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The theory of the vibration-rotation lines of the first overtones of the infra- 
red active fundamentals of tetrahedral molecules has been re-examined. Theory 
predicts an overtone spectrum consisting of five P, Q, and R branches of roughly 
comparable intensities provided that the vibrational angular momentum 
quantum number e is approximately a good quantum number for the complete 
vibration-rotation Hamiltonian. In this case the separation of the E and P? 
vibrational suhstates of the G = 2 vibrational state must he small compared with 
the splittings which arise from the BBc(P.1) t,erm. The band 2va of CHa is shown 
to be consistent with this approximation. If however the separation between 
the E and Fz vibrational substates is very large theory predicts an overtone 
spectrum consisting of single strong P, Q, and R branches with P and R branch 
spacings of approximately 2R(l + 0. Th ese P, Q, and R lines are associated 

with the Fz vibrational suhstate, and have relative intensities much larger 
than the lines of the E vibrational substate. The hands 2~;~ of both CHa and CD4 
are shown to be accounted for by this limit. 

The detailed calculations exploit the spherical tensor formalism. In the first 
case a conventional angular momentum coupled representation, an extension 
of Hecht’s work on the fundament’al Ye , is used in the calculations. In the 
second case a new representation is introduced which formally has many of 
the mathematical properties of the conventional representation for an ! = 1 
vihrational state. 

The tetrahedral splittings in the vibration-rotation levels of 2v,< of CD, are 
appreciable, and are accounted for very well by the following constants which 
give the splittings throughout the spectrum: Dt = 1.1 X 1O-6 cm-i, F1‘ = 

-1.4 X 10m4 cm-l, ysl = ,J l’(Z,, + Z,,) = 1.16 X 10m2 cm-‘. The following linear 
combinations of effective rotational constants are obtained from the spectrum: 
From the P and R branches, B + Bo + 2(B{,) = 6.00 f 0.02 cm-i, B - Bo = 
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-0.050 f: 0.004 cm-‘. From the Q branch, B - Bo = -0.062 f 0.002 cm-l. In 
2~~ of CH, the tetrahedral splittings are quite small, making a quantitative 
fit more difficult. However, the best fit is obtained with Dt = 4.5 X 1OP cn-I, 
P,, = -1.25 X 10-d CIK~, and 73f = -5.0 X 1OP cm-l. Also, from t,he P and N 
branches, B + B. + Z(R(a) = 10.76 Ifi: 0.02 cm-‘, B - Bo = -0.063 f 0.004 cn-I; 
from the Q branch, U - Ho = -0.058 f 0.002 cm+. The spectrum of 2~4 of 
CH, is extremely complex as a result of the tet,rahedral splittings and the 
overlapping of the five P, Q, and R branches. It is not possible to make definite 
assignments for the observed lines at this time. 

I. ISTRODCCTION AKD SUMMARY 

A re-examination of t’he t’heory of spherical top molecules in recent years has 
led to a thorough understanding of the tetrahedral fine structure of the vibration- 
rotation lines for the infrared active fundamentals of the methane molecule (1,Z). 

The explanation of the first overtones of the infrared active fundamentals, how- 
ever, has presented considerable difficulty. These have recently been studied 
experimentally in methane with very high resolution (S-5). The bands of interest 

are identified as 2~~ of CHI (at about 6000 cm-‘), 2~4 of CH, (at about 2600 
cm-‘), and 2v3 of CD, (at, about GO0 cm-‘j. Each of these bands arises from the 
pure overtone of a triply degenerate normal vibration of the molecule. Therefore 

we would expect the spect’ra to appear qualitatively similar. However, they are 
markedly different. The band 2v3 of CH, (4) consists of single P, Q, and R 
branches, t,he structure we would expect to find in a fundamental. Similarly, 

2v3 of CD4 (5) consists of single P, Q, and R branches; however the tet,rahedral 
fine struct,ure splittings are observed to be large in contrast to t,he exbremely small 
splittings in the analogous band of CH, . On the other hand, 2vq of CH, ( 3) con- 

t’ains over 400 lines in a 200-cm-’ region with no apparent regular pattern; the 
number of lines in 2~4 camlot be accounted for by t#he number of fine st,ructure 
romponent,s for a single P-, Q-, R-band structure. 

The paradoxical differences in the appearance of these spectra should be empha- 
sized. In the quantum mechanical Hamiltonian every t’erm which contributes to 
the energy of 2v3 has a counterpart which contributes to the energy of 2~~ . The 
molecular parameters which enter as coefficients of these terms are different. 

However, this should produce only quantitative differences in the spectra of 
2~3 and 2~4 . Thus, if 2~:~ consists of a single P, Q, and R branch only, so should 
2~4 . The splitting of each P-, Q-, and R-branch line into fine structure compo- 
nents may be too small to be observed in one case, while it may be very large and 
easily observed in the other. However, one would still not expect t,he marked 
qualitat,ive difference in the appearance of the spectra of 2v4 and 2~:~ which is 
act’ually observed in CH4 . 

Despite the apparent, paradox it has been possible to explain these spectra. 
It is the purpose of this article to give a full theoretical account of the overtone 
spectra. 

The most detailed theoret’ical treatment of XY, molecules of t,et.rahedral 
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symmetry has been given by Shaffer et al. (6). They calculated the matrix ele- 
ments of the full vibration-rotation Hamiltonian to second order of approxima- 
tion in perturbation theory without, however, applying their results to the ex- 
perimental spectra of methane. They also calculated the relative intensities for 
the infrared active transitions. Their formulas for the relative intensities of the 
first overtones of the triply degenerate fundamentals have been revised by Lou& 
(7). The energy and intensity calculations lead to a very complicated theoretical 
overtone spectrum consisting of five different P, Q, and R branches of different 
spacings but of roughly comparable intensity. Such complexity would be needed 
to account for the observed spectrum of 2vq of CH, . On the other hand, we note 
that Johnston and Dennison (8) in their treatment of symmetrical molecules 
predicted a simple P, Q, R structure for the overtones 2v3 and 2v4 of tetrahedral 
X Yd molecules. 

Jahn was the first to make full use of the symmetry and group properties in a 
theoretical attack on the vibration-rotation terms in CH, (9). In recent papers 
Hecht has exploited the spherical tensor formalism to greatly simplify the calcu- 
lations and give a thorough theoretical account of the fundamental v3 of CH, . 
The present work is partly an extension of this work to the first overtones of the 
infrared active fundamentals. However, it involves also modifications which can 
account for the seemingly paradoxical nature of the experimentally observed 
overtone spectra. 

In Section II is described the basic formalism and notation used. In Section III 
the energy levels and the relative intensities for the first overtones of the infrared 
active fundamentals are computed in a way which is a natural extension of the 
techniques employed in Ref. 1 for the fundmentals. The representation which is 
used, denoted as the conventional representation (Rl) , serves as a good approxi- 
mation if the vibrational angular momentum quantum number P is approxi- 
mately a good quantum number for the complete vibration-rotation Hamiltonian. 
In this case the theory predicts five distinct P, Q, and R branches of roughly 
comparable intensity. It is shown that this theory can account for 2~ of CH, 
but definitely not for 2~3 of either CHq or CD4 . 

The conventional representation (Rl) leads to a good first approximation only 
provided the separation of the E and Fz vibrational components of the & = 2 
vibrational state is small compared with the splittings which arise from the 
2B,ri(P.li) term; i = 3 or 4 for 2~3 or 2~4 , respectively. In Section IV we show 
that 2v3 of both CH, and CD, can be accounted for if we assume that the sepa- 
ration of the E and Fz vibrational components is very large. In that case we 
introduce a new representation (R2) which serves as a good first approximation 
in this limit and facilitates the calculations. The (R2) representation formally 
has many of the mathematical properties of the (Rl) representation for an 
ti = 1 vibrational state. The theory predicts an overtone spectrum which ac- 
counts very well for the observed spectra of 2~3 . 



A detailed quantitative fit of (RZ) to 213 of CD, is very successful. In this 
overtone spectrum the tetrahedral splittings are large, so that effects in higher 
orders t,han those considered are negligible. The fit to 2~ of CH, is not as success- 
ful in accounting fully for the observed fine structure. The tetrahedral splittings 
in this spectrum are accidentally very small so that contributions from higher 
t’han third-order perturbations seemingly account for a considerable fract,ion of 
t’he total splitting. 

II. FORMALISM 

The quantum mechanical Hamiltonian for a rotating-vibrating tetrahedral 
XY4 molecule has been written by Hecht to third order in perturbation theory 
( 1) . We follow his notation. The dimensionless variables of the Hamiltonian are 
t,he molecule-fixed components (P, , P, , P-) of the total angular momentum P; 
the normal coordinates q1 , (e, f), (x3 , ~3 , za), (x.4 , ~4, z4) appropriate t’o the 
t,etrahedral symmetry; and their canonically conjugate momenta. The normal 
coordinates correspond t,o t,he normal frequencies w1 , wg , w3 , w4 , respectively. 
Associated with the triply degenerate vibrational modes are the internal vibra- 
tional angular momenta 1, and 14 . 

The zeroth order Hamiltonian is 

+ $+d4(p42 + r42) + &P2, 
where B, and the wi are in units of cm-‘. The usual contact transformation (10 ) 
was made t,o remove from the first-order Hamiltonian all terms except those 
having matrix elements diagonal in t’he total vibrat’ional quantum numbers 
2’1 ) u2 , vLl , v4 To third order of approximation, only quantities which are diagonal 
in these quantum numbers can contribute to the energy. Relevant. terms of the 
Hamiltonian will be writ’ten in detail later on as t#hey are required. 

A great simplification was made by Herht’, by considering the terms in the 
Hamilt’onian to be built up from spherical tensors. To third order in the trans- 
formed Hamiltonian, the only linear combinations of tensor operators which can 
cont#ribute t)o the energies of 2~3 or 2~4 are the scalar operators T(O0) and a 
specific linear combination of fourth rank tensor operators (70)?(-I-O) + 
.5[2’(4 - 4) + T(44)]. In the conventional representation (Rl) scalar operators 
contribute only to the effect,ive B-, (B<)-, and D-values, while the fourth rank 
t,ensor operators split the levels into their tetrahedral fine structure componentSs. 

Matrix elements of spherical tensor operators between eigenstates charact’er- 
ized by angular momentum quantum numbers are readily evaluat,ed by applica- 
t,ion of the Wigner-Eckart theorem. All vibration-rotation t.erms in the Hamilt,on- 
ian relevant to t)he energies of 2~s or 2~4 are built up from t’he separate vibrat#ion 
and rotat,ion tensors by the coupling technique 
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If the vibration-rotation wave functions are also built up by angular momentum 
coupling, the Wigner-Eckart theorm greatly reduces the work of calculating 
many matrix elements to calculating a single “reduced” matrix element and many 
vector coupling coefficients which usually are tabulated. (The vector coupling 
coefficient in Eq. (I) is related to the Wigner 3-j symbol, extensive numerical 
tables of which have recently been published (ll).) Also, when the vibration- 
rotation wave functions are classified according to their symmetry under Td , 
the tensor operators of type A, can connect only states A1 to states Al , AZ to Ax , 
E to E, F, to F, , and Fz to Fz . Thus the energy matrix is always factored in 
this way. 

We further note that when the electric dipole moment operator is written as a 
spherical tensor operator, the relative intensities may be calculated in this 
formalism. 

