensive to be on-line to a computer of any significant size.
Then, in 1964, time-sharing of large computers was demonstrated,
giving promise of moderate cost for on-line operation of a
powerful computing complex. Suddenly displays were being con-
sidered by large groups of computer users. '"Graphics" joined
the 1list of popular words.

As the interest in displays for scientific computing
rose sharply, equipment manufacturers began offering displays
tailored to this new market that were less costly and easier
to program than their military counterparts. Several companies
offered new displays, such as the RAND tablet, and new graphic
input devices were developed and demonstrated.

As these pieces of equipment were developed and people
began writing programs to use them, reports from earlier pil-
grims in the field were being published. Particularly im-
pressive were General Motors' efforts in using computer dis-
plays to aid in drafting and design.

In 1966 applications programs using on-line displays
began to appear. These spanned a wide range of fields in

science and engineering. The aircraft and aerospace industries

-130-

with promise of large pay-offs pursued computer-aided engineer-

ing design and analysis. Mathematical analysis programs re-
ceived quite a bit of attention. Circuit design and layout
was also quite popular. More esoteric uses were reported,

for instance, molecular model building, automatic programming,
and even textile designs.

As displays were put into more use, the need for uni-
fying graphic languages and facilities for manipulating data
structures dynamically became more evident. For this reason,
software developments such as AED, CORAL, PL-1, GPAK, etc.,
significantly influenced graphics application programs. In
addition to military operating systems, General Motors Re-
search, Lockheed Georgia, Bell Telephone Laboratories, Boeing,
Ford, and other concerns are developing operating systems that
are somewhat generalized for their own purposes.

If a trend in the field of display hardware is to
be noted, it is toward two distinct classes of equipment. The
first is an inexpensive remote terminal and the second a sophis-
ticated, dynamic, expensive console. These remote units are
aimed at providing low-cost consoles that communicate over
standard telephone lines. The sophisticated consoles are being
designed with versatile performance as their key feature.

The power of the dynamic display with real-time interaction
has been recognized, and to provide this, small general-
purpose computers are being intimately coupled with displays
(sharing memory). These units can then talk to a large time-

sharing system, or stand alone. Features such as picture

-131-

subroutines, real-time rotation, translation, and scaling,
light pen tracking, etc., are being provided, sometimes with
hardware and sometimes with software. Hardware is being or-
ganized to make these functions easy to program and to require
a minimal load for the computer.

The very latest display consoles will have hard-
wired micro programs in them such that routine display support

will be available essentially as macro instructions.

APPENDIX 3

DETAILS OF TDS' IMPLEMENTATION

The programming required to produce TDS can logically
be divided into four sections: the peripheral and central oper-
ating system, and the '"user" routines at each location that
are uniquely TDS.

The peripheral executive, the SEL (Systems Engineering
Laboratory) Executive System, will be described in detail in a
forthcoming report.1 Its implementation is currently being
completed for a DEC-339 computer. The original executive al-
gorithms and much of their coding are due to Mr. Jackson.

Mr. Jackson and the author modified and developed the system
to its present state for the DEC-338 computer employed in this
investigation. In light of the forthcoming report, the extent
of the explanation for this executive will be confined to a
description of the operators available.

The central executive is the Michigan Terminal System
(MTS)Z, and the language used is TRAMP.3 The reader is referred
to the indicated references for the operating details of both
the time-share system and the associative-base language.

The peripheral and central sections of TDS are macro

1 A Systems Engineering Laboratory Report on the SEL Exe-
cutive, by James H. Jackson, should be released in the summer
of 1968.

2 MTS: Michigan Terminal System (University of Michigan

Computing Center, Ann Arbor, 1968).

> W.L. Ash and E.H. Sibley, TRAMP: A Relational Memory with
an Associative Base (Concomp Technical Report, University of
Michigan, June 1968).

-132-

-133-

flow-charted to make clear how the functions of TDS are obtained.
Listings would be out of place here, but are available to quali-

fied parties from the Concomp Project office.4

A3.1 The SEL/338 Executive System

The most concise way to describe the operators avail-
able in this executive is to list the system transfer vector

as in the following table.

SYSTEM FUNCTIONS

XQC DC Qc CLEAR QUEUE
XQIN DC QIN ADD ITEM TO QUEUE (F)

XQOT DC QOT FETCH ITEM FROM QUEUE (F)

XTSK DC TSK SCHEDULE A TASK

XTSKN DC TSKN START NEW TASK

XTA DC TA ALLOCATE I/O UNDER MASK

XTR DC TR RELEASE I/0 UNDER MASK

XKBC DC KBC CLEAR KEYBOARD BUFFER

XKBS DC KBS GET CHARACTER FROM KEYBOARD

XKBSE DC KBSE CALL KBS AND ECHO

XTPC DC TPC CLEAR TELEPRINTER BUFFER

XTPS DC TPS SEND CHARACTER TO TELEPRINTER

XTRTDS DC TRTDS BUILD A CHARACTER INTO A DISPLAY FILE

XDW DC DW WAIT FOR DISPLAY TO COMPLETE FRAME

XDE DC DE ENABLE DISPLAY INTERRUPTS (GLOBAL)

XDD DC DD DISABLE DISPLAY INTERRUPTS (GLOBAL)

XDP DC DP SET LP TASK,AC=ADDR OF TASK,0 IF NULL TASK
XDA DC DA READ DISPLAY ADDR,LINK=0,BANK=1,=1,BANK 2
XDY DC DY READ Y COORD

XDX DC DX READ X COORD

XDO DC DO READ OWNER LEVEL (F)

XDSPBS DC DSPBS SET PB TASK

XTKST DC TKST START TRACKING AT GIVEN COORDINATES

XTKON DC TKON TURN TRACKING ON

XTKOFF DC TKOFF TURN TRACKING OFF

XTKSKP DC TKSKP SKIP IF TRACKING IS OFF (F)

XTKGX DC TKGX READ X TRACKING COORDINATE

XTKGY DC TKGY READ Y TRACKING COORDINATE

XTPB DC TPB FEED TELEPRINTER BUFFER

4

Concomp Project, The University of Michigan, 611 Church
Street, Ann Arbor, Michigan 48104.

-134-

XK DC K ACCEPT OCTAL CHARACTER FROM KB (F)
XBINI DC BINI ACCEPT OCTAL FROM KEYBOARD (F)

XBINO DC BINO TYPE OCTAL

XCRLF DC CRLF TELEPRINTER CARRIAGE POSITIONING
XLIB DC LIB FEED DISPLAY TEXT BUFFER (F)

XLSC DC LSC CLEAR DISPLAY STRUCTURES

XLSL DC LSL CREATE NEW LEVEL (F)

XLSD DC LSD DESTROY LEVEL (F)

XLSI DC LSI INSERT SUB-STRUCTURE INTO LEVEL (F)
XLSIR DC LSIR RELATIONAL INSERT LEVEL INTO LEVEL (F)
XLSR DC LSR REMOVE SUB-STRUCTURE FROM LEVEL (F)
XLSRR DC LSRR RELATIONAL REMOVE LEVEL FROM LEVEL (F)
XLMY DC LMY TRANSLATE LEVEL IN 'Y' DIRECTION
XLMX DC LMX TRANSLATE LEVEL IN 'X' DIRECTION
XLMP DC LMP SET LEVEL PARAMETERS

XLMBN DC LMBN BLINK LEVEL

XLMBF DC LMBF STOP LEVEL BLINK

XLMC DC LMC COUNT LEVEL PARAMETERS

XLMU DC LMU STOP UNCONDITIONALLY AT END OF LEVEL
XLMN DC LMN DO NOT STOP AT END OF LEVEL

XLMS DC LMS STOP AT END OF LEVEL IF ON SCREEN
XLML DC LML STOP AT END OF LEVEL ON LPSI

XW1 DC W1 SCHEDULE PREVIOUS LOCATION AS A TASK
XW2 DC W2 SCHEDULE SECOND PREVIOUS LOC. AS A TASK
XAS DC AS CREATE A 4N (N=NO. OF 4 WORD BLOCKS)
XCDTC DC CDTC CONVERT DISPLAY TO TWO'S COMPLEMENT
XCTDC DC CTDC CONVERT TWO'S COMPLEMENT TO DISPLAY
XBFIC DC BFIC CLEAR 103 INPUT BUFFER

XBFIM DC BFIM GET CHARACTER FROM 103 INPUT BUFFER
XBFOC DC BFOC CLEAR 103 OUTPUT BUFFER

XBFOM DC BFOM SEND CHARACTER TO 103 OUTPUT BUFFER
XCC DC CcC FUNCTION EXTENSION

XIR DC IR INTERRUPT RETURN

Table A3.1 SEL/338 Transfer Vector

A3.2 TDS/338

The peripheral portion of TDS acts just like an on-
line teletype except in the "§T'" mode, that is, when problem
topologies are being inputted graphically.

Hence, the control section flow chart is shown in

Figure A3.1.

