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On the Optimal Number of Alternatives at a Choice Point1 

AMOS TVERSKY 

University of Michigan, Ann Arbor, Michigan 

Given a fixed total number of alternatives for a multiple-choice type test, the use of 
three alternatives at each choice point will maximize discriminability, power and 
information of a test. A proof is presented and applications to test construction, 
task design, and information processing are briefly discussed. 

Consider any test task or questionnaire which can be represented as a sequence of 
choice points at each of which one out of a set of alternatives is chosen. Multiple- 
choice tests, mazes or personality check lists are examples. Given a fixed total number 
of alternatives for the whole test, we wish to find the optimal number of choice points 

and the optimal number of alternatives at each choice point. 
Let K be the total number of alternatives, and let xi denote the number of alternatives 

at the ith choice point. Thus: 

&cd-k 
i=l 

(1) 

where Y is the number of choice points. 
Three criteria for optimality which one may attempt to maximize will be considered. 

(a) Discrimination capacity: the number n of possible distinct response patterns 
of a given test 

n = ITI xi 
i=l 

(2) 

For example, consider a multiple-choice diagnostic test or an attitude questionnaire 
based on Likert-type items. Let every sequence of responses be regarded as a dif- 
ferent “personality type” or “attitude profile.” Thus, by maximizing n, we maximize 

the number of distinct types or profiles among which the test enables us to discrimi- 
nate. 

t This research was supported by the Air Force Office of Scientific Research under contract 
AF-AFOSR-196-63, and by Public Health Service Research grant MH-04236. 
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(b) Power: defined as 1 minus the probability of attaining perfect performance by 
chance alone. Assuming equal probability of guessing for all alternatives: 

Power = 1 - (fi x3-l 
i=l 

Clearly, we are interested in constructing tests with maximal power. 

(c) Uncertainty associated with the set [A] of all possible response patterns to a 
given task. 

H[A] = - 2 pi log,pi = log, ICI xi 
i=l i=l 

(4) 

Since the three criteria proposed are strictly monotonically related to each other, 
maximizing (2) maximizes (3) and (4) as well. I f  the same number of alternatives is 
used at each choice point, i.e., xi = xj , for any i and j then 

and since x . Y = k 

Let us denote by f,(x) the discrimination function xklx of such a test. fk(x) can be 
maximized by setting (d/dx)f,(x) = 0. 

= &xw $ (ln x6/z) = xk’* (-$ - ln x $1 

Since both x and k are positive (d/dx)f,(x) = 0 and only if 

1 - In x = 0, lnx=l, or x = e. 

Thus f(x) has a unique maximum at x = e = 2.718. 
A family of discrimination functions for some different values of k is given in Fig. 1. 

Note that though the value of fk(x) depends rather heavily on k, the location of its 
maximum is completely independent of k. 

(Note, incidentally, that the well-known function f(pJ = - pi log,pi , is a loga- 
rithmic transformation of the discrimination function fk(x) where k = 1. The above 
result may be used to solve for its maximum. 



388 TVERSKY 

Let log, y  = - pi log, pi and let x = 1 /pi . Hence: 

(7) 

By (6), Qx) is maximum at x = e. Indeed -pi log,pi is maximum at pi = l/e = 

0.368.) 
Since x stands for the number of alternatives, we want to find the integer which is 

closest to the maximum point. Sincef,(x) is single-peaked it should be either 2 or 3. 
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FIG. I. A family of discrimination function f&(x) for some different values of k. The dots 
on the curves denote the points at which both x and K/x are integers. 

To show that 3 gives the desired solution we have to show that f,(3) >fk(2) for 
any k > 0, i.e., 3”j3 > 2”J2. Raising both sides of the above equation to the 6/k power 
yields the desired result. 
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Hence the use of three alternatives at each choice point will maximize discrimina- 
tion capacity, power, and uncertainty of the test. 

The final result for the case in which both x and k/v are integers is given by the 
following theorem. 

THEOREM. Consider any sequence of positive integers x1 , x2 ... x,. such that 

Et, xi = k. A sequence for which IIg,l xi is maximum will include a maximal number of 
3’s without including any I. 

That is, the best solution will include either (i) k/3 choice points with 3 alternatives 
each, or (ii) (k - 4)/3 choice points with 3 alternatives each and a single choice point 

with 4 alternatives, or (iii) (k - 2)/3 c h oice points with 3 alternatives each and a single 

choice point with 2 alternatives, depending on whether the remainder of k when 
divided by 3 is zero, one, or two, i.e., whether k mod (3) equals 0, 1, or 2. 

