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The problem of determining the electromagnetic radiations from a given
charge-current distribution situated in a plasma in the presence of a uniform
external magnetic field is solved. Explicit expressions for the asymptotic elec-
tromagnetic fields are given for the case of a cold plasma. The resulting expres-
sions simplify considerably in the case where the frequency of the wave is much
less than the electron gyrofrequency or the plasma frequency. Here it is found
that the radiation is confined to a cone whose generator makes a constant angle
of about 20° with the external magnetic field. The fields diverge on this cone
but the divergence is so weak as to cause no physical difficulty. Another result
of interest is that a purely longitudinal current, of which the simplest example
is a pulsating spherically symmetric charge distribution, will radiate in this
medium while, as is well known, such a charge distribution will not radiate in an
isotropic medium. As an example, the low-frequency spectrum of radiation
from a radial burst of charge is calculated.

I. INTRODUCTION

This paper is devoted to the problem of determining the radiation field arising
from a given charge-current distribution which is immersed in a plasma in the
presence of a uniform external magnetic field.! This problem is of special interest,
aside from practical considerations, because the external magnetic field provides
a screw axis and hence the medium is anisotropie, or more precisely, gyrotropic.
This anisotropy is extremely large at frequencies below the gyrofrequency of the
plasma electrons in the external magnetic field. Indeed, it is difficult to imagine
another medium in which the anisotropy is so large. One of the striking effects
to which this anisotropy leads is the confinement of the low frequency radiation
field within a cone whose vertex is at the source and whose generator makes a
constant angle of about 20° with the external magnetic field. We find, in fact,
that the fields diverge on this cone but that the divergence is so weak as to causc

* Supported in part by the Office of Naval Research. Part of this work was done in the
summer of 1960 when the author was visiting the Space Technology Laboratories, Los
Angeles, California.

1 A general introduction to the electromagnetic properties of such a medium is given by
Ratcliffe (7).
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no physical difficulty.” Another effect of some importance is the fact that a purely
longitudinal current distribution, of which the simplest example is a radially
pulsating sphere of charge, will radiate in this medium, while, as is well known,
such a distribution will not radiate in an isotropic medium. An obvious applica-
tion of this effect is the caleulation of the very low-frequency radio waves emitted
by a nuclear explosion in the upper atmosphere, for which we would predict in-
tense radiation, while the same blast occurring in the lower regions of the at-
mosphere would radiate weakly if at all.

In Section II we show how the Maxwell equations in this medium can be re-
duced to a single (rather complicated) partial differential equation for the trans-
verse part of the dielectric displacement field. Then in Section III this equation
is solved for the asymptotic fields far from the source of radiation. Since the
radiated electromagnetic energy and its angular distribution can be determined
from the asymptotic fields alone this amounts to a complete solution of the prob-
lem. The resulting expressions, however, are rather complicated because of the
complicated form of the indices of refraction and of the dielectric relation. In
order to make these expressions more amenable to discussion, in Section IV we
discuss the results in the low frequency limit. Iinally, in Section V the application
of these results to the problem of determining the low-frequency radiation from a
radial burst of fast electrons is discussed.

II. ELIMINATION OF THE LONGITUDINAL FIELD

For a specified charge density p(r, t) and current density j(r, ) the Maxwell
equations for the electromagnetic fields are:

divB = 0,
curl E 4+ (1/¢)(dB/at) = 0,

div D = 4urp,
curl B — (1/¢)(oD/at) = (4x/c)j.

(2.1)

Here we have used the fact that the magnetic field H is equal to the magnetic
induction B for a plasma. The relation between the dielectric displacement D
and the electric field E takes its simplest form if we introduce the time Fourier
transtorms of these quantities. In general we shall adopt the notation that the
time Fourier transforms of a function f(r, ¢) is f,{(r) with

L = o [Caeen, g = [Caectm. @)

2 In this respect the behavior of the fields is similar to that in the Cerenkov effect. See,
e.g., Jelley (2).
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If we assume the temperature of the plasma is low enough that the mean thermal
velocity of the plasma electrons is small compared with the phase velocity of the
clectromagnetic waves, (i.e., the index of refraction n < v/mc?/kT), then the
relation between D, and E, is given by’