-135-

SIGNON FROM SEL/338
EXECUTIVE SYSTEM

|

WAIT FOR A
| CHARACTER
*| FroM THE
KEYBOARD
l SHIP COMMENT
PRINT THE REQUEST TO
CHARACTER AND THE CENTRAL
SHIP IT TO THE COMPUTER
CENTRAL COMPUTER ?

DO

WE HAVE

A II$TII

SEQUENCE
?

ARE
INSTRUCTIONS
NEEDED FOR
THIS GRAPHIC
MODE?

PUT THE
"SUPPLY-T/I"
PICTURE FRAME
ON THE SCREEN

NOTE:

INFORMATION FROM THE CENTRAL COMPUTER
GOES DIRECTLY TO THE TELETYPE OR SCREEN
VIA A "RECEIVE" ROUTINE.

Figure A3.1. TDS/338 Control Section Flow Chart.

*(2an31onx3g elRQ Texsydtasyq) o8vio3g dTydexn Issq Fo swaydg IBISUSY

"z ¢V eandtyg
LY0od 40 FWVN

!

d0LDHA

T —
/ N\ e ®0® 0 0 9 o
// \\
SalL

TIA9T NANAW
’ V H A _ he e e e 0 ‘vDLays

WAT40dd V
!

-136-

¢

TAAdT GAILOV LSHHOIH

1@ Sutpuodssexxo) syl 3o osuwos pue osdueisuy o1ydeay

*9aIn3onI3g
180T1d4AL v ¢'gy sanS1y
‘ 'ilg UOT323UUOD ®
. 9
(I‘IL
P SI0129A
_ [¥aLovavH) |
™~ SwWeU IO
39}
— »IIJ- jxed =
&
T\
. i Halll'. xH
9JUB3ISUT ue
& ///J’
~—
SI0129A
JYNLONYLS

VIVA ONIANOdSTYYOD

HIONVLISNI TVDIdAL

-138-

N-TUPLE KIND FORM EXAMPLE
NAMES N A - B : 6 CHARS. N4060-4120:COMPR5
I
PORTS P A g C : 6 CHARS. P4060T4160:H1
T
DELETED PORTS DA -C D4060-4160
CONNECTIONS MC-C'" :C M4250-5340:5670
DISCONNECTIONS B D B5670
CALLS C A C4060
REMOVALS R A R4060

Table A3.2 N-Tuples Transmitted by the Graphic

Routines to the Central Computer

-139-

'

PUT CHARACTER 1IN
FIRST SLOT OF BUFFER

GET X
NO /
—— N OR M OR D

YES

PARSE THE NUMBER
AND PUT IT IN THE

NEXT 4 SLOTS

YES H PUT A "-"

\;IN THE BUFFER

;

o GET Y

PUT Z IN
BUFFER

NOR P

YES

PUT IN A ":"" , THEN
SKIP 6 BUFFER SLOTS

¢ |

> PUT A "'" IN THE
] BUFFER

'

SHIP THE BUFFER
INCLUDING THE
PRIME

'

Flow Chart of Routine to
Transmit N-Tuples.

Figure A3.4.

-140-

The general scheme of user storage in the peripheral
computer is shown in Figure A3.2. This depicts the graphic
data structure in conceptual fashion. For details of the "home
plates" and the '""nodes'" see the forthcoming Systems Engineering
Laboratory Report.5

Figure A3.3 shows a typical graphic instance and
some of the corresponding data structure. The purpose of the
figure is to show that unique addresses are the '"keys'" to topol-
ogy interpretation. Table A3.2 lists the ordered n-tuples
that are shipped, and which are necessary and sufficient to
connote a current topology. The shipping routine is flow

charted in Figure A3.4.

A3.3 TDS/360
Once the designer is signed on to the central por-
tion of TDS, the system is always at his disposal. This means

that the following TDS flow charts are of '"closed" form.

> James H. Jackson's report on the SEL Executive, which
should be released in the summer of 1968.

$§SOURCE

GATE=338

T/I (GATE=338)

-141-

$SOURCE
TDS

TTY

‘ ENTER }

RETRIEVE LINE
FROM CONTROLLER

GATE=TTY

ERROR

PERFORM

) COMMENT

OPERATION

Y

T/I (GATE = TTY)

-142-

< ENTER)

RETRIEVE LINE
FROM CONTROLLER

AA A

A VALID
QPERATOR

PERFORM

ERROR
COMMENT

ERROR
COMMENT

\'4

OPERATION

A4

CONTROLLER

~143-

RETRIEVE LINE

< ENTER >

GO TO MODE
WHERE
LEFT OFF

FROM USER

YES GO TO CECG
FOR COMMENT
N
NO
IS IT
(nsENTRYMN YES R
~\COMMAND
NO
IT.gEiRT YES |[|SIGNOFF TDS AND
WITH ACKNOWLEDGE
L$$y COMMAND
NO
IS IT YES PERFORM
A COMMAND ' COMMAND
FUNCTION
0
IS 1 YES GO TO BEGINNING
A MODE OF MODE
CALL CALLED
NO
ERROR

COMMENT

A%

-144-

COMMENT

[RETURN

RETRIEVE
TRIAL VALUE
INSTANCE (S)

ASK USER TO
CHOOSE ONE

CONNECT

-145-

RETRIEVE A
CONNECTION ASSOC

e
FIND OUTPUT
INSTANCE

sle.
FIND INPUT
INSTANCE

_l

DEFINE A NEW
CONNECTION ASSOC

YES

RETURN

NO

TV

PARAM

{ PUT ALL TV
ENTER INSTANCES
’10N "NEXT'" LIST

~146-

\

ENTER —P

FIND ALL INSTANCES
WHICH HAVE ALL
INPUTS SPECIFIED

NO

PRIORITY ERROR|]
'"NO STARTING |
ROUTINE'

PUT ALL OF THEM ON
THE "NEXT" LIST

NAS

-147-

NAS

ARE ALL
INPUTS CONNECTED
TO OUTPUTS OF PROGRAMS
ALREADY ON
P-LIST

NOT SO CONNECTEL
TRIAL VALUES OR

YES _@

ENL @

TRIAL VALUE
OR PARAMETER

ERROR
RETURN

-148-

PUT ALL
INSTANCES

— CONNECTED

(¢>I) WITH THIS
ONE ON "NEXT" LIST

RETRIEVE
INSTANCE-
SUBROUTINE
MATCH FROM
USER

READ-IN ALL
INFO. ABOUT

SUBROUTINE
FROM LIB.

PTM

(ENTER)

-149-

RETRIEVE
PORT MATCH
FROM USER

OUTPUTS

ERROR
COMMENT

MAKE
MATCH
(INPUT)

MAKE
MATCH
(OUTPUT)

-150-

ARE THERE

ANY TRIAL VALUES
QR PARAMETERS FOR
PROGRAM

" ENTER NO -@

ASK USER
FOR THE
VALUE AND
UNITS OF
EACH ONE

ENE

ARE ALL

INSTANCES
PROCESSED

DONE---
GO TO
CONTROLLER

-151-

PICK NEXT
ENTER ONE OFF [
"NEXT'" LIST

YES

ENQ

IS THIS YES PICK FIRST
THE FIRST TIME ONE FROM
NERE "NEXT" LIST
Y
PICK NEXT
é—’ ONE FROM
"NEXT™ LIST
~— & v
YES »t ERROR
RETURN
YES NO
t

-153-

EXECUTE \\\
NO RETURN
\@ONFifgay// USER

YES

RETRIEVE INSTANCE

FROM P-LIST, AND
ENTER FIND OUT WHAT

ITS SUBROUTINE IS

ANSWER

NO

GET VALUES
FOR EACH
INPUT PORT
FOR SUBROUTINE

REFORMAT
AND PLACE
DATA 1IN
INPUT FILE

RUN
PROGRAM

ENT

ENTER

-154-

e REINITIALIZE
SYSTEM

L

RETRIEVE
DATA
OUTPUT LINES

1
i

%AS
THERE A FIELD

OVERFLOW

RETRIEVE
EACH OUTPUT
AND ITS
NEW VALUE

IS
OUTPUT
CONNECTED TO
AN INPUT

'& YES

ASSIGN VALUE
TO INPUT

YES | FATAL

ERROR

IS IT
LAST ONE
OUTPUT)

DEFINE
'"EXTRA"
ASSOCIATION

CONNECTED WITH
CONVERSION

-155-

- ALTER

DESTROY

LIBRARY

WHAT
MODE DOES
USER WANT

ESTABLISH

RETRIEVE
SUBROUTINE |
NAME FROM K |

USER

COMMENT

ASSIGN
LIBRARY
NUMBER

'

RETRIEVE
PORTS WITH.
UNITS AND
REQUIRED
PROGRAM
FORMAT

v

MAKE
PERMANENT
RECORD 1IN

LIB

l

LOAD
PROGRAM

-156-

GET A

SUBROUTINE |e—

NAME FROM |@—
DESIGNER

P
//
" DOES AN

IT EXISy—’
¢ YES

ERASE
ALL TRACES
OF SUBROUTINE
IN LIB

RETURN
TO
USER

NO

ERROR
RETURN

MODIFY
PERMANENT
MATERIAL
IN LIB

NO

-157-

GET A
SUBROUTINE
NAME FROM

USER

YES

NO

RETRIEVE
WHAT USER
WANTS TO

ALTER

STRUCTURE

|

RETURN
TO USER

SET UP
RELOADING
FACILITY

GIVE

CONTROL
IN MTS

ERROR
RETURN

APPENDIX 4

DIVISION OF LABOR L *WEEN THE PERIPHERAL AND MAIN COMPUTERS

As developed in the main text of this dissertation,
the primary purpose for a computer-based environment for the
engineering designer is so that he can analyze models of real
physical systems more readily, thus enabling more quantitative
considerations of component interactions in a given problem.
Furthermore, it was pointed out that one of the three categories
of service provided by his computer-based environment is "ana-
lysis," another was information retrieval, and a third was
teaching. One general conclusion is that in all cases a large
amount of storage is apparently needed for the designer. Hence,
this requires a large computer in a time-shared mode, or a
fairly large slave computer. Because of the hardware available
to the author, a System/360, Model 67 computer was used as the
central computer, and a DEC 338 as the peripheral computer.

