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INTRODUCTION 

An extensive literature has evolved since 1951 dealing with various aspects 
of the nonlinear oscillations of a cold plasma. Much of this literature is 
repititious and shows a lack of awareness of previous work by other authors. 
It is often also sprinkled with errors which make it difficult for the novice 
to develop a consistent picture of the state of the theory. By far the largest 
effort has been devoted to the special cases where only one independent 
spatial variable exists. As pointed out by Jackson [l] this results in a separa- 
tion of space and time which forces the resulting oscillation to be localized 
in space and, as such, most of the theory cannot be thought of as applying 
to the real physical problem. 

Even so a wide variety of methods have been used and though at first 
glance they appear unrelated, they all succeed via the introduction of Lagran- 
gian coordinates. Some authors start with Newton’s law of motion, others 
with theEulerian equation of motion and introduce a pseudo-stream function, 
while still others employ the Lagrangian form of the equation of motion and 
Poisson’s equation. 

In this paper an attempt at a unified theory will be made by use o{ the 
existing theory of systems of first order partial differential equations with 
equal principal parts. Such systems are known to be completely equivalent 
to systems of ordinary differential equations (cf. [2]) and the large body of 
existing knowledge for systems of ordinary differential equations can be 
applied to the various problems. Apart from the advantages in unification 
achieved by casting these problems in this form, the method does permit 
some generalization to arbitrary orthogonal coordinate systems and suggests 
a natural perturbation approach to the general problem involving three 
independent spatial coordinates. 

* The work reported in this paper was partially sponsored by the Advanced Research 
Project Agency under ARPA order No. 20-60 and the U.S. Army Signal Research 
and Development Laboratory under Contract DA 36-039 SC-75041. 

94 



NONLINEAR OSCILLATIONS OF A COLD PLASMA 95 

Considerations of space do not permit the extension of the various spectral 
analyses carried out by various authors to the slightly more general situations 
considered here, but such extensions are clearly possibly once the reduction 
to systems of ordinary differential equations has been achieved. 

Briefly the plan of the paper is as follows: Section I contains a short 
historical survey of the class of problems under discussion and while it 
is unquestionably incomplete, it is hoped that its inclusion will be useful 
for orientation; Section II is a discussion of the simplest nonstationary case 
involving no external magnetic field and heavy ions. The inconsistent results 
obtained by different authors are commented upon and corrected; Section III 
is concerned with a discussion of the more general case in rectangular 
coordinates when a dc magnetic field is allowed and the ions have finite mass. 
While three velocity components are allowed the restriction to one inde- 
pendent spatial variable is retained. In particular, the recent formula given 
by Wilhelmson [3] for the shift in the plasma frequency is shown to be an 
approximation to a closed expression; Section IV specializes the discussion 
of Section III to the so-called traveling wave case. In particular it contains 
a closed form expression corresponding to the one first given without proof 
by Vedenov [4] which is shown to be in error; Section V consists of a discus- 
sion of the method for general orthogonal coordinate systems subject to the 
restriction to one independent spatial coordinate. For simplicity this is 
carried out for the infinite ion case only. In particular the resulting equations 
are used to rederive the anharmonic oscillations found by Dawson [5] in the 
cylindrical and spherical geometries; Section VI considers the possibility of 
basing a perturbation procedure for the case of three independent spatial 
variables on the approach given here. In particular the general first order 
approximation is discussed in the presence of an external magnetic field 
and then the Cesari-Hale-Gambill [6] method is applied to the two-dimen- 
sional example treated by Dawson [S] in order to obtain a third order per- 
turbation free from secular terms and to derive a formula for the shift in 
plasma frequency for this case. In common with Dawson’s result, the first 
shift in the frequency of oscillation is of the order (1/wJ2 where wO is the 
plasma frequency. 

Thoroughout the discussion it will be assumed that only single streaming 
occurs SO that all quantities will be single valued functions of Lagrangian 
coordinates. 

I. HISTORICAL SURVEY 

Apparently the first widely recognized result of the nonlinear theory is due 
to Akhiezer and Lubarskii [7] in 1951 (henceforth referred to as A-L). 
They treated a one-dimensional model and found an exact nonlinear traveling 
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wave solution in which all quantities were dependent upon the single com- 
bination X - Vat, where I’, was a constant streaming velocity. Their work 
was subsequently critized by Smerd [8] in 1955 and by Dawson [5] in 1959. 
Smerd pointed out that the A-L solution failed to satisfy Poisson’s equation 
and then indicated a modification without proof that did. Dawson’s criticism 
is as follows: 

“Non-linear travelling waves in a cold plasma have been found by Akhiezer 
and Lubarskii. Their solutions are special solutions to the non-linear equa- 
tions. Actually any solution to the non-linear equations can be built up from 
their solutions although they did not recognize this due to the complex 
nature of their method. They also apparently did not realize the amplitude 
limitation which exists for their solutions.” 

