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Light scattering and intrinsic viscosity measurements have been made on three 
different series of  vinyl acetate polymers, one linear and two branched. One 
of  the branched series was obtained by [ractionation of a high conversion 
polymer, the other by a graft polymerization under conditions that allowed 
structural characterization of  the resultant comb-shaped polymers. These data 
show that the ratio of  the mean-square radii of  gyration of branched and 
linear polymers of  the same molecular weight is greater in good solvents than 
the ratio calculated tl eoretically ]or a theta solvent. The ratio of the second 
virial coefficients of  the comb-shaped branched and linear polymers of  the 
same molecular weight is equal within experimental error to the ratio of the 
intrinsic viscosities. The ratio of the intrinsic viscosities of branched and linear 
polymers is greater in a good solvent than in a theta solvent, in support of  
inferences from the behavior of  the radius of  gyration. A theoretical expression 
for the ratio of  the intrinsic viscosities in a poor solvent is obeyed more nearly 

in a good solvent than in a theta solvent. 

THE preparation of a linear and two series of branched poly(vinyl acetate) 
polymers has been described elsewhere 1'2. The linear polymer, series 5, 
was prepared by the careful fractionation of polymer that had been poly- 
merized to low conversion at a low temperature using a photosensitive 
initiatork One of the branched samples, series 4, was prepared in like 
manner from a polymer which had been polymerized to high conversion to 
give a randomly branched materiaP. The other, series 6, was prepared by 
a graft polymerization technique to place a specified number of branches of 
predetermined average chain length on fractions of series 5 which served as 
a linear backbone polymer with a narrow molecular weight distribution -~. 
The purpose of this paper is to consider some of the dilute solution 
properties of these branched polymers. In particular, the second virial 
coefficients, the mean square radii of gyration, and the intrinsic viscosities 
of the branched polymers in thermodynamically good solvents will be 
compared to the corresponding parameters for linear polymers. The melt 
viscosities of these branched polymers will be considered elsewhere. 

*Present address: Mellon Institute, Pittsburgh. Pennsylvania. 
t]~'csen; address: Bennettsvi!le, South Carolina. 
:~Present address: E. | .  du Pont de Nemours and Co., Wilmin2ton, Delaware. 
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E X P E R I M E N T A L  
Intrinsic viscosity 

Intrinsic viscosities were determined with the viscometers and techniques 
described in Part  I x . 

The majority of the viscosity measurements were made on benzene 
solutions. The intrinsic viscosities for the linear polymers in benzene were 
fitted by the expression [7] =k,~<M)aw with k~=2"16 x 10 -4 and a=0"675. 
Sufficient measurements were made in 1,2,4-trichlorobenzene to establish 
the values of the constants to be k~=3"30x 10 -4 and a=0-623.  Intrinsic 
viscosities [711 measured in benzene can be related to those [,7]~ in trichloro- 
benzene by the expression 

[~/]2 = 0"788 [~/]°a"2" (1) 

Equation (1) is used further below. The intrinsic viscosity data for the 
comb-shaped polymers, series 6, are given in Table 1. The data for the 
linear fractions, series 5, and the randomly branched polymer, series 4, 
have been given previously 1. 

Table l. Intrinsic viscosity data 

Fraction 4 

6-20-1 
6-20-M 
6-30-1 
6-30-M 
6-40-1 
6-41-1 
6-41-M 
6--50-1 
6-51-1 
6--51-M 
6--60-1 
6-70-1 
6-71-1 
6-80-1 
6-81-1 
6-90-1 
6-91-1 
5-2-2 
5-5-3 
6--60-1 
6-70-1 
6-71-1 
6-80-1 

Solvent 

Benzene 

2-Octanone 

I 

[~l 
(dl/g) 

5"20 
4"18 
2"96 
2"77 
3"18 
3"64 
3"34 
4"52 
4"48 
4'15 
5'76 
4"00 
4"32 
4"27 
4"04 
5"01 
4"19 
1"35 
0-940 
0"950 
0'953 
0-616 
0"696 

k' k'+fl 

0"401 0"501 
0"347 0"498 
0"366 0"502 
O'367 0"502 
0'368 0"498 
0'344 0"498 
0"347 0"498 
0-338 0"502 
0"338 0'500 
0"366 0"501 
0"356 0"500 
0"366 0"500 
0"355 0"500 
0"369 0"502 
0'359 0"501 
0'383 0"502 
0'381 0"502 

*Series 5 contains linear volyrners. 
Series 6 contains comb-shaved branched volymers. 

Light scattering 
Light scattering measurements were made at the instrument temperature 

of 34 ° to 38"C in a Brice-Phoenix light scattering photometer with 
unpolarized 4 358 A light and a narrow slit system. The photometer was 
calibrated with solutions of colloidal silica ( 'Ludox')  and a solution of the 
Cornell standard polymer in toluene (cone. 0-5 g /d l  toluene). The cell was 
checked for symmetry with dilute fluorescein and the deviation from the 
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expected angular dependence was less than one per cent. Both solvent and 
solution were filtered into centrifuge tubes and centrifuged for about five 
hours to remove foreign matter. A dust free pipette fitted with a syringe 
needle and stopcock, and a device to draw the liquid slowly into the pipette 
by suction was used to remove the clarified liquid in some cases. A syringe 
with a manually operated plunger was used otherwise. Solvent clarity was 
judged by visual observation and by the ratio of the intensities of scattered 
light at 45 ° and 135 ° from the exit beam. In no case did this ratio exceed 
1.05. Solution clarity was judged visually and by the behaviour of the data. 
The same pipette was used to transfer the clarified solvent and the clarified 
solution. The relative intensity of the scattered light was measured at nine 
angles from 28 ° to 135 °. Butanone, 1,2,4-trichlorobenzene, and methanol 
were used as solvents. The latter two were distilled over calcium sulphate 
prior to use. 

