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The theory of the vibration-rotation lines of the first overtones of the infra-
red active fundamentals of tetrahedral molecules has been re-examined. Theory
predicts an overtone speetrum consisting of five P, @, and R branches of roughly
comparable intensities provided that the vibrational angular momentum
quantum number £ is approximately a good quantum number for the complete
vibration-rotation Hamiltonian. In this case the separation of the E and F.
vibrational substates of the £ = 2 vibrational state must be small compared with
the splittings which arise from the 2B¢(P-1) term. The band 2», of CH, is shown
to be consistent with this approximation. If however the separation between
the E and F. vibrational substates is very large theory predicts an overtone
spectrum consisting of single strong P, @, and R branches with P and R branch
spacings of approximately 2B(1 + ¢). These P, @, and R lines are associated
with the F, vibrational substate, and have relative intensities much larger
than the lines of the K vibrational substate. The bands 2»; of both CH, and CD,
are shown to be accounted for by this limit.

The detailed calculations exploit the spherical tensor formalism. In the first
case a conventional angular momentum coupled representation, an extension
of Hecht’s work on the fundamental »; , is used in the calculations. In the
second case a new representation is introduced which formally has many of
the mathematical properties of the conventional representation for an £ = 1
vibrational state.

The tetrahedral splittings in the vibration-rotation levels of 2v; of CDy are
appreciable, and are accounted for very well by the following constants which
give the splittings throughout the spectrum: D, = 1.1 X 107¢ em™, Fy, =
—14 X 1074 em™, vy = 15(Zy + Zs:) = 1.16 X 1072 em™. The following linear
combinations of effective rotational constants are obtained from the spectrum:
From the P and R branches, B + By + 2(B{;) = 6.00 £ 0.02cem™, B — By =
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—0.050 £ 0.004 cm™!. From the @ branch, B — By = —0.062 & 0.002 cm™*. In
2v; of CH, the tetrahedral splittings are quite small, making a quantitative
fit more difficult. However, the best fit is obtained with D; = 4.5 X 1076 em™,
Fyi = —1.25 X 107t em™, and v;z; = —5.0 X 107¢ em™. Also, from the P and I
branches, B 4+ By + 2(B¢;) = 10.76 £ 0.02cm™, B — By = —0.063 & 0.004 cin™1;
from the @ branch, B — By = —0.058 & 0.002 em™!. The spectrum of 2v, of
CH, is extremely complex as a result of the tetrahedral splittings and the
overlapping of the five P, Q, and R branches. It is not possible to make definite
assignments for the observed lines at this time.

1. INTRODUCTION AND SUMMARY

A re-examination of the theory of spherical top molecules in recent years has
led to a thorough understanding of the tetrahedral fine structure of the vibration-
rotation lines for the infrared active fundamentals of the methane molecule (1, 2).
The explanation of the first overtones of the infrared active fundamentals, how-
ever, has presented considerable difficulty. These have recently been studied
experimentally in methane with very high resolution (3-4). The bands of interest
are identified as 2»; of CHy (at about 6000 cm™), 2»; of CH, (at about 2600
em '), and 23 of CD, (at about 4500 em™). Each of these bands arises from the
pure overtone of a triply degenerate normal vibration of the molecule. Therefore
we would expect the spectra to appear qualitatively similar. However, they are
markedly different. The band 2»; of CH. (4) consists of single P, @, and R
branches, the structure we would expect to find in a fundamental. Similarly,
2v; of CDy (5) consists of single P, @, and R branches; however the tetrahedral
fine structure splittings are observed to be large in contrast to the extremely small
splittings in the analogous band of CH, . On the other hand, 2», of CH, (3) con-
tains over 400 lines in a 200-cm™ ' region with no apparent regular pattern; the
number of lines in 2v, cannot be accounted for by the number of fine structure
components for a single P-, @-, R-band structure.

The paradoxical differences in the appearance of these spectra should be empha-
sized. In the quantum mechanical Hamiltonian every term which contributes to
the energy of 2v; has a counterpart which contributes to the energy of 2v, . The
molecular parameters which enter as coefficients of these terms are different.
However, this should produce only quantitative differences in the spectra of
2v3 and 2», . Thus, if 2», consists of a single P, @, and R branch only, so should
2»s . The splitting of each P-, @-, and R-branch line into fine structure compo-
nents may be too small to be observed in one case, while it may be very large and
easily observed in the other. However, one would still not expect the marked
qualitative difference in the appearance of the spectra of 2», and 2v; which is
actually observed in CH, .

Despite the apparent paradox it has been possible to explain these spectra.
It is the purpose of this article to give a full theoretical account of the overtone
spectra.

The most detailed theoretical treatment of XY, molecules of tetrahedral



OVERTONES OF SPHERICAL TOP MOLECULES 383

symmetry has been given by Shaffer ef al. (6). They calculated the matrix ele-
ments of the full vibration-rotation Hamiltonian to second order of approxima-
tion in perturbatiou theory without, however, applying their results to the ex-
perimental spectra of methane. They also calculated the relative intensities for
the infrared active transitions. Their formulas for the relative intensities of the
first overtones of the triply degenerate fundamentals have been revised by Louck
(7). The energy and intensity caleulations lead to a very complicated theoretical
overtone spectrum consisting of five different P, @, and R branches of different
spacings but of roughly comparable intensity. Such complexity would be needed
to account for the observed spectrum of 2y, of CH, . On the other hand, we note
that Johnston and Dennison (8) in their treatment of symmetrical molecules
predicted a simple P, @, R structure for the overtones 2v; and 2», of tetrahedral
X Y4 molecules.

Jahn was the first to make full use of the symmetry and group properties in a
theoretical attack on the vibration-rotation terms in CH, (9). In recent papers
Hecht has exploited the spherical tensor formalism to greatly simplify the calcu-
lations and give a thorough theoretical account of the fundamental »; of CH,.
The present work is partly an extension of this work to the first overtones of the
l[ll[dltﬁu d/(/blvt! 1unaa,1ueu l/dllb HOWEVEI ll,v 111V01'veS dlb() lllUUlll(.;d:T/l()llS WIII(JII can
account for the seemingly paradoxical nature of the experimentally observed
overtone spectra.

In Section II is described the basic formalism and notation used. In Section I11
the energy levels and the relative intensities for the first overtones of the infrared
active fundamentals are computed in a way which is a natural extension of the
techniques employed in Ref. 7 for the fundmentals. The representation which is
used, denoted as the conventional representation (R1), serves as a good approxi-
mation if the vibrational aﬁgul.«,u momentum quantum number { is appr0x1—
mately a good quantum number for the complete vibration-rotation Hamiltonian.
In this case the theory predicts five distinct P, @, and R branches of roughly
comparable intensity. It is shown that this theory can account for 2», of CH,
but definitely not for 2v; of either CH4 or CDy .

The conventional representation (R1) leads to a good first approximation only
provided the separation of the & and F, vibrational components of the ¢; =
vibrational state is small compared with the splittings which arise from the

QR +(D1N tarm=-7 — 2 ar A for . or s raaneetively Tn Qaection TV wae shaw
LiDey i\ X t1j) WOTIL; 2 = o OF T 107 4y OF 4vy , TESPECUIVELY. 111 OSCCUIOIL 1V WE SiO0W

that 2»; of both CH, and CD, can be aceounted for if we assume that the sepa-
ration of the £ and F. vibrational components is very large. In that case we
introduce a new representation (R2) which serves as a good first approximation
in this limit and facilitates the calculations. The (R2) representation formally
has many of the mathematical properties of the (R1) representation for an
£; = 1 vibrational state. The theory predicts an overtone spectrum which ac-
counts very well for the observed spectra of 2v; .
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A detailed quantitative fit of {(R2) to 2»; of CDy is very successful. In this
overtone spectrum the tetrahedral splittings are large, so that effects in higher
orders than those considered are negligible. The fit to 2v; of CH,is not as success-
ful in accounting fully for the observed fine structure. The tetrahedral splittings
in this spectrum are accidentally very small so that contributions from higher
than third-order perturbations seemingly account for a considerable fraction of
the total splitting.

1I. FORMALISM

The quantum mechanical Hamiltonian for a rotating-vibrating tetrahedral
XY, molecule has been written by Hecht to third order in perturbation theory
(1). We follow his notation. The dimensionless variables of the Hamiltonian are
the molecule-fixed components (P, , P, , P.) of the total angular momentum P;
the normal coordinates ¢, , (e, f), (23, ¥s, 23), (x4, Ys, 24) appropriate to the
tetrahedral symmetry; and their canonically conjugate momenta. The normal
coordinates correspond to the normal frequencies w;, ., ws, ws, respectively.
Associated with the triply degenerate vibrational modes are the internal vibra-
tional angular momenta 1; and 1, .

The zeroth order Hamiltonian is

Hy = La(p” + @) 4 Lown(ps’ + 1.°) + Lyws(ps’ + 1.°)
+ ,,1/§w4(p42 + r42) + Bepz,

where B, and the w, are in units of em™". The usual contact transformation (10)
was made to remove from the first-order Hamiltonian all terms except those
having matrix elements diagonal in the total vibrational quantum numbers
1,2, Vs, vs. To third order of approximation, only quantities which are diagonal
in these quantum numbers can contribute to the energy. Relevant terms of the
Hamiltonian will be written in detail later on as they are required.

A great simplification was made by Hecht, by considering the terms in the
Hamiltonian to be built up from spherical tensors. To third order in the trans-
formed Hamiltonian, the only linear combinations of tensor operators which can
contribute to the energies of 2»; or 2v, are the scalar operators T(00) and a
specific linear combination of fourth rank tensor operators (70)*T(40) +
5[T(+ — 4) + T(44)). In the conventional representation (R1) sealar operators
contribute only to the effective B-, (B¢)-, and D-values, while the fourth rank
tensor operators split the levels into their tetrahedral fine structure components.

Matrix elements of spherical tensor operators between eigenstates character-
ized by angular momentum quantum numbers are readily evaluated by applica-
tion of the Wigner—Eckart theorem. All vibration-rotation terms in the Hamilton-
ian relevant to the energies of 2v; or 2v, are built up from the separate vibration
and rotation tensors by the coupling technique

T'(kg) = Z (kikogrge | ]€1]172]&79)Tvih(ﬁ‘lgl)*Tmc(]’v‘zq«z). (hH

q1
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If the vibration-rotation wave functions are also built up by angular momentum
coupling, the Wigner—Eckart theorm greatly reduces the work of calculating
many matrix elements to calculating a single “reduced’ matrix element and many
vector coupling coefficients which usually are tabulated. (The vector coupling
coeflicient in Eq. (1) is related to the Wigner 3-j symbol, extensive numerical
tables of which have recently been published (77).) Also, when the vibration-
rotation wave functions are classified according to their symmetry under T,
the tensor operators of type 4, can connect only states A, to states 4, , 45 to 4.,
E to E, F; to F,, and F; to F,. Thus the energy matrix is always factored in
this way.