III. THE CONVENTIONAL PRESENTATION (Rl) 

A. GENERAL REMARKS 

In the conventional representation (Rl ) we consider P, which gives the magni- 
tude of the total vibrational angular momentum 1 = 1, + 14, to be approxi- 
mately a good quantum number for the complete vibration-rotation Hamilton- 
ian. This is a good approximation if the tetrahedral splittings, including those 
which arise from the pure vibrational Hamiltonian, are small compared to the 

separations due to 

H1’ = --2B,[t~(P.b) + rO’.14)1. 

The rotation-vibration wave functions for any state may be formed from linear 
combinations of products of rotational with vibrational functions: 

Here fiJK is an eigenfunction of P2 and P, , 4 [,,, is an eigenfunction of l2 and 6 ; 
and R = P - 1. 

Matrix elements of the operators T(kq) between states &Kg take the following 
form after successive applications of the Wigner-Eckart theorem: 

(u’C’J’R’K~ 1 T&q) j vWRKR) = (RkK,q / RkR’K,‘)[(2k + 1)(2R + 1)11’2 

. ( _ 1 )h+C+i’ (~‘8’ jj Tvib(JC1) )I ~8) (J’ II 7’,0t(M II J). 
(3) 

This last equation is subject to the condition that 

T,ib(lClq,)* = (-l)*‘Tvib(h - 91). 

The factor ( - l)k’+L+C ’ in (3) is not usually present (id), and arises because of 
the complex conjugate signs in (1) and (2). (These complex conjugates arise 
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essentially because we wish to use the usual angular momentum addition co- 
efficients in a scheme which involves subtraction of angular momenta: R = P - 1; 
compare Refs. 1 and IS.) 

We now specialize to the case of the first overtone 2~4 . [2v4 of CH, seems to be 
the only one of the bands of interest which is consistent with (RI) .] Then & = 0, 
while & may take the values 0 and 2. As basis functions for the irreducible repre- 
sentat,ions of Td , the % = 0 vibrational function belongs to Al while the % = 2 
vibrational functions belong to E and FZ . 

We may write the vibrational wave functions as products of one-dimensional 
harmonic oscillator functions depending on .r4 , y4 , and 24 with quantum numbers 

2’4.z , u4y , and 214, , respectively. The functions are of the form 4(~4~24,2)~~) = 

&1’4&qu4y)+(2142); 214 = v41 + v4y + 04, . In terms of these suitably normalized 
functions, the vibrational angular momentum eigenfunctions are 

400 = (3)-%(200) + +(020) + 4(002)1; 

&a = (2)-l”{ +5(llOj + (2)-“2[#4200) - f#l(O20)]), 

421 = (2)-““[il#J(oll) - $(lOl)], 
(4) 

420 = (6)-1’2[4(200) + 44020) - 2+(002)1, 

and $V--m. = ( -l)“&% . 

In (2) and (3) the quant,um numbers (Pm) become (&m4).The linear com- 
binations of *EKE which transform as basis functions for the irreducible repre- 
sentations of Td follow from the symmetry properties under the full rotation. 
inversion group and its subgroup Td . These linear combinations were first, 
worked out by Jahn (9) for R 5 10, and ext’ended by Hecht (1) to R 5 13. The 
classification of wave functions according to their tetrahedral symmetry results 
in the maximum factorization of the energy eigenvalue determinant, since the 
Hamiltonian cannot connect states tiRKR of different symmetry. 

In t’he next section we calculat’e the energies of -3~4 to third order using (RI j. 
For fixed J, the eigenvalue of HO is 6(2J + 1 )-fold degenerate (excluding the 
degeneracy from the space-fixed Z-component of total angular momentum in the 
absence of external fields). This degeneracy is partly removed by HI’. The eigen- 
value corresponding to the 4’4 = 0 vibrational state is ( 3J + 1)-fold degenerate, 
while the eigenvalues for the P4 = 2 states are (2J + 5)-, (2J + 3)-, (2J + l)-, 
(2.~ - l)-, and (3J - 3)-fold degenerate for R = J + 2, J + 1, J, J - I, and 
J - 2, respectively. The energy levels determined by (‘Ho + HI’) are perturbed 
by t’he operators of (Hz’ + Hi). Operators of rank 0, i.e., scalars, contribute 
terms to the energy which are independent of K, and K,‘. Thus, for fixed P4 , 
J, and R, all states regardless of their t’etrahedral symmetry have their energy 
shifted by the same amount. The contributions of the scalar operators can be 
included with the contributions from B,P2, -2L3,[4(P.14), and -D,P4 by de- 
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FIG. 1. Splittings of the energy levels of 2z~(& = 2) due to successive perturbation 
terms in the Hamiltonian; (RI). 

fining effective rotational constants. On the other hand, operators of rank 4 
contribute terms to the energy which depend on KR and K,‘. Therefore, for 
fixed b , J, and R, states of different tetrahedral symmetry will have their 
energy shifted by different amounts. However, the center of gravity of a given 
level will not be affected by the fourth rank operators. The effects of successive 
perturbations described above are summarized schematically in Fig. 1, where we 
have taken % = 2. The relative intensity formulas for this case are derived in 
Section C. In the last section, the theoretical predictions are compared with the 
experimentally observed overtone spectra. 

B. ENERGIES 

1. Scalar Perturbations and the Effective Rotational Constants 
The effective rotational constants for 2~4 arise from the terms (I) 

H’ (scalar, JQ) = Ho - 2B,{4(P.14) - D,P4 + &,0pp44(scalar) 

+ F4,P2(P.14) + MY&12 + 912) + Y&22 + r22) + Y3(p32 + r32) 

+ Y4(p42 + r42)]P2 + [M411(p,2 + 412) + M422(p22 + r22) + M43dp32 + r32) 

+ M444(p42 + r42)1P.14), 

where 0pp44(scalar) = $5[(P.r4)* + (P.p4)’ - %P”(p4” + rb’)]. If we compare 
0pp44(sca1ar) with Eq. (1) we see that this scalar operator (k = p = 0) is the 
contraction of a vibrational tensor operator of rank 2(k1 = 2) with a rotational 
tensor operator of rank 2(k2 = 2). The required matrix elements diagonal in 
l4 are given in Table I. The only difficult matrix element is that of Opp44(sca1ar) : 

44’ 84 2 
(v411JRKR jOppu(scalar) 1214 -84 JRK,) = [5(2R + 1)11” J J 2 

r 1 RR0 (5) 

. (_lp+l4 (~4 -e4’ /I Tvib(2) 11 ~4 &)(J 1) Trot(z) II J>* 
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The 9-j symbol reduces to a 6-j symbol (IS) ; the reduced matrix elements are 
given in (1). For & = _e4’(u4 = 2), Eq. (5) gives 

-7{3[J(J + 1) - R(R + 1) + 4(4 + 111 

.[J(J + 1) - WR + 1) + P.44 + 1) - 11 (6) 

-4J(J + l)&(& + 1))/12(2& - 1)(28~ + 3). 

Note that (6) vanishes for L = 0. 
We also note that 0PP44(scalar) has nonzero matrix elements for 8~’ = 0 and 

% = 2(u4 = 2). In this case Eq. (5) gives 

-%[(2J - 1)(2J)(2J + 3)(J + l>lS,, , 

where 8JR is a Kronecker delta. This term will appear as an off-diagonal element 
in the energy matrices for 2~4 . It does not contribute to the effective rotational 
constants. 

The eigenvalues of the scalar operators are written in Table I in a form which 
shows their contribution to the effective rotational constants. We denote a 
vibration-rotation level of 2~4 by JR . Transitions to such a level from the ground- 
state rotational levels of total angular momentum given by J + 1, J, and J - 1 
give rise to the P, Q, and R branches, respectively. The matrix elements of 
OppJr(scalar) contribute only to the effective B- and (B{q)-values. The matrix 
elements of P’(P.14) contribute, in addition, to the effective D-values. The con- 
tribution of - D,P4 to the energy difference between the upper and ground states 
is 4D,( J + 1)3, 0, and -4D,J3 for the P, Q, and R branches, respectively. The 
matrix elements of P2(P.14) are factored in two ways in Table I from which the 
contributions to the effective D-, B-, and ( B14)-values can be seen for the P- and 
R-branch lines, respectively. The “left-over” constants of Table I can be in- 
cluded in the pure vibrational energy. 

The effective rotational constants are given in Table II for the P branch. 
The Q- and R-branch values are related to these in a simple way. For the R 
branch, the Beff and Deff are the same as those for the P branch except that the 

TABLE II 

EFFECTIVE ROTATIONAL CONSTANTS FOR 2vl(& = 2); (Rl). P-BRANCH VALUES 

R B eff (Bldeff Deff 



order of the R-values is reversed. The (B{4)eff are common to all branches. For 
convenience, we arbitrarily take Beff for the Q branch to be the same as for the 
R branch, and add the appropriate J3-dependent term to the energy of the state 
involved. 

In comparing these resuhs with the observed spectrum 2~4 of CH, , we find 
t,hat it is not possible to distinguish among these effective rotational constants, 
so that t,he ambiguity in the Q-branch constants causes no difficulty. To get an 
idea of the differences between effective rotational constants we estimate Z,, 
and FJs from their explicit theoretical expressions (1) and from theoretical 
estimates of cubic potential constants (14). We find ZdS E -0.03 =t 0.05 cm-’ 
and Fq, E 0.003 f 0.003 cm-‘. The uncertainties arise from the ambig&y in 
sign of certain molecular parameters, and are not statistical errors. 

2. Tensor Perturbations and the Tetrahedral Splittings 
The tetrahedral splittings of the energy levels determined by (Ho + H,‘) are 

given by matrix elements of tensor operators of the form 

(70)“‘T(40) + 5[T(4 - 4) + T(i$)]. (7) 

For states in which only vibrational quanta of va are excited, the split.ting pat,terns 
are determined by 

H’(4, vq) = -D 0 t pppp(t’ensor) + F4tOPPPdtensor) + &OPP44(tensor) 
(8) 

+ NM~OPM( tensor) + Td40h4( tensor j. 
Each of these tensor operators is of the form (7)) and is built up from a vibra- 
tional tensor of rank k, and a rotational tensor of rank k2 . In the order in which 
they appear in (8), the tensors have (k,, X-2) equal to (0, 4), (1, 3), (2, 2), 
(3, 1)) and (4, 0). These operators are given explicitly in Ref. 1. 

Between states with vibrational angular momentum Pq’ and P4 , mat,rix ele- 
ments of these operators are zero unless %‘, t4 , and kl satisfy the triangle in- 
equality of quantum vector addition. Thus in the ground state, with P4’ = !d = 0, 
t)he tensor splittings are determined by OPPPP only. In the fundamental v4 with 

Ia’ = L = 1, kl may be 0, 1, or 2. For t’he overtone 2vq , there are three possi- 
bilities : 

( 1) !4’ = % = 2, all five operators give nonzero matrix elements; 
(2) 1)4’ = P4 = 0, only OPPPP gives nonzero matrix elements; 
(3) C’ = 0 and 44 = 2, onIy 0PP44 gives nonzero matrix elements. 

According to (3), H’(4, ~4) can connect only states &,& and J/RKR for which 
K,’ - K, = 0, ~4 and for which R’, R, and 3 satisfy the triangle inequality 
of quantum vector addition. Also H’(4, vk) can connect only states of the same 
tetrahedral symmetry. Any matrix element will consist of a linear combination 
of vector coupling coefficients, which contain the entire KE’ and K, dependence, 
multiplied by a function of J, R’, and R (and of &’ and t4 , implicitly). The 
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notation scheme for these matrix elements follows Ref. 1. The nonzero matrix 
elements may be written as follows: 

(2~4, L’ = 2; JR’KR’ j H’(4, IQ) j 2~4, 84 = 2; JRK,) = fm(R’, R)x, 

where 

x = (R4KR0 1 R4R’K,) for KR’ = K, , 

x = (xb)*“(R4KE(f4) [ R4R’(K, f 4)) for K,’ = KR A 4. 