The data were treated in the usual manner to obtain a double extra- 
polation to zero angle and infinite dilution ~. Thus, the data were plotted as 
C/Re versus sin 2 (0/2)+ (const.)× C, where R0 is the excess scattering ratio 
at 8 °. The intercept gives (M>~ 1 x K -1 where 

K = 32 ~ n  2 (dn / dc) 2 / 3 Nl0~, (2) 

Here -/,, is a refraction correction for the solvent being used ~, n is the solvent 
refractive index, k,, is the wavelength of the light used, N is the Avagadro 
number and dn/dc is the refractive index gradient. The dn/dc values used 

7 8 for the three solvents were 0"080 for bu tanone ,  0" 1030 for tr ichlorobenzene, 
and 0.1319 for methanol 9. 

The reciprocal scattering curve, P-~ (8) normalized to unity at 8=0 ,  was 
computed as lim (C/Re)" divided by the intercept. The initial slope of the 

¢=0 
curve multiplied by the factor 3 0%/4xn,,) 2 gives the mean square radius of 
gyration averaged over chain lengths, this average being a z-average, ((~))z,  
in a theta solvent, and close to a z-average in a good solvent. The second 
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virial coefficient, A o, is obtained from the slope of the curve for lim (C/Re). 
0 = 0  

Since the initial slope of the reciprocal scattering curve is sometimes difficult 
to establish empirically, the method of Z imm ~ was used to aid in its deter- 
mination. The same procedure has arbitrarily been used to find the slopes 
of the p-1 (0) curve for both the linear and branched polymer, although 

T a b l e  2. Light scattering data for the linear polymer in trichlorobenzene (TCB), 
butanone (MEK), and methanol (ME) 

lO. ®, .×  1o.-- F r a c t i o n  S o l v e n t  (M>,~  A 2 X 
c m  3 m o l e  / g 2 ", 

5-2-1 
5-2-1 
5-2-2 
5-2-2 
5-2-3 
5-2-3 
5-3-2 
5-4-2 
5-4-2 
5--4--1 
5-5-2 
5-5-2 
5-5-2 
5-3-3 
5-5-3 
5-5-3 
5-5-3 
5-6-1 
5-6-1 
5-6-2 
5-6-3 
5-6-3 
5-7-2 
5-7-4 

TCB 
MEK 
TCB 
MEK 
TCB 
TCB 
MEK 
TCB 
MEK 
TCB 
TCB 
MEK 
ME 

TCB 
TCB 
TCB 
ME 

TCB 
TCB 
MEK 
MEK 
MEK 
MEK 
MEK 

X I0 -~ 

3 "76 73 "2 
3"58 93'4 
3"43 69'5 
3"54 66"0 
2"53 49"3 
2"54 48'5 
2"66 68"4 
2"27 40'8 
2"28 61 "5 
2"16 42"5 
1"87 36"4 
1 "84 44"0 
1 '90 3O'9 
1'81 37"5 
1"50 28'O 
1 "33 27"7 
1 "62 24"4 
1 "29 26'3 
1"38 28"5 
1"14 27"2 
1 "05 17"2 
0"99 21 '5 
0'65 14"6 
0-44 10.9 

1"75 
2'74 
1 "94 
1"33 
! '90 

2"3O 
~09 
2'64 
2"05 
1 "99 
2"62 
1"30 
1"98 
1 "90 
2"32 
1'14 
2"39 
2"29 
3"42 
2"35 
3"38 
3'26 
3"39 

1 "86 

1'87 

1 '78 
1 "84 

2-20 

2"00 
1 "79 

1"79 
1'82 
1.71 

1.62 
1"54 

2"16 

155 
175 
176 

157 

123 
156 
140 
134 
142 
130 

I 

126 

132 

145 
150 
130 
134 
134 
120 
109 

6'4 

6"2 

6'0 

N 5.6 

5.4 

5.2 

g.G 

¢ 

o o 

I I I i J 
~.8 6.o 6.2 64 6-6 6.8 7.o 

tog ~M~, 

34 

72 

F i g u r e  2 - -Mean  square 
radius of gyration versus 
molecular weight in butan- 
one: [] randomly branched 
polymers, series 4; © l inear  

polymer, series 5 



PROPERTIES OF BRANCHED POLYVINYL ACETATES I l l  

Table 3. Light scattering data for the randomly branched polymer (series 4) and the 
comb-shaped polymer (series 6) in butanone (MEK), methanol  (ME) and trichloro- 

benzene (TCB) 

Fraction Solvent I(M>w× 10-61 ((Sq-)> z×1044~ 

- - - -  M-MEK- ! ~ f 6  229 
MEK 6"43 120 
MEK 3 "76 68 "8 

'. MEK 2"86 50"8 
! M E K  1"64 34"5 

A2X 104 
cm~ mole / g 2 

0"66 
1 "37 
1"13 
1"33 
1"78 

4-1-1 
4-2-3  
4-3-2  
4-4-1 
4 -4 -2  
4-5-1 [ M E K  
4-4-3  ' ,MEK 
4-5-2 I MEK 
4-5-3  [ M E K  
6-20-1 ~ TCB 
6-20---M TCB 
6-30-1 TCB 
6 - 3 0 - M  TCB 
6-30-M ! TCB 
6-40-1 [ T C B  
6--41-1 I TCB 
6-41-M I TCB 
6-50-1 i TCB 
6-51 - 1 TCB 
6-5 I - M  TCB 
6-60-1 TCB 
6-60-1 i TCB 
,6-60-1 ME 
6-70-I  TCB 
6-70-1 ME 
6-71-1 TCB 
6-80-1 TCB 
6-80--1 ME 
6-81-1 TCB 
6-91-1 TCB 
6-9 I -  i TCB 

1 '43 
O-73 
0"73 
0"43 
3'81 
2-80 
2"33 
1 "68 
1 "61 
2.00 
2.24 
2"09 
2"71 
3"67 
3"21 
5"60 
5"43 
6'10 
2"65 
2"92 
3"43 
3"29 
3"58 
a ' l l  
3"45 
3'96 