The amplitude limitation referred to above occurs at the breakdown of 
single streaming when the electrons overtake each other. (For some indication 
as to what happens without this restriction, cf. Dawson [9] who calculated 
the effects numerically.) 

Dawson then proceeded to discuss the A-L model and several generaliza- 
tions of it by use of Newton’s law and Gauss’ theorem. In contrast, A-L 
and Smerd had employed the Eulerian equations. 

Independently of this, Sen [lo] in 1955 treated the A-L model by a 
different procedure in that while A-L eliminated the potential of the static 
electric field and the density in order to obtain an integrable velocity equa- 
tion, Sen eliminated the density and velocity and obtained a nonlinear 
dispersion relation from Poisson’s equation. While he integrated this only 
once, he was nevertheless able to discuss the resulting fluctuation of the elec- 
tric field graphically and showed that a nonlinear jump phenomenon occurred, 
as in relaxation oscillations. (The dispersion relation was subsequently 
integrated once more by Gold [ll] and Kalman [12].) In addition Sen 
obtained the same nonlinear dispersion relation from the traveling wave 
solutions to the collisionless Vlaslov equations for an initial distribution 
of the form of a delta function, the usual cold plasma definition. 

In 1957 Vedenov [4] exhibited without proof a traveling wave solution 
for a slightly more general situation in which two velocity components were 
allowed in a rectangular frame of reference as well as a dc magnetic field 
normal to this plane. The restriction to the combination of the traveling 
wave x’ = x - vat where V, is a streaming velocity was assumed by him 
in common with A-L and his solution reduced to theirs when the magnetic 
field and extra velocity component were set equal to zero. This same year 
Sturrock [13] examined the nonsteady behavior of the A-L model by Fourier 
methods in a manner reminscient of the usual treatment of isotropic tur- 
bulence. 

In 1958 the time dependent case was treated for the first time by Gold [14] 
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who subsequently took into effect a dc magnetic field and collisions in the 
first approximation [15]. His results appear to be in error as a result of 
the way in which he determined the time derivative of the internal electric 
field. They are easily correctable, however, as will be seen in Section II. This 
same year Amer [16] gave a discussion of the nonlinear equation for the density 
fluctuations. This appears to be in error as a result of incorrect use of the 
total derivative (cf. the discussion of Section II). 

In 1959, as mentioned earlier, Dawson [5] also treated the time varying 
case for rectangular, cylindrical and spherical geometries. In addition he 
developed a perturbation procedure for the general nonstationary three 
independent variables case and applied it to a two-dimensional situation 
(cf. the discussion of Section VI). This same year Konyukov [17] derived 
what we believe to be the correct equations for the density fluctuations, and 
once again redid the simplest time dependent problem. 

In 1960 Kalman [12] criticized Sturrock’s treatment in the wave-number 
domain and in those two papers he made an extensive study of the one- 
dimensional nonsteady case by introducing Lagrangian coordinates via a 
pseudo stream function. In particular he discussed the chain of special 
circumstances necessary for the excitation of a traveling wave and concluded 
that the solutions found by so many of the authors listed above were not 
physically traveling waves in that at no time did other than the initially 
disturbed particles become involved in the oscillation. He also discussed the 
formation of the shock which develops when overtaking occurs. 

Subsequently, Jackson [l] re-examined Sturrock’s treatment and clarified 
it by the use of Lagrange’s implicit function theorem and the method of 
removing secular terms due to Krylov and Bogolyubov. He was thus able 
to show that no frequency shift occurred and by so correcting this error 
of Sturrock, he was able to invalidate the criticism made by Kalman. 

Very recently Wilhelmson [3] extended the approach of Sen to the case 
of finite mass ions and deduced a change in the plasma frequency due to the 
finite mass. 

Finally for the sake of completeness, attention should be called to the 
papers by Bernstein et al. [18], Nekrasov [19], Akhiezer and Polovin [20], 
and Wyld [21]. All of these except Wyld’s are concerned with the traveling 
wave solution. In the first the collisionless Vlaslov’s equation is used and 
trapping is allowed. The results are interesting in that the delta function 
singularities of the linearized theory are related to the nonlinear results. 
The paper by Akhiezer and Polovin uses the Eulerian representation in the 
presence of all of Maxwell’s equations but in view of the above noted criti- 
cism of Kalman for the one-dimensional case, it is difficult to assess the 
physical significance of the results they obtain. Wyld is interested in the 
nearly cold plasma and computes first order effects. 
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II. NONSTEADY OSCILLATIONS FOR HEAW IONS 

AND ZERO MAGNETIC FIELD 

As mentioned in the introduction this problem for the cold plasma has 
been the most widely discussed situation. We will discuss it here once again 
both for motivation for the sequel and in order to compare the various ap- 
proaches employed as well as correct some mistakes that have occurred in the 
literature. Since most authors start with the Eulerian equations in the hydro- 
dynamic approximation we note that these are: 

(2-l) 