Table III. f2J(R’jR)=P2J(R’,R) { Ctij4fiJk( J,R’,R)) 

R’ R - - f2J(R’,R) 

Jf2 J+2 
25+6)(25+7)(25+8)(25+9) ’ 

J+l) (2Jf2) (2J+3) j2J+4r] ( 
$2J)(2J-1)(2J-2)(2J-3)t044 

-(2J) (2J-1) (2J-2)t134 -(2J) (2J-1)t224+2(2J) t314+2t404 1 

J+l J+2 5(2J+5)(2J+6)(2J+7)(2J+8) ’ {(2J-1)(2J-2)(2J-3)tOQ4 
J+l) (2J+2) f2J+3) (2J+4)] 

+3(~J-1)(2J-2)tl34+(2J-1)(J-2)t22~-(3J-2)t3l~-2t~O~~ 

J J+2 
15(2J+5)(25+6)(26+7) 

J+lJ(2J+2)(ZJ+j)] 
’ {3( 25-2) (2J-3) t044+ & 25-2) 

(2J-5)t13b-;(2J2-13J+12)t22~+(2J-3)t314+2t404J-3)t31~+=& 

J- 1 J+2 [w]’ ( 6(2J-3)$+,++3(3J-5)t,34-2(J-2)t224 

-(J-3)t31q%+,,4j 

J-2 J+2 [ ,w] ’ i 6t044+6t134-2t224-2t314+2ti+04~ 

J+l J+l 
25+5)(2J+6)(25+7)(25-1) 

J)(2J+1)(2J+2)(2J+4) 1 8 
{( J2+2J-20) (25-3) 

. (2J-2)t044-2(J+12)(J-2)(2J-2)t134+2(J2-l2J+12)t22L) 

- ‘+( J-2) t314-8t404] 

J J+l 

J -1 J+ 1 

30(25+5)(25+6)(2J-2)_ 
J) (25+1)(25+2) ] ’ i (2J-5)(J+4)(2J-3)t,/+/+ 

+$(2J3-3J2-53J+84)t134+ $ (2J2+23J-54)t224 

+( J-5) t314+f2t40/+} 

[ (2 
10(25+3)(2J+5)(25-3) ’ 

J)(25+1)(2J+2) 1 ( 
6(3J2+3J-20)t044 

+3( 3J2+3J-28) t13&-( J2+J-18) t224+10’t314-4t40& ) 



Table III. (concluded) 

R’ 5 - f2J(R’,R) 

J-2 J+l [ -1 ’ {6( 2J+5) tO44+3( 3J+8) tl34-2( J+3) t224 

-( J+4)t314+2f404} 

J J 
(2J+4)(25+5)(25-3)(2J-2) ’ 

J) (2J+2) (2Jf3) (2J-1) ] c (4J4+8J3-l19J2-123J+630) to44 

2 
-12( 4J2+4J-33) t134+(4J +4J-75) t224- 36t314 +12t404 I 

J-l J 30(2J+4)(2J-4)t2J-3) ’ {(25+7)(25_3)(25+5)t 
J-l)(2J)(2J+2) 1 044 

+$(2J3+9J2-41J-132)t134- a2J-25)(J+3)t224 

+(5+6)t314-2t404) 

J-2 J [WI+ \3(2J+4)(2J+5)t044+ ;(2J+7)(2J+‘+)t13Q 

- ;( 2J2+17J+27) t224-(2J+5) t314+2t&04 ) 

L (2J+3)(2J-5)(2J-4)(2J-3) * 
J-l J-l J)(25+1)(25+2)(2J-2) 1 f (J2-21)(2J+4)(2J+5)to44 

+2(J-ll)(J+3)(2J+4)t134+2(J2+l4J+25)t224+8(J+3)t314-8t404} 

J-2 J-l 
5(2J-6)(2J-5)(2J-4) ’ 

J)(25+1)(2J-2) ] 1 (2J+3) (2J+4) (2J+5)t044 

+~(J+7)(2J+3)(2J+4jt~34-(J+3)(2J+3)t224-(3J+5)t3~4+2t4o4~ 

J-2 J-2 
L2 

(2J-7)(2J-6)(2J-5)(2J-4) 
J) (2J+l) (2J-1) (.2J-2) ] 

25+2)(25+3)(2J+4) . 

(2J+5)to44+(2J+2)(2J+3)(2J+4)t134-(2J+2)(2J+3)t224 

-2(2J+2)tq,4+2t404j 

For P4’ = 0, f4 = 2 and &’ = & = 0 appropriate quantities hsJ(R’, R) and 
b&R’, R j, respectively, are defined. These are t,he analogs of .fzJ( R’, R 1. 

It wiI1 be convenient to use the following notation: 

t&R’, R) = y.,,( R’, R){ c MijdJ, R’, RI\, 

&,h i = k, and j = ke ; and where, to Ohird order of approximation toti = --n, , 
t 134 = Fa , tm = Z4t , ta4 = N444t , f404 = TA4 . The jzJ(R’, R) are given in Table III. 

In the case of hsJ(R’, R), P4’ = 0 implies R’ = .J. The quantities hd J, R) 
are given in Table IV. 

The quantities k?,(R’, R) become tjhe single quantity k.sJ( J, J) because 
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Table IV. h2J( J,R) = j2J( J,R) { t224h224( Jj JjR)} 

FL hzJ(J,R) 

J+2 [2(25+5),‘(25+1) ] ’ (-(2J)(2J-l)t224} 

J+ 1 [2(2J+3)/(2J+l) ] ’ 1 (J+6) @J-lb,,4 } 

J (2)+ [(2J-3) (2J+5)t2,b) 

J-l [2(2J-l)k(2J+l)] + ( (J-5)(2J+3)t224j 

J-2 [2(2J-3)/(2J+l)] + { -(2J+2)(2J+3)tz243 

393 

&’ = & = 0 implies R’ = R = J. Since (v&J II!Z’vib(O)ll v&) = (244 + 1)“’ is in- 
dependent of v4, the splittings for this state are the same as those for the ground 
state, i.e., 

kz.r(J, J) = %[(2J - 3)(2J - 2)(2J - lj(2Jj 

. (2J + 2)(2J + 3)(2J + 4)(2J + 5j]“2t044. 

Tables III and IV and the above equation give the J dependence of all possible 
matrix elements. It remains to compute the specific linear combinations of 
vector coupling coefficients (R4KRq I R4R’K,‘) required by the tetrahedral 
symmetry for the possible A,, AB , E, FI , and FP substates of each level. Most of 
these are given in Table VIII of Ref. 1. (The quantities actually tabulated there 
are the appropriat,e linear combinations of vector coupling coefficients multiplied 
by the functions g&R’, Rj, rather than g&R’, R).) The only linear combina- 
tions of vector coupling coefficients determined by symmetry which, in effect, 
have not been previously calculated in Ref. 1 are those arising from matrix 
elements between states for which R - R’ = 3 or 4. In Table V are listed these 
quantities multiplied by the appropriate g&R’, R), through J = 6. 

As an example, the complete energy submatrix for the FZ states of J = 3 is 
given in Table VI. All relevant scalar and tensor contributions have been in- 
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TABLE V 
g, (R',J +Z)timesthelinear combination of vector coupling 

coefficients requiredby syinmetry; R' =J-1, J-2. 
> 

-Eyy 
35 E F1 E2 

(1) F2(2) 

32 -G/J21 2o/J21 

2c )2/b 
31 I 

46 *l *? IT Fl F2 
(1) F2C2) 

43 56/3fl4 -70/3f77 322/9&4 -70/3f70 

42 100/3~55 65/9/11 25/3& 

5, *I E F (1) 
1 F,(2) F (1) 

') F2(2) 
L * L 

54 6O/r'286 255/H/39 G/i33 10/U/26 210//6006 

s3 60/11/2 120/111/39 15/r/33 245O/llr'2730 50/7/1430 

% Al 
E(l) E(2) Fl(l) Fl(2) 

F2 
(1) 

F2 
(2) 

lo/d6 30//210 

65(l) -240/1342170 -660/1/26598 -330/13J154 0 15/13/3 -165//5005 

% 
(2) 440/13h10 --Llo/J2oo2 

& 4 60/13 9660/13Jj5805 30/'/403 105/13/35 15Nl3 15//22 105/1/2730 

Note: a/b/c means a/(bk). 

eluded. The terms proportional to Fas on the matrix diagonal arise only for the Q 
branch, as explained in Section III.B.l. The pure vibrational scalar contributions, 
except that from G4Jd2, are collected into a single term E. No distinction has been 
made between the various effective rotational constants. The tij4 have been ab- 
breviated to ti . It is clear that even for low J values, the energy matrices become 
too large to diagonalize except by means of a high-speed automatic digital com- 
puter. Before discussing the actual numerical calculations, we proceed to consider 
the relative intensities. 

C. RELATIVEINTENSITIESANDSELECTIONRULES 

The relative intensities in an infrared active band are proportional to the 
quantity 
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where (II, , IIr , IL) are t’he space-fixed components of the electric dipole mo- 
ment; [ f) and 1 i) are the final and initial states, respectively. The space-fixed 
components of the electric dipole moment are related to the molecule-fixed 
components (II, , I&, , II,) by 

IIa = LJI, + L,II, + XA,III, ; A = X, Y, or 2. 

Xa, (1,5) is the direction cosine, in terms of the Euler angles, between the space- 
fixed A-axis and the molecule-fixed u-axis. Expressed as a function of the normal 
coordinates, n, for example is given to second order by 

+ (&Q + &24)pl + (&X3 + &3X4)./“. 

The A; and Bi are constants. 
In order to calculate the relative intensities to second order of approximation, 

we use the electric dipole moment to second order (in the normal coordinates), 
and the initial and final state wave functions to first order (in the ordering 
scheme established for the vibration-rotation Hamiltonian). Note that the second 
order correction to t’he wave functions may be neglected because of the absence 
of a zeroth order term in the electric dipole moment. The first order wave func- 
tions of the untransformed Hamiltonian may be found from standard quantum 
mechanical perturbation theory, and then the required matrix elements found 
in a straightforward manner. The relative intensities have been calculated in this 
way in Appendix 7 of Ref. 13. Here we will obtain the relative intensities in a 
different way. This method gives some important insight into the symmetry 
selection rules. It also serves to check the results of the other method. 

The basis for this method is as follows (10) : In the integral (f 1 IIz / i), the 
wave functions are the eigenfunctions of (HO + 23,). The t,ransformed Hamil- 
tonian is obtained by application of the contact transformation T: 

T((H, + HI) - E]11, = T[(Ho + 22,) - E]T-lT# = [(H,, + H,‘) - El+’ = 0 

Kow we write 

CfIrLji) = /SI*rI& = / #f*T-lTnz T-lTJ/i = 
s 

&?I; a,bL’. 

We ensure the unitarity of T by writing T = exp(iXS) and taking S Hermitian. 
Here, X is a parameter of smallness. 

The +’ are correct to first order since they are the eignfunctions of (H,, + H,‘) . 
To second order 

n,’ = MI;’ + X2(rIP’ - i[rrY’, S]). 