We further note that when the electric dipole moment operator is written as a
spherical temsor operator, the relative intensities may be calculated in this
formalism.

11I. THE CONVENTIONAL PRESENTATION (R1)
A. GENERAL REMARKS

In the conventional representation (R1) we consider ¢, which gives the magni-
tude of the total vibrational angular momentum 1 = 1; + L, to be approxi-
mately a good quantum number for the complete vibration-rotation Hamilton-
ian. This is a good approximation if the tetrahedral splittings, including those
which arise from the pure vibrational Hamiltonian, are small compared to the
separations due to

H' = —2B,:(P-1;) + &(P-1)).

The rotation-vibration wave functions for any state may be formed from linear
combinations of products of rotational with vibrational functions:

Yrxg = 2 (LJmK | tTRK g)¢tmisx - (2)

Here ¢, is an eigenfunction of P? and P, , ¢:x is an eigenfunction of I’ and ¢, ;
andR =P — 1

Matrix elements of the operators T'(kg) between states ¥rx, take the following
form after successive applications of the Wigner-Eckart theorem:

W ¢JR'K: | T(kq)| v6TRKz) = (RkKrq| RkR'K:)(2k + 1)(2R + 1)]'*

(6 ¢ K (3
-(—1)"1“”’111’ J ket (0| Tew(k) || 0O || Trot(ke) | J).
R R &k

This last equation is subject to the condition that
Tvib(qul)* = ( —_ 1 )ql Tvib(kl - {I1) .

The factor (—l)k‘H“' in (3) is not usually present (12), and arises because of
the complex conjugate signs in (1) and (2). (These complex conjugates arise
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essentially because we wish to use the usual angular momentum addztion co-
efficients in a scheme which involves subtraction of angular momenta: R = P — 1;
compare Refs. 7 and 13.)

We now specialize to the case of the first overtone 2vs . [2v4 of CH,4 seems to be
the only one of the bands of interest which is consistent with (R1).] Then £ = 0,
while £, may take the vaiues 0 and 2. As basis funetions for the irreducible repre-
sentations of 74, the £, = 0 vibrational function belongs to A, while the £; = 2
vibrational functions belong to £ and Fs .

We may write the vibrational wave functions as products of one-dimensional
harmonie oscillator functions depending on x4 , ¥4, and 24 with quantum numbers
Vaz, Vs, and vs, , respectively. The functions are of the form ¢(veuvavs,) =
O(045) (V4 )P (V)5 V4 = Var + Vsy + vs; . In terms of these suitably normalized
functions, the vibrational angular momentum eigenfunctions are

do = (3)7"[3(200) + $(020) + $(002)];
¢ = (2)7—ig(110) + (2)7[6(200) — $(020)}},
¢ = (2)7ip(011) — ¢(101)],
¢ = (6)7"13(200) + ¢(020) — 26(002)],
and Stem = (—=1) Pt .

Tn (2) and (3) the quantum numbers (fm) become (fym4).The linear com-
binations of Yzx, which transform as basis functions for the irreducible repre-
sentations of Ty follow from the symmetry properties under the full rotation-
inversion group and its subgroup 7¢. These linear combinations were first
worked out by Jahn (9) for R £ 10, and extended by Hecht (1) to R < 13. The
classification of wave functions according to their tetrahedral symmetry results
in the maximum factorization of the energy eigenvalue determinant, since the
Hamiltonian cannot connect states Yrx, of different symmetry.

In the next section we calculate the energies of 2vs to third order using (R1).
For fixed J, the eigenvalue of Hois 6(2J + 1)-fold degenerate (excluding the

degeneracy from the space-fixed Z-component of total angular momentum in the
absence of external fields). This degeneracy is partly removed by H,'. The cigen-
value corresponding to the £, = 0 vibrational state is (2J 4 1)-fold degenerate,
while the eigenvalues for the {4, = 2 states are (2J + 3)-, (2J + 3)-, (2J + 1)-,
(2 — 1)-,and (2J — 3)-fold degenerate for K = J + 2,7 + 1,J,J — 1, and
J — 2, respectively. The energy levels determined by (H, 4+ H;') are perturbed
by the operators of (Hy 4+ Hy'). Operators of rank 0, i.e., scalars, contribute
terms to the energy which are independent of Kz and Kj'. Thus, for fixed { ,
J, and R, all states regardless of their tetrahedral symmetry have their energy
shifted by the same amount. The contributions of the scalar operators can be

included with the contributions from B,P?, —2B.t(P-1,), and —D.P* by de-

=

It
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Fic. 1. Splittings of the energy levels of 2y,(f; = 2) due to successive perturbation

terms in the Hamiltonian; (R1).

fining effective rotational constants. On the other hand, operators of rank 4
contribute terms to the energy which depend on Ky and K. Therefore, for
fixed £y, J, and R, states of different tetrahedral symmetry will have their
energy shifted by different amounts. However, the center of gravity of a given
level will not be affected by the fourth rank operators. The effects of successive
perturbations described above are summarized schematically in Fig. 1, where we
have taken £, = 2. The relative intensity formulas for this case are derived in
Section C. In the last section, the theoretical predictions are compared with the
experimentally observed overtone spectra.

B. ENERGIES

1. Scalar Perturbations and the Effective Rotational Constants
The effective rotational constants for 2z, arise from the terms (1)

H' (scalar, vs) = Hy — 2Bot4(P-L) — DP* + Z4,0ppu(scalar)
+ FuPY(P-1) + YW[Yi(p' + ¢) + Ya(pd + 12°) + Yi(ps' + 15°)
+ Yu(pd + )P + [Ma(p’ + ¢) + Man(p?’ + 12°) + Mas(ps’ + 1)
+ Maus(ps’ + 1)}(P-L),

where Oppau(scalar) = 4[(P-1,)" + (P-ps)’ — 145P*(ps + r.)]. If we compare
Oprru(scalar) with Eq. (1) we see that this scalar operator (k = ¢ = 0) is the
contraction of a vibrational tensor operator of rank 2(k; = 2) with a rotational
tensor operator of rank 2(k, = 2). The required matrix elements diagonal in
£, are given in Table I. The only difficult matrix element is that of Oppu(scalar):

t b 2
(v4 £ JRK |Oppu(scalar) | vs £s JRKz) = [6(2R + DI'*<J J 2
R R O (5)

‘('—1)““4’(04 (41 H Tvib(2) H U4 54)(»7 H Trot(2) H J)-
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The 9-7 symbol reduces to a 6-j symbol (12); the reduced matrix elements are
given in (1). For £, = £ (vs = 2), Eq. (5) gives

—T3[J(J + 1) — R(R + 1) + 4u(fs + 1)]
I+ 1) —REA+ 1)+ b(b+1) — 11  (6)
—4J(J + D4 + 1)1/12(26 — 1) (24 + 3).

Note that (6) vanishes for 4, = 0.
We also note that Oppu(scalar) has nonzero matrix elements for £ = 0 and
= 2(vy = 2). In this case Eq. (5) gives

—130(2J — 1)(2J) (2] + 3)(J + 1)}bo,

where 8,z is a Kronecker delta. This term will appear as an off-diagonal element
in the energy matrices for 2v,. It does not contribute to the effective rotational
constants.

The eigenvalues of the scalar operators are written in Table I in a form which
shows their contribution to the effective rotational constants. We denote a
vibration-rotation level of 2v, by J . Transitions to such a level from the ground-
state rotational levels of total angular momentum given by J 4+ 1, J,and J — 1
give rise to the P, @, and R branches, respectively. The matrix elements of
Oppu(scalar) contribute only to the effective B- and (B¢4)-values. The matrix
elements of P*(P-L,) contribute, in addition, to the effective D-values. The con-
tribution of —D,P* to the energy difference between the upper and ground states
is 4D(J + 1), 0, and —4D,J’ for the P, Q, and R branches, respectively. The
matrix elements of P*(P-1,) are factored in two ways in Table I from which the
contributions to the effective D-, B-, and (B¢:)-values can be seen for the P- and
R-branch lines, respectively. The “left-over’” constants of Table I can be in-
cluded in the pure vibrational energy.

The effective rotational constants are given in Table II for the P branch.
The Q- and R-branch values are related to these in a simple way. For the R
branch, the Bess and Dei are the same as those for the P branch except that the

TABLE II
ErFECTIVE RoTATIONAL CONSTANTS FOR 2v3(fy = 2); (R1). P-BraNcH VALUES

R Best (Ba)ett Dess
J+2 Be+y Z43+4F4s e§_4+M+1/Z4s+ 2F4s Da_}éFN
J+1 B.+Y +}Z43+4F4s By + M + 3474, + J5F4s D, — 4F,,
J Be+ ) +/2'3Z43+3F4s B§-4+M+1,]/Z4x+/2F4s Ds
J—1 B.+ Y 4+ 47, + Fu Bis+ M + 34Z,, + 18F,, D, + }4F .
J—2 B, + Y — 337, — 2F,, By + M 4 242, + 146F 4 D, + 14F,,

Y = %Y, + 2Y, + 7Y; + 3Y4), M = 3 (Mu1 + 2M e + TMyss + 3Mus).
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order of the R-values is reversed. The (B{4)i: are common to all branches. For
convenience, we arbitrarily take B.s for the @ branch to be the same as for the
R branch, and add the appropriate J’-dependent term to the energy of the state
involved.

In comparing these results with the observed spectrum 2», of CHy, we find
that it is not possible to distinguish among these effective rotational constants,
so that the ambiguity in the @-branch constants causes no difficulty. To get an
idea of the differences between effective rotational constants we estimate Z,,
and Fy from their explicit theoretical expressions (1) and from theoretical
estimates of cubic potential constants (14). We find Z;, & —0.03 == 0.05 em™
and Fy =~ 0.003 £ 0.003 cm . The uncertainties arise from the ambiguity in
sign of certain molecular parameters, and are not statistical errors.

2. Tensor Perturbations and the Tetrahedral Splittings
The tetrahedral splittings of the energy levels determined by (H, + H,') are
given by matrix elements of tensor operators of the form

(70)'*T(40) + 5[T(+ — 4) + T(44)]. (7)

For states in which only vibrational quanta of » are excited, the splitting patterns
are determined by

H'(4, v;) = —D,Opppp(tensor) + FyOppps(tensor) + Zy0ppu(tensor)
=+ N444,Op444(tensor) + T44044(tensor).

Each of these tensor operators is of the form (7), and is built up from a vibra-
tional tensor of rank k; and a rotational tensor of rank &, . In the order in which
they appear in (8), the tensors have (k;, k») equal to (0, 1), (1, 3), (2, 2),
(3, 1), and (4, 0). These operators are given explicitly in Ref. 1.

