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I. INTRODUCTION 

The object of relaxation hydrodynamics is to study the motion of charged 
(infinitely conductive) compressible gases which are not in equilibrium. 
That is, energy is being added to or withdrawn from the system. As a result, 
the basic equations of the system consist of the usual equations of continuity, 
motion, and the Maxwell equations, but the usual single energy equation is 
replaced by two equations. One of these equations is the usual energy equa- 
tion with an additional term involving a new dependent variable, the relaxa- 
tion variable q. The additional equation states that the rate of change of q 
along a streamline, denoted by ~, is directly proportional to the rate of change 
of internal energy with respect to the relaxation variable, q. These equations 
have been studied in the linearized case by Stupochenko and Stakhanov [1]. 

In this paper, the nonlinear theory of relaxation hydrodynamics is discus- 
sed. Our purpose is to obtain the limiting speeds for characteristic waves 
in charged compressible relaxation hydrodynamics. Two speeds were shown 
to exist in the linearized theory by Stupochenko and Stakhanov [1] by deter- 
mining the equation for the velocity vector in the nonmagnetic, compressible 
case. Our procedure is to formulate the general discontinuity relations for 
characteristics [2]. Although the original system of equations consists essen- 
tially of nine equations in nine dependent variables (the velocity vector; 
the magnetic field vector; the density; the entropy; and q, the relaxation 
variable), the set of discontinuity relations forms an underdetermined system. 
It  is shown that this system can be completed by assuming that the normal 
derivative of ~ along any discontinuity manifold is continuous. Furthermore, 
it is shown that in the nonmagnetic case this assumption suffices to determine 
the limiting speeds given by Stupochenko and Stakhanov [1]. Again, it is shown 
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that in the nonlinear case (but not in the linear case) this assumption is consistent 
with the other equations of the system of discontinuity relations. Both of the 
previously mentioned limiting speeds imply that the jumps of the derivatives 
of the various physical quantities approach zero; another limiting speed exists 
for which the jumps of these derivatives approach infinity. F!nally, the limiting 
speeds for the magnetic case are determined. It is shown that the magnetic 
field "splits" the non-magnetic limit speed into two magnetic limit speeds. 

II. THE BASIC EQUATIONS 

In this section, we shall discuss the basic equations of relaxation hydro- 
dynamics. These equations are: (1) the equations of motion of a charged 
(infinitely conductive), compressible fluid; (2) the equation of continuity; 
(3) the Maxwell relations; (4) the energy relations. Let p, S, p, e, 'T, q be 
the density, specific entropy, pressure, specific internal energy, absolute 
temperature, relaxation parameter, respectively, and let vJ, HJ (j = 1, 2, 3) 
be the velocity and magnetic field vectors, respectively, in a general system 
of curvilinear coordinates xJ (with eovariant derivative defined by 17; and 
time denoted by t); Finally, let K be a constant and ~ be the constant magnetic 
permeability. 

First, we consider the thermodynamics of relaxation hydrodynamics. 
In this paper, we shall consider p, S, and q as the independent thermo- 
dynamic variables. Further, the first law of thermodynamics will be assumed 
to be the relation [1] 

P d p + ' T d S + b e  de = dq (2.1) 

By assuming that along a streamline, the relation [1] 

de_pdp 
dt p~ dt 

(2.2) 

is valid, as in the equilibrium flow of a compressible fluid, one obtains from 
(2.1) and (2.2) 

,T dS _ be dq (2.3) 
dt bq dt 

Further, it is assumed in relaxation hydrodynamics that [1] 

= -- K 8e ~ ~ dq 
bq ' dt 

(2.4) 
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where K is some constant. Thus, (2.3) becomes by use of (2.4) 
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K ' T  dS  = ( dq~ 2 (2,5) 
dt \ dt ] 

The relations (2.4), (2.5) are the two new relations of relaxation hydrodynamics 
which replace the energy relation 

dS 
- - 0  

dt 

of conventional hydrodynamics. Instead of working with (2.4), (2.5), we may 
work with (2.5) and the relation obtained by replacing &/Oq of (2.4) in (2.1), 
that is 

p l d q  
de = ~ d p +  'TdS --  ~ -~ dq (2.6) 

Note, (2.6) implies (2.4). 
Now, we consider some consequences of (2.1). Evidently, we can write 