N, + (NU), = 0 

E, = 4ne(N, - N) 

curl H = 0 

Et + he(N,U, - NU) = 0. 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

In these equations, - e, m, U, N, E, N,, and U, are respectively the electron 
charge, mass, x-component of the hydrodynamic velocity, electron density, 
self-consistent longitudinal electric field, positive ion density, and the com- 
mon ion drift velocity (which may be zero). The plasma is assumed, as usual, 
to be neutral when in an equilibrium state. The equations are, respectively, 
the equation of motion, continuity, Poisson’s equation and the last two repre- 
sent the decomposition of one of Maxwell’s equation, since the total current 
is given by 

] = he(N,,U,-, - NU), I+ = ~eNdJo, ]- = &eNU. (2.6) 

If Eq. (2.3) is multiplied by U and added to (2.5), one obtains 

E, + UE, = 4?reN,,(U - U,) = 4reN,U - J+. (2.7) 

Now Eq. (2.7) is consistent with Eq. (2.3) under these circumstances for, 
by the use of (2.3), Eq. (2.7) can be written as 

(E, + UE, - 4rreN,-,U), = 0. (2.8) 

Equations (2.1) and (2.7) constitute a system of first order partial differen- 
tial equation with equal principal parts so that they are completely equivalent 
to the integration of an ordinary system of differential equations when the 
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characteristics are introduced (cf. [2]). H ere it is sufficient to introduce the 
single characteristic dX/dt = U and we then obtain the system 

dE 
- = heN,U - J+. dt 

This system immediately implies that 

(2.11) 

and this is the second of Konyukov’s equations [17], if ~a = J+ = 0. 
Equation (2.11) can be integrated at once to give 

E = 4neN,,(X - X0) - J+t +F”(t) (2.13) 

where the arbitrary function F”(t) must correspond to an externallly applied 
electric field as noted by both Kalman [12] and Wyld [21] since Poisson’s 
equation does not determine the dc component of the electric field and, as the 
alternate method of derivation of Section III will show, (2.13) can be deduced 
directly from Poisson’s equation without use of the intermediate steps used 
here. One finds then successively in agreement with Kalman [12] that 

x = x0 + I sin wet + B(X,) cos wet + G(t) (2.14) 

U = wo[A(Xo) cos coot - B(X,) sin wet] + G’(t). (2.15) 

To determine an expression for the density fluctuation, it is simplest to 
use the equation of continuity in Lagrangian form; i.e. 

and thus one obtains, again in agreement with Kalman, that 

N = N,[l + A’(X,) sin wet + B’(X,) cos mot]-l. (2.17) 

At this point several remarks are in order. Gold in [14] and [15] obtained, 
instead of (2.11), the relation 

dE 
x=heN,U- J- J- = 4rreNU (2.18) 
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by using Poisson’s equation and setting 

arguing that “in general E = E(wt - kx), but for P waves K is either zero or 
imaginary. Piddington points out that this corresponds to the stationary 
Tonks-Langmuir oscillation. (cf. PIDDINGTON, J. H., Phil. Mug. 46, 1037, 
(1955).)” This it seems is inconsistent with the hydrodynamic approximation 
and explains the subsequent comments by Gold in [15] and [ll] where, 
because of the substitution of J- for J+ = constant, he finds it necessary to 
consider higher approximations where J- = j-(t). Apart from this, he 
employs Eq. (2.10) and ignores the continuity equation which would be 
correct if he had used (2.11). Dawson [5] does use the equivalent argument 
correctly, modifying it only in that he invokes Gauss’s law to determine 
the internal electric field and ignores any external electric field. 

For this problem, Kalman indirectly introduced Lagrangian coordinates 
by use of a pseudo steam function 

*s=-$7 *t=$f, *=-x0 

so that the equation of continuity (2.2) is satisfied automatically. Finally, 
while the above shows clearly that it is not necessary to deduce a separate 
equation for the density, we will give a detailed derivation of the equation 
obtained by Konyukov [17] in order to compare it with that deduced by 
Amer [16] which is believed to be in error. Konyukov’s equation can be 
derived as follows: Differentiating (2.1) and combining it with (2.3) one 
obtains 

U,, + VU,, + U: = $ (N - No). 
0 

With the use of (2.9) the continuity equation can be written as 

1 dN --= 
N dt 

Nt+ UN, _ u 
N = $2 

so that one has 

and 

u&pg ) = - [UU,,]. 
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Thus the total derivative is given by 

d dN 
- __ = - [U,, + UN,,]. 

( 1 dt dt/N 

Combining this with the expression given for U, and substituting into 
the first of the above equation one obtains the following equation of Konyu- 
kov: 

Ns-2(%)‘+; w” N2(N - No) = 0. 