The idea of having a peripheral computer at all is so that the
topology of a design problem can be manipulated graphically.
The potential value of this was one of the premises for em-
barking on this work, and the value of it has been demon-
strated by the working system. Consequently, the large cen-
tral computer is conceived for all things where much computing
and much storage are needed, and the peripheral computer is
conceived as the element that gives the fast interaction and
the graphic capability. The current division of graphics
would probably be changed in a new version of TDS. Because

of the limited size of the 338 memory, a new version would

-158-

-159-

probably keep the expanded data structure in the central com-
puter because of the large storage, and would keep a concate-
nated version in the 338. This would enable many more symbols
to be on the screen at one time. One assumption here is that
the data link between computers would be fast enough so as

not to ruin the human factors involved in the drawing. As it
is now, all the speed that is desired is available in the
graphic mode, and it fulfills its design requirements. How-
ever, the change would be made if the speed would still be fast
enough after getting the trade-off for storage capacity.

There are no tasks currently performed in the central
computer that should be moved to the peripheral computer.
However, within the peripheral computer, because of the banked
structure of the hardware, there would be a new allocation of
tasks between banks. This can hardly be taken as a general
principle, in that many designers of systems using satellite
and central computers have a satellite with a large contiguous

core.

APPENDIX 5

A QUANTITATIVE DISCUSSION OF EXCESS INFORMATION

Consider that involved in both the representations
of Figures 3.1 and 3.2 is the following subset of geometrical
notions: straight lines, equal length lines, right angles,
horizontal and vertical lines. Further, consider that to
represent the square in computer instructions, the designer
must also use the following subset of computer notions: iter-
ation, labels, modes, intensity and storage. If "use" is taken
to mean "'being able to spontaneously employ the notion crea-
tively," then the probability of a system designer ''using"

a concept can itself be used to calculate a value for the in-
formation generated by the designer. Note that this latter
"information'" is not that which conveys the square to the
computer, but that which would convey '"to an observer" the
designer's own personal store of information.

Now, as a designer creates a square via either of
the methods depicted in Figures 3.1 or 3.2, the following
statement must be made so that the information involved can
be handled quantitatively. Being able to "use'" the above geo-

metrical notions, is, for a designer, independent of his being

able to '"use'" the computer notions. Formally this is stated
as:
*ox K Proposition A5.1

The probability that a designer can 'use' computing
(C) given that he can "use" geometry (G) (i.e., P(G)=1)

is equal to the probability that he can "use' computing.

-160-

-159-

probably keep the expanded data structure in the central com-
puter because of the large storage, and would keep a concate-
nated version in the 338. This would enable many more symbols
to be on the screen at one time. One assumption here is that
the data link between computers would be fast enough so as

not to ruin the human factors involved in the drawing. As it
is now, all the speed that is desired is available in the
graphic mode, and it fulfills its design requirements. How-
ever, the change would be made if the speed would still be fast
enough after getting the trade-off for storage capacity.

There are no tasks currently performed in the central
computer that should be moved to the peripheral computer.
However, within the peripheral computer, because of the banked
structure of the hardware, there would be a new allocation of
tasks between banks. This can hardly be taken as a general
principle, in that many designers of systems using satellite
and central computers have a satellite with a large contiguous

core.

-161-

P(C/G) = P(C) (A5.1)

The information conveyed to the observer of a de-
signer is related to the probability (pi) of the designer using
each of the required notions. For some number of notions N,
relating to a specialty b, this information can be expressed
for an idea a as:

I =

a,b —logzpi (A5.2)

e M 2

Let the information conveyed to an observer, that
is associated with geometry, have a subscript G; and that asso-
ciated with computing a subscript C. Then, for the subset of

notions considered, it can be stated that

+

I(Figure 3.1),G I(Figure 3.1),C >.I(Figure 3.2),G (A5.3)

because '"using'" computing and geometrical notions were stated
by Proposition A5.1 to be independent.

From equation A5.3 two conclusions can be drawn.
First, the inequality is dependent on computing and not geo-
metrical probabilities. Second, unless the designer finds com-
puting notions trivial (their probabilities equal to zero),
he will have to convey more information using the representa-

tion of Figure 3.1.

APPENDIX 6

COMPUTER OUTPUT FOR EXAMPLE IN SECTION 6.1.1

06-05-68

SIGNED ON AT: 20:55.23

HELLO, YOU ARE NOW USING TDS. DO YOU NEED
INSTRUCTIONS FOR INITIALIZING THIS DESIGN SYSTEM?
PLFASE TYPE "YES" OR "NO'".

NO
DEVICE?

338
0«Ke
YOU ARE NOW READY TO USE TDS UNDEK "338" CONTROL

WOULD YOu LIKE INSTRUCTIONS FOR USING TDS», AND A
SUMMARY OF ITS CAPABILITIES? "YES" OR '"NO"

NO
O.K.

TYPE DESIRED MODE NAME, OR INSERT
MORF INFORMATION INTO PRESENT MODE.

$T/1

DO YOU NEED INSTRUCTIONS FOR THIS MODE?

PLEASE TYPE YES OR NO. "
This comment anpears every

time the NAME or PORTS

NO light button is acttvated.

PLEASE TYPE A 6 CHARACTER NAME
EVAP 7

PLEASE TYPE A 6 CHARACTFR NAME
H1

PLEASE TYPE A 6 CHARACTER NAME

MDOT
‘\These labels also appear

on the disvnlay.

PLEASE TYPE A 6 CHARACTER NAME
HTLOAD

PLEASE TYPE A 6 CHARACTER NAME
H2

-162-

PLEASE
COMPR

PLEASE
Hl

PLEASE

MDOT

PLEASE
HPWR

PLEASE
H2

PLEASE

COND 3

PLEASE
H1

PLEASE
DELT

PLEASE
ob

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

TYPE

CHARACTER

CHARACTER

CHARACTER

CHARACTER

CHARACTER

CHARACTER

CHARACTER

CHARACTER

CHARACTER

-163-

NAME

NAME

NAME

NAME

NAME

NAME

NAME

NAME

NAME

PLEASE TYPE A 6 CHARACTER NAME

L

PLEASE TYPE A 6 CHARACTER NAME

HBAR

PLEASE
H2

PLEASE
MDOT

PLEASE
VAL VE

PLEASE
H1

PLEASE
He2

TYPE

TYPE

TYPE

TYPE

lYPE

CHARACTER

CHARACTER

CHARACTER

CHARACTER

CHARACTER

PLEASE SELeECT A MWDE

$SBUILD =
SAVE TASKS WHEN

-164-

NAME

NAME

NAME

NAME

NAME

Two

every time a granhic connection
is made with the light pen.

of these snaces arc generated

Thinking that the topologyv
is specified, the BUILD

VONE IN 171

D061

LEAVING SUPPLY-=T/1e.

mode 1s requested.

-165-

IF YOU NEED INSTRUCTIONS ON SELECTING
THE PROPER SUBROUTINE IN THE LIBRARY PLEASE
TYPE YES OTHERWISE NO

THE PRESENT INSTANCE IS ° Evap 7 °
NO
PLEASE MAKE YOUR SELECTION NOW,. The function of this element
— function was known by the
SEVAP 1 —— designer.
IF YOU WOULD LIKE INSTRUCTIONS ON HOW TQ
MATCH THE PORTS OF THE INSTANCE "EVAP 7 -
WITH THE PORTS FOR SUBROUTINE EVAPI
PLEASE TYPE YES® OTHERWISE NO °,
NO
PLEASE USE THE FOLLOWING
TO MAKE YOUR MATCHES,
INSTANCE INPUTS: MDOT $HTLD gHI /INSTANCE OUTPUTSs H2

SUBROUTINE INPUTSt O059H13059HTLOAD 3059MDOT /SUBROUTINE OUTPUTS:s 059H2

MDOT =059MDOT .
INPUT MATCH NO. 1

A typical "manping'" of an
instance nort and its

Hl=059H1 A—-"’/ corresponding subroutine

""INPUT MATCH NO, 2" port.