~e 
' T = -~-~-) p,~ 

Oe \ 

P = P~ -gp/)s,q 

By differentiation of (2.8) we obtain the relations 

aP) = 2p ae 3~e 

~P ) = p2 ~2e 

Op & 

Further, by differentiation of (2.7) we find 

ap/s.~ a~ b-S 
a'T~ a2e 

E :-- aS]p,q -- ~-~ 

~q l p,s ~S 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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Finally, we define the coefficient G by 

~2e 
G - -  (2.15) 8q2 

Instead of (2.4) or (2.6), one may use the relation obtained by differentia- 
ting (2.4) and using (2.11), (2.14), (2.15) 

d~ K (G dq F dS C dp] (2.16a) 
d r - -  dr + dr + pz dr] 

where ~ is defined by the second equation of (2.4) or 

~ dq __ 8q 
dt 8t 

-and the directional derivative d/dr is 

÷ v~Vjq (2.16b) 

d dt 8 dx ~ 
dr = dr 8t + & Vj (2.16c) 

The value of using (2.16a) rather than the first equation of (2.4) will become 
apparent when we discuss discontinuity theory. 

Finally, we list the basic relations: (1) the equations of motion; (2) the 
equation of continuity; (3) the Maxwell equations; (4) the energy equations. 
These are [3]: 

( ~vj vkV~vj) Vj (p + ~- H 0 Vk(vHkHj) 0 (2.17) 
P \ c~ t + -~- -- = 

~p 
8--[ ÷ Vj(pv j) = 0 (2.18) 

8t 
- -  + vkVkHj -- HkVkvj + HjV~v k = 0 (2.19) 

V~HJ = 0 (2.20) 

K,T  (_~t + #VjS)  = ~2 (2.21) 

Dq -- K De (2.22) 
8-7 + vjVjq =~ ~ = ~q 

It should be noted that in the above equations 

H 2 ~ HjH j (2.23) 
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I I I .  THE CAUCHY PROBLEM AND CHARACTERISTIC MANIFOLDS 

In order to discuss the theory of characteristic manifolds via the Cauchy 
problem, we consider a Euclidean four-space with coordinate variables 
M, t (cf. [4, p. 270]). We assume that the initial and characteristic manifolds, 
Sz, are three-dimensional of class C 2 with defining equation 

¢(M, t) = constant (3.1} 

Further,  we shall use the notation, where gj~ is the metric tensor of Euclidean 
three-space 

¢ J -  ~4 04 
Ox j , 4o ~ ~ / - ,  ¢~ ~ gJkCk, ¢ ~- CJCj  (3.2a) 

L ~ 6o + 6~ vk, ' ¢  ~ 6~6~, K ' T  =~ T (3.2b) 

I f  we denote the above four-vector by ~,, where 

4~ - (4o, 43, 

then ¢~ lies along the normal to S 3. Note, Latin indices have the range 

j , k  : 1 , 2 , 3 ;  

Greek indices have the range 

a, fl = 0 ,  1,2, 3. 

In  our work, we shall introduce 

t~(a  = 1,2, 3) 

any three mutually orthogonal unit vectors tangent to S a at each point. 
Further,  we define [7o, goo, goJ by 

go0 ---- 1, goJ ~ 0 

To  study the Cauchy problem, we assume that along any known initial $3~ 
the following are known: (1) v j, H j, p, S, q, and the tangential derivatives 
along S 3 of these quantities; (2) T, p, e, and all of their first partials with 
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respect to p, S, q except ~e/~q. That is, the last derivative when considered as a 
function of x j, t is unknown along S 3. Hence, we may write 

¢b 

Vo:Hj = (~k~ -~- ~ t ~  i 
"~ ' ,  a a 

v~s = ¢~u + Z t~6 
" ~ ' , a  a 

V~q = ¢~,W + ~ t,l/fz (3.3) 

The quantities W~, ks, R, U, W are proportional to the unknown normal 
derivatives of % Hi, p, S, q, respectively, and the barred quantities V~j, ~j, ~, 

U, W are proportional to the known tangential derivatives of v~, Hi, p, S, q, 

respectively. The Cauchy equations are obtained by substituting (3.3) into 
(2.17)-(2.22). We shall discuss the corresponding characteristic equations 
in detail. It should be noted that when the discontinuity relations form an 
underdetermined system (see (4.2), (4.3) for the nonmagnetic ease and note k 
is "known" only to be some function of the unknown, ¢(t, x ~') = constant) 
then the associated Cauchy initial value problem equations (which are non- 
homogeneous forms of (4.2), (4.3), with ¢(x j, t) known in the nonmagnetic 
case) do not possess a unique solution. 