29"9 
14"5 
16"6 
9"1 

55 "4 

37"5 
44"2 
37'2 
55-1 
68"7 
54.3 

111"5 
115'8 
99-6 
52'0 
59"8 
60'1 
61 "3 
59"7 
71"8 
64"I 
74"1 

1"85 
2"39 
2'99 
2"72 

1 "68 

1"69 
1-78 
1 '69 
1 "69 
1"78 
1 "47 
1"62 
1"56 
1-18 
0"99 
1 "75 
1"01 
1 "29 
| "52 
1"06 
1"18 
1 "48 
1 "29 

i 

u 

q 

1 "60 

1 "60 
1"92 
1 "77 
1 "68 
1"61 
1"86 
1 '49 
I "38 

1"24 

1"77 
1'64 

1'54 
1"88 
1 "46 

SdSa 

m 

m 

m 

m 

D 

0.615 

0"613 
0"686 
0"685 
0"685 
0631 
0"515 

0-575 

0"623 

0"627 
0.730 

0"615 
0'715 
0"624 

the assumptions in the derivation of the procedure are most appropriate to 
a linear polymer. The sharpness of the fractions and the insensitiveness of 
the slopes to the exact choice of the adjusting parameters probably make 
any errors introduced here of secondary importance. The light scattering 
data are given in Tables 2 and 3. It is estimated that the experimental 
errors in <M)~, are approximately five per cent, and about ten per cent in 
both (($2)>~ and A2. Although these limits are estimates and not based on 
a statistical study, the several repeat runs shown give values which in general 
are within these limits. 

R E S U L T S  

Mean square radius of gyration 
The mean square radius of gyration in trichlorobenzene, <(S0)z, is shown 

as a function of <M>~ for the comb-shaped branched and linear polymers 
(Figure 1). Similar data for the randomly branched and linear polymers in 
butanone are shown in Figure 2. No attempt has been made to correct the 
radii to the weight average value, which would be more appropriate since 
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a weight average molecular weight is used; the correction is neglected here 
since the shape of the curves and ratios to radii at constant (M)~ would 
not be altered by such a correction if all of the samples studied have about 
the same degree of polydispersity. The linear polymers are judged to have 
a low degree of polydispersity on the basis of the fractionation procedure J. 
and it was shown previously that the comb-shaped branched polymers 
should have about the same degree of polydispersity as the linear material 
used as a backbone polymer ~. The randomly branched polymers are liable 
to be more polydisperse than the linear polymers, even though considerable 
care was exercised in their fractionation. This is due to  the dependence of 
the solubility on degree of branching as well as molecular weight. In the 
absence of a reliable estimate for the polydispersity of the randomly 
branched samples, we have assumed that they possess the same degree of 
polydispersity as the linear samples. The data for the linear polymers are 
fitted by the expression (S~)=k8 (M)~, with b equal to 1"08 and 1-12 for 
trichlorobenzene and butanone, respectively, and k8 equal to 0"062 for 
trichlorobenzene. It is evident that other values of the exponent may be 
used to fit the data with the same accuracy as those given here. The values 
given were chosen to be consistent with the Flory-Fox expression for the 
intrinsic viscosity. Even if this expression is not strictly valid in good 
solvents, the weak dependence of the expansion factor on molecular weight 
allows the method to be used here to good advantage since the intrinsic 
viscosity data are considerably more precise than those for the radius of 
gyration. Thus, the exponent b is related to the exponent a in the expression 
[~] = k,i (M)%. by b = ] (a+ 1), where a is taken as 0"623 for polyvinylacetate 
in trichlorobenzene, and as 0"71 in butanone r. 

The ratio of the radii for branched and linear polymers of the same 
molecular weight are given in Table 4. The ratio varies from about unity 
to values near 0"85 for the comb-shaped polymers, being generally somewhat 
lower for the randomly branched polymers. It is not easy to assess the 
errors in the ratio ((S~))~/((S~))z. The ratios have been computed as 
((S~))~/ks<M)~ where k, and b are the constants determined from the 
dependence of ((S~))~ on <M)w, and ((S~))~ and (M>~ are the measured 
parameters for the branched polymer. Thus errors in the ratio may be 
caused by errors in the determination of ((S~))~ or (M>~, in the values. 
chosen for k8 or b, or in the neglect of polydispersity corrections. The 
assumption that the branched and linear polymers have about the same 
degree of polydispersity is made with more confidence for the comb-shaped 
polymer than for the randomly branched polymer. We tentatively assign 
error limits of ten per cent to the ratio, recognizing that this may be a 
conservative estimate, and that this may influence conclusions to be drawn 
from the data. 

The intrinsic viscosity 
The effect of branching on the intrinsic viscosity of the polymers studied 

here may be seen in Figure 3. The intrinsic viscosity of the branched 
polymer is less than that of a linear polymer of the same molecular weight in 
all cases. The intrinsic viscosities have not been corrected for shear effects, 
since the data in Part I x indieated that comparisons of the intrinsic viscosities 
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of branched and linear polymers at a given molecular weight are only 
negligibly dependent on shear effects. The ratios [~7~] / [~z] have been computed 
as [~b]/kn (M>~ where k n and a are the constants determined from the 
dependent of [~h] on (M)w, and [~b] and (M)w are the parameters measured 
for the branched polymer. The primary source of error in this case is that 
in (M)w, so the ratio [~b]/['h] should be good to within five to seven per 
cent. The ratios [nb] / [,/1] are given in Table 4. 

o;  ° 
[ O g[3 ~ O t a  

O'G- / ~ o  o ~ ' 
/ 

_9o 0~' ~ : 

0 . !  I I I I I I I I I I I t I 
5'7 5 '8 5'9 6"0 6"1 6"2 6'3 6'4 6"5 6 '6  6"7 6'8 

Log ~>~ 
Figure 3--Intr insic  viscosity in benzene versus molecular weight: 
[] comb-shaped polymer, series 6; A randomly branched polymer, 

series 4; (3 linear polymer, series 5 

The second virial coefficient 
Figure 4 gives A2, the second virial coefficient, as a function of (M)w for 

the linear and comb-shaped branched polymers. The data for the linear 
fractions are fitted by the expression A2 = kA (M'p;~ where T and kA are 

I T I I I I I I I 

0 0 

0 
0~ 

4-- o ° o 
o 

o . : -  
O~ 000 
_q 

[] [] 
0 "  -- 

r~ [] 

0 ] L L i 1 t L [ L 
6"0 6"1 6"2 6"3 6"4 6 '5  6 6  6" /  6"8 

Log (M~ w 
Figure 4----Second virial coefficient versus molecular weight 
in tr ichlorobenzene:  [] comb-shaped polymer, series 6; 

O linear polymer, series 5 

0"230 and 0.00594, respectively, for trichlorobenzene. The values of (A~)~ 
for the branched polymer are less than the corresponding values, (A2)~ for a 
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linear polymer of the same molecular  weight in every case. The ratio 
(A .,)b / (A z), is given in Table 4 for the comb-shaped polymers. The (A 2)~ / (A,~)~ 
have been computed as (A2)~/kA <M)~,,  where (A~)b and (M)w are the 
parameters for the branched polymer and kA and  3' are the constants given 
above. The error in the ratio (A~)b/(A2), is due to experimental  errors in  
both (A_~)b and  <M>w, and is estimated to approximately ten to fifteen per 
cent. 