HTLD =05SHTLOAD
INPUT MATCH NO, 3~

H2z059H2 .
OUTPUT MATCH NO. I

-166-

THE FOLLOWING PORTS FOR "EVAP 77
MUST BE GIVEN A VALUE WITH UNITS AT THIS POINT.

PARAMETER - MDOT ~ FOR INSTANCE " EVAP 7 ")
MATCHED WITH INPUT ° 059MDOT " OF SUBROUTINE “FVAPI

POSSIBLE UNITS ARE:

LB/MIN LBM/MIN
VALUE =
This is how nort

5 - values are assigned.
UNITS=

LB /MIN

PARAMETER " HTLD ~ FOR INSTANCE " EVAP 7 }
MATCHED WITH INPUT ~ 059HTLOAD " OF SUBROUTINE "EVAPI "

POSSIBLE UNITS ARE:

BTU /4R
VALUE =

9600
UNITS=
BTU/HR

TRIAL VALUE " H1 " FOR INSTANCE " EVAP 7

MATCHED WITH INPUT " 059H1 FOR SUBROUTINE ~ EVAPI
POSSIBLE UNITS AREs

BTUANAB BTU/LB. BTU./LB.BTU./LB.
VALUE =

41
UNITS=

BTUAB

-167-

01131006231

IF YOU NEED INSTRUCTIONS ON SELECTING
THE PROPER SUBROUTINE IN THE LIBRARY PLEASE
TYPE YES OTHERWISE NO .

THE PRESENT INSTANCE IS COMPR

NO
PLEASE MAKE YOUR SELECTION NOW,.

=FCOMP

IF YOU WOULD LIKE INSTRUCTIONS QN HOW TQ
MATCH THE PORTS OF THE INSTANCE “COMPR
WITH THE PORTS FOR SUBROUTINE "FCOMP
PLEASE TYPE YES OTHERWISE NO ",

NO
PLEASE USE THE FOLLOWING
TO MAKE YOUR MATCHES.,
INSTANCE INPUTSe MDOT sHPWR sHI /INSTANCE OUTPUTS: H2

SUBROUTINE INPUTSs 056H13056P3056MDOT /SUBROUTINE OUTPUTS: 0
56H2

MDOT =056MDOT .
INPUT MATCH NO. 1

H1:=056H1)
INPUT MATCH NO. 2

HPWR =056P .
INPUT MATCH NO,. 3

H2:056H2
OUTPUT MATCH NO. 1

-168-

THE FOLLOWING PORTS FOR “COMPR
MUST BE GIVEN A VALUE WITH UNITS AT THIS POINT.

PARAMETER " MDOT ~ FOR INSTANCE " COMPR = _ i
MATCHED WITH INPUT " 056MDOT ~ OF SUBROUTINE "FCOMP

POSSIBLE UNITS AREs

LB /MIN LBM/MIN
VALUE=

5
UNITS=
LB /MIN

PARAMETER " HPWR ” FOR INSTANCE " COMPR _ .
MATCHED WITH INPUT " 056P ° OF SUBROUTINE "FCOMP

POSSIBLE UNITS ARE:

HP HP, HORSEPOWER
VALUE =

-9
UNITS:=
HP

011310063101923133

IF YOU NEED INSTRUCTIONS ON SELECTING
THE PROPER SUBROUTINE IN THE LIBRARY PLEASE
TYPE YES OTHERWISE NO

THE PRESENT INSTANCE IS COND 4

NO

-169-

PLEASE MAKE YOUR SELECTION NOW,

=COND 1

IF YOU WOULD LIKE INSTRUCTIONS QN HOW TO
MATCH THE PORTS OF THE INSTANCE “COND 4 .
WITH THE PORTS FOR SUBROUTINE "COND |
PLEASE TYPE YES OTHERWISE NO

NO
PLEASE USE THE FOLLOWING
TO MAKE YOUR MATCHES,
INSTANCE INPUTS: L sMDOT $HBAR $DELT sHI soD

INSTANCE OUTPUTS: H2

SUBROUTINE INPUTS: 057H13057HBAR$05TL $057MDOT 30570D3 05 TDELT
/SUBROUTINE OUTPUTSt 057H2

E:057L .
INPUT MATCH NO. 1

MDOT =057MDOT

INPUT MATCH NO, 2

HBAR =057HBAR

INPUT MATCH NO, 3

DELT =057DELT
INPUT MATCH NO. 4

H1Z_=05TH1
INPUT MATCH NO. 5

QD=0570D
INPUT MATCH NO, 6

H2:=057TH2 i
OUTPUT MATCH NO, |

-170-

THE FOLLOWING PORTS FOR "COND 4~
MUST BE GIVEN A VALUE WITH UNITS AT THIS POINT,.

PARAMETER L " FOR INSTANCE " COND 4_
MATCHED WITH INPUT " 057L ~ OF SUBROUTINE "CONDI

POSSIBLE UNITS ARE?

FT FEET FOOT FT.
VALUE =

36
UNITS=
FT

PARAMETER =~ MDOT " FOR INSTANCE ~ COND 4

MATCHED WITH INPUT = 057MDOT OF SUBROUTINE "CONDI

POSSIBLE UNITS ARE:

LB «./HR. LB /HR
VALUE =

5
UNITS=
LB /HR

PARAMETER ~ HBAR ~ FOR INSTANCE " COND 4 " _
MATCHED WITH INPUT ~ 057HBAR " OF SUBROUTINE “CONDI

POSSIBLE UNITS AREs

BTU/FT"2=F =HR
VALUE =

45
UNITS:=
BTU/FT*2=F=HR

PARAMETER " DELT _ FOR INSTANCE ~ COND 4 " _ .
MATCHED WITH INPUT " O057DELT ~ OF SUBROUTINE "CONDI

-171-

POSSIBLE UNITS ARE:

F FDEG
VALUE =

65
UNITS =
F

FARAMETER = 0D - FOR INSTANCE " COND 4 _
MATCHED WITH INPUT " 0570D ~ OF SUBROUTINE “CONDI

POSSIBLE UNITS AREs

IN IN. INCHES
VALUE =

25
UNITS=
IN
IF YOU NEED INSTRUCTIONS ON SELECTING

THE PROPER SUBROUTINE IN THE LIBRARY PLEASE
TYPE YES OTHERWISE NO

THE PRESENT INSTANCE IS VALVE

NO
PLEASE MAKE YOUR SELECTION NOW.

=VALVI
IF YOU WOULD LIKE INSTRUCTIONS QN HOW TQ
MATCH THE PORTS OF THE INSTANCE “VALVE
WITH THE PORTS FOR SUBROUTINE “vaLv1
PLEASE TYPE YES ° OTHERWISE NO .

NO

PLEASE USE THE FOLLOWING
TO MAKE YOUR MATCHES.,

-172-

INSTANCE INPUTS: HlI /INSTANCE OUTPUTS: H2

SUBROUTINE INPUTS: O061H1 /SUBROUTINE OUTPUTS: 061H2

Hi1=061HI

INPUT MATCH NO, 1

H2:=061H2

OUTPUT MATCH NO, 1

TDS recognized that all
ALL DONE IN BUILD --—_ | information needed to

analyze the nroblem has

$EXECUTE bheen received.

\The designer wanted

sSoOme answers.

AN ENTRY INTO EXECUTE MUST BE CONFIRMED,

PLEASE CONFIRM OR CANCEL.,
0K
001

SUBROUTINE EVAP1 WILL NOW BE PROCESSED,

eee UMIST SIGNS OFF .ee
PEXECUTION TERMINATED
#3SOURCE BUILD (150)
#$SOURCE EXECUTE(150)
#$COPY LIB (5059,5059.999) TO =YUP
#IRUN *xDUMMY %
#ATTEMPT TO LOAD A NULL PROGRAM,
#$EMP -QUTPUT
#DONE ,
#3RUN =-YUP 1==-INPUT 2:==-0UTPUT
#EXECUTION BEGINS

The first element function is
now to he nrocessed. The '#'
signs are nrinted when the
central computer is ovnerating
automatically from a file of
commands which were written by
TDS.

THC002I STOP 0 *kxxk RESTART AT LOCATION 106246

#EXECUTION TERMINATED
#SEMP <INPUT

#DONE ,

#SEMP -YUP

#DONE ,

#SRUN TRAMP SCARDS=EXECUTE(2,01) PAR=P

#EXECUTION BEGINS

(MODs F-03/02/03) 7250 PM

JUNE 4, 1968

-173-

<> <> <> TRAMP, ASSOCIATIVE VERSION OF
eee UMIST SIGNS ON ...