We assume that a characteristic manifold, Sa, is determined by the following 
conditions: (1) v ~, Hi, the three independent thermodynamic variables p, S, q, 
and their tangential derivatives along S 3 are continuous and hence only the 
normal derivatives along S 3 of vJ, Hi, p, S, q are discontinuous : (2) T, p, e are 
continuous functions of p, S, q and hence of x j, t; (3) the first partials of T, p 
with respect to p, S, q are continuous functions of xJ, t; (4) the first partials of 
e with respect to p and S are continuous functions of xJ, t but the first partial 
of e with respect to q is a discontinuous function of x~, t along Sa; (5) all of the 
second derivatives of e with respect to p, S, q are continuous. 

In view of the above assumptions and (3.2), (3.3), (2.16b), we may write 
along S 3 

[v~v~] = ¢~vj ,  [w~] = v~ (3.4) 

[17~,Hj] = ¢~,hj, [kj] = hj (3.5) 

[V~,p] = ¢~P, [R] = P (3.6) 
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[V~,S] = ¢~,s, [U] = s (3.7) 

[V~q] = ~ Q ,  [w] = 9 (3.8) 

[~] = LQ (3.9) 

where the bracketts denote the "jump" of the enclosed quantity. Further, 
using the result that the jump of any tangential derivative of ~ is equal to that 
tangential derivative of the jump of ~ (Hadamard's theorem, [5]), we find 
from (3.9) 

d d~ 
~rr LQ = [~-r ] (3.10) 

where d/dr is a directional derivative in any direction tangent (say t~) to S~. 

By forming the jump of (2.16a) and using (3.6)-(3.8), we see that (3.10) 
leads to [see (3.9)] 

t~EV~q] =- 0 (3.11a) 

LQ = k = [~] (3.11b) 

where k is constant over any S~. Note, (3.11b) implies that if ¢~ is replaced 
by any vector along the normal (say '¢~) then Q must be replaced by 'Q 
where "¢~v~'Q = k. To obtain the jump of the normal derivative of 
along Sa, we form the jump of (2.16a) when d/dr represents a directional 
derivative along this normal. From (3.6)-(3.8) and (2.16a) we find 

¢~[V~] = -- K ' ¢  (GQ + Fs + ~-~ ) (3.12) 

The relation (3.12) and the first equation of (3.11) are equivalent to 

( C P )  
[~'~q] = ~ ~ K  C 9 + Fs + - - F  (3.13) 

Finally, we note by use of the chain rule and (2.9)-(2.11), (3.6)-(3.8) 

[V~p] = 6~(AP + Bs + CQ) (3.14) 

The relations (3.4)-(3.9),  (3.11), (3.13), (3.14) are the basic jump relations 
for characteristic S a. 

To obtain the discontinuity relations, we form the jumps of (2.17)-(2.21). 
From (3.2), (3.4)-(3.8), (3.1 lb), and (3.14) we obtain (cf. [2, p. 384, eqs. (8.18), 
(8.19)]) 

pLVj + 6j(AP + Bs 5- CQ + nHkhk) --  v6kHkhj = 0 (3.15) 

PL + p¢jV s = 0 (3.16) 
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Lhj --  ~ H k V j  -k Hj,~kV k = 0 (3.17) 

4jhJ = 0 (3.18) 

TLs ---- k 2 q- 2k~1 (3.19) 

L Q  = k (3.20) 

where ql is the value of ~ on one side of S 3. First, we note that (3.18) follows 
from (3.17) by forming the scalar product of (3.17) with ~J. Further, by 
eliminating Q, s from (3.15) by using (3.19) and (3.20), the equation (3.15) 
becomes 

pLVj + (~j A P  + ~ (k 2 + 2k(1 ) + T k + ~H~h~ -- ~16~Hkhj = 0 (3.21) 

Thus, the system of discontinuity relations consists of (3.16), (3.17), (3.19)- 
(3.21). For specified k, the equations (3.16), (3.17), (3.21) are a system of 
seven linear algebraic equations in the seven unknowns 

Vj, hi, P 

Since there is no simple scheme for directly specifying k as some function 
of the unknown $(x j, t) of (3.1), we shall use an extended form of condition (5) 
on characteristic manifolds. That  is, in addition to all second partials of e 
with respect to p, S, q being continuous [see (2.4) and Section VI], we assume 