The argument given by Amer in [16] is obscure so that we will quote it: 
“We consider an isotropic, indefinite plasma consisting of highly mobile 

electrons in a uniform background of fixed positive electric charge. The 
density of electrons is such that the plasma is, as a whole, neutral. If at any 
point there is an excess of deficiency of electrons p = N - No, where N 
is the actual and NO the mean electron density, then there will be an electro- 
static potential $ in the plans.” The motion of an eIectron, subject only to the 
Coulomb forces derived from 4, is given by 

m $ = e grad + (1) 

where V is the velocity of the electron. We can apply the principle of con- 
servation of electric charge to both sides of (1): in its spatial form (Poisson’s 
equation) to the right and in its temporal form (equation of continuity) to 
the left-hand side; then if we keep nonlinear terms, we obtain the exact 
equation 

I I  

P -&+o:P(l +$)=o 

where a dot denotes derivation with respect to time and OJ~ = 4rrp2No/m 
is the classical plasma frequency. If in (2) we neglect nonlinear terms we 
find the classical equation for plasma oscillations 

p” + w;p = 0. 

In order to derive Amer’s equation it appears necessary to assume that the 
total time derivative d/dt and the divergence operator commute but this is 
of course fa1se.l A spurious derivation would be as follows: 

i It has recently come to the author’s attention that a similar conclusion was reached 
by H. Derfler in lrThe frequency of non-linear plasma oscillations,” Tech. Rept. 
No. 104-7, Stanford Electronics Lab. (May 10, 1961), Air Force Contract AF 19(604)- 
5480 (May 10, 1961). This report also contains a new derivation of the frequency 
shift for cold spherical and cylindrical plasmas first given by Dawson [S]. This report 
has recently been published in J. Electronics and Control 11, 3 (1961). 
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Write the equation of continuity as 

pt + v - VP = - (p + No) v * v 
from which it follows that 

1 dp- 0.v ~__ - 
p + No dt 

when one sets dxjdt = V. From the equation of motion 

and Poisson’s equation 

one then obtains 

dV 
e v+ -=- 

dt m 

V2+ = &rep 

so that if one falsely assumes that 

dV d 
v-dt=dt(v~v) 

we would have 

d 1 dp - ~- 
dt ( p + No dt ) 

d2p -- 
dt2 (p ; No) $ + w:P (’ + $-) = ’ 

in agreement with Amer. Introducing Amer’s notation in Konyukov’s 
equation, it can be written as 

d2p ---&--+~:P(l+$-) =o 
dt2 

so that the two differ only in a factor of two in the middle term and both 
yield the usual linear equation if the nonlinear terms are neglected. In the 
one-dimensional case Amer’s error appears to be in the neglect of the term Ut 
or possibly the confusion between the total and partial time derivative since 
the latter does commute with the divergence. It is also unfortunate in that 
without this error it does not appear easy to derive a three-dimensional 
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equivalent of the equation of Konyukov. The factor of two noted above 
completely changes the character of the solutions and those given by Amer 
which involve logarithmic terms appear to have no validity. 

III. OSCILLATIONS WITH DC MAGNETIC FIELD 

The analysis of the previous paragraph is readily extended to the situation 
where the ions are assumed of finite mass, three velocity components are 
allowed, and a constant external magnetic field is permitted, provided only 
that the restriction to one independent spatial variable is retained. Under 
these circumstances the previous discussion makes it clear that the usual 
equations 

dV* -=&;[E++H] 
dt (3.1) 

are being considered in the special cases where 

VI = u. (3.2) 

Now Eq. (3.1) is always correct and one can always make the transformation 
from Eulerian to Lagrangian coordinates via the characteristic equations 

but unless Poisson’s equation involves only one spatial coordinate the use 
of Lagrangian equations is not sufficient to permit an exact and complete 
solution of the problem as the discussion in Section VI will show. Since here 
the ions are assumed of finite mass, the previous technique needs some modi- 
fication in order to avoid ambiguities. Perhaps the simplest approach is that 
of Wyld [21] who noted that the Lagrangian form of the equation of con- 
tinuity 

implies that Poisson’s equation can be written as 

(3.5) 

so that if one sets X = X+ = X- in order to obtain the equilibrium position 
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of an electron and an ion which find themselves at the same point at the 
same time t, (3.5) can be integrated to yield: 

E = 47re&(X~ - X”) + F(t) (3.6) 

where F(t) is still arbitrary. If one now decomposes X according to 

x = x* = x,9: + Xi(t) + x:(x;, t) 

Eq. (3.6) can be written as 

(3.7) 

where 
E = 4reN,[XZ(X!, t) - X:(X!, t)] + a,,(t) (3.8) 

6?,(t) = F(t) + be No [XL(t) - X;(t)] (3.9) 

can only represent the contribution of an externally applied electric field. 
The decomposition (3.7) implies that 

v* = v:(t) + v:<xL t) (3.10) 

so that the equation (3.2) splits into the two systems: 

dV$ 
-=I;u$[X:--X!]i&&[V$xH] 

dt 

dV: - = 
dt i 5 [V: x H] f ; a,(t) 