E, = mD, + (n5 — 7)b-Dyb + imb X D.. (2.3)

In this expression b is a unit vector whose direction is that of the external mag-
netic field, and %y, 52, and 5; are functions of the frequency w. If the motion of
the heavy ions is neglected these funcetions may be expressed in terms of two com-
plex parameters:

r = o:pz/'w(w + 7v), Yy = w'w + 1p, (2.4)

where v is the electron collision frequency in the plasma, «y = eB/ic, is the
clectron gyrofrequency with B the magnitude of the external magnetic field, e
and m the electron charge and mass, and ¢ the velocity of light in a vacuum,
and where w, = (4xNe'/m)" is the plasma frequency with N the number
density of electrons in a plasma. In terms of x and y the funetions n1, 52, and 73
in (2.3) are given by:

l—u -y Ly 1 25)

- -ty A — s= (25
m (1 . ;17)2 _ yz ’ 2 (1 ___ .l')2 T yga UL - (2.5

If we take the Fourier transform of the Maxwell equations above we get

div B, = 0,
eurl E, — 1(w/c)B, = 0,
(2.6)
div D, = 4wp,

curl B, + ¢(w/e)D, = (47/¢}j.

Except for the special case @ = 0, which will not be important in our discussion,
the first Maxwell equation is now a consequence of the second which may be
written:

B.(r) = —i(c/w) curl E,. (2.7)
Using this expression for B, | the fourth Maxwell equation becomes:
curl curl B, — (o’/¢)D, = 1(drw/c)je. (2.8)
The third Maxwell equation is seen to be a consequence of this equation if we
recognize that

3 This equation can also be written E = ¢'D, where ¢! is the (matrix) inverse of the
dielectrie tensor ¢. An expression for ¢ is given at the bottom of p. 184 in Ref 2. The effects
arising when the plasma is not considered “*cold" are discussed by Burnett (3).
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div j, = twp, , (2.9)

which is just the time Fourier transform of the continuity equation. Hence (2.8)
together with (2.3) represents an equation for D, . Once we have an expression
for D, we obtain E, from (2.3) and B, from (2.7).

As a first step in solving for D, we recall the theorem that any vector field can
be uniquely separated into a longitudinal part, with vanishing curl, and a trans-
verse part, with vanishing divergence.* Hence we can write

D.(r) = D./(r) + D."(r), (2.10)
where
div D, = 0, curl D,” = 0. (2.11)
Inserting (2.10) in (2.8) gives:
curl curl E,/ — (&°/¢))D,’
. . - (2.12)
= {(47w/c?)j, — curl curl E,)” 4+ («°/¢’)D,”.

In this expression we mean by E. and E,” not the longitudinal and transverse
parts of E,, but rather the expressions resulting when the longitudinal and
transverse parts of D, are inserted in (2.3). The right-hand side of (2.12) will
be known if D,,” is known, and we can obtain an equation for D,” by taking the
divergence of both sides of (2.12). The result is the equation:

div D,” = 4mp,, (2.13)

where we have used (2.9). Equation (2.13) is the well-known Poisson equation,
whose solution is”:

D,”(r) = —grad f dr’ &(3)7. (2.14)
lr—r|
Taking the inverse Fourier transform of this result we find
D”(r,t) = —gradfdr"—i(—r_%. (2.15)

This is clearly just the instantaneous Coulomb field arising from the charge
distribution p(r, ¢). If we assume the charge distribution is confined within a
region of dimension a, then, fixing the origin of our coordinate system somewhere
near the charge distribution, we find for r >> a,

D’ (r, t) ~ Qr/r’, (2.16)

4 See, e.g., Panofsky and Phillips (4). This separation, which is sometimes called the
separation into irrotational and solenoidal parts, is just the separation into longitudinal
and transverse components of the spatial Fourier transform of the field.

