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On the Fermi Approximation in Thermal Neutron Scattering®
G. C. SUMMERFIELD

Department of Nuclear Engineering, The University of Michigan, Ann Arbor, Michigan

The Fermi approximation and all higher order corrections are derived for
the cross section for thermal neutron scattering from aggregates of atoms.
The first order correction is shown to reduce to the result obtained by Lipp-
mann and Schwinger in the special case that the scatterer is a single bound
proton. The magnitude of the correction is estimated for an arbitrary number
of scattering atoms, and it is shown to be approximately proportional to the
inverse of the separation between atoms.

I. INTRODUCTION

The Fermi approximation (1) has been used exclusively in calculations of
the interactions of thermal neutrons with atoms in matter. However, the con-
ditions for the validity of this approximation are somewhat vague. It has not
been tested theoretically except in very special cases, and it has not been deduced
in a systematic way for an arbitrary number of atoms in the scatterer. In par-
ticular, it has not been clear how the Fermi approximation should be altered to
include multiple scattering effects.

In the following work, the Fermi approximation is shown to be the first term
in a series expansion for the 7T-matrix, and the higher order corrections are
explicitly given. The first order correction is shown to reduce to the result ob-
tained by Lippmann and Schwinger (2) for the special case that the scatterer is
a single bound proton. The magnitude of the first order correction is estimated
for an arbitrary number of atoms in the scatterer. As we would expect from
intuitive arguments, the correction, as estimated, is proportional to the inverse
of the separation between atoms.

II. THE SERIES APPROXIMATION

Consider a system composed of N atoms at positionsr;, - - -, Iy, and a neutron
at position r, . The Hamiltonian for this system is assumed to be the following:
2 N
e =2 pges + 2 Valta — 1) (1)
2m a=1
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where p, is the neutron momentum; 34 is the Hamiltonian for the atoms, in-
cluding interactions between atoms; m is the neutron mass; and Ve(r, — 1)
is the interaction between the neutron and the nucleus of the atom at r,. We
label the eigenfunctions of p,’2m and JC.« as:

(p..72mW;(r,) = Ea(r,)

Ewilry, -, 1y):

I

JCJ(pl(\rl y T, I'N)
also, we define;
2, .
3o = pa/2m + W (3

The differential eross section for a neutron scattered from the atoms is:

do; m \ ko )
o [- — A ’V‘v ‘ :
0 <27rﬁ‘~’> i1 T s

where 7ik; and fik; are the initial and final neutron momenta respectively:
and 7', is:

Tri = @rit)er(ry, - o) T |ddraedr, -, Tw)); (DY
and T is the solution of the following integral equation.
T =1V+4+ VaT; (6

where
.
Vo= Y Vally — 1a);
a=1

(= (E — 3 + 1) "

and K is the total energy of the system.
The formal solution of Eq. (6) is:

T = (1 - V)T, (7

In the usual perturbation treatment, the factor (1 — 1(;)7 is replaced by the

first few terms of the geometric series.
(1 —vm™ =3 (Ve (8)
5=0

For thermal neutron scattering from nuclei, this series converges very slowly at
best, and perhaps it does not converge at all. Thus, for thermal neutrons, the
TFermi approximation (1) has heen used for Eq. (7).

Howcver, this approximation has not been deduced in a systematic way
for general scattering systems. The FFermi approximation has been deduced in a
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systematic way for scattering systems composed of one and two atoms, and the
corrections have been calculated for these cases (I, 2).

We derive the Fermi approximation, for an arbitrary number of atoms in the
scatterer, as the first term in a geometric series that is different from Eq. (8).
To do this, let us consider the features of the neutron-nucleus potential,
Va(r, — 1,). The range of the potential (~107"° ¢m) is very small compared
to the average spacing between nuclei in normal matter (~107° em). The depth
of the potential is sufficiently great that equation (8) converges slowly or does
not converge for thermal energies and r, ~ r,, .

However, due to the short range of the potential, we can expand 7 in a different
geometric series that does converge rapidly. We write V as the sum of two body
potentials.

T =2 (1— V) Valr, — 1a).

Now, we add and subtract Vu(r, — 1,)Goin (1 — ve)™
T =2 (1 — VuGo— {VG — V.Go}) 'V ; (9)

a

where
Vo= Valta — 1a);
and
Go = (—(pa'/28a) + 7€)

where y, is the reduced mass of the neutron and the o’th atom.
If G =~ Gy, then

VG — VaGox D VeGi;
B
where Y_s indicates the sum over all 8  a. Thus, we can expect that VG — V.G,
will be small unless r, ~ 15, where 8 # «. In this case, the V, multiplying
(1 — VG)™" is zero since the range of V, is much smaller than the separation of
the atoms. From these arguments, we can expect that a series in the factor

{VG — V,G,} will converge rapidly, and we can write Eq. (9) as a geometric
series.