Between states with vibrational angular momentum ¢ and ¢, matrix ele-
ments of these operators are zero unless £/, £, and k; satisfy the triangle in-
equality of quantum vector addition. Thus in the ground state, with £,' = £, = 0,
the tensor splittings are determined by Ozppp only. In the fundamental », with
¢ = £, = 1, k; may be 0, 1, or 2. For the overtone 2v, , there are three possi-
bilities:

(8)

(1) &' = £, = 2, all five operators give nonzero matrix elements;
(2) 4 = £, = 0, only Opprp gives nonzero matrix elements;
(3) &' = 0and £; = 2, only Oppss gives nonzero matrix elements.

According to (3), H'(4, ») can connect only states ¥z £ and ¥zx, for which
K. — Kr = 0, =4 and for which R, R, and 14 satisfy the triangle inequality
of quantum vector addition. Also H'(4, »;) can connect only states of the same
tetrahedral symmetry. Any matrix element will consist of a linear combination
of vector coupling coefficients, which contain the entire Kz’ and K dependence,
multiplied by a function of J, R, and R (and of &’ and £, , implicitly). The
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notation scheme for these matrix elements follows Ref. 7. The nonzero matrix
elements may be written as follows:

(20, & = 2; JR'KY | H'(4, w) |2, s = 2; JRK:) = fus(R', R)x,
where
= (R4K:0 | RAR'K;) for Ki = Kg,
x = (44)"(R4Kn(£4) | RAR (Kr £ 4)) for Ki = Kp= 4.

Table III. feJ(R/,R)=g2J(R’,R) {:E:tijufiju(J,R’,R)}

=]
~
|

£5(R7,R)

2J+6) (2J+7) (2J+8) (2J+9
J+2 J+ [%Ej:I%%?j:?%{?j:?%{?j:ﬂ}} {1ﬁ2J)(2J 1)(2J 2)(2J 3)t044

~(27)(23-1) (27-2) 815, (23) (23-1) b5, +2(27) 314+2t404}

1
52J+5 2J+6 2.‘;::7 2518] {(ag-1)(23-2)(25-3) £y,

+—2~(2J 1)(2J 2)t13u+(2J -1)(J- 2)t224 (37- 2)t31u-2t404}

—ET—I%&‘?‘;'?TW 27+5) (20+0) (2047 ] {3(29-2) (23-3) b+ 3(25-2)

(23- 5)t134- (2J -13J+12) t,5,+(27-3)t 3lu+2t404}

o
[
+

-(3- 3)t314“2t404}

l
o(2J+
L J+?:l {6touu+6'°134’2t 428314%2 04}

[
i
o
o
+

2J+5 2J+6) (2J+7) (27-1 >
TFL)(Bd+2) (BT {(3%+23-20) (27-3)

J-1 3+ [35 27+2) (2040 ] {6(23-3) £y +3(33-5) %5, -2(3-2) b))
. (2J-2)t044-2(J+12)(J -2)(2J- 2)t, 4+:2(J ~12J+12) t5p),
- 4(J-2)t314~8tu04}

1
o{2 2J+6)(23-2) |2
;3 a1 [3 J5)(27+6) (2 ] {(20-5) (3+4) (23-3) 1y

+3(203-30%-530488) £y 54 (25%4237-54) 0,
+(3-5)t312 01
1
10(2J+3) (2J+5) (2J-3 ]5 2 ar.
[ e IF {6(3J +37-20) by
+3(3J2+3J-28)t13u—(J2+J-18)t22u+10't314-4t404 }

oy
1
s
[*
+
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Table III. {concluded)

jos]
N
=0

o

£,7(R7,R)

N A
27+3) (25-1) 1%
2 T+ L%] [6(25+5) 6, +3(3548) £y 5, -2(343) b,

g+t
Loty “31 yt ""LLOLH

oJ+L) (2345 (2J3 27-2 T § o3 »
TI(ET 3= { (83%4853-1195°-12354630) t

-12(4J +4J_33)t134+(hJ +LLJ—75)t224-36t314+12t404}

ﬁY_l'_h' Te 2T_’) -' re
-1 g | SETIRET e V(23T (23-3) (23+5) by,

+2(253+93% 117 - ~132)t 5 2(23-25) (343) ty,
+(J+6)t314-2tuou}

cea [1Erean 1P (e e oy,

L \m)ktd 1) it
- —(2J +17J+27) (2J+5)t31u+2‘cb{0 }

+ 2(2047) (23+4) 6

a3l
L34

S1og-1 L%ﬂ%ﬂmﬁ%ﬂﬁ*J {(2-21) (2344) (2545)
(

+2(J7-11) (J+3) (2J+4) 134+2(J +14J+25) 22&+8(J+3)t314—8t40u}

1
- - - - 2
s 7.0 [ 27.7) (24-6) (29 o) (27 4 ] {K2r+2) (2043) (20+4)
+4)t

(2J+5)t044+(2J+2)(2J+3)( (2J+2)(2J+3)t224

134
-2@5*2)‘5214"2%04}

For & = 0, &4 = 2 and £, = ¢ = 0 appropriate quantities h, (R, R) and
kos(R', R), respectively, are deﬁned. These are the analogs of fo;(R', R).
It will be convenient to use the following notation:
fu(R,R) = gos(R', R 2. tissfin(J, R, R)Y,
with ¢ = k;and j = k» ; and where, to third order of approximation tu = — D,
t134 = F4t , t224 = Z4¢ y t314 = N444t , t404 = T44 . The f;z,;(R,, R) are given in Table III
In the case of ho,(R', R), ¢/ = 0 implies R = J. The quantities hss(J, R)

are given in Table IV.
The quantities k.,(R’, R) become the single quantity kss(J, J) because
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Table IV. hy1(3,R) = J,5(3.R) {tapyhopy(3,3.R)}

R hy,(J,R)
J+2 [;(—;;-E)-;(EJ-H) ] 3 {-(27)(27-1)tp,, }
T+l [2(25+3) /(25+1) ] { (3+6) (23-1) %55, |

3 (2)2 {(23-3)(20+5) 150, }
J-1 [2(27-1) /(2+1) ] 2 {(3-5)(20+3)t o0 }
72 [o(25-3) /(2341) ] { ~(2042) (2543) 8, }

&' = £, = Oimplies R’ = R = J. Since (vss || T+is(0)] v4bs) = (26 + 1)'? is in-
dependent of v, the splittings for this state are the same as those for the ground
state, i.e.,

koy(J, J) = 24{(2J — 3)(2J — 2)(2J — 1)(2J)
(20 4 2)(2T 4+ 3)(2J + 4)(2J + 5)"toas .

Tables III and IV and the above equation give the J dependence of all possible
matrix elements. It remains to compute the specific linear combinations of
vector coupling coefficients (R4Kzq | R4R'K:') required by the tetrahedral
symmetry for the possible A, A., E, F; , and F, substates of each level. Most of
these are given in Table VIII of Ref. 1. (The quantities actually tabulated there
are the appropriate linear combinations of vector coupling coefficients multiplied
by the functions g,(R’, R), rather than g,;(R’, R).) The only linear combina-
tions of vector coupling coeflicients determined by symmetry which, in effect,
have not been previously calculated in Ref. 1 are those arising from matrix
elements between states for which R — R’ = 3 or 4. In Table V are listed these
quantities multiplied by the appropriate g.;(R’, R), through J = 6.

As an example, the complete energy submatrix for the F. states of J = 3 is
given in Table VI. All relevant scalar and tensor contributions have been in-
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TABLE V

a3 (R’, J +2) times the linear combination of vector coupling
coefficients required by sy:ametry; R’ = J-1, J-2.

(1) (2)
2, A E F F, 35 E Py F, F,
e l ~_ /e a l ar S inn LY. VL]
cl -¥D )2 =1o0/7cl <cW/rvch
2, | 2v6 3, 10//Y6 30//210
(L) (2)
by A Ay B P Fa Fa
by 56/37 =70/3/77  322/9Y154% -70/3770
b, 100/3/55 65/9v11  25/3v5
(1) (2) (1) (2)

57 Ay E P F) P F,
Sy 60/7286 255/11¥39 -15//33 10/11/26 210/v6006
S 3 60/11¥2 120/11Y39  15/¥33 2450/11Y2730 50/Y1430
64 A, gl gl2) p (1) F. (2 g (1) r (2)
55(1)| -2,0/13/2170 -660/¥26598  -330/13/154 0 15/1373 -1654/50C5
65(2) 440/137110  -110//2002
6, |60/13 9660/13v35805  304/403 105/13/35 15//13  15//22  105//2730
Note: a(b c means a((b/c).

orliidad The tarme nranartfinnal fa 7. on tha mafriv diaaennal aries anlv far the 0

cluded. The terms proportional to 4, on the matrix diagonal arise only for the ¢

branch, as explained in Section II1.B.1. The pure vibrational scalar contributions,
except that from Gyls’, are collected into a single term e. No distinction has been
made between the various effective rotational constants. The ;5 have been ab-
breviated to ¢; . It is clear that even for low J values, the energy matrices become
too large to diagonalize except by means of & high-speed automatic digital com-
puter. Before discussing the actual numerical calculations, we proceed to consider
the relative intensities.

C. RELATIVE INTENSITIES AND SELECTION RULES

|(F1 e (D) * + [T [ D]+ {1 Tz [ 9)]7, (9)
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where (IIx , Iy , II;) are the space-fixed components of the electric dipole mo-
ment; | f) and | z) are the final and initial states, respectively. The space-fixed
components of the electric dipole moment are related to the molecule-fixed
components (II,, I, , II,) by

HA = )\AzHI + )\Ayﬂy + )\AzHZ 5 A = X, Y, or Z

Mo (15) is the direction cosine, in terms of the Fuler angles, between the space-
fixed 4-axis and the molecule-fixed a-axis. Expressed as a function of the normal
coordinates, II, for example is given to second order by

I, = A2 + Aszs + leays -+ Bz(’l‘a?ﬂ + ,1/32‘4> -+ Bzx41l4
+ (Bszs + Bezs)qu + (Brzs + Bszs)f.

The A; and B; are constants.

In order to calculate the relative intensities to second order of approximation,
we use the electric dipole moment to second order (in the normal coordinates),
and the initia] and final state wave functions to first order (in the ordering
scheme established for the vibration-rotation Hamiltonian). Note that the second
order correction to the wave functions may be neglected because of the absence
of a zeroth order term in the electric dipole moment. The first order wave func-
tions of the untransformed Hamiltonian may be found from standard quantum
mechanical perturbation theory, and then the required matrix elements found
in a straightforward manner. The relative intensities have been calculated in this
way in Appendix 7 of Ref. 13. Here we will obtain the relative intensities in a
different way. This method gives some important insight into the symmetry
selection rules. It also serves to check the results of the other method.

The basis for this method is as follows (10): In the integral (f|IIz|%), the
wave functions are the eigenfunctions of (Hy, + H;). The transformed Hamil-
tonian is obtained by application of the contact transformation 7'

T{(Hy + Hy) — EW = T((Ho + H,) — EIT'TY = [(Ho + H\') — ElY = 0

Now we write
Mt 0) = [y = [ormmm r10, = [y g

We ensure the unitarity of T by writing 7 = exp(4\S) and taking S Hermitian.
Here, X\ is a parameter of smallness.

