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On the Fermi Approximation in Thermal Neutron Scattering* 

Cr. C. SUMMERFIELD 

Department of Nuclear Engineering, I’he Universiiy of Michigan, Ann Arbor, Michigan 

The Fermi approximation and all higher order corrections are derived for 
the cross section for thermal neutron scattering from aggregates of atoms. 
The first order correction is shown to reduce to the result obtained by Lipp- 
mann and Schwinger in the special case that the scatterer is a single bound 
proton. The magnitude of the correction is estimated for an arbitrary number 
of scattering atoms, and it is shown to be approximately proportional to the 
inverse of the separation between atoms. 

I. INTRODUCTION 

The Fermi approximation (1) has been used exclusively in calculations of 
the interactions of thermal neutrons with atoms in matter. However, the con- 
ditions for the validity of this approximation are somewhat vague. It has not 
been tested theoretically except in very special cases, and it has not been deduced 
in a systematic way for an arbitrary number of atoms in the scatterer. In par- 
ticular, it has not been clear how the Fermi approximation should be altered to 
include multiple scattering effects. 

In the following work, the Fermi approximation is shown to be the first term 
in a series expansion for the T-matrix, and the higher order corrections are 
explicitly given. The first order correction is shown to reduce to the result ob- 
tained by Lippmann and Schwinger (2) for the special case that the scatterer is 
a single bound proton. The magnitude of the first order correction is estimated 
for an arbitrary number of atoms in the scatterer. As we would expect from 
intuitive arguments, the correction, as estimated, is proportional to the inverse 
of the separation between atoms. 

II. THE SERIES APPROXIMATION 

Consider a system composed of N atoms at positions rl , . . . , rN , and a neutron 
at position r, . The Hamiltonian for this system is assumed to be the following: 

x = pg + xA + zl Ir,k - rJ 
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where p,, is the neutron momentum; XI is the Hamiltoniau for the atoms, ill- 
eluding interactions between atoms; wz is the neutron mass; and I’,(r, - r, ) 
is the interaction between the neutron and the nucleus of the atom at r, \\-e 
label the eigenfunct~ions of pn’ ‘2)~ and XIA as : 

(prL’- Zm)+,(r,,) = Ej#j(r,,i 

1’11 
3.i~A,r1 , . . . , rn-) = Ezyl(rl , . , r.*-) : 

also, we define: 

.?ilo = p,2~‘i)l?l + Jt.1 ( :; ! 

The differential cross section for a neut,ron scattered from t’he atoms is: 

whew hk; and fikf are the initial and final neutron momenta respectively ; 
and 7’., i is: 

7;) = (+.Ar,jcpr(rl, . . . , r.v)j T llC/tcr,c Ip,(rl T . , r,,)i; 

and 7’ is the solution of t,he following integral equation. 

T = 1’ + T’GT; 

where 

1’ = 2 T7,(r, - ro); 
a=l 

G = (E - x,, + it)-‘: 

and I$ is the total energy of the system. 
The formal solution of Eq. (6) is: 

7’ = (1 - I’(;)-pI-. Ii) 

In the usual perturbation treatment, the factor ( I - I-(,‘) -’ is replaced hg the 
first few terms of the geometric series. 

For thermal neutron scattering from nuclei, this series converges wry slowly at 
best, and perhaps it does not’ converge at all. Thus, for thermal neutrons, tlw 
Fermi approximation (1) has been used for Eq. (7 j. 

However, this approximation has not been deduced in a systematic WLJ 
for general scattering systems. The l:ermi approximation has been deduced ilr :t 
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systematic way for scattering systems composed of one and two atoms, and the 
corrections have been calculated for these cases (1, 2). 

We derive the Fermi approximation, for an arbitrary number of atoms in the 
scatterer, as the first term in a geometric series that is different from Eq. (8). 
To do this, let us consider the features of the neutron-nucleus potential, 
V,(r, - r,). The range of the potential (-lo-l3 cm) is very small compared 
to the average spacing between nuclei in normal matter ( -10M8 cm). The depth 
of the potential is sufficiently great that equation (8) converges slowly or does 
not converge for thermal energies and r, - rol . 

However, due to the short range of the potential, we can expand T in a different 
geometric series that does converge rapidly. We write V as the sum of two body 
potentials. 