Table 4. Parameters for the randomly branched polymer (series 4) and the comb- 
shaped polymer (series 6) 

Fraction Calc'd [~bl/[n,l <(S-b~))z/<(SiT))z (A~)b/(A2)z (SJSa)b/(SJS,), 
g 

4-1-1 0.32 0.345 0.580 - -  - -  
4-2-3 0-36 o. 395 0.648 - -  w 
4-3-2 0.54 0.615 0.678 - -  - -  
4-4-1 0.50 0.590 0-681 - -  - -  
4-4-2 0.58 0.658 0.858 - -  - -  
4-5-1 0.55 0.625 0.870 - -  - -  
4-4-3 0.62 0.705 0.891 - -  - -  
6-20-1 0.616 0.842 - -  0-836 - -  
6--20-M 0'821 0"821 0'966 0"858 0-880 
6 30-1 0556 0-659 - -  0614 - -  
6--30-M 0-766 0773 - -  0"769 0'734 
6-40-1 0750 0'786 0949 0-844 0876 
6-41-1 0"670 0"936 0"986 0-804 0'686 
6--41-M 0.718 0.804 0-890 0.807 0.978 
6-50-1 0-744 0.897 1.01 0.908 0.980 
6-51-1 0.524 0.738 0.896 0.799 0.902 
6-51-M 0-641 0.738 0.823 0.860 0.734 
6--60-1 0"671 0-703 0"924 - -  - -  
6-60-1 0'690 0"703 - -  0-709 0'794 
6-70-1 0'777 0"804 0"969 0'884 0"886 
6-71-1 0'630 0'737 0"853 0"694 0"883 
6--80-1 0"693 0"748 0"904 0"809 - -  
6-81--1 0"553 0"666 0'834 0-701 0"878 
6-90-1 0"736 0"848 0"898 0-797 1 '02 
6-91 -1 0'641 0"671 0"902 0"714 0"896 

D I S C U S S I O N  

Mean square radius of gyration 
I t  is of interest to compare the ratio of the radii of gyrat ion of branched 

and  l inear polymers of a given molecular  weight in a good solvent to the 
corresponding ratio calculated for theta-solvent conditions.  I t  will be seen 
that the dimensions of the branched polymers increase at a faster rate than 
those of a l inear polymer of corresponding molecular  weight as the thermo- 
dynamic  goodness of the solvent increases. First,  however, we must  deter- 
mine the relative dimensions in a theta solvent for a basis of comparison.  
The  latter may be computed if one assumes that  r andom flight statistics 
are obeyed. This calculation has been given by Z i m m  and  Stockmayer 1° 
for a randomly branched polymer. The ratio may be obtained for the 
comb-shaped branched polymers, by use of the Kramers  theorem 11, which 
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gives for a chain of n equivalent segments 

g = ( 6 / r f )  ~ i(n-i) (3) 

where g is the ratio of the mean square radii for branched and linear 
polymers in a theta solvent. The sum is taken over all possible separations 
of the branched chain into two parts, containing i and ( n - i )  segments 
respectively. For purposes of this calculation, the branched polymer con- 
mining nb segments is assumed to have k branches, each with (nb-nz)/k 
segments, placed equidistantly on a backbone of nz segments. This ideali- 
zation has negligible effect on the results for the kind of branched polymers 
of interest here. Thus, the sum of equation (3) for the comb-shaped polymer 
yields the result TM 

I 2k+l kx+ } g(k'x)=(l+kx)-3 (3k-2) kx3+(k+2)kx~+ i ~ + 1 -  1 (4) 

where x is the ratio of the branch length to the backbone length, (n~ -n~)/kn~. 
For all of the comb-shaped polymers considered here ( x ' ~ 0 0 3 ) ,  this 
expression is closely approximated by 

g -~ 1/(1 + k,x)=nJnb (5) 

Orofino 13 has used a different technique to obtain an expression for g for 
comb-shaped polymers with a random distribution of branch sites on the 
backbone, which reduces to equation (5) for the kind of branched polymers 
of interest here. It  should be noted that the presence of a few branches 
attached to other branches rather than to the backbone, as discussed in 
Part II, will not affect the ratio nz/nb, and thus presumably have little effect 
on g, although it would require a separate calculation to prove this. 

Values of g can now be computed for each of the comb-shaped branched 
polymers of series 6 by use of equation (5) and the data reported in a 
previous paperL These values are given in Table 4. The g values are as 
reliable as the values of (M)w for the comb-shaped pblymer, and the back- 
bone polymer. Thus, a primary source of uncertainty in g is the molecular 
weight of the backbone polymer. The molecular weight of the polymer used 
as the backbone material is, of course, as well known as that of the 
final graft polymer. There remains, however, the possibility of a difference 
between the molecular weight of the initial and final backbone material 
due to selective loss of material in some of the necessary fractionations. 
We assume here in the calculation of g, that the average molecular weight 
of the backbone material is given by that of the initial polymer. (See ref. 2 
for a further discussion of this point.) Any error in the backbone molecular 
weight will be carried over directly to the estimate of g. The effect of 
molecular weight polydispersity on g is here neglected. The experimentally 
determined ratio of the radii is of course nearest to a z-average, while g 
has been determined using weight average molecular weights. Orofino 1~ has 
given a form for <g)~ for a comb-shaped molecule which is useful in 
estimating the error made in computing (g)~ from equation (5) with weight 
average molecular weights, although not strictly applicable to these samples. 
The error will be negligible for all cases of interest here. 
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It is evident from Table 4 that the values observed for ((Sb)>,/((S~)>, for 
the comb-shaped polymers, series 6, in the good solvent are greater than 
the calculated g, that is, the dimensions of the branched polymers have 
increased more than those of the linear molecules in passing from theta 
solvent to good solvent conditions. It  is important to remember that the 
comb-shaped polymers should have about the same degree of polydispersity 
as the linear chains 2, so that this difference should not be due to greater 
polydispersity in the branched polymer. A similar result is seen for the 
randomly branched polymers of series 4, but here the values of g must be 
estimated from viscosity data by a method discussed later, and the poly- 
dispersity of the branched chains might be greater than the linear polymers. 