The ¢’ are correct to first order since they are the eignfunctions of (Hy + H,').
To second order

I, = AIy° + @y — {me, 8)).

Thus, 1" = O, and I5" = 05 — O, 8.
Next we calculate explicitly the matrix element of II,” between the ground
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state and the final state 2v. Since I3’ is linear in the normal coordinates it
cannot contribute to this matrix element. The portion of TS’ quadratic in the
r; normal coordinates is

By(yzhz. + 2xdz, + Tydz.) = iBls3[T(32) — T(3 — 2)],

when written in terms of the tensor operator T'(3¢) defined by

T(3¢) = 2 (2laf | 213¢)ryutis . (10)

3

The second rank spherieal tensor operators r;, are built up from the spherieal
vector operators 71, by the vector coupling technique. The operators ry, are
ra = F(2) V(@ £ @), ro = 21 ; the tg are iy = F(2)7*\ze F Az),
tio = Az: .

Therefore,

(vif =2,4; JRK, |1 | v = &4 = 0; JRK)
= iB;L4/3(R3K:2 | R3R'K:') — (R3K.(—2) | R3R'K:')]

& =0 2 (11)
7(2R + 1)1 LJ', J 1 (v =2,6 | r(2) || v =& =0)
R R 3
(T ).

If ¢’ = 0, the 9-f symbol vanishes. If £’ = 2, (11) becomes

R R J
A(=1D)"TMR(R'K:, RKR),

iBi4(6)*(—1)""H(2R + 1)(2R + D" (J1MO | J1J'M") { ¢ i 3}

where
F(R'K:, RKz) = (R'RK: (—Kz)| R'R32) — (R'RK: (—Kz)| R'R3(~2)).

The reduced matrix element (J' || #(1) || J) in (11) was evaluated by writing
the wave functions |JKM ) and the operators s in terms of the matrix elements
of the finite rotations (as defined in Ref. 16):

|JEKM)Y = (2J 4+ 1) (82" *Difx,  ts = Dis.

Next we calculate [II5”, S]. We have II5” = (Ags -+ Asz) (2) 7 (tey — tn)
+ (Aws + Asy) (—2) (i + tu) + (Awrs + Azt

The only terms in S which produce from the commutator terms quadratic in
the normal coordinates and canonically conjugate momenta of w, are § = S; +
Sy + 83, where
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S
Sz

—{( 0444/ 3ﬁw4)(21)4zp4yp4z + Y2sPax + Ta2sPyy + ;r4y4p4z),

{6344/ ﬁw3(4w42 - w:;Q)]{—w:;w4[$3(Z4p4y + ;2/4])42) + ;1/3(24}74z + 1’4?94:)
+ 23(lf4p4y + y4p4z)] - 2w42(p4zp4yp32 + PiDsyDs: + p3zp4yp4z) (12)
+ (w32 - 2w42) (.’l‘4y4psz + L4243y + ZJ4Z4P3x)§, »

Sg = /x‘[p4x(Psz + P:l)y> + p4y(Psz + Psz> + p4z(PzPy + Pypx)]§
with k = Y50e(fi/wd ') (—1/Fiws).

The constants ca and cu are coefficients in the cubic anharmonic potential
energy (1). The constant {» is the usual coefficient of a Coriolis interaction
term in H,.

Using [p:, ¢;] = —hd;; and

(Prn s tu) = (=1)"()"*(11(» + m) (—m) [ 1110) s i,
we find
[H(ZD, S+ S = [CaasA o/ 304 — 03441‘11(&32 - 26042)/033(40042 - w32)]
LeN/BIT(32) — T(3 — 2)] + [2cauds/30s + 2wicsudy/ws(dod — wi')]

1aV3IT(32) — T'(8 — 2)],

where T(3¢) is defined by (10), and 7"(3¢) is obtained from T(3q) when ry,

is replaced by ps. . Thus, except for constant coefficients, the matrix elements of

g, Si + S5} will be the same as those of IIy’. Note that transitions to the

¢/ = 0 vibrational state of 2, are not allowed so far.

The calculation of [IIS”, Ss] which gives the contributions of the vibration-

rotation interactions is complicated by the presence in S; of terms quadratic in
the molecule-fixed components of P. After some computation we find

Y, S5 = Laddak(2A/3(T5 — Tis)

+(6)2(T3 — Tik) 4+ (6)3(Th — Ti%)], (13)
where
Th = 22 (e | Nafm) VieRus ,
and
Via = Z (11oe | 11Na) riopre
Rus = 2. (110 | 114B) (Prhe + tPo).

‘2

We see that in (13) all the tensor combinations are (T3 — T.2), even though
they are not the same tensors as defined in (10). Since every term in (13) con-
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tains a vibrational tensor of rank 1 or 2, it is clear that transitions from the
£, = 0 ground state to the ¢’ = 0 vibrational state of 2z, are not allowed. There-
fore, these transitions are strictly forbidden even if the effects of vibration-
rotation interactions are taken into account through S;. (The fact that the
pure vibrational perturbations cannot give rise to such transitions can be seen
from symmetry alone. Both the initial and final state vibrational wave functions
have A; symmetry. The symmetry of the vibrational parts of my’ and
[, S, + S is F».) It is also clear that the tensor T"* contributes nothing to
the intensity since it contains a vibrational tensor of rank 1, and therefore cannot
connect £, = O with &' = 2
Finally, we get

(v =4 =2, JRK | 11{" —4[Ug”, Si+ S: + Sl | va = s = 0; JRK )
= i%(6>1/2(_1>R—K}z[(2R + 1)(2R + 1) 1/2(_ )J’+J+1
(J1MO | JLT'M)F(R'K, REKR)[ ],

where

L 1 = [Bs + caunds/Bws + coudran/(dos’ — w”)] {R ?8 3}

+kAq{ BR(R + 1)(2R + 1) {R 2 ;}{z " J}<—1>”+’”1 (14)

L +1>—R<R+1)]{R 2 3}}

Equation (14) involves 6-j symbols, defined for example in Ref. 12.

The matrix element of Iy or IIy differs from that of II; only through M-de-
pendent vector coupling coefficients. Summing over the ground-state /-values,
we obtain

Z |(F1 14| 9)|* = ®IF(R'KR, RK)T, (15)
where
® =32 + 2R + 1)(2R + 1)[ T,

with [ ] given by (14). Note that ® depends only on the quantum numbers
(J', R, J = R), while the entire (K:', Kz) dependence resides in
F(R’KR’, RKg).

The infrared selection rules are as follows: AJ = 0, £1; AM = 0,
+1; (R, R, 3) must satisfy the triangle inequality; AKr = =2. Thus, there are
five P, @, and R branches. This is in contrast to the fundamental where AR =
AKr = 0 implies a single P, @, and R branch. In addition, it follows from the
Pauli exclusion principle that the initial and final vibration-rotation wave func-
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tions must have the same tetrahedral symmetry, up to a subseript “1’” or “2”
in A, Ay, Fy, Fy. We find for the P and R branches that the allowed vibration-
rotation transitions are 4, — A4,, A, > A, ¥ - E, F; — F,,and Fs — F» ;
while for the @ branches they are 4, <> 4, , £ — E, and F, — F, .

The quantities & are listed in Table VII. These expressions were first given by
Hecht (7). However, explicit expressions for the parameters a and b were de-
rived for the first time in Ref. /3. These are written at the end of Table VII.
Also listed in this table are the approximate line spacings corresponding to each
branch.

TABLE VII
®, a factor occurring in the relative intensity formulas
for 2 1,(1,=2); (R1).

P branches B ” Line spacing
J+3) (23+5) (2 b( 4
(J 2 2 - 2
L —=>J5, e gg%}iﬁ%) Latb(37-1)] 2B, (1-%,)
6(J+2) (23+1) (27 p(27-2)] °
J+1 —> JJ 6( ) 3;(3_§_1)+5) [a+ (ag )J 2Be
2(J+2) (23-1) (2 2)] °
T+l =T (g+2) ( 7(3£1§+3) La+n(s-2)] 2B, (1+%),)
T+l >3T; ,  3(2343)(29-3) (a-b) 27 2B (1+25))
Q branches
23+1) (23+5) (3+3)[at+b(25-1)] 2
T gy, A2 7-{J-?-I(L)+ Marb(2r-1)] 4B 5y
2(23-1) (23+1) (23+3) (27 v(3-3)] 2
e Sl enaeea) ? g,
2 2
9(J-1) (J+2) (27+1)°(a-Ub
R ( )§5}(%£1)+ Lazi) ©
2(23-1) (23+1) (23-3) (27 o(g+4)] @
J — JJ_]_ ( )§5J‘E_J4)-§_) )( +3) [a (J+ )] 2Be§4
J-2)(2 - : 2
R R €T J+%3(2J 3) [a-p(25+3)] .7,
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Table VII. (concluded)

R branches

J-1 = I,  3(23-1)(2045)(a-b)?/7 28, (1+25,)
71— 3, 2(J-1)(2J-1%§2J+3) [a-p(J+3)] ° o, (143,
1 =g, 6(J—1)(2J§gg(2J+l) [a-b(2g+s)] 2 2,
71—, 3(J—2)(2J%)5§2J—3) [a-b(35+4)] 2 25,(1-3,)
PRRENEES (J—2)(2J-3%é§J-5) [a-n(4+3)] 2 2B, (1-23,)
3

1
a=}(2) 7 [ Byreyuhs/3uyt Ogyh 105/ (bf3)] 5 beh, 5oy (Bo/ioy) ®

To find the relative intensities of single lines in a vibration-rotation band such
as 2»,, we must multiply & by

(1) the factor [F(R'Ky’', RKz)]’ as determined by the appropriate linear com-
binations of final and initial states of tetrahedral symmetry;

(2) the factor exp[—B.R(R + 1)/kT] which is the Boltzmann factor giving
the relative populations of the initial rotational states;

(3) the factor g which arises from the statistical weight due to nuclear spin:
For CH,, ¢ = 5, 2, 3 for vibration-rotation states of symmetry A4, or 4., E, I
or Fs , respectively. For CDy, g = 15, 12, 18 for the corresponding states.

(Tt should be noted that the ® values are also useful for intensity calculations
when the tetrahedral fine structure is not resolved. This comes about because

2IF(R'K, RK)] = 2,

Kg
from the orthonormality of the vector coupling coefficients. However, simply
summing over K does not properly take into account the statistical weights
due to nuclear spin. For the tetrahedral XY, molecule with the ¥ atoms having
nuclear spin I, these weights are in the ratios (I° + I + 3)/I(I + 1):2:3 for
A:E:F. The sum over K effectively uses the ratios 1:2:3, instead. Therefore,
we add to this sum the quantity 3/I(I + 1) times the value of [F (R'Ky', RK2)V
obtained for the A — A transitions involved in the unresolved line. Then this
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corrected sum multiplied by the appropriate & and Boltzmann factor gives the
relative intensity required.)