5 See, e.g., Stratton (§); also Ref. 4, p. 9.
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where

Q= fdrp(r, £) (217)

is the total charge in the charge distribution.® Hence, we see that D” and, there-
fore, also E” fall off so rapidly far from the charge-current distribution that they
do not contribute to the radiation field, for which the electromagnetic fields fall
off like 1/r. Hence we can calculate the radiation field from D’ alone.

Knowing D,”(r), the righi-hand side of (2.12) becomes known, and this
equation can be treated as an equation for D,/(r). We introduce the quantity
g(r, t) such that

g.(r) = ju(r) + i(¢*/4mw) curl curl E,” (1) — (w/47)D," (r). (2.18)

This quantity, which has the dimensions of a current, is presumed known. Al-
though the g field can easily be shown to be transverse, it is not the transverse
part of the j field. In terms of g, , (2.12) can be written

curl curl B/ — (&°/¢)D. = i(4rw/c)g. . (2.19)

In the next section we shall show how this equation can be solved for D. in
terms of g, and, hence, in terms of j,, .

IIT. SOLUTION OF THE EQUATION FOR D

We shall adopt the notation that the space-time Fourier transform of a field
f(r, t) is fo 4 , given by

foa = o [ dr [ 0p s ) = oo A RCAY

The inverse transform is given by

flr, ) = qu /: dwe“‘”_””fw,q folr) = /dqeiq";,q. (3.2)
If now we take the space Fourier transform of both sides of (2.19) and use
(2.3) we obtain:
(1 — n’p)Dl g — 2 (s — m){;‘D;,q(E — kb)Y — infnok-Bk X D., (33)
= — (47/w)8u .,
where we have set
q = n(w/e)k, 3.4

8 The total charge is, of course, independent of time.
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with k a unit vector pointing in the direction of q. In obtaining (3.3) we have
used the fact that, since D,/(r) is a transverse field,
. o =
k-D,q = 0. (3.5)

Equation (3.3) is an inhomogeneous linear equation for D;,q . It may be readily
verified that the solution which vanishes when g, 4 vanishes, i.e., when there is
no source for the field, is:

Dig = —(4mi/wA) Juq, (3.6)
where

Joa = (1= 2'n)goq — 0 — m)(k X b-gog)k X b+ in'rak-bl X guq,

—
W)

and where
A= (1 —nn) — (1 —2'p)(n — g)n’sin’0 — n'nycos’d, (3.8)
in which 8 is the angle between £ and b, i.e.,
kb = cos 6. (3.9)
Note that A can be written in the form:
A= (1 — (/D) = (n*/nd)], (3.10)

where ni(w, 8) and n:(w, 8) are the indices of refraction for the two modes of
propagation of plane waves of frequency » and with wave normal making an
angle 6 with the external magnetic field.” Using the expressions (2.5) one can
show:

ni,‘l = 1 - ,‘_.:: . .
11 J sin” 0 1 y'sinté (3.11)
1 — 4™ 2 noe?
R /_1(1_ S+ 4 cos? 6
Consider now the quantity J.,,, which we would like to express in terms of
ju.q , the transform of the given current density. If we take the Fourier transform
of (2.18) we obtain:

Boq = Juq — lw/4m)Dl — ilw/4m)n’k X (k X E::q> (3.12)

where E,, q 15 given by (2.3) when D, is replaced by D7 .. We can cxpress
D q In terms of j, o by taking the transform of (2.13) and (2.9) and then elimi-

nating py,q, giving
gDl = — (47/0)q Juy - (3.13)

7 See Ref. 1. A more succinct discussion of the propagation charaeteristics is given by
Ford (6).
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But D,”(r) is a longitudinal field, which implies that
D), = k-Di k (3.14)
and, together with (3.13), that
Dl = —(dni/0)k-jogk = — (4mi/w)ju g, (3.15)

where ji o is the transform of the longitudinal part of the j field. Using (3.15),
the expression (3.12) for g, , becomes:

8oq = j:v.q + nQI%'jZ,q[(_"?:s — m)b-k(b — k-Dk) — ik X D), (3.16)

where j,, q 15 the transform of the transverse part of the j field. That is,

j:o,q = jw.q - ]:q = jw,q - I%]wal

(3.17)
Finally, inserting (3.16) in the expression (3.7) for J, 4, we find
Jog = (1 = 0'n)juq — n*(ms — m) (B X D-ju gk X b
+ itk Dk X joq + k3011 — Wn)(ns — m) — n'wellk (3.18)
(b — k-bk) — dna(1 — nip)k X B},

which is the desired expression for J, ¢ in terms of jo g .