(S~)>z with g is shown in An attempted empirical correlation of ((S])>z/ ~ 
Figure 5. The solid line drawn through the data is based on a theory to be 
described below. The lower dashed line shows where the data should lie if 
the ratio of the radii were equal in good and theta solvents. 

I° I ," J , J oo ' ~ ° °  ' o ~,,~'/~//// 
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Figure 5--Ratio of the mean square radii of gyration for 
branched and linear polymers in a good solvent versus g, 
the same ratio calculated for a theta solvent: © comb- 
shaped polymers, series 6, in trichlorobenzene; [] randomly 
branched polymers, series 4, in butanone. Broken curve 
is for the ratio in a good solvent equal to that in a theta 
solvent; the full curve is calculated from equation (11) 

with C~=Cz 

In order to facilitate discussion of the expansion effect observed here, it 
is convenient to introduce expansion factors, ~, defined as ~2=(S-)/(S-)o, 
where (~ )  and (~)0 are the mean square radii in thermodynamically non- 
ideal and ideal (i.e. theta) solvents, respectively. The ratio (~,/~z) ~ is then 

2 2 equal to (Sb)/g(S~), where the subscripts b and l refer to branched and 
linear polymers, respectively. Unfortunately, there are as yet no rigorous 
theories which allow prediction of ~ / ~  for polymers in very good solvents. 
The first-order perturbation theory of Fixman ~4 may be used to obtain an 
expression for ~b/~ for both comb and star-shaped molecules, but the 
results are limited to solutions which are nearly ideal (to be published). 
The ratio ~b/l~ is predicted to be greater than unity for molecules of these 
shapes in the limit as ~ approaches unity (in contradiction to Fixman's 
result for a four branched star, which is apparently in error). 
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Ptitsyn x5 has proposed an approximate derivation to account for the effect 
of branching on ~. The derivation, which closely follows Fixman's 1" sug- 
gestion of a generalization of Flory's theory I~ for linear chains, may be 
given as follows. It is assumed that the number of molecular configurations 
with radius of gyration S in dS is given by 

F (S)= W (S) 4~S 2 exp [ - E  (S)/kT] (6) 

where W (S) is the probability distribution of S in the absence of volume 
effects, and E (S) is the energy associated with p (r), the segment density 
of the polymer chain at a distance r from the centre of gravity. For a 
spherically symmetric p (r), E (S) is given by 

E (S) = n2flkTC / S 3 (7) 

where fl is the excluded volume integral for a pair of segments, and C is 
a constant given by 

S 3 f 
C = 2--fir_. J4~r2p~ (r) d r  (8) 

The expansion coefficient may then be obtained 17 by multiplying F (S) by 
S ~ and integrating over all S. (The integration is not rigorous, but approxi- 
mations are made according to techniques discussed in ref. 17). The result is 

~5 _ ~ = n ,  S C  /(S,)So/2 (9) 

where C is to be determined from equation (8). The familiar result of 
Flory ]6 obtains if a gaussian distribution is assumed for p (r). If we assume 
that branched and linear chains are characterized by the same W (S), but 
different p (r), then 

~ -  ~ Cb 1 
- ( l O )  

where Cb and C~ are the numerical constants computed from equation (8). 
Krigbaum and Trementozzi 18 have pointed out that equation (I0), with 
Cb = Ct, will be obtained directly from Flory's expression for a s- : for a 
linear polymer if this result is assumed to hold for branched chains with 
no change in certain parameters. 

Unfortunately, the constants Cb and Cz are not readily obtained since the 
correct segment density distribution of the chain with excluded volume is 
not known. Ptitsyn assumes the same p (r) for both types of chains, giving 
Cb=Cz. The ratio C~,[C~ could be treated as a parameter to be determined 
by forcing agreement of equation (10) with the first-order perturbation theory 
of Fixman for a branched molecule. This procedure gives Cb/C~ equal to 
0"519 for a star molecule of four equal branches. Alternatively, the calcu- 
lation can be altered by using more exact segment density distributions for 
the branched and linear chains. Thus, it is known that the sum of n 
gaussian functions can correctly describe the segment density distribution 
of a random flight chain, though it is still'in error for a chain with excluded 
volume 14,19, Casassa and Orofino 2° have obtained Ct using this approxi- 
mation for p (r), and it is possible to do the same calculation for a star- 
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shaped polymer using the P0 (r) given by Fixman and Stockmayer ~9. As 
for the linear chain, it is assumed that the p (r) needed in equation (7) for 
the segment distribution in a good solvent is approximated by the p0 (r) 
for a theta solvent with the modification that p (r) is normalized to give the 
radius in a good solvent rather than in a theta solvent. We have done this 
calculation in the Appendix, and find the ratio Cb/Cz is given by 1"09, 1 20 
and 1-61 when the number of legs in the star-shaped molecule is equal to 
three, four and eight, respectively. 

The reason for the difference between the ratio Cb/Cz evaluated in these 
two ways is not clear. It may reflect inadequacies in the approximations 
made to obtain equation (10), or it may be that one simply cannot expect 
the constant obtained from the first order perturbation theory to be adequate 
for ~ much larger than unity. It may be noted that values of ~b/~z deter- 
mined from equation (10) differ only negligibly for low ~ for these two 
choices of C~/Cz. We point out that equation (10) predicts that for a given 
g, the deviation of ~/~z from unity will be strongly dependent on the 
deviation of ~z from unity. Thus a highly branched molecule in a solvent 
such that ~, is near unity should exhibit an ~/~z ratio only slightly larger 
than unity. 