[v~q] = 0 (3.22) 

Thus,  from (3.13), (3.22), we find 

CP GQ+Fs+7=O (3.23) 

The equations (3.16), (3.17), (3.19)-(3.21), (3.23) constitute a system of 
ten nonlinear homogeneous algebraic conditions for the ten unknowns 

Vj, hj, P , k , Q , s  

By using (3.20), k can be eliminated from the above system. However, the 
question still remains whether LQ can be constant along any characteristic 
manifold S 3 when (3.23) is valid. We shall show that in the nonlinear theory 
a partial differential equation [see (4.7), (5.9)] always exists involving k = LQ 
and q~j, so that by specifying k as a function of 4, the condition that h is 
constant over any S~, q~ = constant, is satisfied. 
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Finally, we shall introduce the concept of weak reactions in a manner 
similar to that of weak shocks. That  is, we have used the expansion (see 3.19) 

[q2] = [~]2 + 2[q] ~ (3.24) 

When the term [~]2 is negligible in comparison to [~] then 

[~2] = 2~.,[~] (3.25) 

is valid and the reaction will be called weak. Evidently, for weak reactions, 
the only modification of the discontinuity relations occurs in (3.19), (3.21): 
the term containing k S must be omitted from the relations. The  discontinuity 
relations form a system of linear homogeneous algebraic equations. But, 
no scheme exists for satisfying the condition, k -- constant, over any character- 
istic manifold S 3. 

IV. THE NONMAGNETIC CASE 

In order to understand the difference between the customary compressible 
and relaxation compressible hydrodynamics, we Shall discuss the non- 
magnetic case. Here, 

hj - -  Hj = 0 (4.1)  

and (3.16), (3.21) become 

PL + pCjV 3 = 0 (4.2) 

pLVj + (~j AP + ~-L (k ~ + 2k~1 ) + k = 0 (4.3) 

If  we form the scalar product of (4.3) with ~J and then eliminate ~JVj from 
the resulting equation by use of (4.2), we obtain 

L P ( A ~ - -  L~) + ~ Ick + B  (k2 + 2k~I)I =O (4.4) 

By eliminating k from (4.4), we obtain, using (3.20), 

TP(Aqb -- L ~) 4- q){TCQ + B(LQ 2 + 2Q~1)} = 0 (4.5) 

Further, if we eliminate s in (3.23) by using (3.19), (3.20), we find 

Tp2GQ + Fp~(LQ ~ + 2Q~) + TCP = 0 (4.6) 
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Finally, if we eliminate P from (4.5) (when A ~  --  L 2 =~ 0) by using (4.6), 
we obtain the degenerate quadratic equation in Q 

Q~L{FpaL 2 + q)(BC -- oaFA)} 

+ Q{T(LaGp a + C a¢ -- A(I)p aG) + 2qa(paFL 2 -- p2FA~ 4- B C ~ ) }  = 0 

(4.7) 

Now, we consider the limiting wave speeds. First, we note that 

c = L¢-1/~ (4.8) 

is the speed of wave propagation [cf. (4, p. 285)]. From (4.7), we see that 
three limiting speeds exist, corresponding to the relations 

A~b - -  L 2 = 0 (4.9) 

FoaL 2 4- ¢ ( B C  -- paFA) = 0 (4.10) 

GpaL a 4- qS(C a - -p~AG)  = 0 (4.11) 

Case 1. A ¢  - -  L a = 0. From (4.5), we see that k = LQ takes on either 
of the two following limit values 

Q = 0 (4.12a) 

B L Q  4- 2B~1 4- TC = 0 (4.12b) 

In  the case (4.12a), it follows from (4.6), (4.3), (3.19), and (3.20) that P, s, Vj 
take on the limit value zero; in the case (4.12b), it follows from the above 
noted relations that in the limit s, Q, P, V~. do not vanish. Thus, (4.12b) leads 
to convential or equilibrium compressible fluid dynamics. From (4.8), (4.9), 
we see that for case 1, the value of c a is 

'c a = A (4.12c) 

That  is, this wave propagates at the sonic speed. 