One may readily verify that the relation (3.18) is equivalent to the following
relation between the corresponding time Fourier transformed quantities J.(r)
and jo(r).

9

2 2

1) = (1 m G ¥+ =) & (o) (-9 i)

@

9

2 2 2 2
— i S (B VNV X)) — %{[(l +m v2> — v"’] (3.19)
w W w” W

2

(b VIVX(BXiu") + ins (1 + m% v2> )Exv)v‘jw”}.

This expression, while quite complicated, is of the form of a linear differential
operator acting on the transverse and longitudinal parts of the time transform of
the current density. It does not, however, follow that J,(r) vanishes for those
regions of space where j,(r) vanishes, i.c., outside the region to which the charge-
current distribution is confined. The point is that j,/(r) and j.,”(r) do not
separately vanish outside the charge-current distribution, only their sum van-
ishes. Indeed, an explicit expression for j.,”(r) is given by

j”(r) = —(1/47) grad fdr’[div jo ()i — 1], (3.20)
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which clearly need not vanish for points r outside the charge-current distribu-
tion. However, for points far from the charge-current distribution one does see
from (3.20) that:

57(1) ~ —(1/4m) grad{(l/r) f dr’ div ju(r')
(3.21)
+ (1//%r- fdr’r’ div jo(r') + } .

The first term in this expansion vanishes, being the integral of the divergence of
a field which vanishes outside a finite region, and, hence j.”(r) falls off for large
r at least as fast as 1/7°. Since, outside the charge-current distribution, j.'(r)
must be equal in magnitude, but opposite in sign, to j,”(r), it follows by inspec-
tion of the expression (3.19) that far from the charge-current distribution
J.(r) falls off at least as fast as /7%

We return now to the problem of determining D,’(r). Forming the inverse
transform of (3.6) and using (3.10) we have:

D) = —(4mi/e) [ daeVTnin/(F — n) (' = ) ua, (322)
But
Joa = /@0 [ are ™™ 1(x), (323)
so that, exchanging the order of integration, we may write:
D/(r) = —(nifw) [ drK(r — ) L(r), (3:24)
where
K(r) = [1/(2m)] f dge ™ nins/ (n' — nt) (0 — ng)l. (3.25)

In this last expression we should perhaps remind ourselves that n is defined by
(3.4), while n, and n, are given by (3.11) and are functions of the direction of
q. If we introduce spherical coordinates in the g integration, then K (r) can
be written:

.

K(r) = (w/27rc)3/dﬂf dnei"“"mfc'r[nznfng‘“)/(n2 — )@ = b)), (326)
0

% The asymptotic form for large » of Fourier integrals of this general form is discussed by
Lighthill (7). See especially his theorem 2 (p. 414) of which our result (3.35) is a special
case.
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where dQ is the e'ement of solid angle in the integral over the directions of k. We
now observe that if we replace & by — k and n by — n the integrand of (3.26) is

unchanged while
w© }
fde dnwafdﬂf dn. (3.27)
0 —cc

Hence, if we average the resulting expression with (3.25) we obtain the expres-
sion:

;4

K(r) = }.6(w/27r0)3fd9/ dnei"(“/”)k'r[nﬂnfnzﬁ/(nz — ) (' —nD)]. (3.28)

The integral over n may now be performed by closing the path of integration
with a semicircle at infinity in the upper or lower half of the complex n-plane,
depending upon whether wk-r is positive or negative. The integral along the
semicircle vanishes because of the exponential factor and, therefore, the result
of the integration is, from Cauchy’s theorem, 27¢ times the sum of the residues
at the poles enclosed within the contour. Hence, after some rearrangement
(3.28} becomes:

K(r) = in(w/2me)" f Adnns/ () — n) [nae™ @FT — gy eIk (3 99)

In this expression 7, and 7, are to be chosen as those roots of the expressions
(3.11) whose imaginary part is positive, and the range of the angular integration
is restricted to those values of k for which wk-r is positive, i.e., to a hemisphere.