T=73 (1- VGGO)“;'; (VG — VaGo) (1 = VuG) Ve, (10)

If we retain only the first term in this series, we have:

"= T (11)
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where
(] 2 R
Ta = ( ] haae I a(rn) 1 a v
. - e .. . .
Notice that T is just the transition operator for a zero energy neutron scattering

from a nucleus at r, . The matrix elements of this operator between neutron
states are well known (3).

Wtr,) j’a” Wir,)) = (2ah® m rage’ &R (12

where a, is the bound atom scattering length for the o'th atom. Taking matrix
elements of k. (12) between the states of the atoms, we have the I'ermi ap-
proximation

2k’ SRt
T?f == Z <¢f l Qg € fheelyne i) (1)
no
1f we retain the first two terms in the series, we have:
= > (1T + T (14
where
T = (1 = Voi) (VG — Vi) (1 — Vol 'V,
The matrix elements of 7, can be determined easily by including an inter-
mediate set of the eigenstates of 3¢ .

(T = 2 s [0 = Valh) ™V o) X e | (1 = Vo) Vg
((r'Jl — (r‘nj) + Zl Zﬂ/ <%,b_f<pf [ (1 — Va(lv()‘,)#’l‘v;} ‘l//j@[\l (1o
X <¢/qu i (] — ‘.a(’,") ZIIva llp,'(p,")(r','/
where
f2 '2 N\
G - — F
( ‘_’m Bt Ze)
and

2y 02 —1
oy = (—ﬁ.,k’ + zie> .
Z2a

Applying LEq. (12), we have:

i 2 ) i ki— /) 1 ! —i(k—k)To’ :
b= Z<“ o) o |7 oy R

2l i
i . e 6
X (G — Gop) + Z Z' W_aa@,m 1~ VG ' Us e (167

ik,
X Ay | TR e
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The factor (1 — V.Gs) ™'V can be expanded similarly to Eq. (8) with only the
first term retained since when V, is large V; is zero. Including this approxima-
tion and inserting Eq. (16) into the expression for the matrix elements of Eq.
(14), we obtain

d ﬁ
Tfi — - Z (<Pf ' A el(kl ~kf) ra ' ‘Pi)

+ Za: Xz: (ﬁ a°‘> (or | €577 | @p)or | € WTET | o) (G — Goy)  (17)

Za: 2 Z gﬂ ta bylps | €T o) (o | & TR | )G
where
bg = f TRy () d,
or, since Vg is a short range potential,
bs = fvﬁ<r) dr. (18)

III. A SINGLE BOUND PROTON

Now, we will specialize these results to the case of neutron scattering from a
single proton bound in an otherwise inert molecule. In this case the interaction
V(r, — r,) will contain a single two-body term. We will perform our analysis
in the center of mass system of the neutron and the molecule, and we will assume
the energy of the center of mass is zero.

= (=p/m + i)™
If we take the masses of the neutron and proton to be equal, the reduced mass

is just one-half the neutron mass.
In this case the matrix elements of (1 — VG,) ™'V between free neutron states

are

(@ (1= VG |y = BT g,
where o is the neutron-proton free atom scattering length. Following an
analogous procedure to that of section 11, we obtain the following expression for

the T-matrix, including the Fermi approximation and the first order correction.

Axk’ ki) T
Ty =—""d {(Wie(kl K0T | o)

m

m

4ﬁ i(kj—ky)r —i(kj—ki)rp’
+""a @ 22 Gor | €T @ (o | T [ 0) (G — GOJ')}
I
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where

22 —1
G = (1«; g - E ie>

2y

22 5\ -1
(;Oj = <——ﬁk] ‘l" 'LE)

H

and where u is the reduced mass of the molecule and the neutron: and ¢i(r,
is the energy eigenfunction of the molecule.

The sum over the free neutron states is in reality an integral over the three
dimensional momentum continuum.

Z / fl:‘/\'j
— ey
i (2m)
making this substitution, and utilizing the following well known Fourier integral,

. 1 200
vi‘,)vk'R e L L 0
/(//( PR R lf( (1o

we obtain the following result for the 7-matrix.

2 |
Axh” 4 ki —kpr,
RS | &

where

L2
Ki= 3k = Bt
7 j
This is exactly the result Lippmann and Schwinger obtained with a somewhat
longer derivation (3).

The second term in Eq. (20) has been shown to be at most a fraction of u
per cent of the first term (2). If there is any ease where the correction to the
I'ermi approximation is significant, we would not expect that it is this one.
In fact, Davydov and Mel’'nichenko (4) have shown that the correction vanishes
for zero energy scattering from a free proton at rest. This is not surprising since
the Fermi approximation was construeted to give the correct result in this case.