Case 2. FOaL 2 4- ¢ ( B C  -- p2FA) = 0. Since (4.11) cannot be valid (as 
the characteristics are three-dimensional), it follows from (4.7) that Q must 
approach infinity as a limiting value. Hence, from (4.6), (3.19), (4.3), it 
follows that P, s, Vj approach infinity. By solving (4.10) for L/~) 1/~, we find 
the limiting value of c ~ by means of (2.9)-(2.15) 

~p ~2e ~p (3ae 

,,ca _ F A  --  BCp -2 _ ~p aq ~S ~S ~p ~q (4.13) 
F ~2e 

Oq OS 
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Case 3. p2GL 2 + ~b(C 2 -- p2AG) = 0. Finally, if qa vanishes and (4.11) 
is valid, then (4.7) implies that Q approaches zero, as a limiting value. Hence, 
from (4.6), (3.19), (4.3), it follows that P, s, Vj approach zero. By solving 
(4.11) for L/qm~ we find, from (2.9)-(2.15), 

~p ~2e ~p O2e 

,,,c z _ A G  -- p-2C2 _ ~p ~qZ ~q ~P Oq (4.14), 
G ~2e 

~q2 

In the case of weak reactions for ql = 0, it is easily shown that s = 0 
(see 3.19) and 'c, ' "c  are the only limiting speeds. Both of these speeds have 
been obtained by Stupochenko and Stakhanov [1] in the linearized case, 
when entropy changes are negligible. 

V. THE MAGNETIC CASE 

Our problem is to find the magnetic equivalent of (4.5). If  we eliminate 
CkV k in (3.17) by use of (3.16), we obtain 

pLh~ = p¢~HkVj + PLHj (5.1) 

Now, we eliminate hj in (3.15) by use of (5.1) and obtain 

oLVj + (AP + Bs + CQ) Cj + ~ - 7  Cj 

_ _ = 0 ( 5 . 2 )  

If  we form the scalar product of (5.2) with CJ and eliminate CJVj by use of 
(3.16), we find 

-- PL 2 + (AP + Bs + CQ + ~7 pH 2) ~ + _~ i_i~H~¢,Vkq~ = 0  
P 

(5.3) 

To determine HkV~ of (5.3), we form the scalar product of (5.2) with H j and 
find 

pLH~V~ = -- (AP + Bs + CQ) HJ¢~ (5.4) 

I f  we eliminate H~V~ in the third term of (5.3) by use of (5.4), and if we 
express s in terms of Q by use of (3.19) and (3.20) in the resulting equation, 
we obtain the magnetic equivalent of (4.5) 

M T P  + NQ 2 + RQ = 0 (5.5) 
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where  "K = H;¢,, and 

_ __ ~ H2q~ _ L 2) M = Aq~ (L ~ P 

__ V ,K S) N ~ B L ¢  (L 2 P 

N 
R ~ (2~xB @ CT)  B L  

(5.6) 

(5.7) 

(5.8) 

Now,  we s tudy  the  wave speeds.  W h e n  M = 0, the  wave speeds are those  
o f  convent ional  (or equi l ib r ium)  m a g n e t o - h y d r o d y n a m i c s  [3]. I f  we exclude 
th i s  case, t hen  we can solve (5.5) for P and e l iminate  P in (4.6). W e  obta in  the  
degenerate quadratic for the magnetic case 

Q~(NC -- p2MFL) -1- Q{RC -- o2M(2~h F 4- TG)} = 0 (5.9) 

T h u s ,  the  l imi t ing  speeds for the  magne t ic  case cor respond  to 

M = 0 (5.10) 

N C  -- p~MFL = 0 (5.11) 

R C  -- p2M(2~IF q- TG) = 0 (5.12) 

Case 1. M = 0. As  we have noted,  M = 0 furnishes  the  l imi t ing  speeds  
o f  convent ional  mag n e to -h y d ro d y n amic s .  F r o m  (5.5), we see tha t  in this  
,case the  l imi t ing  values of Q are:  Q = 0 or Q = - R/N.  In  the  first case 
(i.e. Q = 0), i t  follows f rom (3.19), (3.20), (3.23) tha t  P = s = 0, and  hence 

f rom (5.4) 
HkV~ = 0 (5.13) 

F u r t h e r ,  f rom (3.16), (3.17) we see tha t  

CjV j = 0 (5.14) 

Lhj = ¢ ~ g k v j  (5.15) 

F r o m  (3.15), (5.15), we find tha t  (not ing tha t  "K = HJCj) 