Given the theoretical energies and relative intensities, we wish to try to ac-
count for the observed spectra.

D. Comprarison or (R1) with EXPERIMENT

1. 2v; of CHy and CDy

The observed infrared bands at 6000 cm™ in CH, and at 4500 em ™' in CD,
have been identified as the overtones 2»; . Each appears to consist of a single
P, Q, and R branch, with extremely small tetrahedral splittings in the case of
CH, (4), and relatively large splittings in CD, (5).

The theoretical prediction of five P, @, and R branches cannot be reconciled
with these observed spectra. For J = 6 the predicted relative intensities for the
five branches are all comparable. There are no specific values of the intensity
factors ¢ and b (Table VII) for which the intensities of four of the five branches
become accidentally very small compared with the intensities of the fifth.

The possibility that all five branches coalesce into a single branch can be
ruled out. This would require an effective {5 value of zero, and a superposition of
the tetrahedral fine structure lines. But the effective {3 values for the funda-
mentals are 0.05 and 0.16 for CH, and CD,, respectively. The ¢; for CD,, es-
pecially, could not change enough from »; to 2v; .

2. 2v, Of CH4

A difficulty in treating the energy levels accurately is that 2», is in Coriolis
resonance with (» + ») at 2826 cm™'. The Coriolis term can cause serious
perturbations which are not fully included in our calculation even to third order
in perturbation theory. However, we might expect our results to be sufficiently
accurate to show that the theoretical treatment based on (R1) does account for
the observed spectrum of 2y, .

The energy matrices for J £ 6 have been calculated and diagonalized. The
best fit to 2»4 of CH, is obtained with the following parameters (in the notation
of Table VI): B = 515 em ', D = 10 em™, (B¢) = 2.3 em™*, for all final
state levels; e = 2600 em™", Gy = 3em™ ', Fiy = 0; —D, = —4.5 X 10 *cm™,

Fsy = 0.00075 em™, Zy, = —0.015 em™, Nuay = —0.075 em™, Tu = 0.667
em”'. The ground-state rotational constants used (1) were B, = 5.24 em™,
Dy =10"em™, —D, = —4.5 X 10~° em™. The relative intensities of the tetra-

hedral fine structure lines were calculated with b assumed to be negligible. (We
estimate b/a &~ +107°.) These intensities were calculated for all lines with
J = 5, except for a few particularly pertinent lines in J = 6. For 7 < J £ 10,
where our approximations become poorer, the energies were calculated in
“dominant approximation,” i.e., neglecting matrix elements off-diagonal in R.
The relative intensities of these lines were not calculated.
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Fic. 2. Comparison of theory (R1) with observed spectrum 2v, of CH, . This is a portion
of the spectrum in Ref. 3. | —Line position and relative intensity calculated aceording to
methods of subsections B and C. 7—Line position calculated as for |, but relative intensity
not calculated. ¢ —Line position caleulated in “dominant approximation’, but intensity
not calculated.

In Fig. 2 is the comparison between the predicted and observed spectrum
from 2473 em™ to 2513 cm . (A similar comparison was made throughout
9514 ecm™ to 2763 em ") The fit is qualitatively good for the entire region cen-
tered at 2600 em ™. We conclude that 2», does consist of the five P, @, and B
branches predicted by (R1). However, the great number of lines and the com-
plexity caused by the tetrahedral splittings prevents a positive identification of
individual lines, and makes a more certain analysis impossible at this time.
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1V. THE NEW REPRESENTATION (R2)
A. GENERAL Discussion

1. The New Approximation
The striking feature of 2v; of CH, is its single P-, -, and R-branch structure,

characteristic of the fundamental v; . The tetrahedral splitting appears to be very

small. However, in the corresponding band of CD;, the tetrahedral splitting is
appreciable. The resemblance between the appearance of 2»; and the funda-
mental »;, with £ = 1 and F, vibrational character, is a clue for the explana-
tion of 2»;

The £; = 2 vibrational states of 2»; are linear combinations of two vibrational
substates of symmetry E and F», see (4). The £ vibrational substate can con-
tribute to the intensities of 2»; only through the vibration-rotation interaction

!
term S; in (12). Since this contribution must be expected to be extremely small,

the major contribution to the intensities of 2»; arises through the F, vibrational
substate. If the tetrahedral splittings are small compared with the separation of
the five different states Jz, (IFig. 1), £ and R are approximately good quantum
pumbers and (R1) serves as a good approximation for eigenfunctions of the
full vibration-rotation Hamiltonian. In this case the wave functions of all five
states Jr involve linear combinations of both the £ and F» vibrational wave
functions of the {; = 2 vibrational state, so that all five states must be expected

to oive rise to infrared anhvg lines of comnarable 1hfan1fv

LG Z1VE iS50 L0 LIHIAIT0U QULIVE 108 O COILIPARIGINC 1RVEHSIVY

In general, the vibration-rotation tensor perturbations give tetrahedral
splittings which are small compared to the energy differences between the five
J » states. However, if a pure vibrational tensor gives a splitting of the £ and F
vibrational substates which is large compared with the 2B,;(P-1;) separations,
£ and K are no longer even approximately good quantum numbers. Then the
conventional representation (R1) is no longer a good approximation.

The pure vibrational perturbation term 7';053(tensor), given explicitly in
Ref. 1. can cause the splitting described. The resultant separation between the

iy LAl LAt LO Spllilly QUSUIIDTAE, 220 TSRV Ppala il DELWeLIL

I and F. vibrational states is 20T . A very rough order of magnitude caleula-
tion, using estimates (14) of the cubic and quartic potential constants, gives
Ty~ 9 em . If Ty is large, energy matrices for the £ and F, vibrational sub-
states may be diagonalized separately to a good approximation. The largest
off-diagonal elements will be contributed by —2B.;3(P-1;). In CH,, the error
in the calculated energies due to neglecting this connection between the & and
F, vibrational substates is about 0.25J°/20T3; (in em ™). For Ty = 10 em " and
J = 5, for example, this error is about 0.03 ecm -1

We now make the assumption that T3; is sufficiently large, so that, to a good
approximation, we may calculate the energies for the F, vibrational substate
without considering connections to the K vibrational substate. Under this as-
sumption, we can no longer use the angular momentum coupling scheme of (R1)
because we have isolated a portion of the f; = 2 vibrational state. The new wave



OVERTONES OF SPHERICAL TOP MOLECULES 405

functions will be linear combinations of products of F. vibrational eigenfunctions
with rotational eigenfunctions y,x .

The new representation (R2) is formulated as follows: The Hamiltonian
through first order is now considered to be

Ho + T33033(tensor) -— 2Be§'3(Pl3)

Any function of the form ¢,x¢, where ¢ = ¢(011) or ¢(101) or ¢(110) in the
notation of (4), is an eigenfunction of Hy + 7T30xn(tensor) with eigenvalue
BJ(J + 1) + w/2 + wn + Tws/2 + 3ws/2 — 875 . However, these functions
are not eigenfunctions of (P-l;).

The correct representation is

Yux, = 2 (LImK | VLK, )én™Vix (16)

where
¢ = —(2)p(011) + p(101)], o = $(110), ¢_x = —¢n*.  (17)

Comparing (16) with (2) we see that the vibrational functions are characterized
in (R2) as if they belonged to a vibrational angular momentum of one unit
instead of two. The (LK) are labels analogous to (RKz). Note, however, that
L=P—1;.

The labels (LK.) give the symmetry properties of the ¥.x, under the full
rotation-inversion group. Suppose in (2) we use the F. vibrational functions
corresponding to £; = 1:

éu = —(2)7(100) + ¢(010)], ¢o = $(001), ¢4 = —¢11.  (18)
Then (2) becomes
Yexp = 2 (1JmK | LJRKg)inbx . (19)

Comparing the right hand sides of (19) and (16), we see that only ¢ is replaced
by ¢ . But according to (18) and (17), ¢1» and ¢, have the same symmetry.
Therefore the labels (LK) imply the same symmetry as do (RKz). This “preser-
vation” of symmetry will be very useful in factoring the energy matrices, and in
formulating the symmetry selection rules.

The matrix elements of (P-1;) are now

(JL'E, | (P-ly) | JLK,) = =%4[J(J + 1) + 2 ~ L(L + 1)Bwdryxs -

This is just the negative of the corresponding matrix element for the fundamental
v . [This result is obvious if we note that operating on ¢, with the spherical com-
ponents of 1; gives fi,6» = V2 (1lpm | 111(m + P))émip , dropping the func-
tions of E type. This is just the negative of fi,¢1m = — V2 (11pm | 111(m + p))

Pi(mtp) ]
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Ho +T33 Oz3z(tensor) - 2BE3(P-Ez) + Ho +HYy

Fic. 3. Splittings of the energy levels of 2v;(f; = 2) due to successive perturbation terms
in the Hamiltonian; (R2}.

The energy levels determined by Hy + T'50:(tensor) for the F, vibrational
substate have a 3(2J 4 1) essential degeneracy. These energy levels are split
by the (P-1;) term into three levels: one (2J + 3)-, one (2J + 1)-, and one
(2J — 1)-fold degenerate level, according as L = J 4 1, J, and J — 1, respec-
tively. Further splittings of these levels into levels characterized by tetrahedral
symmetry arise from the higher order terms in the Hamiltonian. The effects of
successive perturbations are shown in Fig. 3, which is to be contrasted with
Fig. 1.

If we calculate the matrix elements of the electric dipole moment using (R2),
we find the selection rules AL = AK, = 0. These are precisely the same as the
selection rules for B and Ky in the fundamental. They imply a single P, @, and R
branch. To first order in the energy, the spacings in the P and R branches are
2B.(1 + §3). For 2»; of CH, this becomes about 10.9 em™. This agrees approxi-
mately with the observed spacings for low J-values, but higher order terms will
give appreciable contributions as J increases. The relative intensities and con-
tributions to the energy from higher order terms in the Hamiltonian are calcu-
lated in detail in Sections B and C below.