T = c (1 - VG)-‘V,(r, - r,). 
a 

Now, we add and subtract V,(r, - r,)Go in ( 1 - VG)-’ 

T = c (1 - V,G,, - (VG - V,Go})-‘Vo, ; 
0 

where 

and 

V, = V,(r, - rd; 

Go = ( -(p:/2& + ie)-’ 

where pa is the reduced mass of the neutron and the c&h atom. 
If G = Go , then 

VG - V,G,, NN c’ VaG,, ; 
B 

(9) 

where &’ indicates the sum over all fl # CC. Thus, we can expect that VG - VaGo 
will be small unless r, - r,g , where ,6 # CL In this case, the Va multiplying 
( 1 - VG)-’ is zero since the range of V, is much smaller than the separation of 
the atoms. From these arguments, we can expect that a series in the factor 
( VG - V,Go] will converge rapidly, and we can write Eq. (9) as a geometric 
series. 

T = C (I - VeGQ)-ls$o ( (VG - V&o) (1 - VSO)-‘~~V~ . (10) (I 

If we retain only the first term in this series, we have: 

TQ = c T,’ 
D( (11) 



I.) 

rotice that, 7’,” is just the transition operator for a zctw energy neutron scattcrittg 
from a i~ucltw at r, . The matrix elemcttts of this operatoy bet\\-ettt ttetttt.ott 
statw are \\-ell h10\1.11 ( .i j .  

(Gf(r,,)! 7’,” iti, = (27rfi’ ut )u,CICki ki”r’ c 1”) 

where a, is the hound atom scattering length for the oc’th atom. Taking matrix 
elements of l’:(l. ( 12) bctweett the states of t#hc atoms, we have the I“etmi ui)- 
plnsimat~ion 

and 
(’ = IOJ 

Applying IQ. ( la), we have: 

’ (vf i c iikj-k/).rm !  , (Fz)(vz 1 e--i(k,-kfJ-’ <) , 
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The factor (1 - V,Go)-lVo can be expanded similarly to Eq. (8) with only the 
first term retained since when V, is large V,+ is zero. Including this approxima- 
tion and inserting Eq. (16) into the expression for the matrix elements of Eq. 
( 14), we obtain 

where 

or, since VP is a short range potential, 

ba = / V,(r) d3r. (18) 

III. A SINGLE BOUND PROTON 

Now, we will specialize these results to the case of neutron scattering from a 
single proton bound in an otherwise inert molecule. In this case the interaction 
V(r, - r,) will contain a single two-body term. We will perform our analysis 
in the center of mass system of the neutron and the molecule, and we will assume 
the energy of the center of mass is zero. 

Go = ( -p~2,‘m + i,)-’ 

If we take the masses of the neutron and proton to be equal, the reduced mass 
is just one-half the neutron mass. 

In this case the matrix elements of (1 - VGo)-‘V between free neutron states 
are 

le 
ikf.r, ( (I _ J&“)-lJ,T , eiki.r,) _ -hfi2 a’ei(ki-k’br, 

??2 

where a’ is the neutron-proton free atom scattering length. Following an 
analogous procedure to that of section II, we obtain the following expression for 
the T-matrix, including the Fermi approximation and the first order correction. 

Tfi = I!$ a’ (cpf / ei(ki--k’).rp 1 pi) 



and where p is the reduced mass of the molecule alld the ne\lt,roll; and PHI r,, I 
is the energy cigenfunction of the molecule. 

The sum over the free neutron st,at,es is in reality an integral over the tjhwe 
dimensional momentum continuum. 

F --t 1 ;f& 

making this substitution, and ut,ilizing the followitlg 1~11 lino~vn ICourier integral, 

This is exactly the result Lippmann and Schwingtr obtained with a somewllat 
longer derivation (3’). 

The second term in Eq. (30 j has been shown t,o hc at most a fraction of :I 
per cent, of the first term (2). If there is any case where the correction to the 
Fermi approximation is significant, we would not expect t,hat it is this one. 
In fact, Davydov and ;\lel’nichenko ( 4’) hare shown that the correction vanislws 
for zero energy scattering from a free proton at rest. This is not, surprising silw 
the l:crmi approximation was constructed to give t,he correct result, in t,his eaw. 