006
SUBROUTINE “ FCOMP " WILL NOW BE PROCESSED.
eee UMIST SIGNS OFF ...
SEXECUTION TERMINATED
#3$SOURCE BUILD(150)
#3$SOURCE EXECUTE (150)
#8COPY LIB(5056,5056.,999) TO =YUP
#SRUN *DUMMY %
#ATTEMPT TO LOAD A NULL PROGRAM,
#3EMP -OUTPUT
#3RUN -YUP 1==INPUT 2==-0UTPUT
#EXECUTION BEGINS
IHC002I STOP 0 x*xx*k* RESTART AT LOCATION
#EXECUTION TERMINATED
#$EMP -INPUT
#DONE .
#3EMP -YUP
#DONE ,
#3RUN TRAMP SCARDS:=EXECUTE(2.01) PAR=P
#EXECUTION BEGINS

(MODs F-03/02/03) 7351 PM JUNE 4, 1968

<> <> <> TRAMP, ASSOCIATIVE VERSION OF
eee UMIST SIGNS ON ...

011
SUBROUTINE CONDI1 WILL NOW BE PROCESSED.
eee UMIST SIGNS OFF ...
#EXECUTION TERMINATED
#3$SOURCE BUILD (150)
#$SOURCE EXECUTE(150)
#$COPY LIB (5057,5057.999) TO -YUP
#SRUN *DUMMY % :
#ATTEMPT TO LOAD A NULL PROGRAM,
#SEMP -OUTPUT
#DONE
#SRUN -YUP 1:=-INPUT 2:=-OUTPUT
#EXECUTION BEGINS
IHC002I STOP 0 *%kxkxkx RESTART AT LOCATION
SEXECUTION TERMINATED
#SEMP -INPUT
#DONE ,
#SEMP ~-YUP
#DONE ,
#SRUN TRAMP SCARDS=EXECUTE(2,01) PAR=P
SEXECUTION BEGINS

10624E

10628A

~174-

(MOD: F-03/02/03) 7353 PM JUNE 4, 1968

<> <> <> TRAMP, ASSOCIATIVE VERSION OF
oo 0 UMIST SIGNS ON o000

019
SUBROUTINE - VALVI " WILL NOW BE PROCESSED.
eee UMIST SIGNS OFF oee
#EXECUTION TERMINATED
#3$SOURCE BUILD(150)
#$SOURCE EXECUTE (150)
#$COPY LIB(5061,5061,999) TO =-YUP
#SRUN *DUMMY %
#ATTEMPT TO LOAD A NULL PROGRAM,
#SEMP <OUTPUT
#DONE .
#$RUN =YUP 1==INPUT 2:=-0UTPUT
#EXECUTION BEGINS
IHCO0021 STOP 0 *%kkk RESTART AT LOCATION 10621A
PEXECUTION TERMINATED
#SEMP -INPUT
#DONE .
#SEMP -YUP
#DONE .
#$SRUN TRAMP SCARDS=EXECUTE(2.01) PAR=P
#EXECUTION BEGINS

(MmoDs F-03/02/03) 73255 PM JUNE 4, 1968

<> <> <> TRAMP, ASSOCIATIVE VERSION OF
eee UMIST SIGNS ON .0

EXECUTE 2.105

This is the answer. Note
EXECUTE 2.105 that (1) 41.0 BTU/LB was
FOLLOWING ARE THE VALUES the trial value, and (2)
PRODUCED BY YOUR SYSTEM, all four nrograms were

minutes,

individually executed and
INTER-program formatting
was AUTOMATIC---all in 4+

PORT " H2 . FOR INSTANCE ~ VALVE
HAS THE VALUE "57.67374 BTU/LB
THOSE ARE ALL THE OUTSTANDING VALUES.

-175-

TYPE DESIRED MODE NAME, OR INSERT
MORE INFORMATION INTO PRESENT MODE.

$T
THIS IS T/1

IF YOU WOULD LIKE INSTRUCTIONS
FOR USING THIS MQDE_PLEASE TYPE
YES™ OTHERWISE N0,
NO
PLEASE TYPE DESIRED OPERATOR NAME

$ALT/057DELT:653140/ _~%
NEW VALUE OF “057DELT" IS "1407,

$EXECUTE

SAVE TASKS WHEN LEAVING SUPPLY-T/I,

The temperature drop
condenser is being c

in the
hanaed

so that the answer from the

next execution will
closely anproach the
value.

more
trial

AN ENTRY INTO EXECUTE MUST BE CONFIRMED.

PLEASE CONFIRM OR CANCEL.
0K

001

SUBROUTINE EVAP1 WILL NOW BE PROCESSED,

eee UMIST SIGNS OFF ...
#EXECUTION TERMINATED
#$SOURCE BUILD (150)
#8SOURCE EXECUTE(150)
#3COPY LIB(5059,5059,999) TO -YUP
#SRUN *DUMMY *
#ATTEMPT TO LOAD A NULL PROGRAM,
#SEMP -OUTPUT
#DONE ,
#SRUN =-YUP 1=-INPUT 2=-0UTPUT

-176-

#EXECUTION BEGINS

IHC0021 STOP 0 *xxxxx RESTART AT LOCATION
#EXECUTION TERMINATED

#3EMP -INPUT

#DONE ,

#3EMP -YUP

#DONE .

#SRUN TRAMP SCARDS:=EXECUTE(2.,01) PAR:=P
#EXECUTION BEGINS

(MODs F-03/02703) 9:31 PM JUNE 4, 1968

<> <> <> TRAMP, ASSOCIATIVE VERSION OF
eee UMIST SIGNS ON ...

006
SUBROUTINE "~ FCOMP " WILL NOW BE PROCESSED.
eee UMIST SIGNS OFF ...

#EXECUTION TERMINATED

#$SOURCE BUILD (150)

#$SOURCE EXECUTE (150)

#3COPY LIB (5056,5056,999) TO =-YUP

#SRUN *DUMMY %

#ATTEMPT TO LOAD A NULL PROGRAM.

#$EMP -OUTPUT

#DONE .

#SRUN -YUP 1=-INPUT 2=-0UTPUT

FPEXECUTION BEGINS
IHC 0021 STOP 0 kxkx*x RESTART AT LOCATION

#EXECUTION TERMINATED

#$EMP -INPUT

#DONE .

#SEMP -YUP

#DONE

#3RUN TRAMP SCARDS=EXECUTE(2.01) PAR=P

#EXECUTION BEGINS

(MOD: F=03/02/03) 9:32 PM JUNE 4, 1968

<> <> <> TRAMP, ASSOCIATIVE VERSION OF
eee UMIST SIGNS ON +ee

106246

10624E

-177-

011
SUBROUTINE ~ COND! “ WILL NOW BE PROCESSED.
eee UMIST SIGNS OFF ...

#EXECUTION TERMINATED

#$SOURCE BUILD (150)

#$SOURCE EXECUTE (150)

#$COPY LIB(5057,5057.999) TO =YUP

#SRUN *DUMMY %

#ATTEMPT TO LOAD A NULL PROGRAM,

#$EMP =QUTPUT

#DONE

#3RUN =YUP 1=-INPUT 2:=-0UTPUT

#EXECUTION BEGINS
IHC002I STOP 0 *xkk* RESTART AT LOCATION 10628A

#EXECUTION TERMINATED

#$EMP -INPUT

#DONE

#SEMP =YUP

#DONE .

#$RUN TRAMP SCARDS=EXECUTE(2.,01) PAR=P

FEXECUTION BEGINS

(MODs F=03/02703) 9:35 PM JUNE 4, 1968

<> <> <> TRAMP, ASSOCIATIVE VERSION OF
eee UMIST SIGNS ON .o

$QUE / This value should correspond
$UMI/VALUi:k’/”””””,,f”/ to the trial value of 41.0.
31,18002

The temperature drop will now

$ALT/057DELT!1403115/“ :lF‘ij——ﬂ be reduced and an execution tried.
NEW VALUE OF OSTDELT IS 115 &

$SEXECUTE

-178-

AN ENTRY INTO EXECUTE MUST BE CONFIRMED.
PLEASE CONFIRM OR CANCEL.

0K

001
SUBROUTINE " EVAPI ~ WILL NOW BE PROCESSED,
L) UMIST SIGNS OFF LN S
FEXECUTION TERMINATED
#$SOURCE BUILD(150)
#8SOURCE EXECUTE (150)
#$COPY LIB (5059,5059.999) TO -YUP
#SRUN *DUMMY x
#ATTEMPT TO LOAD A NULL PROGRAM,
#$EMP ~OUTPUT
#DONE ,
#3RUN <«YUP 1:=-INPUT 2=-0UTPUT
FEXECUTION BEGINS
IHC002I STOP 0 xx*xxx RESTART AT LOCATION
#EXECUTION TERMINATED
#3EMP -INPUT
#DONE ,
#3EMP -YUP
#DONE .
#$RUN TRAMP SCARDS:=EXECUTE(2.,01) PAR=P
#EXECUTION BEGINS

(MOD: F=-03/02/03) 9143 PM JUNE 4, 1968

<> <> <> TRAMP, ASSOCIATIVE VERSION OF
eee UMIST SIGNS ON .o

006
SUBROUTINE ~ FCOMP " WILL NOW BE PROCESSED.
eee UMIST SIGNS OFF ...

#EXECUTION TERMINATED

#$SOURCE BUILD (150)

#$SOURCE EXECUTE (150)

#$COPY LIB(5056,5056,999) TO -YUP

#SRUN *DUMMY %

AATTEMPT TO LOAD A NULL PROGRAM.