(3.11) 

(3.12) 

While these equations can be discussed completely the algebra is tedious 
so that we will restrict attention in the rest of this paragraph to the special 
case where (H * i) = 0. With this assumption (3.11) with (3.8) leads to the 
coupled set 

(3.13) 

where as usual the plasma frequency is given by 

and the gyration frequency is given by 

i-2; = -$(~,a+H:)=--&l~ 
f f 

(3.14) 

(3.15) 
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The uncoupled six order equation is, with 

D2[D4 + (y; + yZ) D2 + (y$?/” - c&2)] xl = 0 (3.16) 

and this implies that the frequencies of oscillation h are given by 

and 
h = 0, 0, 

A = 5 ia,; 2a: = - (y; + yZ) f {(y: + y2)2 - 4(&Z - w; + w2f2 

Since the discriminate in this last equation can be written as 

(y”, + y”)” - 4(&2 - w”,w”) = (y”, - y”_)2 + 4w$J2 > 0 

and since 

it is clear that 

2 2 l/2 
I y: + r” I > I($ - r”)” + 4o+w-) 

so that the nonzero X are all purely imaginary, which justifies setting 

The general solution is therefore of the form 

X5 = A4 + B,t + CA cos a+t + D* sin or+t + E, sin cd + F+ cos ct. 

(3.17) 

(There are of course only six independent constants involved instead of the 
indicated twelve but since we will not be discussing any initial value problems 
explicitly we will not trouble to work out their relations.) 

A similar discussion for (3.12) leads to a solution of the form 

Xi = G* + H+ cos P&t + I* sin Q+t + P(t) (3.18) 

where P(t) represents a particular integral corresponding to the input 
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If the external magnetic field is set equal to zero, the dispersion relation 
for the system (3.11) reduces to 

h4[h2 $ (wt. + co”)] = 0 

so that the change in the plasma frequency caused by the finite mass of the 
ions is given by 

@.=w- 1+- 
i 

2 
w+ 

) 

Ii2 

co! , 
s W- [] + *$ - & (# + . ..I 

- 

This result agrees with that of Wilhelmson [3] to the second term but unlike 
his situation it is valid without the traveling wave hypothesis. Because of the 
nature of his approximations we have not been able to compare the higher 
terms but the above simple derivation indicates the correct closed form for 
the plasma frequency shift. 

IV. THE TRAVELING WAVE SOLUTION 

If one now restricts attention to the situation in which all independent 
variables occur only in the combination x’ = X - I’,,t where V,, represents a 
constant streaming velocity, the Galilean invariant equations of continuity 

(4.1) 

can be integrated at once to yield 

Ni = NW! - VCWL - Vol. (4.2) 

Moreover, although the last term in (3.1) is not Galilean invariant it is 
known that the equation (3.1) is Galilean invariant to order V&, where c 
is the velocity of light. Thus, if the solution found in Section III is written 
in the form 

X = Xii + WL) cos [LY+~ + (b(X:)] + L(X!) cos [a-t + 4(X$)] + Q(t) 
(4.3) 

an alternate expression for the density is correctly given by 

Ns = No !j$ = rax;x,, I = N,,{l + K’(X!p) cos (a+t + 4) 
f 

+ L’(P+) cos (a-t + 3)) - K+’ sin (oI+~ + 4) - L+’ sin (a-t + $)I-‘. 
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In order for a traveling wave to exist, it is necessary that these two expres- 
sions for the densities should agree. As first deduced by Kalman [12] in his 
simpler case this requires that 

Q’ = U:; Q = U:t 

K’ =O; K = const. 

L’ =o; L = const. 

If one now sets 

k* = -x0 
v, - u, ’ To = $0 = 0 

the general solution (4.5) takes the form 

X; = Xi + U:t + K cos (a+t - K+X,) + L cos (a-t - k-X,) 

= Xi + lJ:t + K cos k+[ Vat - X0 - Uot] + L cos km( Vat - X0 - Uot). 

This clearly is of the form 

and thus suitable for the application of Lagrange’s theorem [22] if one sets 

X$=X*-vat and v: = - vat + x; + u$. 

From this it follows that 

Y$ = x* - vat - 2 kg g1 {j[(X* - v”t)]}” 
1 * 

so that a traveling wave does exist under these circumstances, with a density 
variation given by 

N* = No [$ $$ & [J(X* - Vat)]“. 
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While we have not been able to obtain a nonparametric representation 
for the traveling wave solution for the finite ion case, the above argument 
implies that if the mass of the ions is assumed infinite, then the general 
solution will be of the form 

x = x0 I uot $- A cos (y-t - k,X, $- Co); x0 
ko = To - LTo 

where the still unknown constants can be evaluated for a given situation by 
use of appropriate conditions. (Cf. [17] and [12].) This implies that 

so that 

U - U. = - Ay- sin (y-t - K,X, + +o) 

or that 

(X - x0 - Uot) + (U - Uo12 = 1 
A2 A2rZ 

X-X-x,t-+‘Z/A+(U-U0)2 
Y- 

(4.5) 

y-t - KoXo + +. = arc sin UO. U- Ay_ 

Elimination of X0 from (4.5) and (4.6) yields the nonparametric expression 
for the traveling wave 