The proof of the theorem is as follows: For every sequence of positive integers, 
denoted by S, with a fixed sum, k, which is not in any one of the forms (i), (ii), or (iii) 

it is possible to construct another sequence denoted by S’ with the following properties: 

(1) CS’ = CS = k. 
(2) KS’ > KS. 
(3) S’ is in one of the forms (i), (ii), or (iii). 

The construction of such a sequence is done by successive replacements of elements 
in the original sequence which do not change its sum. Let S be any sequence of positive 

integers. If  it contains 1, delete the 1 by adding it to some other element. The new 
sequence obtained will have a greater product since 

x+1 >x*l for any x > 1. (8) 

If  the sequence contains 2’s or 3’s, leave them unchanged. If  the sequence contains 4, 
replace it by a pair of 2’s, leaving both the sum and the product unchanged. 

Next, any even x can be expressed as 2t for some positive integer t. Hence replace 

any even x > 4 by its corresponding t-tuple of 2’s. The product of the new sequence 
will exceed that of the old one since 

2t > 2t for any t > 2. (9) 

Similarly, any odd x > 3 can be expressed as 2t + 3 for some positive integer t. 
Thus we may replace any odd x > 3 by a single 3 and its corresponding t-tuple of 
2’s. This replacement will increase the product of the sequence because 

2t * 3 > 2t + 3. (10) 

Repeated application of these replacements will yield a sequence consisting of 2’s and 
3’s only. 
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Finally, replace any triple of 2’s by a pair of 3’s, thus increasing the product since 

32 > 23. (11) 

The final sequence thus obtained will be in one and only one of the desired forms (i), 
(ii), or (iii). The maximality of KY for this sequence follows from the inequalities (8) 
through (11). 

The form of the desired sequence S’ is unique except for order and except in case (ii) 
in which either a single 4 or a pair of 2’s may be used. 

Alternatively, the above theorem may be stated as follows: Consider all sequences 
of positive integers xi, x2, ..., x, with a fixed product K, i.e., II;=, xi = k. The 
sequence for which CL, xi is minimum will include a maximal number of 3’s without 
including any 1. 

DISCUSSION 

The criteria proposed will be maximized by constructing tasks whose alternatives 
are of the form given by the above theorem. Certainly, additional criteria may be 
considered in deciding upon the number of alternatives to be used. There are, 
however, instances in which the above result may be directly applicable. 

Whenever the amount of time spent on the test is proportional to its total number 

of alternatives, the use of three alternatives at each choice point will maximize the 
amount of information obtained per time unit. This seems to be true of multiple- 
choice tests consisting of questions like: “which of the following passages best de- 
scribes X’s position ?” in which the amount of time spent on the question is negligible 
compared to the time spent on choosing among the alternatives. The result is appli- 
cable, however,even in instances in which the proportionality assumption does not hold. 
All that is needed is that the relative gain in information will exceed the relative loss 
in time. 

An estimate of the relative gain (or loss) of information, power, and discriminability 

as a function of some different values of x for a given k can be obtained from the graph 
of fk(x) in Fig. 1. Whenever additional criteria are explicitly introduced, the above 
estimate may be taken into account in constructing an optimally-designed task. 

There exists some empirical evidence (Pressey, 1962), based on the study of auto- 
instructional items, which indicates that three-alternative test items are indeed opti- 
mal. Since neither time nor the total number of alternatives was controlled, the results 
are only suggestive. 

Finally, the above result may shed some light on the study of information coding 
and processing. In a paper entitled “Information transmission with elementary 
auditory displays,” Sumby, Chambliss, and Pollack (1958) have used a set of auditory 
signals as an alphabet. They employed four stimulus variables, with two, three, and 
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five alternatives per variable. In summarizing the results Garner (1962) says: “Their 
results showed that three alternatives per variable gave the best performance, agreeing 
with the suggestion in the Pollack and Ficks (1954) results that three levels per 
dimension are better than two. Certainly, at this stage it seems that the maximum 
information transmission will be obtained with humans when no more than three 
alternatives are used with a single variable, but with many variables involved,” 
(pp. 122-123). In other words, the data show that perceptual discrimination, measured 
by the amount of information transmitted, was maximized when each one of the 
dimensions has three levels. 

One may hypothesize that the discriminability of the stimuli, or the memory load 
associated with them, is directly related to the total number of levels summed over 
dimensions. The fact that amplitude, for example, is a relevant dimension does not 
contribute to the S’s memory load; rather, it is the number of levels of amplitude 
which hinders discrimination. The total number of levels, however, was shown to be 
minimal whenever three-level factors are employed. If the above hypothesis is true, 
it follows that the use of three-level factors will minimize confusion and decrease 
memory load. This problem seems worthy of experimental investigation. Taken 
together with Garner’s conclusions concerning human capacities to process multi- 
dimensional information, these results suggest that the use of three levels per dimen- 
sion may be the most efficient way to code and process information. 
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