Thus, II:” = II;‘, and IIF” = IIF’ - i[@, S]. 
Kext we calculate explicitly t,he matrix element of IIZ’ between the ground 
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state and the final state 2~4. Since IIF” is linear in the normal coordinates it 
cannot contribute to this matrix element. The portion of II?’ quadratic in the 
r4 normal coordinates is 

&(Y4Z4XZZ + z4x4Xzy + z4~4Xzs) = iB&fi[T(32) - T(3 - 2)], 

when written in terms of the tensor operator T (3q) defined by 

T(3q) = c (2laB I 213q)rz*,tls. (10) LI 

The second rank spherical tensor operators rz,, are built up from the spherical 
vector operators rlar by the vector coupling technique. The operators T,~ are 

n&l = T(2)-1'2(x4 f iy4), rlo = 24 ; the tl~ are tlkl = F(2)-““(A,, F z&,), 

40 = xzz . 
Therefore, 

(114' = 2,4,‘; J’R’K,’ [II?’ 1 v4 = l4 = 0; JRK,) 

= iB&fi[(R3K,2 1 R3R’K,‘) - (R3KR( -2) j RSR’K,‘)] 

/ 

84' -e4=0 2 

1 

(11) 
.[7(2R + 1)J”2 J’ J 1 (2141 = 2, e4' 11 r(2) 11 214 = -e4 = 0) 

(R’ R 3 

4J’ II t(l) II JL 

If d4’ = 0, the 9-j symbol vanishes. If 44’ = 2, (11) becomes 

iB3x(6)1’2( -1)=7(2R’ + 1)(2R + 1)]1’2(J1M0 1 JlJ’M’) 
{is i i’) 

*(-1) J’+J+lF(R’KR’, RK,), 

where 

F(R’KR’, RKR) = (R’RK,‘( -Ka)I R’R32) - (R’RKR’( -KR)J R’R3( -2)). 

The reduced matrix element (J’ 11 t( 1) I\ J) in (11) was evaluated by writing 
the wave functions j JKM) and the operators tlo in terms of the matrix elements 
of the finite rotations (as defined in Ref. 16) : 

\JKM) = (2J + l)“2(8n2)-“20~K, tlS = D;;. 

Next we calculate [II;‘, s]. We have IIg’ = (A& -/- L&C%) (2)-I’“( tl-1 - &I) 
+ (&/, + &/4)(-2)-1’2(t~-l + TV) + (A& + A224)hO. 

The only terms in S which produce from the commutator terms quadratic in 
the normal coordinates and canonically conjugate momenta of ~04 are S = A!% + 
Sz + A% , where 
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Xl = - (c444/3fio4) (2p4zp4JJ4, + y4z4p4z + xqz4p4y + .r4y4p4z), 

& = [c344/fiw3(4Ld42 - @.%“)I( -6J3w4[%(z4p41J + Y4P4r) + g3(x4p4z + X4P4i) 

+ xa(arP4, + y4P4,) 1 - 2d(P4zP4,P3, + P4zP3yP43 + P3zP4yP43) 

+ ( ws2 - 2wd2) (24y4P3z + .W4fhy + Y4z4P3z) 1, 
(12) 

S3 = /i[P4z(PuPz + Pz~‘u) + P~u(PJ’L + PzPz) + P~z(PzPY + PuPz)I; 

with k = ,!,~3-~~( fi/~aJ~~)“‘( - l/fiw4). 

The constank c444 and c344 are coefficients in the cubic anharmonic potential 
energy ( 1). The constant (24 is t’he usual coefficient of a Coriolis interaction 
t’erm in HI . 

Using [pi, qj] = -ifiS,j and 

[P Irn, h”] = (-l)“(2)“2(11(V + ?n)(-m)l lllv)tI,,+,) 

we find 

[nY’ , 8, + &] = [C44&4&04 - C344A&3* - 2~42)/~3(‘h42 - &~3~)] 

+&&[1’(32) - T(3 - 2)] + [3 ic444A2/304 + 2W42C344A/W3(4U42 - W3’)] 

.,&B[T’(32) - T’(3 - a)], 

where T(39) is defined by (lo), and T’(3q) is obtained from T(3q) when rzu 
is replaced by pz, . Thus, except for constant coefficients, the matrix elements of 

DE S’, + &s,l will be the same as those of ng’. Note that transitions to the 
i;’ = 0 vibrational state of 2~4 are not allowed so far. 

The calculation of [II;‘, S,] which gives the contributions of the vibration- 
rotation interactions is complicated by the presence in S3 of terms quadrat,ic in 
the molecule-fixed components of P. After some computation we find 

Dz (l), Sa] = S$A,k[2d:T( 5% - 5y2) 

+(c,)““(T:: - T;?,) + (6)1’2(T;; - T;?,)], 
(13) 

where 

and 

Vhor = c (llac I 11XLY)bP1e , 

We see that in (13) all the tensor combinations are ( T32 - T3-2), even though 
they are not the same tensors as defined in (10). Since every term in (13) con- 
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tains a vibrational tensor of rank 1 or 2, it is clear that transitions from the 
& = 0 ground state to the 8: = 0 vibrational state of 2~4 are not allowed. There- 
fore, these transitions are strictly forbidden even if the effects of vibration- 
rotation interactions are taken into account through X3 . (The fact that the 
pure vibrational perturbations cannot give rise to such transitions can be seen 
from symmetry alone. Both the initial and final state vibrational wave functions 
have A, symmetry. The symmetry of the vibrational parts of II?’ and 

WK S1 + S,] is Fz .) It is also clear that the tensor T” contributes nothing to 
the intensity since it contains a vibrational tensor of rank 1, and therefore cannot 
connect & = 0 with 84’ = 2. 

Finally, we get 

(04’ = 4: = 2; J’R’K,’ / n;’ - i[np’, X1 + Sz + S,] 1 214 = L = 0; JRK,) 

= ~.x(G)l’~( -l)“-““[(2R’ + 1)(2R + l)]““( -l)J’+J+’ 

.(JlMO 1 JlJ’M’)F(R’K,‘, RKR)[ 1, 

where 

+ kAg{4,5R(R + 1)(2R + I),&{;, ;, 2R){; k ;,I (-l)J’+R+’ (14) 

+ tJ’(J’ + 1) - R(R + 1)] 

Equation (14) involves 6-j symbols, defined for example in Ref. IW. 
The matrix element of IIX or IIY differs from that of IIz only through M-de- 

pendent vector coupling coefficients. Summing over the ground-state M-values, 
we obtain 

where 

&A I (f I UA I i) / 2 = @F’(R’KR’, JW12, (15) 

8 = s(2J’ + 1)(2R’ + 1)(2R + l)[ I’, 

with [ ] given by (14). Note that @ depends only on the quantum numbers 
(J’, R’, J = R), while the entire (KR’, KR) dependence resides in 
F( R’KR’, RKR). 

The infrared selection rules are as follows: AJ = 0, & 1; AM = 0, 
fl; (R’, R, 3) must satisfy the triangle inequality; AK, = f2. Thus, there are 
five P, Q, and R branches. This is in contrast to the fundamental where AR = 
AKR = 0 implies a single P, Q, and R branch. In addition, it follows from the 
Pauli exclusion principle that the initial and final vibration-rotation wave func- 
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tions must have the same tetrahedral symmetry, up to a subscript “1” or “2” 
in A1 , As , F1 , FZ . We find for the P and R branches that t’he allowed vibration- 
rotation transitions are A41 + -4, , A2 + A2 , Ii’ -+ E’, F, --+ F, , and FZ + F2 ; 
while for the Q branches they are A, t) Al , B -+ E, and F, t--) F2 . 

The quantities CB are listed in Table VII. These expressions were first given by 
Hecht (7). However, explicit expressions for the parameters a and b were de- 
rived for t,he first time in Ref. 13. These are written at the end of Table VII. 
Also listed in this table are the approximate line spacings corresponding to each 
branch. 

TABLE VII 
a, a factor occurring in the relative intensity formulas 

for 2 v,(Z,=2); (Rl). 

P branches 

J+l + JJ+2 

Jfl --+ JJ+l 

J+l --f JJ 

J+l + JJ_l 

sJ+l + JJ_2 

Q branches 

J--+J J+2 

’ - JJ+l 

J + JJ 

J - JJ-l 

J - JJ_2 

2 
(5+3)(25+5)(25+7)[a+b(45+1)] 2 

Line spacing 

35( J+l) 2Be(1-2T4) 

j(J+3)(25+3)(25+5) [a+b(3J-l)] 2 
35( J+l) 2Be(l-T4) 

6(J+2)(2;;:;12J+5) [a+b(2J-2)] 2 
( 1) 2Be 

2(5+2)(2J-1)(2J+3) Ca+b(J-2)] 2 
7(. J+l) 2Be(l+q4) 

3(2J+3)(2J-3)(a-bj2/7 2Be ( 1+2 54 1 

(2J+1)(2J+5)(J+3)[a+b(2J-l)] 2 
7( J+l) 4Be 74 

2(2J-1)(25+1)(25+3)(25+5)[a+b(J-3)] 2 
35J( J+l) 2Ber 4 

9(J-l)(J+2)(2J+l)2(a-4b)2 
35J( J+l) 0 

2(2J-1)(25+1)(2J-3)(2J+3) [a-b(J+4)] 2 
35J( J+l) 2Beq4 

(J-2)(2J+1)(25-3) [a-b(2J+3)] 2 
75 4Be < L1 
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Table VII. (concluded) 

401 

R branches 

J-l --f JJ+2 

J-l --t J J+l 

J-l -_, JJ 

J-l ---f JJ_l 

J-l -+ JJ_2 

3(2J-1)(2J+5)(a-b)2/7 

2(J-1)(2J-1)(2J.t3) [a-b(J+3)1 2 75 

6( J-l) (2J-3) (2J-tl) [a-b(2J+4)7 2 
35J 

3(J-2)(2J-1)(2J-3) [a-b(3J+4)J 2 355 

(J-2) (2J-3) (25-5) [a-b(4J+3)1 2 355 

2Be ( 1+2 & ) 

2Be(1+T4) 

2Be 

2Be(1-?G4) 

2Be(l-2q4) 

? 

a=+(2) -’ [ B3+C444A2~3~4+C344Al~3/(~~~~)J , b=A2 524(Be/~4)2 

To find the relative intensities of single lines in a vibration-rotation band such 
as 2~ , we must multiply a3 by 

(1) the factor [F(R’&‘, RK,)12 as determined by the appropriate linear com- 
binations of final and initial states of tetrahedral symmetry; 

(2) the factor exp[-BB,R(R + 1)/M”] which is the Boltzmann factor giving 
the relative populations of the initial rotational states; 

(3) the factor g which arises from the statistical weight due to nuclear spin: 
For CH4, g = 5, 2, 3 for vibration-rotation states of symmetry A, or A2, E, F, 
or F2 , respectively. For CD,, g = 15, 12, 18 for the corresponding states. 

(It should be noted that the (B values are also useful for intensity calculations 
when the tetrahedral fine structure is not resolved. This comes about because 

C[F(R'K,', RK)J~ = 2, 
KR 

from the orthonormality of the vector coupling coefficients. However, simply 
summing over K, does not properly take into account the statistical weights 
due to nuclear spin. For the tetrahedral XY, molecule with the Y atoms having 
nuclear spin I, these weights are in the ratios ( I2 + I + 3)/1(1 + 1) :2 : 3 for 
A : E: F. The sum over K, effectively uses the ratios 1:2: 3, instead. Therefore, 
we add to this sum the quantity 3/1(1 + 1) times the value of [F( R'KR', RK,)12 
obtained for the A + A transitions involved in the unresolved line. Then this 



4x2 FOX 

corrected sum multiplied by the appropriate &S and Boltzmann factor gives the 
relative intensity required.) 