#SEMP =-OUTPUT

#DONE .

106246

-179-

#3RUN -YUP 1==INPUT 2:=-OUTPUT

#EXECUTION BEGINS

IHC002I STOP 0 **x%kxkx RESTART AT LOCATION
FEXECUTION TERMINATED

#SEMP ~INPUT

#DONE ,

#SEMP -YUP

#DONE .

#$RUN TRAMP SCARDS:=EXECUTE(2.01) PAR=P
#EXECUTION BEGINS

(MODs F-03/02/03) 9:45 PM JUNE 4, 1568

<> <> <> TRAMP, ASSOCIATIVE VERSION OF
eee UMIST SIGNS ON oo
011
SUBROUTINE ~ CONDI WILL NOW BE PROCESSED.
eese UMIST SIGNS OFF ...
#EXECUTION TERMINATED
#8SOURCE BUILD(150)
#3SOURCE EXECUTE(150)
#3COPY LIB (5057,5057.999) TO =~YUP
#SRUN *DUMMY %
#ATTEMPT TO LOAD A NULL PROGRAM,
#$EMP -OUTPUT
#DONE .
#SRUN =-YUP 1=-INPUT 2=-0UTPUT
FEXECUTION BEGINS
IHC002I STOP 0 *%xkx*x RESTART AT LOCATION
#EXECUTION TERMINATED
#3EMP -INPUT
#DONE , .
#SEMP -YUP
#DONE .
#3RUN TRAMP SCARDS:=EXECUTE (2,01) PAR=P
#EXECUTION BEGINS

(MODs F=-03/02/03) 9346 PM JUNE 4, 1968

<> <> <> TRAMP, ASSOCIATIVE VERSION OF
eee UMIST SIGNS ON e

10624E

10628A

The three passes enabled the
parameters to be adjusted so

SUMI /VALUE/ that the trial value of 41.0
was reasonably avpproached.

40,01128

APPENDIX 7

COMPUTER OUTPUT FOR EXAMPLE IN SECTION 6.1.2

06-05-68
SIGNED ON AT: 14:30.55

HELLO, YOU ARE NOW USING TDS, DO YOU NEED
INSTRUCTIONS FOR INITIALIZIVG THIS DESIGN SYSTEM?
PLEASE TYPE "YES™ OR "NO™

NO
DEVICE?

TTY

0.Ke
YOU ARE NOW READY TO USE TDS UNDER TELETYPE CONTROL

WOULD YOU LIKE INSTRUCTIONS FQR USING TDS, AND A
SUMMARY OF ITS CAPABILITIES? "YES™ OR NO

NO
O.K.

TYPE DESIRED MODE NAME, OR INSERT
MORE INFORMATION INTO PRESENT MODE,

$T

THIS IS T/I

IF YOU WOULD LIKE INSTRUCTIONS
FOR USING THIS MODE PLEASE TYPE
"YES™ OTHERWISE "NO~

NO

PLEASE TYPE DESIRED OPERATOR NAME In this examnle,
is inputted in the telectype

721 /LOAD / —e— [TTY] mode.

the tonolooy

INSTANCE “LOAD " IS NOW IN THE "MENU"

71 /MOMI /

-180-

INSTANCE "moMI " IS
21 /DIV 1/

INSTANCE DIV 1 " IS
“1/01V 2/

INSTANCE “DIV 2 " 1S
.. BATT/

INSTANCE "BATT " IS
71 ‘GAGE 1/

INSTANCE "GAGE 1" IS
71 /GAGE 2/

INSTANCE "GAGE 2" IS

%21 /SCOPE/

INSTANCE "SCOPE

7P /LOAD//PtDR13P:DR23P:DR33PsDR4/

NOW

NOW

NOW

NOW

NOW

NOW

-181-

IN THE

IN THE

IN THE

IN THE

IN THE

IN THE

"MENU "

“"MENU

"MENU "

"MENU "

"MENU"

“MENU "

IS NOW IN THE "MENU®

7P/LOAD//PsR¢PsF3PsG3PeXLsPsE/
7P /LOAD//13C31¢XI30sR130¢R230sR3I30sR4/

7P /MOMI //T B $PsH302C30¢XI/

7P/DIV 1//0sR113I¢R130¢R12/

7P /DIV 2//03R3131¢R330sR32/

7P /BATT//1 ¢R1231 ¢R231sRASI 2R32/

7P /BATT //P¢sEBB 30 ¢ XIL $0sXIR/

7P /GAGE 1//PsEBBSIsR113I:sXIL3OSEX/

-182-

7P /GAGE 2//P:EBB3I¢R313I¢XIR3OEY/
7P /SCOPE//1 sEX 31 tEY$0tEOQ/

72C /LOAD/
2C /moml1/
2C/DIV 1/
2C/MDIV 2/
2C BATT/

The connections are made.

%C /GAGE 1/

7%C /GAGE 2/

%ZC /SCOPE/

7M/MOMI ¢C//LOAD:sC//1000/

M /MOMI ¢XI//LOAD:X1//1010/
wm/Mo

7M/LOAD:R1//DIV 1:R1//1020/
7M/LOAD:R3//DIV 2:R3//1030/
7M/LOADsR2//BATTR2//1040/
7M/LOADsRA//BATT:R4//1050/
JM/DIV 1sR12//BATTsR12//1060/
7M/DIV 2:R32//BATT:R32//1070/
7M/BATT ¢XIL//GAGE 1sXIL//1080/
7M/BATT ¢eXIR//GAGE 2:XIR//1:_090/
ZM/GAGE 1 :EX//SCOPESEX//1100/
7M/GAGE 23EY//SCOPESEY//1200/

-183-

7M/DIV 1:R11//GAGE 1:RI11//1300/
7M/DIV 2:R31//GAGE 2:R31//1400/

YA
$BUILD# (SAVE , -HOPE1)

SAVE TASKS WHEN LEAVING SUPPLY-T/I.
DONE IN T/I

0011

IF YOU NEED INSTRUCTIONS ON SELECTING
THE PROPER SUBROUTINE IN THE LIBRARY PLEASE
TYPE YES OTHERWISE NO

THE PRESENT INSTANCE IS MOMI

NO
PLEASE MAKE YOUR SELECTION NOW.,
=MOMI
IF YOU WOULD LIKE INSTRUCTIONS ON HOW TOQ
MATCH THE PORTS OF THE INSTANCE "MOMI
WITH THE PORTS FOR SUBROUTINE ,(“MOMI
PLEASE TYPE YES®~ OTHERWISE NO °.
NO
PLEASE USE THE FOLLOWING
TO MAKE YOUR MATCHES.
INSTANCE INPUTS: H B /INSTANCE OUTPUTS: XI sC

SUBROUTINE INPUTS: 071B3071H /SUBROUTINE OUTPUTS: 071C3071XI

E:O?lH
INPUT MATCH NO, 1

-184-

B=071B .
INPUT MATCH NO. 2

X1=071X1
OUTPUT MATCH NO, !

C=07IC
OUTPUT MATCH NO, 2

THE FOLLOWING PORTS FOR "MOMI
MUST BE GIVEN A VALUE WITH UNITS AT THIS POINT.

PARAMETER ~ H - FOR INSTANCE " MOMI
MATCHED WITH INPUT ~ 071H " OF SUBROUTINE "MOMI

~POSSIBLE UNITS ARES

IN IN, INCHES
VALUE =

25
UNITS:
IN

TRIAL VALUE " B . FOR_INSTANCE ~ MOMI _
MATCHED WITH INPUT ~ O7IB ~ FOR SUBROUTINE ~ MOMI

POSSIBLE UNITS AREs

IN IN, INCHES
VALUE=

15
UNITS=

IN

-185-

00131005132

001310043100513332

0013100421003310051333432

IF YOU NEED INSTRUCTIONS ON SELECTING
THE PROPER SUBROUTINE IN THE LIBRARY PLEASE
TYPE YES OTHERWISE NO

THE PRESENT INSTANCE IS " LOAD

NO
PLEASE MAKE YOUR SELECTION NOW.

=L0AD
IF YOU WOULD LIKE INSTRUCTIONS ON HOW TQ
MATCH THE PORTS OF THE INSTANCE "LOAD
WITH THE PORTS ﬁOR SUBROUTINE‘ "LOAD
PLEASE TYPE YES OTHERWISE NO "o

NO
PLEASE USE THE FOLLOWING
TO MAKE YOUR MATCHES.