In view of the discrepancies between these two treatments, and the lack 
of an estimate for the segment density distribution for comb-shaped or 
randomly branched polymers, we will tentatively compare equation (10) 
with Cb/C~ equal to unity to the data of this study. Thus, the line drawn in 
Figure 5 has been obtained by setting Ca=C, in equation (10), and using 
the values of ~ appropriate to the molecular weight of the polymers being 
studied. It appears that this function provides a reasonable fit to the data, 
although considerable scatter is evident and the data do not cover a 
sufficient range to adequately test the theory. Qualitatively, however, the 
data for the comb-shaped polymer suggest that Cb/Cz might be somewhat 
greater than unity. The data can also be fitted within experimental error 
by the expression (S~)/(S~)N gO.,, which is the limit of equation (10) with 
Cb=C~ as ~ becomes large. (Ratios of ~/,~ computed from equation (10) 
and from the limit of equation (10) for large ~ agree within about four per 
cent when g and ~ are 0-6 and 19 respectively, so the limit is rapidly 
approached.) It should be noted, however, that in general one expects the 
deviation of (S~)/(S~) from g to depend on the solvent power, i.e. on some 
parameter such as ~z. The observation that the branched polymers might 
be more extended in good solvents than linear polymers of the same mole- 
cular weight has been suggested by some previous studies ~1-~4, but the 
uncertainties in polymer structure and the degree of polydispersity of 
the branched fractions complicated interpretation of the data. T h e  data 
for the comb-shaped polymers provide evidence for the greater extension 
of the branched chains, at least for this type of structure. These data are 
supported by those on the randomly branched polymers, although here 
the specification of the structure and the degree of polydispersity is less 
certain. The values of g (and hence of ~b/~,) assigned to the branched 
polymers are obtained from a calculation based on their inferred structure 
rather ~:han by direct measurements of the radii under theta solvent con- 
ditions. Thus, although the radii of the branched polymers are definitely 
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larger than one would expect if the branched and linear molecules were 
equally expanded, the correct functional dependence of this effect is less 
certain. It should also be mentioned that these data could also be affected 
if some unknown impurity, such as hydroxyl groups, were present in the 
polymer although available evidence indicates the lack of such impurities 2. 

The intrinsic viscosity 
It has been suggested that the ratio [~]0/[t/d0, where .(~b]0 and [~d0 are 

the intrinsic viscosities of branched and linear polymers of the same mole- 
cular weight in a theta solvent, is a function only of the parameter g, written 
here as f0 (g)19,2,. One may reasonably expect this ratio in a good solvent 
to depend on = as well, that is f (~, g). It was originally suggested 21 that 
f0 (g) could be approximated by ga/2 due to the dependence of the intrinsic 
viscosity on the volume of the polymer molecule. Fixman and Stockmayer 19 
and Zimm and Kilb 25 have obtained theoretical estimates of f0 (g), which 
attempt to account for hydrodynamic effects the above estimate ignores. 
Both of these derivations are based on star-shaped molecules. In particular, 
Fixman and Stockmayer have determined the effect of branching on the 
translational friction constant. It is then assumed that the ratio of the 
intrinsic viscosity of branched and linear polymers will be proportional to 
h 3, the corresponding ratio of the cube of the effective hydrodynamic radii, 
and that the form of tho result will not be too dependent on the particular 
model chosen for the branched polymer. Thus, the result gives f0 (g )=h  3 
where h is a function of g (see Figure 6). Zimm and Kilb have given a 

0"9 
Figure 6--Ratio of the in- 
trinsic viscosities of comb- 
shaped branched and linear 0.8 
polymers versus g, the ratio 
of the radii of gyration cal- 
culated for a theta solvent. 07 
Curves a, b and c give 
['lb]/['/d equal to g3/2, h ~ 

and gl12, respectively 0'6 

1.0 

O ° Q  

I I I I 1 
0"4 0"5 0'6 0'7 0'8 09 1"0 

g 

direct calculation of the intrinsic viscosity of a star-shaped molecule in a 
theta solvent taking approximate account of hydrodynamic interactions. 
Their results give fo (g ) '~  g1/2 if hydrodynamic interactions are included, 
and f0 (g)= g if they are ignored. It is again assumed that the result is good 
for all types of branched polymers. It is to be emphasized that these results 
are limited to the behaviour of polymers in an ideal solvent. These functions 
are given in Figure 6 along with the experimental values of [~b]/[~] observed 
for the comb-shaped polymers in a good solvent as a function of g. The 

43 



G. C. BERRY, L. M. HOBBS and V. C. LONG 

data are in general agreement with the theoretical functions J0 (g) equal to 
h 3 or g~/2. A similar result (not shown in Figure 6) is obtained with some 
data of Melville et al. 2~ on comb-shaped polymers, if equation (5) is used 
to compute g, and if the [~] / (M)~ relationship given above is used in place 
of that given by Melville. (The expression given by them leads to ratios of 
[~b]/[~d greater than unity for some of their data.) This correlation of the 
ratio ['lb]/[~] determined in a good solvent with f0 (g) is unexpected in 
view of the dependence of ~ ]  on the radius of gyration, and of the differ- 
ences observed in the expansion factors for branched and linear polymers. 
Thus, the intrinsic viscosities of a linear polymer in a good solvent may 
be represented by the relationship 

[,1,] = 63/~qt~,~ 2 3/2 <(S,)0), /<M)~, (11) 

where the subscript zero refers to parameters in an ideal solvent, q is the 
polydispersity factor s (taken to be identical for the linear and comb-shaped 
branched polymers), anii • is a constant equal to 2"87 x 10 ~x 

[~/b]--63/2~qb~ bb,~ <(Sb)o),~ *tzJ, (g)/g~/2 <M)~, (12) 