I\‘_ THK NAC;P;ITI:l )E OF THE: FIRST ()Rl )I<lL CORRlKTIt )S 

Although the Fermi approximation has been shown to be valid for a single 
scattering atom, it does not predict any multiple wat,tering cfTect,s. Thus. it 



78 SUMMERFIELD 

cannot adequately account for a system in which multiple scattering is important. 
In particular, it is of interest to consider the possibility of multiparticle excita- 
tions (i.e., a transfer of energy between two or more atoms and a scattered neu- 
tron). In the Fermi approximation, such processes depend on the dynamical 
correlation of the atoms. However, if we retain the higher order terms in Eq. 
(17), such processes are possible even in systems with no dynamical correlation. 
It is entirely possible that in a liquid or dense gas where the dynamical correla- 
tion is small the higher order terms could give the dominant contribution to 
multiparticle excitations. Some of these considerations have been presented 
previously by Nelkin (5). 

Thus, we will evaluate Eq. (17) approximately to obtain an idea of the im- 
portance of multiple scattering. Ferziger and Leonard (6) have made a study of 
multiple scattering in the static approximation, but there has been no previous 
work done for a dynamical scattering system. Consider a diagonal element of the 
T-matrix in the limit that ki = k, = E = El = 0. The second term in Eq. (17) 
vanishes and the sum over 1 in the third term can be carried out, giving unity. 
In this approximation, Ti, is 

We can evaluate the Cj as an integral over the momentum kj in exactly the 
same way as was done in Section III, giving 

c21) 
The matrix element in this expression is the average of the inverse distance be- 
tween the c&h and 0th atoms. Let us approximate this quantity by the inverse 
of the average distance, da@ . 

The magnitude of b~m/2?rh2 is on the order of 10-” cm, and the distance be- 
tween neighboring atoms is d - 10e8 cm. Thus, the largest correction terms in 
Eq. (21) are about 10e4 of the Fermi approximation. However, the number of 
terms of a given size increase as the square of d,a , and by making a scatterer 
sufficiently large one can always make the correction significant. In fact, this 
approximate correction increases with the number of scattering atoms suf- 
ficiently rapidly that it dominates the Fermi approximation for scatterers of 
macroscopic size. This rather striking result is due to the fact that we evaluated 
the correction in the limit of zero (not thermal) energy. In the zero energy limit, 
the neutron wavelength is infinite, and one can consider that the neutron inter- 
acts with the scattering system as a whole rather than the individual atoms 
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separately. The E’ermi approximation treak t#he scattering in terms of the irt~ 
dividual neutron-nucleus interactions, and we would t#hus not expect it t#o apply 
for zero energy and large scattering systems. 

This effect, would only he observed for nrut,rol~ energies considerably below 
tlwmal and thcll only for scatterers of nearly macroswpic siw. 

If w-e use EC{. ( 19) to perform the sum over .j in 131. I 17 ), WC obtain 7’j, ill :I 
form that, is similar to the I,ippmanll-SchwinF;cl‘ rwult (IGl. ( 20 )]. 

The important difference between the Lippmarln-Sc’cl~~inger result and I%[. [ 22 ! 
is that ll;q. ( 22) has been derived for a scattering system with an arbitrary number 
of at,oms. The Lippmam-Schwinger result is derived for a single scattering atom. 
akhough Lippmann generalizes the result to include two scattering atoms. 

\\:c have made a rather crude estimation of the magnitude of the correction 
term in which it was shown to be of order IO@ of the k’rrmi approsimation. 
IIowever this estimate depends critically on the size of the scatterer, and t#he 
neutron energy. The correction will be calculated in more detail in a future wvork. 

ZGw, as we pointed out in Section IV, the multiparticle excitations can provide 
information about the dynamical correlation of the at,oms. Before undertaking a11 
analysis t,o determine the dynamical correlation, it, certainly will be necessar) 
to compute t,he correction given by Eq. (22). 

The subtraction device used in writing Eq. ( 10’) may have more general ap. 
plication than thermal neutron scattering. For example, the Aleson theory of 
Iluclcar forws predicts the low energy n~lcleon-ll~lcl~~o~l interaction cluitc :w 
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curately from the low order perturbation theory terms. However, attempts to 
calculate the higher order corrections have been unsuccessful, and there is a 
convergence problem due to the large coupling constant. It may be that the 
application of a procedure similar to the one used here would help clarify this 
situation. 
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