_ - _  _ 

F o r m i n g  the  scalar p ro d u c t  of (5.16) wi th  V ~ and us ing (5.14), we see tha t  

either Vj vanishes or 
L 2 = 77 ' K  2 (5.17) 

P 
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By substituting (5.6) into (5.10), and then eliminating L a by use of (5.17) in 
the resulting equation, we find that Hj lies along ~j. Thus,  the case Q = 0 
implies: (1) P = s  = 0, V~- = 0, and, by (3.17), hj = 0; or (2) P = s = 0, 
the field bj lies along Hi, and from (5.14), (3.17), h~, V~ are both tangent to 

= constant. F rom (5.17), we see that this last wave moves with the Alfv6n 
speed [3]. The  case Q -= - R/N leads to the general case of equilibrium 
magneto-hydrodynamics. 

Case 2. NC -- p2MFL = 0. Here, the limiting speeds are obtained from 
(5.11). Substituting (5.6), (5.7) into (5.11), we obtain the following equation 
for c ~ by using (4.8), after dividing by (bs/2 

~ - - - F A - - - - p  FH 2 + p  FA CB / ~ 2 _ 0  (5.18) 

Note, the quantity 
/;2----- ' K  ~1i2 (5.19) 

is the projection of HJ on the space normalized unit normal to ~ = constant. 
For either of the limiting speeds determined by (5.18), P, Q, s, vj, h~ approach 
infinity, as is easily verified by use of (5.5), (3.16), (3.17), (3.19), (3.20). 
Further,  by comparing (4.13), (5.18), we see that the single limiting speed of the 
nonmagnetic case is "split" into two magnetic limiting speeds whose squares, when 
summed, are greater than the nonmagnetic limit speed squared by [see (2.23)]. 

H 2 (5.20) 
p 

I t  should be noted that in case Hj  = 0, t h e n / £  = H = 0 and (5.18) reduces 
to (4,13). 

Case 3. R C -  p2M(2YhF-~ T G ) =  O. In  this last case, the limiting 
speeds are given by (5.12). Substituting (5.6), (5.8) into (5.12) and dividing 
the resulting equation by c.b 2, we obtain, by using (4.8), 

(2~1F + TG) c 4 

+ l - -  2ql ( - BC~- -k FA -k ~- -- TG (A -k ! H2) - C2Tp 3 }t c a 

( 7  =0 p 

For the case when ql = 0, (5.21) becomes 

c~ ~H2G c~----~2 _ A a +  = 0  (5.22) Gc 4 +  -- AG + p~ P P ~ -  
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For either of the limiting speeds determined by (5.21) or (5.22), P, Q, s, Vj, hj 
approach zero. This follows from (5.5), (3.16), (3.17), (3.19), (3.20). Further, 
by comparing (4.14), (5.22), we see that for ql = 0, the single limiting speed 
of the non-magnetic case is "split" into two magnetic limiting speeds such that 
the sum of their squares is greater than the square of the nonmagnetic limiting 
speed by (5.20). Since (5.18), (5.22) contain K, it would be more precise to 
talk about classes of speed. 

VI. CONCLUDING REMARKS 

Three questions remain to be answered. These are: 

(1) Since the original equations (2.17)-(2.22) consist of nine equations 
(note, [TjHJ = 0 follows from the other equations and properly given initial 
data [3]) in nine dependent variables, why is the discontinuity system for the 
jumps or their ratios underdetermined (and hence no unique solution exists 
for the associated Cauchy problem) ? 

(2) What is the significance of the assumption ([7~ is continuous along a 
characteristic S~) which leads to a determined discontinuity system ? 

(3) What is the significance of each of the limiting speeds ? 

The first question is easily answered. If 8e/~q is a known function of p, S, q, 
and hence of x ~, t along the initial S 3 then the system (2.17)-(2.22) is deter- 
mined in the sense that the Cauchy problem has a unique solution. Similarly, 
if 8e/Oq is a continuous function of x 1~, t along any characteristic manifold then 
the ratio of every pair of discontinuities is determined. However, in this case, 
the characteristic manifolds coincide with those of equilibrium compressible 
nonmagnetic (and magnetic) hydrodynamics. In our work, we eliminated 
~e/Sq by differentiating the first equation of (2.4). But, the resulting equation 
(2.16a) contains the derivative d6/dr. For the Cauchy (or discontinuity) 
problem, the tangential derivatives 

ta%0, t%S, t2V q 

are known (continuous). Thus, (2.16a) can be used to determine the tangen- 
tial derivative, t~P'~. However, (2.16a) relates the normal derivative 