Given the theoretical energies and relative intensities, we wish t’o try to ac- 
count for the observed spectra. 

Il. COMPARISON OF (Rl) WITH EXPERIMENT 

1. 2~3 of CH, and CD, 
The observed infrared bands at 6000 cm-’ in CH, and at 4500 cm’ in CD4 

have been identified as the overtones 2~9 . Each appears to consist of a single 
P, &, and R branch, with extremely small tet’rahedral splittings in the case of 
CH, (/t ), and relatively large splittings in CD, (5). 

The theoretical prediction of five P, Q, and R branches cannot be reconciled 
with these observed spectra. For J 5 6 the predicted relative intensities for the 
five branches are all comparable. There are no specific values of the intensity 
factors a and b (Table VII) for which the intensities of four of the five branches 
become accidentally very small compared with the intensities of the fift’h. 

The possibility that all five branches coalesce into a single branch can be 
ruled out. This would require an effective r3 value of zero, and a superposition of 
the tetrahedral fine structure lines. But the effective c3 values for the funda- 
mentals are 0.05 and 0.16 for CH, and CD4 , respectively. The l3 for CD, , es- 
pecially, could not change enough from va t,o 3~ . 

2. 2~4 of CH, 
A difficulty in treating the energy levels accurately is that 2~ is in Coriolis 

resonance with (~2 + v4) at 2826 cm-‘. The Coriolis term can cause serious 
perturbations which are not fully included in our calculation even to third order 
in perturbation theory. However, we might expect our results to be sufficiently 
accurate to show that the t’heoretical treatment based on (RI) does account for 
the observed spectrum of 2~. 

The energy matrices for J 5 6 have been calculated and diagonalized. The 
best fit to 2~ of CH, is obtained with the following parameters (in the notation 
of Table VI): B = 5.15 cm’, D = lop4 cm-‘, (Bf) = 2.3 cm-‘, for all final 
state levels; E = 2600 cm-‘, G44 = 3 cm-*, l?as = 0; -Dt = -4.5 X 10P6 cm-‘, 
Fqt = 0.00075 cm-‘, Zqt = -0.015 cm-‘, N44ht = -0.075 cm?, TJ4 = 0.667 
cm-‘. The ground-state rotational constants used (1) were Bo = 5.24 cm-l, 
Do = lop4 cm-‘, -Dt = -4.5 X lop6 cm-‘. The relative intensities of t.he tetra- 
hedral fine structure lines were calculated with b assumed to be negligible. (We 
estimate b/a w j~lO_~.) These intensities were calculat’ed for all lines with 
J 5 5, except for a few particularly pertinent lines in J = 6. For 7 5 J 5 10, 
where our approximations become poorer, the energies were calculated in 
“dominant approximation,” i.e., neglecting mat’rix elements off-diagonal in R. 
The relative intensities of these lines were not calculat,ed. 
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Composite 

FIG. 2. Comparison of theory (Rl) with observed spectrum 2~4 of CHI . This is a portion 
of the spectrum in Ref. 9. I-Line position and relative intensity calculated according to 
methods of subsections B and C. T-Line position calculated as for I, but relative intensity 
not calculated. p-Line position calculated in “dominant approximation”, but intensity 
not calculated. 

In Fig. 2 is the comparison between the predicted and observed spectrum 

from 2473 cm-’ to 2513 cm-‘. (A similar comparison was made throughout 
2514 cm-’ to 2763 cm-l.) The fit is qualitatively good for the entire region cen- 
tered at 2600 cm-‘. We conclude that 2~4 does consist of the five P, Q, and R 
branches predicted by (Rl). However, the great number of lines and the com- 
plexity caused by the tetrahedral splittings prevents a positive identification of 
individual lines, and makes a more certain analysis impossible at this time. 



IV. THE NEW REPRESENTATIOX (RZ) 

A. GENERAL DISCUSSION 

I. The New Approximation 
The striking feature of 2~~ of CH, is its single P-, Q-, and R-branch structure, 

characteristic of the fundamental ya . The tetrahedral splitting appears to be very 
small. However, in the corresponding band of CD4 the tetrahedral splitting is 
appreciable. The resemblance between the appearance of 213 and the funda- 
mema IQ , with !s = 1 and Fz vibrational character, is a clue for the explana- 
tion of 2~ . 

The 4’s = 2 vibrational states of 2~3 are linear combinations of two vibrational 
substates of symmetry E and FZ , see (-1). The E vibrational substate can con- 
tribute to the intensities of 2~ only through the vibration-rotation interaction 
term 8, in ( 12). Since this contribution must be expected to be extremely small, 
the major contribution to the intensities of 2~3 arises through the Fz vibrational 
substate. If the tet,rahedral splittings are small compared with the separation of 
the five different states JR , (Fig. l), C and R are approximately good quantum 
numbers and (RI) serves as a good approximation for eigenfunctions of the 
full vibration-rotation Hamiltonian. In this case the wave functions of all five 
st,ates ,JR involve linear combinations of both the E and Fn vibrational wave 
functions of the -P3 = 2 vibrational state, so that all five states must be expecbted 
to give rise t’o infrared active lines of comparable intensity. 

In general, the vibration-rotation tensor perturbations give tetrahedral 
splitstings which are small compared to the energy differences between t,he five 
J, states. However, if a pure vibrational tensor gives a splitting of the E and F? 
vibrational substat,es which is large compared with the ~BJ~(P.I~) separations, 
f and K are no longer even approximately good quantuni numbers. Then t,he 
conventional representation ( Rl ) is no longer a good approximation. 

The pure vibrational pert’urbation t’erm TaaOBa( tensor), given explicitly in 
Ref. 1, can cause t,he splitting described. The resultant separation between the 
E and F, vibrational states is 20Ta3 . A very rough order of magnitude calcula- 
tion, using estimates (14) of the cubic and quartie potential constant.s, gives 
I’ I 33 z 9 rrn-‘. If !!‘,, is large, energy matrices for the E and Fs vibrational sub- 
states may be diagonalized separately to a good approximation. The largest 
off-diagonal elements will be contributed by -~BJ~(,P.~~). In CH, , the error 
in t.he calculat.ed energies due to neglecting this connect,ion between t,he E’ and 
F2 vibrational substates is about 0.25J2/20Ta3 (in cm-‘). For Taa = 10 cm-’ and 
J = 5, for example, this error is about 0.03 cm?. 

We now make the assumpbion that Ts3 is sufficiently large, so that, to a good 
approximation, we may calculate the energies for the Fz vibrational substate 
without, considering connections to the E vibrational substate. Under this as- 
sumption, we can no longer use the angular momentum coupling scheme of (Rl ) 
because we have isolated a port,ion of the Ps = 3 vibrat,ional state. The new wave 
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functions will be linear combinations of products of F2 vibrational eigenfunctions 
with rotational eigenfunctions J/.,= . 

The new representation (R2) is formulated as follows: The Hamiltonian 
through first order is now considered to be 

Ho + T,3033(tensor) - 2B,[3(P.13). 

Any function of the form #.&, where 4 = $(Oll) or $(lOl) or +(llO) in the 
notation of (4), is an eigenfunction of Ho + T33033( tensor) with eigenvalue 
&J(J -I- 1) + WI/~ + w2 + 7w3/2 + 3w4/2 - 8T,, . However, these functions 
are not eigenfunctions of (P-L). 

The correct representation is 

where 

41 = -_(2)-“2[~(011) + z$( lOl)], 40 = +(110), &.I = -+I*. (17) 

Comparing (16) with (2) we see that the vibrational functions are characterized 
in (R2) as if they belonged to a vibrational angular momentum of one unit 
instead of two. The (LK,) are labels analogous to (RK,). Note, however, that 
L # P - 13. 

The labels (LKL) give the symmetry properties of the rLLKL under the full 
rotation-inversion group. Suppose in (2) we use the Ft vibrational functions 
corresponding to & = 1: 

411 = -(a)-““[4(100) + i~(OlO)l, 410 = +(001), 4%1 = -44. (18) 

Then (2) becomes 

fi RRR = c (1 JmK I 1 JRKR)d&bJ~. (19) 
m 

Comparing the right hand sides of ( 19) and ( 16)) we see that only +lrn is replaced 

by 4%. But according to (18) and (17), & and & have the same symmetry. 
Therefore the labels (LK,) imply the same symmetry as do (RK,) . This “preser- 
vation” of symmetry will be very useful in factoring the energy matrices, and in 
formulating the symmetry selection rules. 

The matrix elements of (P-1,) are now 

(JL’K,’ 1 (P-13) 1 JLK,) = -+<[J(J + 1) + 2 - L(L + l)]S,<,S,,,,, . 

This is just the negative of the corresponding matrix element for the fundamental 
Ye . [This result is obvious if we note that operating on & with the spherical com- 
ponents of 13 gives && = 4 ( llpm ( 111 (m + p) )+m+p , dropping the func- 
tions of E type. This is just the negative of &,&m = - fi ( 1 lpm 1 111 (m + p) ) 
-4l(na+P) .I 
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E 

/I 

J&=2) ,I’ 
< 

\ JJ-I ,yA\,A2, 
\ 

\ --E,.... 
F2 <(_ JJ rm 

* _. _ JJ+I l = 

HO fT33 033(tensor) - 2Bec3(P.t3) + H$ +H> 

FIG. 3. Splittings of the energy levels of 2y3(Pd = 2) due to successive perturbation terms 
in t.he Hamiltonian; (R2). 

The energy levels determined by Ho + T33033(tensor) for the FZ vibrational 
substate have a 3(2J + 1) essential degeneracy. These energy levels are split 
by the (P.1,) term into three levels: one (2J + 3)-, one (2J + I)-, and one 
(2J - 1 )-fold degenerate level, according as L = J + 1, J, and J - 1, respec- 
tively. Further splittings of these levels into levels characterized by tetrahedral 
symmetry arise from the higher order terms in the Hamiltonian. The effects of 
successive perturbations are shown in Fig. 3, which is to be contrasted with 
Fig. 1. 

If we calculate the matrix elements of the electric dipole moment using (R2), 
we find the selection rules AL = AK, = 0. These are precisely the same as the 
selection rules for R and K, in the fundamental. They imply a single P, &, and R 
branch. To first order in the energy, the spacings in the P and R branches are 
2B,(l + 13). For 2~~ of CH, this becomes about 10.9 cm-‘. This agrees approxi- 
mately with the observed spacings for low J-values, but higher order terms will 
give appreciable contributions as J increases. The relative intensities and con- 
tributions to the energy from higher order terms in the Hamiltonian are calcu- 
lated in detail in Sections B and C below. 

2. Relation between (RI) and (R2) 
The energy matrices for (RI) take into account all terms in the Hamiltonian 

through third order. As we have seen in Section III, the term T33033(tensor) 
gives rise to matrix elements off-diagonal as well as diagonal in the rotational 
angular momentum quantum number R. If we take successively larger values of 
!f33 (compared with the differences between diagonal matrix elements) we ap- 
proach the approximation of (R2). Therefore, as T,, becomes sufficiently large, 
the energy levels Jg resulting from the diagonalization of the matrices of (Rl) 
should go over into the levels J, of (R2) for the Fz vibrational substate, plus the 
energy levels for the E vibrational substate. The levels for the E vibrational 
substate should become separated from those for the Fz vibrational substate by 
about 207133 . This numerical calculation was done for 2~ of CH, , for J 5 6 
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(19). The results of the calculation agree with the analytic predictions repre- 
sented in Fig. 3. 