X-v,t=+A+(U-Uo,)z+$-$ arc sin w (4.7) 
0 0 

so that the only effect of the magnetic field is to replace the plasma frequency 
w by (w2 + Q2)lj2. The expression (4.7) does not agree with that found by 
Vedenov [4] for any choice of the constants (A) and (+o) nor is it directly 
obtainable by substituting X’ = X - vat into the Eulerian form of the 
force equation (3.1) if the magnetic field is assumed nonzero. We therefore 
conclude that the extra phase factor contained in the solution of Vedenov 
is in error and due to incorrect treatment of the Galilean transformation 
involved in the standing wave solution. The physical significance of the 
traveling wave solution has already been amply discussed by Kalman [12] 
and as his discussion shows the failure of this type of disturbance to involve 
other than the initially disturbed particles makes it of doubtful use for 
most prob1ems.l 

1 When the ions are assumed fixed and the magnetic field assumed zero, E. A. 
Jackson has established the stability of the nonlinear traveling wave for spatially 
bounded perturbations. Cf. “Stability of non-linear traveling waves in a cold plasma,” 
Matt-53, Project Matterhorn, Princeton Univ., Oct. 1960. 
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V. NONLINEAR UNSTEADY OSCILLATIONS IN ORTHOGONAL COORDINATES 

Provided that the restriction of one independent spatial variable is retained, 
most of the discussion of Section III can be extended to the case of a general 
orthogonal coordinate system. In particular for this situation one obtains a 
system of ordinary differential equations which is completely equivalent to 
the original problem although in general it is not integrable in closed form. 

Any of the methods so far discussed can be used here and in particular 
the method of Section III will generalize for both finite and infinite ion masses 
provided only that one uses the correct generalization of the equation of 
continuity in Lagrangian form. While we will not explicitly carry out this 
procedure, since, for simplicity, we will assume the ions to be of infinite 
mass and use our first method, we note that the correct form can be found in 
Truesdell [23] ; namely, if the coordinate system has an arclength given by 

dS2 = hi dX”dX”; di = &h, 

and the Lagrangian coordinates have as their metric 

the equations of continuity are the following: 

Instead we shall use the equation of continuity for the electrons in contra- 
variant form 

&, (@N)+$=O -- 

and the equation of Poisson in contravariant form: 

$ -& (El G) = - he(N - No). 

Solving this for No, inserting into (5.1), and integrating, one finds, as in 
Section I, that 

(G El) - 4neNo G V1) = F’(t) (5.3) 

where F’(t) is arbitrary. 
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The contravariant form of the equations of motion are in general 

+ pkva; __ - e Ei + Eiik @+k 

m  !  OQ I 
- (5.4) 

For a constant magnetic field and independent variables X1 and t, these reduce 
to the following: 

= 2 [e”2+$7aH,] (5.6) 

! 

= -$ [,“ssh~VaH,]. (5.7) 

Now the equations (5.3), (5.5), (5.6), and (5.7) constitute a system of first 

order partial differential equations with equal principal parts involving 
the single characteristic 

dxl ‘vl - = 
dt (5.8) 
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since the first two terms of them are of the form: 

w 

The resulting system cannot be integrated in closed form in general even 
in Lagrangian coordinates. In order to show that this formulation includes 
the special cases treated by Dawson [5], we specialize first to cylindrical 
coordinates with H,, = H, = H, V3 = 0 and 

h, = 1, h, = r, h, = 1, X’ = r, x2 = 8, x3=z 

thereby obtaining 

d2r 
dt2 

2 (y2 - 4, d0 He 
ar -rzmc 

since Poisson’s equation yields 

E’ = 4rreN,, (r2 - 4) . 2r 

For spherical coordinates with the same assumption on H and 

h, = 1, h, = r, h, = I sin 0, x’ = P, x2 = 8, x3 = c$. 

the above reduces to 

since Poisson’s equation yields 

El = &eN,, 
(r” - ri) 3r2 

For simplicity we have taken the external electric field to be zero through- 
out. If one now sets the magnetic field to zero, assumes only one velocity 
component, and sets I = Y,, + R, the above sets reduce to the equations 
for an anharmonic oscillator discussed by Dawson [5j for the cylindrical 
and spherical cases respectively. 
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VI. THE THREE-DIMENSIONAL COLD PLASMA 

Dawson [5] proposed an iteration method for investigating the behavior 
of cold plasma in three-dimensional space and applied it to calculate second 
and third order effects for a simple case. His method led to the appearance 
of secular terms in the third approximation which he correctly said could be 
interpreted as changes in the frequency, amplitude, and phase of the oscilla- 
tion but he made no attempt to derive such changes explicitly. 