The remaining angular integration in (3.29) cannot be done in closed form in
general. However, we are primarily interested in the fields in the radiation zone
far from the charge-current distribution and, therefore, in the asymptotic value
of K(r) for large r. This value can be obtained from (3.29) by the method of
stationary phase. For simplicity we consider the case where the collision fre-
quency v, is much smaller than all the other frequencies in the problem and may
be set equal to zero. The expression (3.11) for n,® and n,’ is then real and only
two possibilities arise: (1) If n,° (or n’) is negative then n; is imaginary; the
corresponding plane wave mode of propagation iz an exponentially damped,
nonpropagating mode. For such values of n; the contribution to the integral
(3.29) will be exponentially small for large » and may therefore be neglected.
(2) If n,® (or ns") is positive then n, is real, the corresponding plane wave mode
is a propagating mode. Here, while the integrand is not small for large r, in the
coutrse of the integration the exponential factor will oscillate rapidly and will
tend to cancel except in the neighborhood of those values of & where the quantity
nk-r is stationary. To find these stationary points we write

F=(h+o/v/1+e k=0 (3.30)
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and expand in power of e = |g|:
mk-t = [kt + [mree + n'k-theely — 4[nk-ré + n'k-rk-bé

i o (3.31)
— 2n/b-er-e — n"k-r(be) o + - .

Here the square brackets are all to be evaluated at k = kyand the prime denotes
differentiation with respect to cos # = k-b. The stationary points of the integrand
in (3.29) are those directions ko for which the first-order terms in (3.31) vanish.
Since ko-e = 0, we see that this implies that

mr + n,' k()'rb

— (3.32)
ko-t(ny + nd ko b)

koz

which is an implicit equation for k;. Evaluating the slowly varying parts of
the integrand at ko, we find that the contribution to (3.29) from the neighbor-
hood of such a stationary point is:

3 3 2
. w ny No i(w/e) ny kel
K(r) ~ir | — — | € ] de
2mc n — n? o

-exp <_i;’_,rZZA4.ijei€j> + 1= R
2¢ =1 3 f
where
2 2
Z Aje g = ; [71 k-ré + 'n]’lé-rk-l;g —2n/b-er-e — n"k-r(b-e)ly.  (3.31)
io1 =1

In these expressions the symbol 1 = 2 denotes the result of interchanging the
subseripts 1 and 2 in the first tern in the curly bracket. In the remaining integral
in (3.33) we may extend the range of integration over all ¢ perpendicular to ko .
This is then a two-dimensional Gaussian integral and the result of the integration
f n'ny’ =172 itele) nykerlg .)L Qax
\[——:L (det A;;) e +122). (3.35)

2
™ 9]
K(r) ~ - |-~
) r \2mc n? — ne? J

Here det .4,; denotes the determinant of the 2 X 2 matrix 4., . Using (3.35),
which defines 4,;, and the expression (3.32) for &y, we find:

15

ni(ny + nd cos 8)

2
: e (n” + num cos §
ne + ny osin” @

(det Al'j> = |:
(3.36)

19 .9 .8
4+ 2n sin” 8 — nmyny” sin” ) | .
V]

In obtaining this expression it has been found convenient to rearrange (3.32)
so that it takes the form of an explicit expression for r in terms of &:
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r’r = [nll:"o - n{(_@ - Eo-Ek(,)],/\/n,lz + nj? sin?6. (3.37)

It may be readily verified that this relation is equivalent to (3.32).