The & = 2 eigenfunctions for (Rl) were formed according to (2) : 

ti R=R = c (2JmK I 2JRKd&dJK, 

with the I& defined in (4). The # LKL of (R2) are linear combinations of these 

ti RKR : 

J, LxL = -iG {[(lJl(K, - l)[ lJLK,)(2Jl(K, - l)] 2JRK,) 

-(lJ(-l)(& + l)] lJL&)(2J(-l)(K, + l)j ~JRKR)]‘~R,K~=RL 

+ (2)-“‘(1JO& 1 lJLK,)[(2J2K, 1 ~JRKR)#R.K~=K~+P 

- (2J( -2)KL 1 ~JRKR)J/R.K~=JQ-~]]. 

B. ENERGIES 

The terms in the Hamiltonian which can contribute to the energies of 2~3 to 
third order are (1) 

Ho + T33033(tensor) - 2B,{3(P.13) + 6331: + c X&(pi2 + ri”>$$(pj” + ri”) 

-I&P* + F3,P2(P.13) + C Y&S(pi2 + ri2)P2 + C Mdpi2 + ri? (P.15) 

+ .&Opp33(scalar) - ~~~~~~~ (tensor) + FztOPPP3( tensor) 

+ &Op~33( tensor) + N333&333( tensor). 

Since Opppp(tensor) is independent of vibrational coordinates, its matrix 
elements are the same as for v3 . Oppp3( tensor) depends on vibrational coordinates 
only through components of 13 . As a result, its matrix elements are the negatives 

of those for US . 
The operators 0ppz3 (scalar) and 0ppS3 (tensor) are built up from ~2~ and 

second-rank rotational tensors Pzm ; 0p333 is built up from TQ, , 4’lq , and PI, . For 
the vibrational wave functions of the fundamental we have r2&lm = 

- (5/3)1’2(211wn I 211(m f ~)h(~+~) . There is no such simple relation for 

rzp$hn * Therefore the matrix elements of the operators in question cannot be 
readily evaluated by application of the Wigner-Eckart theorem. But we can 
define an operator p2P : p2h2 = ~-2~2 , ~2~1 = -nfl , ~20 = r20 ; and then 

P2pdh = +(5/3)1’2(21pm I2II(m + P))&+, . 
Next we express 0ppX3 and 0pSS3 in terms of pzP instead of rzp . For the 0~~33 

operators we proceed as follows: The tensor T(kq) is defined by 

T(kq) = c ~;aP2@43 I=kq). 
lz 

If we also define 

&.33 (scalar) = ( 5)1’2T( 00)) 



and 

Qppaa (tensor) = (70)“2T(40) + 5[T(4 - 4) + T(444)], 

we find that 

and 

0ppZ3 (scalar) = I/$ppaa (tensor) - jJQPPBH (scalar), 

0 pp33 (tensor) = f@;l~~~a (tensor) + ( 24/5)GpS3 (scalar). 

The matrix elements of !G&~ (scalar) and c&~ (tensor) will be the negatives of 
the matrix elements for vx of Opp33 (scalar) and 0ppZ3 (tensor), respectively. 

Proceeding in a similar way for OPsas (tensor) we define 

T’(4p) = c vk P@(3W 1314p), 

and 

T’ ‘(00) = c VT, P,~(llf&? 1 1100) 
o( 

where 

VlkT = c P2&tl21UE ( 21W). 

If we also define 

and 

xPnsn (scalar) = 3(5)1’2T’(00), 

xp333 (tensor) = (70)‘9+(40) + 5[T’(4 - 4) + T/(44)]; 

then 

0~333 (tensor) = (8/5)x~333 (scalar) + %x~333 (tensor). 

The matrix elements of xpa33 (scalar) are simply related to the matrix elements of 
(p: + rt) (P.1,). The matrix elements of xP3a (tensor) are identically zero for 
(R2) because the triangle ineyuality is not satisfied in the vibrational part of the 
matrix elements. 

It is important to note that the effect.ive rotational constants will now contain 
the “tensor” parameters ZSt and N,,, , while the tensor perturbation terms will 
contain the “scalar” parameter ZZj6 . The effective rotational constants are given 
in Table VIII. 

The matrix elements which determine the tensor splittings depend on K, and 
K,’ only through the vector coupling coefficients (L4K,q 1 L4L’K,‘), where 
q = 0, +4. The linear combinations of $ LKL given by the tetrahedral symmetry 
determine the linear combinations of vector coupling coefficients which occur. 
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Table VIII. Effective rotational constants for 2g3(..$=2); (R2). 

409 

Rotational COnStant Effective Value 

B eff L=Jtl $++(Y1+2Y2+7Y3+3Y4) -2F3&/15) (Z3s-z4z3t) 

B eff 
L=J Be+B(Yl+2Y2+7Y3+3Y4) - F3s+(2/15)(Z3s-24Z3t) 

(B<j)eff L = J + 1,J Be53-~(M311+2M322+7M333+3M344)+~F3s 

-(1/20)(Z3,-24Z3t)-2N333t 

D eff 
L = J + 1,J 

Thus, the matrix elements are equal to these specific linear combinations of 
vector coupling coefficients multiplied by the functions 

ML’, L) = g&‘, L){ -~&4(J, L’, L) + F&(J, L’, L) + Y&(J, L’, L)]. 

The f&L’, L) are listed in Table IX. Kate that the coefficient of f224 is now 
t~4 = -y3t = (23, + &,)/5, instead of tzz4 = ZSt which was valid for v3 and for 
‘2~3 using (RI ) . The numerical values of glJ( L’, L) times the linear combinations 
of vector coupling coefficients determined by symmetry are the same as for the 
fundamental, and are tabulated in Ref. 1. 

The complete energy submatrix for the Fz vibration-rotation states of J = 3 
is given as an example in Table X. Note that the effective B value for the 33 state 
is to be regarded as different from the value for the states 34 and 32 , according to 
Table VIII. 

In the “dominant approximation” for the energy eigenvalues, we neglect 
matrix elements off-diagonal in L. In this approximation, the tensor splitting 
patterns for (Rb) will be in the same ratios as those for vd (1). The observed splitting 
patterns for 2v3 of CD, are compared with the theoretical patterns in dominant 
approximation in Ref. 5. For low values of J the agreement is quite good. As J 
increases, the agreement becomes poorer because the effect of the off-diagonal 
matrix elements is appreciable. In the present work the energy eigenvalues have 
been calculated through J = 10, with matrix elements off-diagonal in L taken 
into account. These calculations are applied to the observed spectra 2~3 of CD4 
and CH, . The numerical results are described in Part D of this section. 
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Table IX. f,J(L',L)=g,J(L',L) {-DtfoQ4( J,L’,L)+F3tf13~(J,L’,L) 

+V3$22&( J,L’,L) ) 

L' L 
flJ(L',L) 

- 

J+l J+l ~2~+7)(2J+6)(2J+5)(2J+4)(2J)(25_1)/(25+1)(2J+2) 1 ’ 

. {-;(2J2- 5J+3)Dt+( J-1)F3t++ r3,} 

J Jtl 
+(zJ+~) (2~+5) (2J+4) (2J+3) (25-l) (2J-2)/2(2J+l) (2J+2)] ’ 

. [(2J-3)Dt+$( J-3)F3t++r3t} 

J-l J+l b(25+5) (2J+4) (2J+3) (25-2) (2J-3)/2(2J+1) 1 fl-3D,+3t 

+$ r34 

J J [(2J+5) (25+4) (2J+3) ( 2J-1) (25-2) (2J-3)/(2J) (2J+2) 1 ’ 

. {-( J2+J-10)Dt+4F3t- ‘3t] 

J - 1 J -[ 5(2J+4)(2J+3) (25-2) (2J-3) (2J-4)/2(2J) 1 + 

.{(2J+5)D,+t(J+4)F3,-3 f3%) 

J-l J-l k2J+3)(2J+2)(2J-2)(2J-3)(2J-4)(2J-5)/(2J)(2Jtl)] ’ 

. [-+(2J2t9J+10)Dt-( J+2)F3t++ y3t} 

C. RELATIVE INTENSITIES AND SELECTION RULES 

We calculate the relative intensities for (R2) by using the transformed electric 

dipole moment. To second order of approximation, (f 1 IL j i) becomes 
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TABLE X 

mergy sub-matrix for F2 states of J = 3; (IQ.). 

411 

JL 
34Fz 33F2 32F2 

JL’ 12Beff-144Deff 

-6(Bg3)eff 
34F2 - (390/7) ( -3Dtt2F3tt+r3t) 

33F2 150( 7)-3(.3D&‘63i) 

(60/7) (5) s( -3Dt-BFgt , -lClO( 35) -fr( 1lDt 
12Beff-144Deff 

32F2 

t93t) +$F3t-frlljt) 
te(BJ3) eff 

-(16/7) (-27$Dt-5F3tt@3t 

where +(OOO) is the ground-state vibrational wave function. The considerations 
of Section III. D show that the contribution from [IT;‘, S,] can be expected to be 
negligible. 

Explicit calculation gives 

(r$’ - ?@‘, & + ~Zl)~(O~)~JK = ad2 c d41*~.m, 
‘J 

where a is defined at the end of Table VII provided we interchange subscripts 3 
and 4. Then (20) becomes 

-adZ(JlMO 1 JlJ’M’) c (lJ’( --q)K’ 1 lJ’L’K,‘) (lJ’( --q)K’ 1 1J'JK) 
P 

= -a&( JlMO 1 Jl J’M’)&, , 

using the orthonormality of the vector coupling coefficients. Finally we find the 
expression analogous to (15) : 

MT I Cf I IL I i> I2 = 2a72J + 1). (21) 

This relative intensity factor is the same as that of the fundamental ~3 . 
The infrared selection rules are AJ = 0, f 1; AM = 0, f 1; AL = AK, = 0. 

These selection rules are identical with those for v3 if we interchange R and L. 
As in v3 , there is a single P, &, and R branch. Also, transitions are allowed only 
between states of the same tetrahedral symmetry. Moreover, the selection rule 
AK, = 0 implies a further restriction. That is, if there are several initial and/or 
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TABLE XI 

OBSERVED FREQUENCIES OF 2~~ OF CD, CORRECTED FOR THEORETICAL GROUND 
AND FINAL STATE TENSOR SPLITTING PERTURBATIONS 

Final 
Observed frequency state 

(cm-l) pert. 
(cm-‘) 

4476.121 0.14 
4475.92 -0.06 

.69 -0.27 

4475.98 
.98 
.96 

v 4475.98 

4469.9G 0.33 
.76 0.15 
.64 0.04 
.25 -0.34 

4469.63 
.Gl 
.60 

.59 
a .v 4469.60 

4463.55 0.37 
.35 0.19 

4462.76-0.39 
.69 -0.45 

4463.18 
.I6 

.15 

.14 
la ,v 4463.16 

4457.15 0.51 
.08 0.45 

4456.95 0.31 
.17 -0.46 
.07 -0.56 

4455.96 -0.66 

4450.64 
.63 
.64 
.63 
.63 
.62 

nv 4456.62 

4450.73 0.68 
,631 0.00 

4449.611-0.44 
.47 -0.57 
.39 -0.66 
.23 -0.81 

-0.01 4450.04 
-0.01 i .02 

0.00 .05 
0.00 i .04 
0.01 .OG 
0.01 .05 

av 4450.04 

4444.31 0.92 -0.01 4443.38 
.22 0.86 -0.01 .35 
.21 0.84 -0.01 .36 

4442.83,-0.55 0.00 .38 

- 

! Ground 
state 
pert. 