2. Relation between (R1) and (R2)

The energy matrices for (R1) take into account all terms in the Hamiltonian
through third order. As we have seen in Section III, the term T'503(tensor)
gives rise to matrix elements off-diagonal as well as diagonal in the rotational
angular momentum quantum number R. If we take successively larger values of
T3 (compared with the differences between diagonal matrix elements) we ap-
proach the approximation of (R2). Therefore, as T3 becomes sufficiently large,
the energy levels J resulting from the diagonalization of the matrices of (R1)
should go over into the levels J, of (R2) for the F, vibrational substate, plus the
energy levels for the E vibrational substate. The levels for the E vibrational
substate should become separated from those for the F, vibrational substate by
about 207’33 . This numerical calculation was done for 2v; of CH,, for J < 6
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(18). The results of the calculation agree with the analytic predictions repre-
sented in Fig. 3.
The 4 = 2 eigenfunctions for (R1) were formed according to (2):

Yexg = 2 (2JmK | 2JRK z)$smisx ,

with the ¢, defined in (4). The ¢k, of (R2) are linear combinations of these

'l/RKR H

Yk, = —i {[(LJL(K, — 1)| LJLK)(2J1(K, — 1)] 2JRKz)

—(WJ(=1)(Ky + )| 1JLK ) (2T (= 1) (K + 1)| 2JRKz) Wr xg~x,
+ (2)™2(1JOK , | 1JLK )[(2J2K . | 2JRK 2)¥r xpery +2
—(2J(—2)K, | 2JRK 2)¥r xperysl}.
B. ENERGIES

The terms in the Hamiltonian which can contribute to the energies of 2»; to
third order are (1)

Ho + TuOun(tensor) — 2B.5(P-L) + Guli’ + 20 Xuibs(ps” + 1)35(p)" + 1)
—DP' + FoP(P L) + 20 Yib5(p" + 1P + 2 Muis(pi + 1) (P-1y)
+ Z3.0ppss(scalar) — DOpppp(tensor) -+ F3,0ppps(tensor)
4 Z3,0ppss(tensor) + Nis30psss(tensor).

Since Opprp(tensor) is independent of vibrational coordinates, its matrix
elements are the same as for v; . Oppps(tensor) depends on vibrational coordinates
only through components of 1; . As a result, its matrix elements are the negatives
of those for vs.

The operators Opps (scalar) and Opps (tensor) are built up from ry, and
second-rank rotational tensors Pi, ; Opus is built up from 2, , 414, and Py, . For
the vibrational wave functions of the fundamental we have ry,¢n =
—(5/3)"*(21pm | 211(m -+ p))¢im+n - There is no such simple relation for
r2p$m . Therefore the matrix elements of the operators in question cannot be
readily evaluated by application of the Wigner-Eckart theorem. But we can
define an operator ps,: paze = Teg2, Pex1 = —T2p1, P = 720 ; and then
p2pPm = +(5/3>1/2(21W I 211(m + P))dm+s -

Next we express Oppsgs and Opgs; in terms of ps;, instead of 7z, . For the Oppss
operators we proceed as follows: The tensor T'(kq) is defined by

T(kq) = . praPas(2208 | 22kq).

If we also define
Qpp33 (SC&I&I‘) = (5)II2T(00),
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and
Qrpsy (temsor) = (70)'°T(40) + 5[T(4 — 4) + T(44)],
we find that
Oppss (scalar) = L§Qppy (tensor) — 14Qpps (scalar),
and
Opps; (tensor) = L&Qppy (tensor) + (24/5)Qppy (scalar).

The matrix elements of 2spss (scalar) and Qppy (tensor) will be the negatives of
the matrix elements for »; of Oppss (scalar) and Opgz; (tensor), respectively.
Proceeding in a similar way for Og;s; (tensor) we define

T'(4g) = D Vi P1s(31a8 | 314¢),

and

T'(00)

]

D Via Pi(11a8 | 1100);

where

Vﬂra

]

Z pacbie{ 21ae | 21pa).

If we also define
xrss (sealar) = 3(5)'*T7(00),
and
xrss (tensor) = (70)'*T7(40) + 5[T"(4 — 4) + T'(44)];
then

Opass (tensor) = (8/5)xrs (scalar) 4 14xpss; (tensor).

The matrix elements of xes; (scalar) are simply related to the matrix elements of
(ps + r;) (P-1;). The matrix elements of xps3 (tensor) are identically zero for
(R2) because the triangle inequality is not satisfied in the vibrational part of the
matrix elements.

It is important to note that the effective rotational constants will now contain
the “tensor’” parameters Zs; and Njy, , while the tensor perturbation terms will
contain the “‘scalar’” parameter Z, . The effective rotational constants are given
in Table VIII.

The matrix elements which determine the tensor splittings depend on K, and
K. only through the vector coupling coefficients (L4K .q | LAL'K . ), where
¢ = 0, =4. The linear combinations of Y.k, given by the tetrahedral symmetry
determine the linear combinations of vector coupling coefficients which occur.
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Table VIII. Effective rctational constants for 2yé(l3=2); (r2).

Rotational Constant Effective Value
Bopp L=J%1 Be+%(Y1+2Y2+7Y3+3Y4)-2F3s—(1/15)(z3s—2423t)
Bepr L=7J Ee+§(Y1+2Y2+7Y3+3y4) - F3s+(2/15)(23s-2423t)
+
(BS3)epr L =J = 1.3 B D3-2(Myy +2Map o THo 5 o 3My ) ) +3F 5
-(1/20)(235-2uz3t) -2N3a3p
+ 1
Depg L=J7%1,J Dyt 734

Thus, the matrix elements are equal to these specific linear combinations of
veetor coupling coefficients multiplied by the functions

full' L) = g (L', LY{ =D fou(J, L', L) + Fsfua(J, L', L) + yaufaa(J, L', L)}.

The fi,(L', L) are listed in Table IX. Note that the coefficient, of fa is now
toos = var = (Zz, + Z3:)/5, instead of fwe = Z;, which was valid for »; and for
2v; using (R1). The numerical values of g;,(L’, L) times the linear combinations
of vector coupling coefficients determined by symmetry are the same as for the
fundamental, and are tabulated in Ref. 1.

The complete energy submatrix for the F. vibration-rotation states of J = 3
is given as an example in Table X. Note that the effective B value for the 3; state
is to be regarded as different from the value for the states 3, and 3, , according to
Table VIII.

In the “dominant approximation” for the energy eigenvalues, we neglect
matrix elements off-diagonal in L. In this approvimation, the tensor splitting
patterns for (R2) will be in the same ratios as those for v; (1). The observed splitting
patterns for 2v; of CDs are compared with the theoretical patterns in dominant
approximation in Ref. 5. For low values of J the agreement is quite good. As J
increases, the agreement becomes poorer because the effect of the off-diagonal
matrix elements is appreciable. In the present work the energy eigenvalues have
been calculated through J = 10, with matrix elements off-diagonal in L taken
into account. These calculations are applied to the observed spectra 2p; of CD,
and CH, . The numerical results are described in Part D of this section.
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Table IX. f)5(L/,L)=g, (L,L) {-Defoyy(3,L ,L)+F3tf134(J,L/,L)
+%gémgLL,L”

L/ L £,5(L7,L)

J+1 J+1 E2J+7)(2J+6)(2J+5)(2J+4)(2J)(2J‘1)/(2J+l)(2J+2) ] 2
¢ 12 . N VA
{-3(207-5043)D+ (3-1)F5 +3 iy }

5 - -B(23+6) (23+5) (23+4) (25+3) (25-1) (25 -2) /2(25+1) (25+2) ]
(23-3)D+3(5-3) Py +4 Y5, )
1
J-1 J+1 [B(23+5) (23+4) (23+3) (27-2) (23-3) /2(23+1) ] 2&-3Dt—%F3t
3 ¥
J J [(25+5) (23+4) (23+3) (27-1) (27-2) (23-3) /(23) (27+2) | Z
2
A-(g +J-10)D+4F 5, - r3t}
1
-1 g -[ 5(23+4) (23+3) (27-2) (23-3) (23-4) /2(23) | 2
RS 1
. {(2J+5)Dt+2(J+Uf)F3t-2 L
1
J-1 J3-1 [2J+3)(2J+2)(2J-2)(2J-3)( -y (23-5) /(23) (23+1) ] 2
i 1(24° +9J+10)D -(J+2)F 2 Yo )
V)
Y., =22, +2..)
37535773t/
C. RELATIVE INTENSITIES AND SELECTION RULES
We calculate the relative ,nteps1u es for (R2) by using the transformed clectric
dipole moment. To second order of approximation, (f|1II, | ¢) becomes

1Y

rlr‘ - Y Y R ey A N . e 9 / TR . < . N
j [Z[, AJmK |1J L KL.)d);;’th’K’JT(H\Z — I -, 81 + S:])(000)¢,x, (20)

oj=
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TABLE X

Inergy sub-matrix for F, states of J = 3; (BR).

J
L 34Fp 33Fy 3oFp

L | 12Bepp-144Desy

-6(BT3)ers
B4F2 | -(390/7) (-3Dy+2F34+¥¥51)

12Bopp-144Dgr s

35Fp | 150(7)-H(5Dy+3¥s) +2(BY3) s
-5(-2Dy +4F5¢- U5

12B 5 5-144D
1 -1 eff eff
3.5 | (60/7)(5)3(-3Dy-EF 34, -100(35)"3(11Dy | 45(5%,) .,

7
+3%5¢) +5F3-3¥34) -(16/7) (273D ~5F 54 +3¥s)

where ¢(000) is the ground-state vibrational wave function. The considerations
of Section ITI. D show that the contribution from [II3”, S;] can be expected to be
negligible.

Explicit calculation gives

(I — 45, Si + S)$(000)Yux = av/2 2 dehabix

where @ is defined at the end of Table VII provided we interchange subscripts 3
and 4. Then (20) becomes

—aV2(JIMO | J1I' MY, (W (—g)K' | 1J' LK, Y(1J (—¢)K' | 1T JK)

= —a/2(J1MO | J1T' M )8y,

using the orthonormality of the vector coupling coefficients. Finally we find the
expression analogous to (15):

Mg | (M. |9) [ = 24°(2J" + 1). @1)

This relative intensity factor is the same as that of the fundamental »; .