The method to be developed here is not only much easier to derive in view 
of our previous discussion but it results in equations suitable for treatment 
by the now highly developed method of Cesari et al. [6]. The convergence 
of this method, unlike the method of Krylov and Bogolyubov [6] used by 
Jackson [I] to show that no frequency shift occurred in the one-dimensional 
case, can be rigorously established in many cases, and in addition it was 
specifically designed to apply to systems of higher order than the second 
where the Krylov and Bogolyubov method does not permit enough degrees of 
freedom. 

After the discussion of the zero-order system with a constant external 
magnetic field, the Cesari, Hale, and Gambill method will be applied to the 
same situation treated by Dawson in order to obtain an expression for the 
frequency shift in the third approximation. 

The basic equation may be written as follows: (Note that the effect to 
first order of collisional damping could be included as in Gold [15] by 
adding a term v V to (6.1) w h ere v is the collision frequency.) 

dV -= --e E+;xH] 
dt m [ (6-l) 

Iv,+v-[NV] =o 

VxH=O 

VxE=O 

V*E = 4re(N, -N) 

(64 

(6.3) 

(6.4) 

(6.5) 

E, + 4rre(NsV, - NV) = 0. (6.6) 

As is well known (cf. the discussion of Section II), the equation of con- 
tinuity can be derived from Maxwell’s equation so that it will not be used 
explicitly in the sequel nor will (6.4) since it merely implies that the total 
electric field is governed by Poisson’s equation. As in Section II, multiply 
(6.5) by V and add to (6.6) in order to obtain 

Et + V(V * E) = 47reN,,(V - V,). (6.7) 
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This may be written as 

dE 
-=E,+(V*V)E=(V*V)E-V(V*E)+&eN,,(V-VO) 
dt (6.8) 

where we have introduced the characteristics 

dx v dt= * (6.9) 

In the first order approximation, the system (6.1) and (6.8) is linear 
and is given by: 

dV, -e -=- 
dt m [Et, + 2 x H] (6.10) 

d& - = 4PeN,V,. 
dt 

(6.11) 

This system is readily solved and after some tedious algebra it leads to the 
following vector differential equations (D = d/dt): 

(0’ + wi) [D4 + (2~; + @) D2 + 0141 V, = 0 

(6.12) 

This implies that the possible frequencies of oscillation are f w0 and f h* 
where 

2hi = (2wi + ,nz) & .\/4+22 + f-2. (6.13) 

The general solution for the displacement is of the form 

X = Xo + 4X,,) cm b,t + 4(X,)1 

+ B(G) ~0s P+t + $(xo>l + C&J ~0s P-t + YWJI (6.14) 

where, it must be remembered there are only six independent functions in 
the set A(&), 4(X,) etc. 

While the Cesari-Hale-Gambill method could be applied to the case of an 
external magnetic field, we will for simplicity limit considerations to the 
case where H = 0. When this is true, E is readily eliminated from (6.1) and 
(6.8) and V satisfies the following equation in which B = w,t and E = l/w,: 

g+ v =c[(V.V)&qV.~)]. (6.15) 

8 
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In this equation the terms involving the operator “c7” must be viewed as 
computed with respect to the Eulerian variables and then expressed in 
terms of the Lagrangian variables. That is, any perturbation process will 
introduce a new metric at each successive stage via an arc length 

in terms of which the necessary tensor quantities can be expressed by the 
usual formulas for general coordinate systems. Since at the nth stage the 
vector X will in principle be found in the form X = f(X,, t, C) the above 
transition between Eulerian and Lagrangian coordinates will involve terms 
in E in the denominator of the terms involving the operator “P.” When 
expansion techniques are employed they result in terms of higher order than 
the approximation in which they appear and must therefore be ignored. This 
point will be illustrated specifically for the example treated by Dawson. 

In order to explain the Cesari-Hale-Gambill method briefly, let the com- 
ponents of V be deonted by V,, k = 1,2,3 and set 

2iVi = Y2j-1 + J3j j= 1,2,3 (6.16) 

2 dVj 
- = YZj-1 - Y23 de 

fj=fj[ap,y+ )... ]+.qp!xv.q~ 

With these substitution, (6.15) takes the form 

dyw-1 
de = iY2j-1 + cfj 

dym 
- = - iyzj - cfj de j = 1,2, 3. 