(Cm-‘) 

Observed frequency 
(cm-1 j 

Final 
state 
pert. 
(cm-‘) 

4442.65 -0.57 
.43 -0.95 

.40!-o.Q9 

4437.74i I .OQ 

.71 0.97 
4436.04 -0.68 

.OO -0.73 

4435.83 -0.84 
.58i-0.96 
.50;-1.16 
.44,-1.25 

0.01 
0.01 
0.01 

0.02 
-0.02 

0.00 
0.01 
0.01 

0.00 
0.02 
0.02 

0 .03 

-0.03 
-0.03 
0.00 

0.00 
0.01 
0.02 
0.02 
0.03 

4443.23 

.39 

.40 
.v 4443.35 ‘a 

44%. 63 
.72 

.72 

.74 

.68 

.54 
,123 

.il 
v 443li 67 

4431.23’ 1.35 
.23 1.38 
.23 1.37 

4429.23 -0.84 

.16 -0.86 
4428.83 -1.07 

.67 -1.24 

.59 -1.38 

.51 -1.45 

4429. x5 
.82 
.83 

4430.07 
.02 

4429.91 
93 
‘I9 

.!I!~ 
,v 4429.95 la 

4500.47 0.00 4500.47 

4506.35 0.00 4506.35 

4512.12’ 0.03 4.512.09 
.08 -0.01 .09 

4517.85 0.10 
.74 0.01 
.59 -0.13 

4517.75 
.73 
.72 

a” 4517.74 
- 

hund 
state 
pert. 

(cm-‘) 
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Final 
Obstm~dfr~puenc state 

pert. 
(cm-‘) 

R(4) 
Ai 
F, 
E 

F? 

R(5!,, 
F2 
F, 
E 
Fp 

R(6) 
E 
Fi2’ 

A* 
(1) F2 

F, 
A, 

B(7) 
F”’ 

I 
F!” 

A-l 
F’2’ 

El 
F (2) 

2 

R(9) 
F:” 
F(l) 

1 

4523.56 0.27 

.45 0.18 

.37 0.12 

.05 -0.17 

4529.11 0.42 

4528.97 0.32 
.45 -0.17 
.35 -0.24 

4534.47 0.67 
.47 0.64 
.33 0.56 

4533.63 -0.11 
.44 -0.28 
.38 -0.45 

4540.10 1.01 
.06 0.97 

4539.18 0.14 
4538.95 -0.06 

.80 -0.20 

.47 -0.56 

4545.57 1.62 
.57 1.53 
.57 1.40 

4544.36 0.31 
.03 0.03 

4543.53 -0.52 
.39 -0.68 

4550.99 1.93 
.99 1.92 

- 
c 

, 

_ 

- 

TABLE XI-Continued 

;round 
state 

pert. 
:Cm-l) 

-0.01 
-0.01 

0.06 
0.00 
0.01 
0.01 

-0.01 
0.01 

-0.01 
0.00 

-0.01 
0.01 
0.01 

-0.02 
-0.02 

4523.29 
.27 

.25 

.22 
v 4523.25 

4528.69 
.G5 
.62 
.59 

v 4528.64 

4533.80 
.83 
.77 
.74 
.72 
.83 

v 4533.77 

4539.08 
.08 
.04 
.Ol 
.Ol 
.04 

.v 4539.05 

4543.94 
4544.05 

.l6 

.05 
4543.99 
4544.06 

.08 
IV 4544.05 

4549.04 
.05 

Final 
state 
pert. 

(cm-‘) 

E 
(3) 

F* 
AS 
F;?’ 
Fj”’ 

A, 

Q(1) 
F1 

QW 
F, 
E 

Q(3) 
A2 
F, 

Fl 

Q(4) 
F? 
Fl 
E 
92 

Q(5) 
F(") 

El 
F, 

(1) 
F1 

Q(6) 
A2 
F2 
(1) Ft 

A1 
,j?' 

E 

4549.53 0.60 
.44 0.46 

.13 0.25 
4548.52 -0.47 

.29 -0.70 

.lO -0.93 

4494.35 0.00 

4494.17 0.06 
.02 -0.07 

4494.11 0.37 
4493.81 0.09 

.54 -0.17 

4493.G9 0.46 
.69 0.46 
.27 0.02 

4492.68 -0.51 

4493.27 0.66 
.06 0.45 

4492.47 -0.16 
4491.98 -0.63 

4493.01 1.10 
4492.95 0.82 

.38 0.50 
4491.73 -0.21 

.17 -0.74 

.04 -0.85 

- 

state 
pert. 
(cm-‘) 

0.00 
0.00 
0.01 
0.01 
0.02 
0.02 

av 

av 

av 

BV 

at 

a1 

- 

4548.93 
.98 
.89 

4549.00 
.Ol 

.05 
4549.00 

4494.35 

4494.11 

.09 
4494.10 

4493.74 
.72 
.71 

‘4493.72 

4493.23 
.23 
.25 
.19 

‘4493.23 

4492.61 
.61 
.63 
.61 

r 4492.62 

4491.91 
4492.13 
4491.88 

.94 

.91 

.89 
T 4491.95 
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TABLE XI-Continued 

Final 
Observed frequency state 

(cm-‘) pert. 
(cm-‘) 

- 

4492.32 1.35 

4491.98 0.96 
.73 0.64 

4490.98-0.16 
.22 -0.93 

4489.65-1.32 

4491.73 1.67 
.50 1.46 
.13 1.01 

4489.98 -0.21 
4488.81-1.31 

.74 -1.37 

.49 -1.60 

4491.50 2.31 

- 
( 

- 

- 

- 

:round 
state 

pert. 
(cm-*) 

0.01 

0.01 
0.00 
0.00 

-0.01 

-0.01 

Ia 

Corrected 
for pert. 

(cm-‘) 

4490.98 

4491.03 

.09 

.14 

.14 
4490.96 

,” 4491.05 

0.01 4490.07 
0.01 .05 
0.01 .13 
0.00 .19 

-0.01 .ll 
-0.01 .lO 
-0.01 .08 

av 4490.10 

0.02 4489 * 21 

Observed frequency 
(cm -1) 

F2 (2) 4491.13 1.95 

A: F’z’ 4489.98 4490.72 0.93 1.57 

El F's' 4488.94 .81 -0.22 -0.33 
FZ (1) 4487.55 -1.66 

F(l) 1 .23 -1.91 

4491.13 3.25 
4490.72 2.71 
4489.98 2.07 
4488.34 0.36 
4487.76 -0.18 

.3B -0.52 

4485.77 -2.20 
.77 -2.17 
.61 -2.30 

- 

- 

state 
pert. 

(cm-‘) 

0.02 
0.00 
0.01 
0.01 
0.00 

-0.02 

-0.02 

0.02 
0.03 
0.02 
0.01 
0.00 
0.00 

-0.03 
-0.03 
-0.03 

_- 

a 

a 

- 

Corrected 
for pert. 

(Cm-‘) 

4489.20 
.15 
.06 

.17 

.14 

.19 

.12 
v 4489.16 

4487.90 
4488.03 
-1487.93 

.99 

.94 

.88 

.94 

.91 

.88 
v 4487.93 

final states of the same tetrahedral symmetry, only those transitions are allowed 
which satisfy AK, = 0. 

Since (21) is independent of the I, and K, quantum numbers, its value is 
independent of the tetrahedral symmetry of the initial and final state. The rela- 
tive intensity of a single line in a vibration-rotation band such as 2v3 for any 
transition J, ---f JJ’, is then 

g(2J’ + 1) exp [-B,J(J + l)/kT](2a2), 

where g is the nuclear spin statistical weight factor. 

D. COMPARISON OF (R2) WITH EXPERIMENT 

1. 2~3 of CD, 
The band of CD4 at 4500 cm-’ is identified as the overtone 2~9 of the infrared 

active fundamental ~3 . The observed tetrahedral splittings are appreciable, and 
constitute a strong test of the theory. 

The energy matrices of (R2) have been diagonalized numerically t,hrough 
J = 10. The theoretical tetrahedral splitting patterns are determined through- 
out the spectrum by only three parameters: D, , Fat, and y31 = .16(&, + Z3J. 
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These are coefficients of terms approximately J4, J’, and J2 dependent, respec- 
tively. We obtain the best fit by taking D, = 1.1 X 10e6 cm-l, Fzt = - 1.4 X lo-* 
cm+ , and ?3t = 1.16 X 1O-2 cm-‘. The theoretical value (1) of D, was used. This 
constant also determines the ground-state tensor splittings which amount to 
only a few hundredths of a cm-’ even for J = 10. 

The predictions of (R2) are compared with the observed spectrum by “car- 
recting” the observed line positions for the predicted ground and final state 
splittings. This comparison is given in Table XI for the P, R, and & branches. The 
“corrected” position for the transition 77E + 67E, for example, is 4449.39 + 
.66 + .Ol = 4450.06 cm-‘. If all the predicted splittings were exactly right, the 
corrected lines for a given JL set would all coincide in position. 

We use the average values of the weighted P and R branch corrected line 
positions to evaluate certain linear combinations of the effective rotational 
constants. We find 

and 

B + Ba + 2(B13) = 6.00 f 0.02 cm-‘, 

B - B, = -0.050 * 0.004 cm-l, 

(using D m Do = 2.5 X 10e5 cm-‘, the theoretical value). BO is the ground-state 

Fy) F; A, lo 
(2) 

F, FY e*’ 

I I 

F(l) F’l’ 
I 2 E F(3) 9 A, Fa +2’ A I 2 2 

I I 

4 E(I) 7 4 2 I 

8 

E F’*) A I 6 F/” F2 A2 

FIG. 4. Q branch of 2~~ of CD, _ Identification of lines according to (R2) 
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value, B is the effective value for the P and R branches, and (B{s) is the effective 

value common to all branches. If we further use the value B, = 2.633 f 0.001 
cm-’ obtained from the Raman spectrum of CD, ( 17)) we find B = 2.583 f 0.005 
cm-‘, and c3 = 0.152 f 0.002 (effective value). 

The Q-branch analysis is complicated by the fact that’ lines belonging to differ- 
ent J-values overlap because of the comparatively large tetrahedral splittings. 

Figure 4 gives the identifications through J = 10. From 4494.35 t’o 4490.98 cm-’ 
all observed lines have been accounted for. It is possible that some lines belonging 
to J Z- 11 also fall int’o this region. Below 4490.98 cm-’ there are some Q-branch 
lines which have not been accounted for; these presumably belong to J >= Il. 

The weighted average correct,ed line posit’ions can be fit by 

Q(J) = const. + (B - B,,)J(J + 1) + (D, - D)J”( J + 1)‘. 

According to Table VIII, the effective B value for the Q branch may differ from 
that of t,he other branches. We find 

B - B, = -0.062 f 0.002 cm-l, 

and const. = 4494.48 cm-‘, 
( using D M Do). Then B = 2.571 f 0.003 cm-‘. 

W. 2~3 of CH, 
The simple appearance of the band of CH, at 6000 cm-‘, identified as 2~ , has 

been accounted for by (R2). The tetrahedral fine structure, which has been 
partly resolved by Rank et al., should also be accounted for by the theory. How- 

ever, the splittings in 2v3 of CH, are very small. For example, in P(7) of CH, the 
overall splitting is 0.21 cm-l, while in P( 7) of CD4 it is 1.50 cm-‘. 