The infrared selection rules are AJ = 0, +1; AM = 0, &=1; AL = AK, = 0.
These selection rules are identical with those for »; if we interchange K and L.
Asin »; , there is a single P, @, and R branch. Also, transitions are allowed only
between states of the same tetrahedral symmetry. Moreover, the selection rule
AK,;, = 0implies a further restriction. That is, if there are several initial and/or
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TABLE X1

()BSERVED FREQUENCIES oF 2p; oF CD, CoRRECTED FOR THEORETICAL (GROUND
AND FINaL STtaTE TENSOR SPLITTING PERTURBATIONS

Observed ft_?quency sl?z::;%l G;?;txéd fCO(;r;)eecrttt.ad Observed fz;{quency E;:gé G;to;&d ?&r;f:rtzd
(em™) Bert | ety | Gemy (em™) LReby | ey | em)
P(3) FiY 444265 —0.57 | 0.01 | 4443.23
F. 1476.12| 0.14 447598 E® 43/—0.95 | 0.01 .39
F 1475.92/—0.06 .98 Fi? .40|—0.99 | 0.01 .40
A, 69/—0.27 .96 av 4443.35
av 4475.98
P(9) i
P(3) F{° 443774 1.09 |—0.02 | 4436.63
A, 1469.96| 0.33 4469.63 FiV 71 0.97 |—0.02 72
Fy 760 0.15 .61 E 4436.04/—0.68 | 0.00 72
E .64 0.04 .60 F¥ .00(—0.73 | 0.01 74
F, .25/—0.34 .59 Ay 1435.83/—0.84 | 0.01 .68
av 146960 Y 58 —0.96 | 0.00 .54
i 501—1.16 | 0.02 .68
P(5) Ay A4—-1.25 | 0.02 71
Fy 1463.55/ 0.37 1463.18 av 4436.67
F, .35/ 0.19 .16
E 4462.76|—0.39 15 | P(10) ‘
F3? .69/—0.45 14 Ay 4431.231 1.35 |—0.03 | 4429.85
av 4463.16 EM 23| 1.38 |—0.03 .82
I .23| 1.37 |—0.03 .83
P(6) FP 4429.23(—0.84 | 0.00 41430.07
E 1457.15] 0.51 1456.64 | KV .16|—0.86 | 0.00 .02
FP .08 0.45 .63 A, 4428.83/—1.07 | 0.01 442991
A 1456.95] 0.31 644 FP 67]—1.24 | 0.02 03
Fiv 17/—0.46 .63 B .59|—1.38 | 0.02 49
F .07|—0.56 .63 Py 51—1.45 | 0.03 .99
A4, 1455.96/—0.66 .62 j av 4429.95
av 4456 .62 ;
| R(0)
P Al 4500.47| 0.00 4500.47
F$Y 4450.73] 0.68 |—0.01 |  1450.04
F® .63 0.60 |—0.01 02 | R
A; 1449.61/—0.44 | 0.00 . .05 F, 4506.35/ 0.00 1506.35
PP 47|—0.57 | 0.00 .04
E .39/—0.66 | 0.01 06 || R(2)
P .23|—0.81 | 0.01 .05 E 4512.12 0.03 i 4512.00
av 4450.04 F, .08/—0.01 ‘ .09
|
P(8) R(3) !
A 1444 .31 0.92 |—0.01 4443 .38 F. 4517.85] 0.10 4517.75
» .22| 0.86 |—0.01 .35 F, .74 0.01 73
E® .21{ 0.84 |—0.01 .36 A, .59(—0.13 72
Fi°  1442.831-0.55 | 0.00 .38 .74

av 4517
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TABLE XI—Continued
Observed f{tltquency Is?;:?(: G;(t):a:d gg:rggsfi Observed fll(iquenCy Etl:fe] G;?:lltléd (;g;rpe)g’rcgfi
cm™) gerty | Pty | o) (em Jerty | pert | e
R&4) E 4549.53| 0.60 | 0.00 | 4548.93
Ay 4593 56| 0.27 4523.29 F{ 44 0.46 | 0.00 .98
F, .45 0.18 .27 A, 13| 0.25 | 0.01 .89
E .37 0.12 .25 F®  4548.52/—0.47 | 0.01 | 4549.00
F .05(—0.17 .22 F® .29|—0.70 | 0.02 .01
av 4523.25 A, .10(—0.93 | 0.02 .05
av 4549.00
R(5)
S0 4529.11| 0.42 4528.69 | Q1)
F, 4528.97| 0.32 .65 F, 4494.35 0.00 4494 .35
E .45/—0.17 .62
F& .35/—0.24 59 | Q@)
av 4528.64 F, 4494.17| 0.06 4494 .11
E .02/—0.07 .09
R(6) av 4494.10
E 4534.47) 0.67 4533.80
F® 47 0.64 .83 1| Q)
A, .33| 0.56 77 A, 4494.11; 0.37 4493 .74
FY  4533.63/—0.11 74 F, 4493.81| 0.09 .72
F, .44(—0.28 72 F, .541—0.17 71
A, .38/—0.45 .83 av 4493.72
av 4533.77
Q@)
R() F, 4493.69| 0.46 4493.23
D 4540.10| 1.01 |—0.01 4539.08 F, .69 0.46 .23
i 06| 0.97 (—0.01 .08 E .27 0.02 .25
A, 4539.18| 0.14 | 0.00 .04 4. 4492.68|—0.51 .19
F®  4538.95/—0.06 | 0.00 .01 av 4493.23
E .80|—0.20 | 0.01 .01
2 A71—0.56 | 0.01 .04 || Q(5)
av 4539.05 ® 4493.27 0.66 4492.61
E .06| 0.45 .61
R(8) F. 4492.47|—-0.16 .63
A, 4545.57) 1.62 |—0.01 | 4543.94 F{®  4491.98/—0.63 .61
& .57 1.53 | 0.01 4544.05 av 4492.62
EwW 57| 1.40 |—0.01 .16
F¥  4544.36] 0.31] 0.00 .05 | Q)
F® .03| 0.03 |—0.01 4543 .99 A, 4493.01| 1.10 4491 .91
E®  4543.53|—0.52 | 0.01 | 4544.06 F, 4492.95 0.82 4492.13
F? .39|—0.68 | 0.01 .08 F{ .38| 0.50 4491 .88
av 4544.05 Ay 4491.73|—0.21 .94
F® .17/-0.74 .01
R(9) E .04|—0.85 .89
2 4550.99] 1.93 |—0.02 4549 .04 av 4491.95
F® 99| 1.92 [—0.02 .05
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TABLE XI—Continued

Observed frequency ftl:tael G;(t):lgad Cigll:r;g?zd Observed fr_equency S:l;,ltll G;:;x&d Cf)g:r;glt'gfi
cm™1) pert. pert. (cm-) . (cm ! ert, pert, (erm™)
(em™) | (em™) em™!) | (cm™)

QT Fi®  4491.13] 1.95| 0.02 | 4489.20
F®  4492.32] 1.35| 0.01 4490.98 F®  4490.72| 1.57 | 0.00 .15
E 4491.98| 0.96 | 0.01 | 4491.03 A, 4489.98| 0.93 | 0.01 .06

P 73] 0.64 | 0.00 .09 F®  4488.94/—-0.22 | 0.01 17
As 4490.98/—0.16 | 0.00 .14 E .81/—0.33 | 0.00 14
F&® .22/—0.93 |—0.01 .14 Fi 4487 .55/—1.66 |—0.02 .19
F® 4489.65/—1.32 |—0.01 4490.96 F® .23/—1.91 |—0.02 .12

av 4491.05 av 4489.16

Q@) Q(10)

F{¥  4491.73| 1.67 | 0.01 4490.07 E®  4401.13| 3.25| 0.02 | 4487.90
E® 50| 1.46 0.01 .05 F®  4490.720 2.71 | 0.03 4488.03
F® .18 1.01 ] 0.01 .13 PP 4489.98) 2.07 | 0.02 | 4487.93

7 4480.981—0.21 | 0.00 .19 A, 4488.34! 0.36 | 0.01 .99
E®  4488.81—1.31 |—0.01 11 F¥  4487.76/-0.18 | 0.00 94

i) .74/—1.37 |-0.01 .10 F{® .36/—0.52 | 0.00 .88
A .49/—1.60 |—0.01 .08 E®  4485.77/—2.20 |—0.03 .94

av 4490.10 A, 77—=2.17 |—0.03 .91
& 61/—2.30 |—0.03 .88

Q) av 4487.93

A, 4491.50| 2.31 | 0.02 | 4489.21

final states of the same tetrahedral symmetry, only those transitions are allowed
which satisfy AK, = 0.

Since (21) is independent of the L and K, quantum numbers, its value is
independent of the tetrahedral symmetry of the initial and final state. The rela-
tive intensity of a single line in a vibration-rotation band such as 2»; for any
transition J, — J,, is then

g(2J" -+ 1) exp [—B.J(J + 1)/kT})(2d"),
where ¢ is the nuclear spin statistical weight factor.

D. Comrarison or (R2) witH EXPERIMENT

1. 2V3 Of CD4

The band of CD, at 4500 cm ™ is identified as the overtone 2»; of the infrared
active fundamental »; . The observed tetrahedral splittings are appreciable, and
constitute a strong test of the theory.

The energy matrices of (R2) have been diagonalized numerically through
J = 10. The theoretical tetrahedral splitting patterns are determined through-
out the spectrum by only three parameters: D, , Fy,, and v5, = (Zs. + Zs).
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These are coefficients of terms approximately J*, J°, and J® dependent, respec-
tively. We obtain the best fit by taking D, = 1.1 X 10 °em ™, F3, = —1.4 X 10~*
em™, and v, = 1.16 X 107> em™". The theoretical value (1) of D, was used. This
constant also determines the ground-state tensor splittings which amount to
only a few hundredths of a em™ even for J = 10.

The predictions of (R2) are compared with the observed spectrum by ‘“cor-
recting” the observed line positions for the predicted ground and final state
splittings. This comparison is given in Table XI for the P, R, and @ branches. The
“corrected”’ position for the transition 7:F — 6;E, for example, is 4449.39 +
66 + .01 = 4450.06 cm™". If all the predicted splittings were exactly right, the
corrected lines for a given J, set would all coineide in position.

We use the average values of the weighted P and R branch corrected line
positions to evaluate certain linear combinations of the effective rotational
constants. We find

B + By + 2(Bt;) = 6.00 £ 0.02 em™,
and
B — B, = —0.050 == 0.004 cm™,
(using D & Dy = 2.5 X 107° em™', the theoretical value). By is the ground-state

FO R p, o f2 e
T T 1 [ [ 1
FO g0 EF® 9 Ao 22,
[ ] Bl ! [ 11
i UVMM\J\M\{U\'NU\W
448742 448529 4490.98 449268 449435
JZ_L_Izl [ | Ul
I
w FOOF A FERYA, ERFERF
A E 7 4 21
LU | IJJIillllll
F A Ry e

I |

ERD A 6 R Fp A
Fra. 4. Q branch of 2v; of CD, . Identification of lines according to (R2)
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value, B is the effective value for the P and R branches, and (B¢;) is the effective

value common to all branches. If we further use the value By, = 2.633 & 0.001
em” nhfmnpr] from the Raman spectrum of CDy (17), we find B = 2.583 =4 0.005

valllCd 11O VA0 RAlllall SPOCLIVHL O Vg L ve QA 0O L2200 D VLUVD

em™, and ¢ = 0.152 + 0.002 (effective value).

The Q-branch analysis is complicated by the fact that lines belonging to differ-
ent J-values overlap because of the comparatively large tetrahedral splittings.
Figure 4 gives the identifications through J = 10. From 4494.35 to 4490.98 cm ™
all observed lines have been accounted for. It is possible that some lines belonging
to J = 11 also fall into this region. Below 4490.98 cm " there are some Q-branch
lines which have not been accounted for; these presumably belong to J = 11

The weighted average corrected line positions can be fit by

Q(J) = const. + (B — B)J(J + 1) + (Dy — D)J(J + 1)°.