~17~  to the unknown (discontinuous) normal derivatives 

Thus, one of the energy equations introduces a new equation and a new pos- 
sible unknown (or possible discontinuity). The assumption in our work is that 
¢~V~7 t is known (continuous) and this completes our system. 
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In order to answer the second question (what is the significance of the 
assumption V~ is continuous ?), we can use the general theory developed by 
Thomas [6]. We shall use a slightly modified form of this theory which is 
more suitable to our special problem. From the definition (2.16b), we find 

v~q = V~Voq + (¢~vJ) (Vjq) + vJv~Vjq (6.1) 

Let us expand [Vfl7~q] in terms of the four-tuple of unit  orthogonal vectors, 
t ~ (a -~ 1, 2, 3) of Section III and "¢~ where (see (3.2b)) 
a 

' ~  - -  , q ~ 1 / 2  

We obtain 

X i + X c to ,+ + + Z 
a , O  a a a a 

where 
A = t • t ,8[V~V~q] 

a b 

(6.2) 

D = '¢~ t~[V~V~q] (6.4) 
a 

Hadamard's theorem [5] states that if "right and left hand derivatives" exist, 
then the jump of any tangential derivative of any quantity (scalar, etc.) is 
equal to that tangential derivative of the jump of this quantity. Applying 
this theorem to V~q, we find, by using (3.8), (6.2), 

t~[V~V~q] = t~V~('¢~ 'Q) (6.5) 

where "O = O ' q  )1/2, From a well known result in differential geometry 
(cf. [7, p. 246, eq. (5.9)]), it follows that 

V~ '¢8 = h~  + '~b,u~ (6.6) 

where h~a is the known (or continuous) symmetric second fundamental 
tensor of Sa, which lies in $3 (i.e., '¢~h~.~ = 0), and ua is the known (or con- 
tinuous) curvature vector of the "¢~ congruence. Substituting (6.6) into (6.5), 
we find, by forming scalar products of (6.5) with "t~ and '¢~ and using (6.4), 

b 

= t ~ ~ [ V ~ V ~ ]  = ' Q h ~  t ~ t~ (6.7) 
a a b 

C = t = '¢~[V~Zy/] = t~V~ 'Q (6.8) 
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Further, since in Euclidean space with coordinates M, t, the operator relation 
V~Va = VaV~ is valid, it follows from (6.4) that 

C = D (6 .9 )  
a 

Finally, we note a well known relation (el. [8, p. 96]) 

t z at~ = ~ -- ' ~  '6~ (6.10) 

Substituting (6.7)-(6.9) into (6.3), we find, by using (6.10) and the fact that 
" ~  lies in the null domain of hal~, 

[V~Vaq] = 'Qh~a + 'q~=Va 'Q + '$~v, 'Q + (B -- 2'$zVz ' Q ) ' ~ ' ~  (6.11) 

Forming the jump of (6.1), we find by using (3.4), (3.8), and (6.11) and ex- 
panding the product jump [(V~v j) (Vjq)] (cf. [2, p. 384]) 

[v~] = '9(h0~ + v%~) + 'LV~'Q + %vJVj '9 
+ (B -- 2'6aV~ 'Q) 'L  'q~ + (Vjq)l 'V  ~ ' ~  

+ (V~v01 'Q 'q~j + ('(~/vo 'Q ' ~  + '(~Vo 'Q (6.12) 

where "VJ = VJ'qbl/z, and 'L = '40 + '6J v3 and the subscript indicates the 
value of Vjq, V~vJ on one side of S 3. First, it should be noted from (3.11a) 
that t~[V~] must vanish identically. This can be verified by use of (6.6) and 

(3.11b). Thus, the nonvanishing of (6.12) leads to only one condition 

'L(B -- '¢~'V~,'Q) + vJVj "p + V o 'Q + 'Q '¢j 'V  j 

+ '¢j '¢~(V~vJ)l 'Q + 'vJ(Vjq)~ = ¢=[v~] (6.13) 