(6.19) 

(6.20) 

The zeroth order approximation is assumed to be 

X0,2j-l = ajf?‘@ 

XO,2j = - f,,,j-, = - a5e 
- -iqe 

(6.23) 

(6.24) 

where the bar denote complex conjugation and each a5 is a nonzero complex 
constant, which at this point may also be thought of as undetermined. 
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To obtain the higher order terms, one sets, 

Yzs-1 = xo.zi-1(t) + %,2~-1(~) + E2X2,2i-lW + *** 

Y2i = x0,2&) + EXl.24) + l 2X2.2iw + **- (6.25) 

and lets smj denote the coefficient of em--l in the expansion of fp The mean 
values are next introduced by the definition 

1 
s 

2n 

ajSmj = - 
23.r 0 

s, jd9 (6.26) 

and the successive approximation defined by 

x03-~ = aje 
iTjO 

dxl2j-1 . 
A = zTjXl,2j-l + Slj - SljXOj2j-1 d6 

dx2 23-l * 
L = 2Tix2,2j-l + Cs2j - s2jx0,2i-l) - slixl.2j-l de 

(6.27) 

and 

X k.2j = - xk.25-ls (6.28) 

If one performs the obvious operations on (6.27), for example, one obtains: 

$ Lx0,2j-1 + 2Y1.2j-1 + “‘1 = iTj[x0,2j-1 + cx1,2j-l + “‘] 

+ dS1j + zs2j + E2S3j +"']-E[SljX0,2j-l + E(S2jX0,2j-1 + S~&,2j-l) +'**I +'*'e 

(6.29) 
or 

dY2i-1 

where 

- = iTjy2j-1 - l [SljXO2j-1 + “‘] + l fj de 
= i~jy2j-1 - eFjij_, + cfj (6.30) 

Fj = Slj + ES,, + •“S~* + ***. 

Now the (auxiliary) system (6.30) will clearly reduce to (6.19) if and only if 
the (determining) equations 

irj - cFj = i 

have a solution. Equation (6.20) is treated in a similar fashion. 

(6.31) 
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Specializing to j = 1, 2 and writing Dawson’s initial linearized solutions as 

X = X0 + EA sin KrX, sin (wat + a) (6.32) 

Y = Y, + EB sin K,Ys sin (wat + a). (6.33) 

The corresponding initial values of the velocity components are 

Uf = EAw,, sin KiX, cos 31 (6.34) 

V,” = EBw,, sin K,Y, cos p. (6.35) 

It is a simple matter to verify that the following choices are consistent with 
these, Eq. (6.16), (6.17) and (6.23), (6.24), 

1 c=- 
WO 

a, = A sin KIXoei(a++) 

a2 = B sin KzYoei@+@). (6.36) 

Next note that, for example, 

a a ax, -$=--a,-= Wax0 a4axo aa, -= 
ax ax, ax ax/ax, 1 + E(aG/axo) g ax,' etc* 

since at any stage the solution for x, y will be of the form: 

X = Xo + l G(Xo, Yo, t, 4 
y = yo + qxo, yo, 4 4 

Since the nonlinear behavior of the above system will be close to that of 
the linear approximation, T 1 = 7s = T is the only rational choice for the 
auxilary system (6.30). One now finds that the first order means Srl, S,, 
are zero so that there is no shift in the plasma frequency to the order E 
and that there are no amplitude restrictions to this order of approximation. 
After a straightforward but tedious computation, one finds that the determin- 
ing equations (cf. Eq. (6.31)) take the form 

2 
T = 1 + 127 K;B2cos (2 K2Yo) 

2 
= 1 + 127 K;A2 cos (2 K2Xo). 

In reality these expressions are the imaginary parts of the determining 
equations and the situation here is special in that the determining equations 
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are purely imaginary instead of complex. Thus, instead of having four 
equations which must be compatible for a periodic solution to exist for 
certain specific amplitudes (cf. the equation of Van der Pol), a family of 
periodic solutions is possible provided only that the amplitudes satisfy 
the relation 

K;BB2 cos (2 K,Y,) = K,2A2 cos (2 KIX,,) 

in this approximation. It should be noted that this result is independent of 
the initial phase angles o[, 8. The shift in the plasma frequency to this order 
is then given by 

T = 1 + iz K;A2 cos (2 KIXo). 

This is similar to the result found by Sturrock [ 131 who showed by another 
means that steady free oscillations at the plasma frequency will not persist 
for a cold plasma if it is multidimensional. This of course implies that the 
electron velocity will eventually become multivalued. 

The second order terms in the velocity components in this approximation 
take the relatively simple form 

U, = - ABK, sin (KrX,,) cos (Kay,) {i cos [2wot + 01 + p + O(e2)] 

+ *sin [a - /3 + O(E”)]}. 

V2 = - ABK, cos (I&X,) sin (Kay,) {& cos [2w,,t + 01 + ,8 + O(E~)] 

+ Q sin (a - p + O(G)]}. 

The corresponding third order terms are quite involved and will not be 
given explicitly. 

A similar analysis applied to the three dimensional situation (6.15) would 
also show that the plasma frequency is inherently stable to order c2 = I/W:. 

The stability of the family of periodic solutions determined above has 
not been established and much theoretical work still remains to be done 
before the Ceasari method used here can be mathematically justified. It is 
a convergent and rigorous process for ordinary differential systems under 
many conditions but the corresponding theory for partial differential equations 
is still in a primitive state. 
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