According to Table VIII, the effective B value for the @ branch may differ from
that of the other branches. We find

B — B, = —0.062 £ 0.002 cm™,

and const, = 449448 em
<1sng Dy). Then B = 2.571 + 0.003 em™.
2, ‘)Vg Of CH4

£ Y

The simple appearance of the band of CH, at 6000 cm ™, identified as 2v; , has
been accounted for by (R2). The tetrahedral fine structure, which has been
partly resolved by Rank et al., should also be accounted for by the theory. How-
ever, the splittings in 2»; of CH, are very small. For example, in P(7) of CH, the
overall splitting is 0.21 em ™, while in P(7) of CD, it is 1.50 em .

The best fit to the observed splittings is obtained with D, = 4.5 X 107" em ™
(approximately the theoretical value), Fy, = —1.25 X 10" em™, and
vy = —5.0 X 107 em™. Line positions corrected for ground and final state
tensor splitting pertmba‘mens are given in Table XII. Since the tensor splittings
are very small, smaller than would be expected from order of magnitude con-
siderations, it is evident that fourth and higher order terms in the Hamiltonian
may give relatively sizeable contributions. These contributions increase with ./,
and contribute to the apparent discrepancies in Table XII for J = 7. We also
note that the value of F; used to fit 2»; of CH, is different from F3; = 0 used to
fit »3 of CHy (7). This may be the effect of higher order terms which are not
negligible in 2y; , but are negligible in »; where the tensor splittings are larger
(for example, the overall snhffmu in P(7)is 0.80 cm -1 )

The following combinations of effective rotational constants have been ob-
tained: I'rom the P and R branches,

B + By, + 2(Bg;) = 10.76 &+ 0.02 em ™,



TABLE XII

OBSERVED FREQUENCIES OF 2v; oF CH; CORRECTED FOR THEORETICAL GROUND
AND FINAL StaTE TENSOR SPLITTING PERTURBATIONS

Ground

Observt(ag nf{]e)quency ft;a?ttael G;%_ut?ed Cfg;rgg:gi Observ?d fl';e)quency Eltraﬁl state Cfg:r;glt_id
femy) | @) (em™) - Em) | (cm™)
P2 E®  5914.999 | 0.169] 0.040| 59014.87
F, 5983.180| 0.002|—0.001| 5983.18 i 916 | 0.006| 0.005 .92
E .180/—0.003| 0.001 A8 Ew 769 |—0.204/—0.048 .03
A, 769 |—0.226|—0.053 .94
P@3) F® 748 |—0.212| 0.024 .98
A, 5972.130| 0.018| 0.002| 5972.11 av 5914.92
F, .100| 0.003| 0.000 .10
F, .100{—0.009—0.001 A1 PO)
av 5072.10 | A,  5903.223 | 0.201) 0.075 - 5903.01
F 223 | 0.2170 0.006 .01
P@) & 183 | 0.258) 0.067] 5902.99
F, 5960.886/ 0.029| 0.004] 5960.86 | A, 113 | 0.118) 0.032]  5903.03
E .835(—0.005|—0.001 84| E .010 |—0.011] 0.000 .02
F, .835/—0.016/—0.002 .85 | F5Y  5902.985 | 0.014| 0.057 .03
Al .835|—0.031{—0.004 .86 | F&O .931 |—0.315{—0.081 .17
av 5960.85 i .931 |—0.328/—0.085 17
av 5903.06
P(5)
F&  5949.611 0.049/—0.007| 5949.56 | P(10)
E .611| 0.036| 0.006 .58 2 5801.792 | 0.384/—0.010] 5891.40
Fi .552|—0.025|—0.004 57l E® 754 | 0.332] 0.094 .52
i .524/—0.049| 0.007 .58 @ .640 | 0.285 0.082 .44
av 5049.57 | 4, 612 | 0.146| 0.045 .50
5840
P®) v .491 |—0.050/—0.130 .41
Ay 5938.204| 0.094 0.017| 5938.13 | F" 455 | 0.003| 0.004 .46
F, .174| 0.071] 0.013 12| A, .371 |—0.457|—0.128 .70
FP .174| 0.045|—0.014 121 Ew .341 |—0.472(—0.133 .68
A, .093|—0.049|—0.009 13| P .064 |—0.468! 0.108 .64
F$ .063|—0.076| 0.008 15 av 5891.51
E .063|—0.085|—0.015 .13
av 5938.13 || R(0)
A, 6015.659 | 0.000 6015.66
P
F$ 5926.675 | 0.132| 0.028) 5926.57 | R(1)
E 617 | 0.089| 0.019 55| F,  6026.223 | 0.000 6026.22
& 617 | 0.062| 0.013 .57
A, .573 | 0.010| 0.003 57| R@)
F{v .482 |—0.122|—0.026 58| E 6036.652 | 0.000| 0.001] 6036.65
FV 462 |—0.139/—0.029 57| F 652 | 0.000/—0.001 .65
av 5926.57
P(8) R(3)
F&®  5015.053 | 0.190] 0.045| 5914.91 | F,  6046.960 | 0.004/—0.001] 6046.96
F® .053 | 0.097|—0.050 91| Fy .960 |—0.001 0.000 .96
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TABLE XII—Continued

Observed ffcle)quency I?t!:%l: G;‘tJ:t:ed Cfg:r;g;ifi Observt(zd fff)quency ftglﬁzl G;Eitx:zd ?g;r;gi_d
e @) | @ | - @) | oy )
A 6046.949 |—0.006| 0.002] 6046.96 | F{¥ 6106.250 | 0.113|—0.081] 6106.06
E .077 | 0.005| 0.000 .07
R4) F® .062 |—0.002] 0.057 12
A, 6057.094 | 0.012(—0.004] 6057.08 | A, .062 |—0.025/ 0.032 .12
F, .094 { 0.006/—0.002 08| FP .062 |—0.066/ 0.006 13
E .094 | 0.002/—0.001 09| FP  6105.657 |—0.079 0.067  6105.80
F, .077 |—0.011! 0.004 09| A, 643 |[—0.001] 0.075 .81
av 6057.09 av 6106.04
R(5) Q)
F?  8057.151 | 0.019] 0.007| 6067.14 | F,  6004.842 | 0.000 6004.84
Fy 151 | 0.011)—0.004 14
i .091 |—0.019|—0.007 .10 || Q@) :
E .091 |—0.015| 0.006 A1) Fy  6004.634 | 0.000—0.001] 6004.63
av 6067.12 | E 617 | 0.001! 0.001 .62
av 6004.63
R(6)
E 6077.061 | 0.033/—0.015 6077.01 | Q(3)
FP .034 | 0.030] 0.008 01| F.  6004.302 | 0.001] 0.000 6004.30
A, 034 | 0.022—0.009 00| F .302 |—0.001{—0.001 .30
9 6076.954 |—0.017|—0.014]  6076.96 || A. .275 | 0.000| 0.002 .28
F, .954 |—0.022| 0.013 .99 av 6004.30
A .930 |—0.036| 0.017 .98
av 6076.99 | Q(4)
E 6003.861 | 0.001|—0.001] 6003.86
R(7T) Fs .861 |—0.001|—0.002 .86
{9 6086.859 | 0.052/—0.029/ 6086.78 | A, .861 {—0.002/—0.004 .86
F® 816 | 0.049|—0.026 4l Ry .825 | 0.002] 0.004 .83
4y 775 |—0.005/ 0.003 78 av 6003.85
2 .666 |—0.021| 0.013 .70 ;
E .666 |—0.031| 0.019 72 | 9B
P 648 |—0.048| ©0.028 72| FP 6003.285 | 0.005/—0.007| 6003.27
av 6086.74 | E .242 | 0.004] 0.006 .24
F, .242 |—0.001|—0.004 24
R(8) F .228 [—0.005| 0©.007 .24
Ar 6096.519 | 0.082|—0.053| 6096.38 av 6003.25
Ew 448 | 0.077|—0.048 .32
F® .399 | 0.079| 0.024 .34 | Q)
F .399 |—0.005| 0.005 A1 F® O 6002.5% | 0.006/—0.014| 6002.57
F{V .399 |—0.028/—0.050 38| A, .534 | 0.013] 0.017! .54
E® 206 |—0.057) 0.040 30| F. 534 | 0.010 0.013 .54
@ .191 |—0.065| 0.045 30| A4, .534 |—0.003|—0.009 .53
av 6096.35 | E .534 |—0.008|—0.015 .53
F® .512 |—0.009! 0.008 .53
R(9) av 6002.54
D 6106.302 | 0.115—0.085 6106.10
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TABLE XII—Continued

Observt(e::i uf{le)quency Et:;:t:el (ilgggd Cfg:';:lt_g.d Observed frequency ilantzl G:?:;ltl;d (%g:r;g:fi
perty | By | (emn) (em) ety | &y | ()

QM) F  5999.626 |—0.060—0.081) 5999.61
M 6001.736 |--0.023(—0.020| 6001.73 | FP .626 |—0.064/—0.085 .61
F 736 |—0.017|—0.026 3| A, 518 | 0.088] 0.075 .53
E .681 | 0.016] 0.019 .68 2 .518 | 0.061| 0.067 .52
PP .681 | 0.012] 0.013 68| Ay 518 | 0.035| 0.032 .52
A, .681 |—0.001| 0.003 69| E .518 |—0.006| 0.000 .52
& 655 | 0.023] 0.028 .66 ® 482 | 0.000| 0.057 .54
av 6001.70 av 5999.56

Q@) Q(10)
FiV  6000.743 | 0.025—0.050| 6000.67 | F\” 5998.437 | 0.100—0.010 5998.33
FP .666 | 0.030| 0.045 .67 o .437 |—0.016|—0.130 .32
E® .666 | 0.035| 0.040 671 A, .320 |-0.097|—0.128 .29
o .666 |—0.001 0.005 67 E® .320 |—0.098|—0.133 .28
E® .666 |—0.033|—0.048 65| E® .280 | 0.117| 0.004 .26
A, .666 |—0.040{—0.053 65| FP .280 | 0.077| 0.082 .29
P .638 |—0.036| 0.024 70 | PSP .280 {—0.001, 0.004} .29
av 6000.67 | A, .238 | ©.627 0.045 .26
® .21t [—0.102 0.108 .42
Q) av 5998.31

F®  5990.626 | 0.052] 0.006| 5999.58

s The number of observed lines in P(10) is ene greater than the number predicted by
(R2).

and
B — By = —0.063 & 0.004 cm™;

from the @ branch,

B — By = —0.058 & 0.002 cm ™,
and
const. = 6004.96 cm ™.

Using the ground-state value B, = 5.240 em ™", determined from the infrared
active fundamental »; (1), we find B = 5.177 & 0.004 cm™ (P and R branches),
B = 5.182 + 0.002 cm™" (Q branch), and {3 &~ 0.0327. These may be compared
with the corresponding constants determined in Ref. 7 for »; :

B=5201cm™> (Pand R), B = 5191 (Q), and ¢ = 0.0547.
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