The best fit to the observed splittings is obtained with D, = 4.5 X low6 cm-’ 
(approximat’ely the theoretical value), Fat = - 1.25 X lo-* cm-‘, and 

Yat = -5.0 X lo-* cm-‘. Line positions corrected for ground and final statme 
tensor splitting perturbations are given in Table XII. Since the tensor splittings 

are very small, smaller than would be expected from order of magnitude con- 
siderations, it is evident that fourth and higher order terms in the Hamiltonian 
may give relatively sizeable contributions. These contributions increase with J, 
and contribute to the apparent discrepancies in Table XII for J 2 7. We also 
note that, the value of Fat used to fit 2~ of CH, is different from Fat = 0 used to 
fit va of CH4 (1). This may be the effect of higher order terms which are not 
negligible in 2v3 , but are negligible in v3 where the tensor splittings are larger 
(for example, t#he overall splitting in P(7) is 0.80 cm-‘.) 

The following combinations of effective rotat,ional constants have been oh- 
tained: From the P and R branches, 

B + Bo + 2(B<3) = 10.76 f 0.02 cm-‘, 



TABLE XII 

OBSERVED FREQUENCIES OF 2~ OF CH, CORRECTED FOR THEORETICAL GROUND 

AND FINAL STATE TENSOR SPLITTING PERTURBATIONS 

PC4 
F2 
E 

P(3) 
A, 
F, 
Fz 

P(4) 
F2 
E 

F, 

A1 

P(5) 
(P) 

FP 
E 

F, 
.2(l) 

P(6) 

A1 

F1 
(1) 

F2 

A? 
(2) 

FS 
E 

P(7) 
F;“’ 

E 
Fj?) 

Al 
F’l’ 

1 
(1) 

F2 

P(8) 
(2) 

FP 
F”’ 

1 

5983.18( 0.002 -0.001 5983.18 
.18( -0.003 0.001 .18 

5972.13( 
lO( 
lO( 

0.018 0.002 5972.11 
0.003 0.000 .lO 

-0.009 -0.001 .ll 
av 5972.10 

5960.88( 
.83! 
.83! 
.83! 

0.029 0.004 5960.86 
-0.005-0.001 .84 
-0.016 -0.002 .85 
-0.031-0.004 .86 

av 5960.85 

5949.611 
,611 
.55: 
.52i 

0.049 -0.007 5949.56 
0.036 0.006 .58 

-0.025-0.004 .57 
-0.049 0.007 .58 

av 5949.57 

5938.204 
.17’ 
.17’ 
.09: 
.06: 
.06: 

0.094 0.017 5938.13 
0.071 0.013 .12 
0.045-0.014 .12 

-0.049 -0.009 .13 
-0.076 0.008 .15 
-0.085 -0.015 .13 

av 5938.13 

5926.675 
.617 
.617 
.573 
.482 
.462 

0.132 0.028 5926.57 
0.089 0.019 .55 
0.062 0.013 .57 
0.010 0.003 .57 

-0.122 -0.026 .58 
-0.139 -0.029 .57 

av 5926.57 

5915.053 
,053 

0.190 
/ 

0.045 5914.91 
0.097 -0.050 ~ .91 

Final 
state 
pert. 
(cm-‘) 

Corrected 
for pert. 
(cm-‘) 

EC21 5914.999 
F,“’ ,916 
EC’, .769 
A1 ,769 
Fw 1 .748 

P(9) 
A, 5903.223 
,p ,223 
F(?) 
Al? 

.183 

.113 
E .OlO 
Fi? (3) 5902.985 
F(l) 
,:1, 2 

,931 
.931 

PW) 
F4" 5891.792 
E (2) .754 
F(?) 
s: 

.640 
,612 

5848 
FP’ .491 
F”’ 
Al? 

,455 
,371 

EC’, ,341 
Fp ,064 

R(O) 
81 6015.659 

R(l) 
FZ 6026.223 

R(2) 
E 6036.652 
F, ,652 

R(3) 
F? 6046.960 
F1 ,960 

Final 
state 
pert. 

(cm-‘) 

Corrected 
for pert. 
(cm-‘) 

0.169 0.040 5914.87 
0.006 0.005 .92 

-0.204 -0.048 .93 
-0.226 -0.053 .94 
-0.212 0.024 .98 

av 5914.92 

0.291 0.075 5903.01 
0.217 0.006 .Ol 
0.258 0.067 5902.99 
0.118 0.032 5903.03 

-0.011 0.000 .02 
0.014 0.057 .03 

-0.315 -0.081 .17 
-0.328 -0.085 .17 

av 5903.06 

0.384 -0.010 5891.40 
0.332 0.094 .52 
0.285 0.082 .44 
0.146 0.045 .50 

-0.050 -0.130 .41 
0.003 0.004 .46 

-0.457 -0.128 .70 
-0.472 -0.133 .68 
-0.468 0.108 .64 

av 5891.51 

0.000 6015.66 

0.000 6026.22 

0.000 0.001 6036.65 
0.000 -0.001 .65 

0.004 -0.001 6046.96 
-0.001 0.000 .96 

I I 

417 
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-41 6046.949 

R(4) 
Al 6057.094 
F, .094 
E ,094 
F: .077 

R(5) 
FZ (1) 6057.151 
F, .151 
FZ (2) ,091 
E ,091 

h’(6) 
E 6077.061 
Ff' .034 
II? .034 
F(l) 
F: 

6076.954 
.954 

d, .930 

R(7) 
F;" 6086.859 
Fi" .816 
-11 .775 
F (2) 

El 
.666 
,666 

F1”’ D ,648 

R(8) 

$UJ 11 6096.519 .448 

8, ,(2) .399 
F!" 
EL Fil, 

.399 

.206 ,399 

,p ,191 

R(9) 
FI" 0 6106.302 

- 

- 

Final Ground 
state state Corrected 

pert. 
(cm-l) 

pert. 
(cm-‘) 

‘~;w~;t. 

PIPl 
6046.96 

I i 0.012-0.004 6057.08 
0.006 -0.002 .08 
0.002 -0.001 .OQ 

-0.011 0.004 .OQ 
BV 6057.09 

0.019 0.007 6067.14 
0.011-0.004 .14 

-0.019 -0.007 .lO 
-0.015 0.006 .11 

av 6067.12 

0.033 -0.015 6077.01 
0.030 0.008 .Ol 
0.022-0.009 .oo 

-0.017 -0.014 6076.96 
-0.022 0.013 .99 
-0.036 0.017 .98 

av 6076.99 

0.052-0.029 6086.78 
0.049 -0.026 .74 

-0.005 0.003 .78 
-0.021 0.013 .70 
-0.031 0.019 .72 
-0.048 0.028 .72 

av 6086.74 

0.082 -0.053 6096.38 
0.077 -0.048 .32 
0.079 0.024 .34 

-0.005 0.005 .41 
-0.028 -0.050 .38 
-0.057 0.040 .30 
-0.065 0.045 .30 

av 6096.35 

0.115 -0.085 
I I 

6106.10 

,:I' 6106.250 
E .077 
FP 
A; ,062 ,062 
FL(?) ,062 
F’?’ 1 6105.657 

A1 ,643 

Q(l) 
Fl 6004.842 

QW 
F, 6004.634 
E .617 

Q(3) 
F2 6004.302 
F1 .302 
A? ,275 

Q(4) 
E 6003.861 

Fz ,861 
A? ,861 
F, .825 

Q(5) 

E' F(2) 6003.285 ,242 
FZ ,242 
F’l’ 1 ,228 

Q(6) 
F”’ 
A: 

6002.586 
.534 

F, ,534 
-41 ,534 
E ,534 
F(“) 1 .512 

I- 

IT 
l- 

Final 
state 
pert. 

(cm-‘) 

6106.06 
0.005 0.000 .07 

-0.002 0.057 .12 
-0.025 0.032 .12 
-0.066 0.006 .13 
-0.079 0.067 6105.80 
-0.091 0.075 .81 

av 6106.04 

0.000 6004.84 

o.@OO -0.001 6004.63 
0.001 0.001 .62 

,av 6004.63 

/ I 
0.001 0.000 tiOO4.30 

-0.001 -0.001 .3O 
0.000 0.002 .28 

av 6004.30 

0.001-0.001 6003.53 
-0.001-0.002 .86 
-0.002 -0.004 .86 
0.002 0.004 .83 

, av 6003.85 

6003.27 
0.004 0.006 .w 

-0.001-0.004 .24 
-0.005 0.007 .24 

av 6003.25 

O.OC6 -0.014/ 6002.57 
0.013 0.017! .54 
0.010 0.013 .54 

-0.003 -0.009 .53 
-0.008 -0.015, .53 
-0.009 0.008 .53 

itv 6002.54 

418 
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Observed frequency 
(cm-l) 

Q (7) 
F1(‘) 6001.736 
Fp .736 
E .681 
F:2’ .681 
As .681 
F(2) 1 .655 

Q(8) 
,!I' 6000.743 
FP’ .666 

E (2) ,666 
FI” .666 
E(1) .666 
-42 .666 
FS (2) ,638 

Q(9) 
F(2) 

1 5999.626 

TABLE XII-Continued 

-0.023 -0.029 6001.73 
-0.017 -0.026 .73 

0.016 0.019 .68 
0.012 0.013 .68 

-0.001 0.003 .69 
0.023 0.028 .66 

av 6001.70 

0.025 -0.050 6000.67 
0.039 0.045 .67 
0.035 0.040 .s7 

-0.001 0.005 .67 
-0.033 -0.048 .65 

-0.040 -0.053 .65 
-0.036 0.024 .70 

av 6000.67 

0.052 0.006 5999.58 

Observqd ffepuency 
cm’ 

FP 5999.626 

F(l) 1 .626 
AZ .518 
F2 (2) .518 
A1 .518 
E .518 
FY’ .482 

Q(;$ 
Fl 5998.437 
Ff’ .437 
Al .320 
E(l) .320 
E(Z) .280 
FZ (2) .280 
FZ (1) .280 
A2 .238 
F?’ .w1 

-0.060-0.081 5999.61 
-0.064 -0.085 .61 

0.068 0.075 .53 

0.061 0.067 .52 

0.035 0.032 .52 
-0.006 0.006 .52 

0.000 0.057 .54 
av 5999.56 

0.100 -0.010 5998.33 
-0.016-0.130 .32 

-0.097 -0.128 .29 
-0.098 -0.133 .28 

0.117 0.094 .26 
0.077 0.082 .29 

-0.001 0.664 .29 
0.627 0.045 .26 

-0.102 0.108 .42 

av 5998.31 

* The number of observed lines in P(10) is one greater than the number predicted by 

(R2). 

and 
I3 - B. = -0.063 f 0.004 cm-‘; 

from the Q branch, 

and 
B - B0 = -0.058 f 0.002 cm-‘, 

const. = 6004.96 cm-‘. 

Using the ground-state value B. = 5.240 cm-‘, determined from the infrared 
active fundamental v3 (I), we find B = 5.177 f 0.004 cm-’ (P and R branches), 
B = 5.182 f 0.002 cm-l (Q branch), and {3 z 0.0327. These may be compared 
with the corresponding constants determined in Ref. 1 for v3 : 

B = 5.201 cm-l (P and R), B = 5.191 (Q), and l3 = 0.0547. 
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