(~] in units of deciliters per gramme, (S ~) in cm~). We assume an analogous 
form for [~/b], given by equation (12). Equation (11) has been derived on 
the basis of statistical calculations rigorously limited to polymer chains in 
very poor solvents 27-~. The quantity mb in equation (12) is defined by the 
relationship ~2b=['Td/b%]0. Combination of equations (11) and (12) leads 
to the result (the branched and linear chains are assumed to have the same 
degree of polydispersity) 

(~/b] / [~7,]) / ([~/b]0 /[~d0) = ~ b  / ~9, (13) 

The value of m~ is predicted to be about 2"5 for relatively good fractions 
of a linear polymeraL This predicted deviation of mz from the value 
of 3 given it in the Flory-Fox expression al has been observed experi- 
mentally ~°,*~-3.. Since the statistical calculations leading to equation (11) 
are limited to poor solvents however, one can only treat mz as a parameter 
to be determined empirically in good solvents, its value probably being in 
the range 2.4 to 3. If mb = m~ = m, then equation (13) indicates that [~/~]/[~,] 
is greater than [~/b]0/~nd0 to the extent that (~/~) '~ exceeds unity. Some 
values of [~]0 and [nd~ were measured in 2-octanone at 29"8"C, which is 
reported to be a theta solvent for linear polyvinyl acetates 3~s, to allow this 
prediction to be checked. The data, which are given in Table 5, are seen 

Table 5 

[%] o / [ '~] o ['l~l / ['~] 
[%] / [~] Observed Calculated 

Fraction Observed in 2-octanone from eq. (13) with 
in benz¢ne (theta solvent) m~=m~-----2"5 

6 -6~1  
~ 7 ~ 1  
671 -1  
~ 8 ~ 1  

0'703 0"506 0"741 
0"804 0"745 0"983 
0'737 0"428 0-625 
0"748 0"498 0"699 
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to show the trend expected from equation (13) with mb = m~ = 2"5, although 
the agreement is not perfect. The discrepancy is probably caused by the 
error in determining the radii by light scattering, which would be sufficient 
to cause the scatter observed. Alternatively, it could be due to differences 
in the them conditions for the branched and linear chains, to the assumption 
that m, =rn~ or to errors in estimating g. The data of Thurmond and Zimm 2~ 
on the intrinsic viscosities of randomly branched polystyrene fractions in 
butanone and a them solvent are of interest here since these data showed 
no appreciable deviation of [~%]/t[~J from [~b]0/[~,],. This is not unexpected, 
however, in view of the lower values of ~'z for linear polymers of molecular 
weight corresponding to that of the branched polymer. Thus, if we use 
the estimated (~/~z) from equation (10) with Cb/Cz equal to unity, then 
[~/b]/[~0 is found to exceed [~b]0/[~,]~ by only ten per cent for the branched 
polymer of highest molecular weight, becoming essentially unity for the 
lower fractions in their study. 

It is also observed, however, as pointed out above, that the experimentally 
observed values of [~]/[~] are in essential agreement with the theoretical 
function of l0 (g) calculated from hydrodynamic theories, whereas the 
experimental values of [~b]o/.~]0 are smaller than these theories would 
indicate. While it is true that the theoretical calculation of f0 (g) is based on 
the assumption of a star-shaped molecule, this large ~ deviation of the 
experimental l0 (g) from the value estimated from the theory is surprising. 
We do not know if the discrepancy indicates that results based on the star- 
shaped model are inapplicable for the kinds of branched structure studied 
here, or if in fact there is a systematic error in the estimate of g for the 
comb-shaped polymers. 

In view of the agreement between the experimental data for [~/b]/[,7~] 
and the theoretical function of Stockmayer and Fixman for f0 (g) in those 
cases where g could be determined from equation (5) and the known 
structural parameters, it was decided to use this function to obtain g for 
the randomly branched polymers. The values of g listed in Table 4 for these 
polymers were obtained in this manner. 

The second virial coefficient 
Rigorous expressions for A 2 in terms of molecular parameters have been 

developed for linear polymers se, but they are limited to solutions that are 
nearly ideal. The problem is, of course, less advanced for branched 
structures, but a rigorous calculation based on a cruciform molecule 
indicates that the ratio (Az)b/(A2), should be less than unity in very poor 
solvents 1.. Fixman and Stockmayer 19 have suggested that the results of 
some approximate theories, which utilize an average potential obtained by 
an averaging over all configurations of two molecules separated by a given 
distance, may be useful in discussing the behaviour of branched polymers. 
The suggestion is based on their observation that the segment density 
distribution used in the averaging process is not too different for branched 
and linear polymers. The approximate theories give A: as a function of 
the parameter [3n~/($2) 3t2, where the function decreases monotonically from 
unity as the argument increases from zero. Since the parameter g3 is 
presumed to be independent of structural variations in a given polymer, 
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differences in A2 may be assigned to differences in the radius of gyration 
for branched and linear polymers. Thus, to the extent that (S~) is less than 
(S~) at a given molecular weight, (A2)b will be less than (A2)~. In particular, 
Casassa and Markovitz sr have given a function of this form which is useful 
here. It is of interest to note that values of (A2)z calculated from this theory 
using our values for the radii in a good solvent and those of Schultz 7 in a 
theta solvent are within twenty per cent of the observed values, but that 
the calculated values of (A2)~ are not quite as dependent on (M)~, as the 
observed values. This function approaches an asymptotic limit proportional 
to (S~)a/2/~n ¢ for values of the argument exceeding 3 or 4. This expression 
may be incorrect even in the limit of very good solvents since this calcu. 
lation, like all such treatments to date, does not treat terms due to multiple 
interaction contacts in a rigorous manner. It may be, however, that the ratio 
of the asymptotic expressions for As for branched and linear polymers will 
not be too bad. To this approximation 

(A2 ) , , / (A2 ) ,=g  ~/2 (~,,/~,,) ~ (14) 

If the limit of equation (14) for large ~ is substituted into equation (15), 
then the ratio (A2)~/(A~)~ is approximated by gl/~. A similar result has been 
noted by Krigbaum and Trementozzi ~. Thus, the ratio (A2)b/(AOz should 
approximate the ratio [%]/[,/z] since we find this to be near g~i2. This is, 
in fact, close to the observed behaviour for the ratio, as seen in Table 4, 
indicating some degree of internal consistency to the data observed .for the 
intrinsic viscosity, the virial coefficient and the radii of the branched 
polymer. 