INSTANCE INPUTS: G $DR4 sDR3 sDR2 sDR1 sXL sR

sE $X1I sF H /INSTANCE OUTPUTS: R4 H
R3 sR2 $R 1

SUBROUTINE INPUTS: 064F 3064R3064G3064XL 3064C3064E3064X]I 3064D
Ré $064DR23064DR33064DR4 /SUBROUTINE OUTPUTS' 064Rl 064R2 064
R33064R 4

§:064G
INPUT MATCH

DRI_1:064DR1
INPUT MATCH

DR2:064DR2
INPUT MATCH

DR3=064DR 3
INPUT MATCH

DR 4=064DR 4
INPUT MATCH

XL =064XL
INPUT MATCH

Rz064R
INPUT MATCH

E =06 4E
INPUT MATCH

xI:=064x1
INPUT MATCH

F =064F
INPUT MATCH

Q:064C
INPUT MATCH

R1:=064R1

NO.

NO .

NO.

NO.

NO.

NO.

NO.

NO.

NO. 9

NO.

NO.

10

11

OUTPUT MATCH NO. 1"

R2:064R2

OUTPUT MATCH NO, 2

R3:z064R3

OUTPUT MATCH NO, 3"

RA:=064R 4

#OFF AT 16316,.59

-186-

The disc being used in the
central comnuter became
"locked out" for some reason,
and the nroblem was terminated
by the machine operator.

APPENDIX 8

EXAMPLE OF ENTERING AN ANALYSIS PROGRAM INTO TDS' LIBRARY

TYPE DESIRED MIDE NAME, WR INSERT
MURE INFORMATION INTO PRESENT MODE.

SLIB

THIS IS LIBRARY.

PLEASE SELECT WHICH UF THE FULLOWING MODES IN THE LIBRARY
YOU WISH TO USE:

1) ESTABLISH

2) ALTER

(3) DESTRYY

<4) YUUR UwWN ADDITIUNS TU THE LISxARY

HEST
THIS IS ESTABLISH.
PLEASE TYPE THE NAME UF THE SUBRWUTINE YQ@U WISH TO ENTERS

G2
PLEASE TYPE EACH INPUT PORT FUR SUBROUTINE'G2"
AND ITS NEEDED UNITS IN THE FULLOWING FURMAT:
"PURT NAME = UNITS"
EXAMPLE XK5J9 = LBe/SQ«INe
WHEN ALL INPUT PORTS HAVE BEEN SPECIFIED PLEASE TI'YPE "*x%'.

XIR = AMPS
EBB = VOLTS
R31 = OHMS
* %k

PLEASE TYPE EACH OWUTPUT PORT FUR SUBROUTINE'™G2' AND

ITS NEEDED UNITS IN THE SAME FORMAT AS FUR THE INPUT PURTS.
WHEN ALL OQUTPUTS HAVE BEEN SPECIFIED PLEASE TYPE ‘"'kxx',

Y = VOLTS

% %k

Now YOU MUST GIVE THE INPUT AND QUTPUT FURMAT FBR DATA
NEEDED AND PRODUCED BY '"'G2'.

IF YOU NEED INSTRUCTI®NS ON ENTERING FORMAT DESCRIPT@S
PLEASE TYPE YES®' OTHERWISE N@'e.

NO
THE F@RM 1S PORT NAME-STARTING COLUMN-FIELD LENGTH-M@DE

* % % % LINE * 1 " % * % %
XIR=1-10~-F
EB B=11=-10-F

R31-21=-10~-F -187-

-188-

* %
* % % *x LINE " 2 " % % % %
*
VUTPUT FURMATTING IS EXACTLY THE SAME. PLEASE
USE THE SAME F@RM OF FORMAT DESCRIPTOR.
* % % & LINE "1' % * *& %
EY-1-10-F
* %

* % k x LINE "2 * x * %

*
* % % % % % * x INPUTS % % % * % % % * %
PORT NAME LINE NYe STARTING COLUMN FIFLD LENGTH MOLE
67TXIR 1 1 10 FLUATING POINT
S
67EBS 1 11 10 FLOATING POINT
LTS
67R31 1 21 10 FLOATING POINT
MS

* % % %k % % % * QUTPUTS * * % % * % % % x*

PORT NAME LINE N@e STARTING COLUMN FIELD LENGTH MQDE
67EY 1 1 10 FLOATING POINT
S

1S EVERYTHING ABOVE ACCEPTABLE? '"YES'" OR ''No"

YES

AN

veL

-189-

1S THE PROUGRAM T@ BE LOADED IN S@QURCE OR ¢BJECT CODE?

SOURCE

WHERE MAY THE SQURCE DECK BE F@UND?
-W4

YYUR PROGRAM WILL NOW BE LOADED

eoe UMIST SIGNS OFF eee

#EXECUTION TERMINATED
#SSOURCE BUILDLC150)
#B5SOURCE LIBC10000)

#SRUN *FORTRAN SCARDS=-W4 SPRINT=%DUMMY* SPUNCH=LIB(5067s10000s01)
#EXECUTION BEGINS

#EXECUTION TERMINATED
#%COPY -W4 TO LIBC(7067,100005.01)
#BSRUN TRAMP SCARDS=LIB(199.35) SPRINT=%SINK* PAR=P
#EXECUTION BEGINS

(MOD: F=-03/027/03) 10:15 AM JUNE 5, 1968

<> <> <> TRAMP, ASS@CIATIVE VERSION OF
eee UMIST SIGNS ON eee

BIBLIOGRAPHY

Systems Engineering

Affel, Herman A., Jr. "Systems Engineering," International
Science and Technology, November 1964.

Dixon, John R. Design Engineering: Inventiveness, Analysis
and Decision Making, McGraw-Hill, New York, 1966.

Eder, W.E. Mechanical System Design, Pergamon, New York, 1965.

Esherick, Joseph. "Problems of the Design of a Design System,"
Conference on Design Methods, Pergamon, New York, 1963.

Feigenbaum, D.S. "Systems Engineering: A Major New Technology,"
Industrial Quality Control, September 1963.

Hall, A.D. A Methodology for Systems Engineering, Van Nostrand,
Princeton, N.J., 1962.

Kuo, F.F., and J.F. Kaiser. System Analysis by Digital Computer,
Wiley, New York, 1966.

Lind, N.C. "Analysis of Structures by Systems Theory," Journal
of the Structural Division - A.S.C.E., Vol. 88, April
1962.

Machol, R.E. Systems Engineering Handbook, McGraw-Hill, New
York, 1965.

Mesarovic, M.D., Editor. Second Systems Symposium, Case Insti-
tute of Technology, Wiley, New York, 1964.

Motard, R.L. '"Systems Engineering: Engineering Come of Age,"
Journal - A.S.C.E., Vol. 92, 1966.

Paynter, Henry M. Analysis and Design of Engineering Systems,
M.I.T. Press, Cambridge, Mass., 1960.

Schoenfeld, J.C. "Analog of Hydraulic, Mechanical, Acoustic
and Electrical Systems,'" Applied Scientific Research,
Section B, Vol. #, No. 6, 1954,

Wilson, W. Concepts of Engineering System Design, McGraw-Hill,
New York, 1965.

Networks, Graphs and Their Matrices

Berge, Claude, and A. Ghouila-Houri. Programming, Games and
Transportation Networks, Wiley, New York, 1965.

-190-

-191-

Busacker, Robert G. and Thomas L. Saaty. Finite Graphs and
Networks: an Introduction with Applications, McGraw-
Hill, New York, 1965.

Cederbaum, I. "Application of Matrix Algebra to Network Theory,"
I.R.E. Transactions, Vol. CT-6, May 1959.

Darlington, S. "A Survey of Network Realization Techniques,"
I.R.E. Transactions, Vol. CT-2, February 1955.

Fenves, S.J. and F.H. Branin Jr. "A Network Topological Formu-
lation of Structural Analysis," IBM Technical Report
No. 00.979-1, September 22, 1964.

Ford, L.R. and D.R. Fulkerson. Flows in Networks, Princeton
University Press, Princeton, N.J., 1962,

Gordon, C.K. "The Mathematics of a Structure," International
Science and Technology, No. 53, May 1966.

Gould, R. "Graphs and Vector Spaces,'" Journal of Mathematical
Physics, Vol. 37, 1958.

Grossman, Israel and Wilhelm Maguus. Groups and Their Graphs,
Random House, New York, 1964.

Harary, Frank, Robert Z. Norman, and Darwin Cartwright. Struc-
tural Models : An Introduction to the Theory of Directed
Graphs, Wiley, New York, 1965.

Huelsman, R.G. Circuits, Matrices and Linear Vector Spaces,
McGraw-Hi1ll, New York, 1963.

Kim, W.H. and R.T. Chien. Topological Analysis and Synthesis
of Communication Networks, Columbia University Press,
New York, 1962.