(V. THE MAGNITUDE OF THE FIRST ORDER CORRECTION

Although the Iermi approximation has been shown to be valid for a single
scattering atom, it does not prediet any multiple scattering effeets. Thus, 1t
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cannot adequately account for a system in which multiple scattering is important.
In particular, it is of interest to consider the possibility of multiparticle excita-
tions (i.e., a transfer of energy between two or more atoms and a scattered neu-
tron). In the Fermi approximation, such processes depend on the dynamical
correlation of the atoms. However, if we retain the higher order terms in Eq.
(17), such processes are possible even in systems with no dynamical correlation.
It is entirely possible that in a liquid or dense gas where the dynamical correla-
tion 1s small the higher order terms could give the dominant contribution to
multiparticle excitations. Some of these considerations have been presented
previously by Nelkin (5).

Thus, we will evaluate Eq. (17) approximately to obtain an idea of the im-
portance of multiple scattering. Ferziger and Leonard (6) have made a study of
multiple scattering in the static approximation, but there has been no previous
work done for a dynamical scattering system. Consider a diagonal clement of the
T-matrix in the limit that k; = &k, = E = E; = 0. The second term in Eq. (17)
vanishes and the sum over [ in the third term can be carried out, giving unity.
In this approximation, 7', is

Ty = % L Gall + za:, ‘T—“ bs Guyles | €777 | o))
We can evaluate the Y, as an integral over the momentum k; in exactly the
same way as was done in Section I1I, giving
o G

_2 " bg m

s Z 1+ Z/ i @i
2w h?

The matrix element in this expression is the average of the inverse distance be-

tween the ath and Sth atoms. Let us approximate this quantity by the inverse

of the average distance, d,g .

(i | (1/| 18 — 1o |) | @) & 1/dag .

The magnitude of bgm/2x%" is on the order of 107 em, and the distance be-
tween neighboring atoms is d ~ 107" em. Thus, the largest correction terms in
Eq. (21) are about 107" of the Fermi approximation. However, the number of
terms of a given size increase as the square of d,s, and by making a scatterer
sufficiently large one can always make the correction significant. In fact, this
approximate correction increases with the number of scattering atoms suf-
ficiently rapidly that it dominates the Iermi approximation for scatterers of
macroscopic size. This rather striking result is due to the fact that we evaluated
the correction in the limit of zero (not thermal) energy. In the zero energy limit,
the neutron wavelength is infinite, and one can consider that the neutron inter-
acts with the scattering system as a whole rather than the individual atoms

1
Irﬂ—ral
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separately. The Iermi approximation treats the scattering in terms of the in-
dividual neutron-nucleus interactions, and we would thus not expect it to apply
for zero energy and large scattering systems.

This effect would only be observed for neutron energies considerably below
thermal and then only for scatterers of nearly macroscopic size.

V. DISCUSRION

If we use Fq. (19) to perform the sum over j in Fq. (17}, we obtain 7 in a
form that is similar to the Lippmann-Schwinger result [Kq. (20)].

Ik . . 20wht
- zmh ; i(ki—k/) ra - Zmh o
1y = 2 a0 ) - BT,
" @ a ! i
o 3 3 7 3 7 % —ik;Ta
X ] o ot (I'I'N (Z')'l d‘)'N(,Of (rl, ,r,v)g/:l(r], ~-,r‘\,](> &1
(‘/‘Kz‘ru'ru’ _ (” // ) * , , , — )
X e, e R o (e e e (22
[Ty — Yo
4 3 3 3 ! 50 %
N T Y by [ dee A e )
@ ! 3
" Eil(z Irg—ra’l . , , -
N —iky- . oot
X gty -, Iy)e ffd__—__¢l (rl’ R 0 )S:,,(r1 L Ty PR
|15 — 1|

where

2, 1.2
K, = {4‘? (E — Enl,.-
n .

The important difference between the Lippmann-Schwinger result and Eq. (22)
is that Eq. (22) has been derived for a scattering system with an arbitrary number
of atoms. The Lippmann-Schwinger result is derived for a single seattering atom,
although Lippmann generalizes the result to include two scattering atoms.

We have made a rather crude estimation of the magnitude of the correction
term in which it was shown to be of order 107" of the I'ermi approximation.
However this estimate depends critically on the size of the seatterer, and the
neutron energy. The correction will be calculated in more detail in a future work.
Also, as we pointed out in Section 1V, the multiparticle excitations ean provide
information about the dynamical correlation of the atoms. Before undertaking an
analysis to determine the dynamical correlation, it certainly will be necessary
to compute the correction given by Eq. (22).

The subtraction deviee used in writing Fq. (10) may have more general ap-
plication than thermal neutron seattering. For example, the Meson theorv of
nuclear forces prediets the low energy nucleon-nucleon interaction quite ac-
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curately from the low order perturbation theory terms. However, attempts to
calculate the higher order corrections have been unsuccessful, and there is a
convergence problem due to the large coupling constant. It may be that the
application of a procedure similar to the one used here would help clarify this
situation.
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