The values of A~ for the linear polymers have been examined in terms 
of the dimensionless group A~. (M)~/[~] which should increase with M 
in the usual solvents and become constant for sufficiently good solvents. 
Table 2 gives this group as a function (M) ,  for some linear fractions. The 
average value of A2 (M)~/[~] is found to be 146 in trichlorobenzene and 
134 in butanone, in good agreement to the values of 142 found by Chinai 
et al. ~8 in acetone, and 139 by Schultz r in butanone. A slight trend with 
(M)~ is evident, however, indicating that the assumptions required for 
strict constancy of the group are not fulfilled. 

Reciprocal particle scattering curve 
In principle at least, the presence of branching can be detected from the 

shape of the reciprocal scattering curve if the size of the macromolecule is 
such that both the initial and asymptotic slopes of the curve are experi- 
mentally observable. It has been estimated that (S 2) should be in the range 
105 to 15 x 10~A 2 for this condition to be fulfilled ~6. Calling S~ and So the 
initial and asymptotic slopes of the p-1 (0) curve, respectively, then for a 
branched polymer TM, 

(S, ] S,)~ = (2 / 3) [<~)>z / <(-S~,)>,] [<M>~ [ <M >w] ~ f~) (15) 

where (S~) is the radius of a linear polymer of the same molecular weight 
as the branched polymer for which the p-1 (0) curve is obtained, /~ is a 
constant for a given polymer-solvent system, and Y is the gamma function. 
A similar expression written for the linear molecule has the term involving 
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the ratio of the radii equal to unity. It was shown previously that the 
branched polymers prepared by the grafting procedure have about the same 
degree of polydispersity as the linear polymer used as the backbone 
molecule s. It is of interest, then, to compare the ratio of (SdS~)b for these 
polymers to (&/S~)z measured for the linear polymer used as the backbone. 
This ratio should be given by ((S~)>~/((S~))~. These data are given in 
Table 4. An appreciable scatter is evident, which is to be expected due to 
the uncertainty in determining the asymptotic slope of the P-X (0) curve, but 
a general agreement can be observed between the ratio (S~/S~)b/(S~/So)z 
and the ratio of the radii. 

The Flory constant 
The value of ~* in the expression [,1]=63/2q~*Sa/M has frequently been 

used as an indication of the presence of branching, ff~* is expected to be 
about 2"1 x l& x for linear polymers in the usual good solvents 3°,31. It has 
been pointed out by Kurata et al) s that this is the value one expects from 
equation (11) if ~ and m~ are about 1"4 and 2"5 respectively, and if one 
assumes the polymer is a reasonably good fraction. The best value of eg,* 
for the data in trichlorobenzene is about 2"2 x 10 ~1, in good agreement with 
the expected value. Combination of equations (11) and (12) for polymers 
of the same molecular weight yields the result 

~*b - q b f ( ~ ' g ) ( ~ z l 3  (16) 

where f(~,g) is defined as [~b]/[~,]. If (~z/~b) ~ is approximated by the 
limit of equation (14) for large ~, and f(~,g) taken as glib, then 
~b*/~I'~ * = qb [ q,. Thus, the ratio is dependent on the degrees of polydispersity 
of the branched and linear polymers if measurements are made in good 
solvents, rather than on the presence of branching. We note that the 
values of ~* observed here were in general only slightly lower than the 
average for ~*. In view of the deviation of ~/~z from unity, it seems that 
the observation that ~*~ exceeds the normal value of ~*  must in itself be 
regarded as an unreliable indication of the presence of branching. 

C O N C L U S I O N  

We have presented data on two types of high molecular weight branched 
polymers, one of these polymers being synthesized in such a way that its 
characteristics are, in principle at least, well known. There are, of course, 
many factors which may cause difficulty in a study of this type, chemical 
impurities, slight gel content, polydispersity, to mention a few of the more 
serious complications. We have endeavoured to eliminate or account for 
these factors as effectively as possible. The data have been examined in 
terms of existing theories which are summarized in such detail as seemed 
necessary for the analysis. We may expect further studies on model 
branched polymers prepared by anionic methods, which offer some hope 
of eliminating or reducing the complications encountered here. It will be 
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of interest, then, to examine data for polymers of different chemical con- 
stitution and of high enough molecular weight to give pronounced excluded 
volume effects to ascertain the universality of the effects found here. 
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We have to compute  

where 

with 

Thus  

A P P E N D I X  

O0 

c =  - -  .p rep  = ( r )  dr 
o 

~'/t 

p ( r )=[~  -a/2 ~ C a .  exp { -Ca:  z) 

~ 0  

C ; ~ =  9f---- ~ + ] 

oo i s/t N/~ 
0 0 j = o  i = o  

~/~ N/* 
___f= _~:~ ~ ~ c~c~ 

/ _  (c~ + cD ~/= 
i = 0  i = 0  

Passing to the integral and transforming to reduced variables 

r (~2a°'N"-al='2f f 4r,. F-p'rdr= ~ )  IV . [ l + 3 ( f - 2 ) ( x + y ) + 3 ( x ~ - + y 2 ) ] d x d y  
o 0 0 

The first integral is readily accomplished, and the second reduces to two 
standard integrals after the t ransformation 

Kw f - 2  
Y = (I - w'O 1/'2 2 

where 
K ~ = ( - 1 / 12) (3f ~ - 24f + 16) 

There  results for 1 ~ f ~ 3 

I [3 '~a/' 4~/2 (~_) 1 (3~ 3,' 
f = l , 2 ,  C = - ~ - \ ~ - ]  ~ t a n - '  , - -  = ~ \ ~ ]  x 1"213 

l { 3 y / 2  
f = 3  C =  ~ \ ~ ]  x 1"327 
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where 

Thus 
u= J(3 (f -2)2 -4) 

l 3 f=4; cy 4< 
( 1 

s’2 x 1.413 

( 1 

‘YiI f:&:: ;b”)ii 

I-MO 
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