Marcus, M. Basic Theorems in Matrix Theory, U.S. Government
Printing Office, Washington, D.C., 1960,

Mowry, J.W. "Problem Organization Using Linear Transfbrms,”
A term paper for course ME 642, The University of
Michigan, Ann Arbor, April 1966.

Mowshowitz, Abbe. Entropy and the Complexity of Graphs, Concomp
Project Technical Report, The University of Michigan,
Ann Arbor, August 1967.

Norman, R.L. "A Matrix Method for Location of Cycles of a
Directed Graph," A.I1.Ch.E. Journal, May 1965.

Ore, Oystein. Graphs and Their Uses, Random House, New York,
1963,

-192-

Pullen, K.A. Theory and Application of Topological and Matrix
Methods, Rider, New York, 1960.

Reiter, Raymond. A Study of a Model for Parallel Computations,
Ph.D. Dissertation, Systems Engineering Laboratory,
The University of Michigan, Ann Arbor, June 1967.

Sanford, R.S. Physical Networks, Prentice-Hall, Englewood
Cliffs, N.J., 1965.

Seshu, S. and M.B. Reed. Linear Graphs and Electrical Networks,
Addison-Wesley, Reading, Pa., 1961.

Shearer, J.L., A.T. Murphy, H.H. Richardson. Dynamic Systems,
Vol. I and II, Pre-Publication Edition, Addison-Wesley,
Reading, Pa., 1965.

Wineberg, L. Network Analysis and Synthesis, McGraw-Hill, New
York, 1962.

Zadeh, L. Linear System Theory: The State-Space Approach,
McGraw-Hill, New York, 1963.

Information Theory

Attneave, Fred. Applications of Information Theory to Psychology,
Holt, Rinehart and Winston, New York, 1959.

Bell, David A. Information Theory and Its Engineering Appli-
cations, Pitman, London, 1962.

Goldman, Stanford. Information Theory, Prentice-Hall, Englewood
Cliffs, N.J., 1953.

Proceedings of the Symposium on Information Networks, Vol. IITI,
Polytechnic Institute of Brooklyn Press, New York,
April 1954.

Sass, Margo A. and William D. Wilkinson. Computer Augmentation
of Human Reasoning, Spartan Books, New York, 1965.

Shannon, Claude E. and Warren Weaver, The Mathematical Theory
of Communication, University of Illinois Press, Urbana,
1949.

Tou, Julius T. and Richard H. Wolcox. Computer and Information
Sciences, Spartan Books, New York, 1964.

Whitehill, Joseph. '"Reappraisals: II - Samuel Taylor Coleridge:
Prisoner and Prophet of System,'" The American Scholar,
Vol. 37, No. 1, Winter 67-68.

-193-

Wilson, Ira G. and Marthann E. Wilson. Information Computers
and System Design, Wiley, New York, 1965.

Computing - General

Ash, W.L. and E.H. Sibley. TRAMP: A Relational Memory with
an Associative Base, Technical Report, Concomp Project,
University of Michigan, Ann Arbor, June 1968.

Bellman, R. "Dynamic Programming," Science, Vol. 153, No. 3731,
Namuary 7, 1966.

Bellman, R. and R. Karusy. Dynamic Programming: A Bibliography
of Theory and Application, RAND Corp, Santa Monica,
Calif., August 1964.

Blake, K. and G. Gordon. "Systems Simulation with Digital
Computers,'" IBM Systems Journal, Vol. 3, No. 1, 1964,

Campbell, H.G. An Introduction to Matrices, Vectors and Linear
Programming, Appliton-Century-Crofts, New York, 1965.

Childs, David L. Description of a Set Theoretic Data Structure,
Technical Report No. 3, Concomp Project, University of
Michigan, Ann Arbor, March 1968.

Galler, B.A. and A.J. Perlis, "A Proposal for Definitions in
ALGOL," Communications of the ACM, Vol. 10, No. 4,
April 1967.

Mooers, C.N. "TRAC, A Procedure-Describing Language for the
Reactive Typewriter," Communications of the ACM, Vol. 9,
No. 3, March 1966.

Mooers, C.N. and L.P. Deutsch, "TRAC, A Text-Handling Language,"
ACM 20th Anniversary, Proceedings,1965.

Murphy, J.S. Basics of Digital Computer Programming, Rider,
New York, 1964.

MTS: Michigan Terminal System, University of Michigan Computing
center, Ann Arbor, 1968.

Sibley, E.H. The Computer as Symbol Manipulator and Evaluator
for Engineering, A Ph.D. Dissertation at the Massachu-
setts Institute of Technology, Cambridge, 1967.

Tucker, Stephen G. "Automated Program Documentation,'" TRW Summer
Student Assistant Program in Computer Science, Section 15,
TRW Systems, Redondo Beach, Calif., 1967.

-194-

Computer-Aided Design

Chasen, S.H. '"Man-Computer Graphic Communication,'" Machine
Design, Penton Publications, Cleveland, Ohio, March
3, 1966.

Ling, Marvin T. The Logical and Analytical Structure of the
Computer-Aided Design Process as Applied to a Class
of Mechanical Design Problems, A Ph.D. Dissertation
at the University of Michigan, Ann Arbor, 1964.

Roos, D. ICES System Design, M.I.T. Press, Cambridge, 1966.

Rosenberg, Ronald C. Computer-Aided Teaching of Dynamic
System Behavior, A Ph.D. Dissertation at Massachu-
setts Institute of Technology, Cambridge, 1965.

Sutherland, W.R. The On-Line Graphical Specification of
Computer Procedures, A Ph.D. Dissertation at the
Massachusetts Institute of Technology, Cambridge,
1966.

Westervelt, F.H. A Study of Automatic System Simulation Pro-
gramming and the Analysis of the Behavior of Physical
Systems Using an Internally Stored Program Computer,
A Ph.D. Dissertation at The University of Michigan,
Ann Arbor, 1960.

Simulation

Harman, H.H. "Simulation as a Tool for Research," System De-
velopment Corporation, Santa Monica, Cal., SP-565, 1961.

Harman, H.H. "The System Simulation Research Laboratory,'" Sys-
tem Development Corporation, Santa Monica, Calif.,
TM-498, 1960.

Mitchell, R.K. and F.A. Creswick. "The Synthesis and Use of
Mathematical Models as Aids to Design,'" ASME Paper
64-MD-45, 1964.

Ripperger, W.C. MIMIC: A Digital Simulator Program, University
of Michigan Computing Center, Ann Arbor, 1966.

Shigley, Joseph E. Simulation of Mechanical Systems, McGraw-
Hill, New York, 1967.

Unclassified
Security Classification

DOCUMENT CONTROL DATA - R&D o
(Security classitication of title, body of abstract and indexing annotation must be entered when the overall report ia classified)
2a. REPORT SECURITY C LLASSIFICATION

Unclassified
2b. GROUP

1. ORIGINATIN G ACTIVITY (Corporate author)

THE UNIVERSITY OF MICHIGAN
CONCOMP PROJECT

3. REPORT TITLE

MAN-COMPUTER SYNERGISM FOR DECISION MAKING IN THE SYSTEM
DESIGN PROCESS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Technical Report
5. AUTHOR(S) (Last name, first name, initial)

John James Allan IIT

6. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REPS
June 1968 194 72

Q8. CONTRACT OR GRANT NO. 94. ORIGINATOR'S REPORT NUMBER(S)
DA-49-083 0SA-3050 Technical Report 9

b. PROJECT NO.

c. 9b. OTHER l:JPon*r NO(S) (Any other numbers that may be asaigned
this repo

d.
10. AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from DDC.

11. SUPPL E“ENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

13. ABSTRACT

This report discusses a fundamental principle of operation for
an interface which is conceived to increase the effectiveness of
the designer of discrete element systems. The interface, im-
plemented in a small computer with interactive graphic capabilities
operating as a satellite of a large central computer, has been
built and used. The initial results are discussed and open
problems for future work are listed. The appendices include -
User's Guide, examples, and details of implementation.

DD 1'?25““ 1473 Unclassified

Security Classification

Unclassified

Security Classification

KEY WORDS

LINK A LINK B LINK C

ROLE wWT ROLE WT ROLE wT

Man-Machine
Computer
Decision-Making
System

Design

Graph Theory
Networks

Set Theory
Computer Graphics
Data Structures
Information

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over
all security classification of the report. Indicate whether
‘“Restricted Data’’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 ‘as author-
ized.

3. 'REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATZ: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
shouid follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written,

8b, 8¢, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this numbe;(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) ‘“‘Qualified requesters may obtain copies of this
report from DDC.’’

(2) ‘‘Foreign announcement and dissemination of this
report by DDC is not authorized.’’

(3) ‘‘U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) *‘U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

(5) ‘“All distribution of this report is controlled. Qual-
ified DDC users shall request through

”»
.

If the report has been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

1. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though

it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall"
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S), (C), or (v).

There is no limitation cn the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

GPO 886551

Unclassified
Security Classification

86

i

i

02229 35

5

il

901

[

3