Equation (6.13) determines B (see (6.3)) when 'Q, 'V j etc. are known. Note, 
if V,'Q is discontinuous, then one must replace V~'Q in (6.13) by (V~'Q)v 
We note that if 'Q, 'V j vanish, but $~[V,~] does not vanish, then B does not 
vanish and by (6.11), [V~V~q] does not vanish. Thus, if v~, q, and their first 
partials with respect to xJ, t are continuous [these are the only quantities, 
except for ~e/~q, that occur in the basic relations (2.17)-(2.23)] then the second 
derivatives of q with respect to xJ, t will be continuous if and only if the first 
normal derivative of (~ or ~e/bq is continuous with respect to xJ, t. Thus, the 
assumption that [V~] $~ vanishes is a condition that will assure the continuity 
of all second derivatives of q when q, v j and their first partials are continuous. 
Note that the second partials of q enter the basic equations when (2.22) is 
replaced by (2.16a). 

Our final question was : what is the significance of the limiting speeds ? 
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In equilibrium hydrodynamics, the characteristic manifolds are independent 
of the jumps Vi, h~, P, Q, s [see (3.4)-(3.9)]. However, in relaxation hydro- 
dynamics, the characteristic manifolds depend on Q [see (4.7), (5.9)], except 
for the special cases of equilibrium hydrodynamics (see ease 1 for the non- 
magnetic and magnetic cases). The relations (4.7), (5.9) are of the form 

AQ 2 + / ~ Q  = 0 (6.14) 

Hence, for every finite value of Q except Q = 0, the relation (6.14) determines 
a class of manifolds along which Q has this finite value. From (6.14), we see 
that for Q 4= 0, 

AQ + B = 0 (6.15) 

But as /3 approaches zero, Q also approaches zero. Again, we note /3 = 0, 
.d = 0 lead to two-dimensional manifolds. Similarly, from (6.15), we see 
that as A approaches zero, Q approaches infinity. 

APPENDIX 

By comparing the relations for the limiting speeds (4.12c), (4.13), (4.14) 
of the nonmagnetic case with the corresponding limiting speeds of the magne- 
tic case [see (5.6) with M = O, Lz/~ ) ~ c ~, (5.18), (5.22)], we see that if the 
nonmagnetic limiting speed is determined by 

c a = E  2 (1) 

then the corresponding magnetic limiting speeds are the solutions of the 
biquadratic 

ca _ + (x )2 = 0, (2) 
\ ] p 

where H is the magnitude of the magnetic field [see (2.23)] and /{7 is the 
component of the magnetic field which lies along the normal to the character- 
istic wave [see (5.19)]. Further, we note that the same relation for k = LQ, 
where k is constant along a characteristic wave and Q is determined :by (3.8) 
or (3.9), occurs in the corresponding nonmagnetic and magnetic cases. Thus, 
case 1 (equilibrium hydrodynamics) is characterized by k = 0 and 
Bk + TC = 0 [see (4.12a), (4.12b) for ql = 0 and case 1 of Section V]. 
Similarly, we see that cases 2 and 3 are characterized by the conditions that ~7a 
vanishes and k approaches infinity and zero, respectively. 

Now, we shall extend the above results for limiting speeds to the case of 
any permissible speed in the two ranges which are bounded by the limiting 
speeds for which k approaches zero or infinity. We shall show: if k, T, G, F 
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[see (2.7), (2.14), (2.15)] have the same nonzero and finite values in the non- 
magnetic and magnetic cases and ql vanishes in both cases then corresponding to 
every nonmagnetic speed E, there exists two magnetic speeds, the solutions of 
(2) when H, I72 are specified. Assuming F, G, k do not vanish and dividing 
(4.7) by p2FGQq), we obtain by using (3.11b), (4.8), (4.13), (4.14) when ~ 
vanishes 

k T 2 ,,,c 2) -d (c~ - ''c~) + T (c - = 0 (3) 

Similarly, if we factor L out of the first term of the left hand side of (5.9) 
then divide this relation by p2FGQ~2, we obtain by use of (3.11b), (4.8), 
(5.6)-(5.8), (4.13), (4.14) when 4~ vanishes 

k ~ ~ (,,c/~)~ I d Ic' - c~ ("c~ + - - m )  + 
o 

T l c i  c2( '''c2 ~ ) ~ I +-~ - -  4---p H a -bp("'cK) 2 = 0  (4) 

By our assumption, the values of k, T, F, G in (3) and (4) are identical. I f  
we eliminate k/G in (4) by use of (3), with c of (3) replaced by E, we obtain (2) 
after a direct but  lengthy algebraic calculation. 
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