Returning now to the expression (3.24) for D,/(r), we note that, since J.(r)
falls off like 1/ for large 7, the asymptotic form of D,/(r) for large r is obtained
by replacing K (r — r’) in the integrand by its asvmptotic form given by (3.35).
We find

D, (1) ~ =% II‘M]
0

rczll_m- — R

(3.38)
(et A) e [are T L) 41 e ‘-} :
where
@ = (w/c)mkly . (3.39)

The remaining integral is just the space Fourier transform of J,(r’), and, hence,

_iw(?w)sf
re

D,'(r) ~

3 2
[ n } (det A;) 26T, £ 122b . (3.40)
Ny — Nw” o j

This is the solution of our problem, that of determining the far field form of
D./(1). In this expression n,° and n,° are given by (3.11), (det A4;;) by (3.36),
Juqa by (3.18), and q by (3.39). The unit vector k, which appears in all of these
expression is given implicitly by (3.37). Finally we should recall that n; must be
chosen as that square root of ny* for which g, - r has a negative real part.

IV. THE LOW-FREQUENCY LIMIT

Although (3.40) is an explicit solution to the problem of finding the asymptotic
ficlds it is very complicated in form and hence difficult to discuss. Since the most
striking effects of the anisotropy introduced by the external magnetie field occur
at frequencies below the plasma frequency w, and the electron gyrofrequency
wo , we shall consider the limit of frequencies w << wa , wp, In which ease the results
of Section IIT become simpler in form.

In this imit it can be readily shown from (3.11) that the expressions for the
indices of refraction of the two modes of plane wave propagation become:

7112 = wpﬁ/ww(. cos 4, ne = —w,,g/wwo cos 6. (+.1)
Here we see that there is one propagating mode, with real index of refraction and
one nonpropagating mode, with imaginary index of refraction. If we restrict our
discussion to positive frequencies and angles 8 < /2, then n,” is always positive
and the corresponding mode i3 the propagating mode. For this mode the relation
(3.37) becomes:

r/r = [2cos 0k + (b — l:/A)fc)J/\/% cost 6 4 1. (1.2)
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This is an implicit equation from which % is to be determined when the direction
in which the radiation is to be observed is givea. (Remember r points from the
source to the observer.) If we denote the angle between r and 6 by ¢, i.e.,

cosy = r-b/r, (4.3)
then from (4.2) it can be shown that:
sin ¢ = sin 6 cos 8/4/1 + 3 cos?. (4.4)

Inspection of this equation shows us that for all angles 6, sin ¢ < 14, i.e.,
¥ < aresin Lg 22 20°, (4.5)

with the maximum angle ¢ occurring when cos § = 1/4/3. In other words the
radiation field is confined within the two sheets of a right circular cone, whose
vertex is at the source and whose axis is along the direction of the external
magnetic field. Note also that for every ¢ within this cone there are two angles
¢ fulfilling (4.4), one greater the other less than arcos 1/4/3.

Using the expression (4.1) for n,’, the expression (3.36) for (det 4.;) becomes:

(det A;;) = n(3 cos’@ — 1)/2(3 cos™0 + 1). (4.6)

The expression (3.18) for J., is evaluated using (4.1) and the low-frequency
limits of the quantities 5, , #:, and 9; given in (2.5). We find:

Joq = Juq + 1k X joq — (k-j0g/cos O)[ik X b+ (b — k-Bk)].  (4.7)
Putting these results together the expression (3.40) becomes

wng(2m)° 3costh+ 1

re? ‘ 2(3 cos? 6 — 1)
Here we see that the field diverges when 8 = arcos 1/4/3.° This is just the angle
corresponding to points on the cone within which the radiation field is confined.
Although the fields diverge on this cone, there is no physical difficulty since, as
we shall see explicitly in the example in the next section, the total radiated field
energy remains finite. The additional result of interest which we see in (4.8) is
that the intensity of radiation from a purely longitudinal current is comparable
with that from a transverse current.

D, (r) ~ e o - (4.8)

V. RADIATION FROM A RADIAL CHARGE BURST

As an application of the general results of this paper we consider in this section
the problem of determining the low-frequency radiation from a thin spherical
shell of charge which is expanding outward with radial velocity v. For ¢ > 0, the

9 If the electron collision frequency » is kept finite the fields do not actually diverge on
the cone but become very large.
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current density will be:

jr, t) = (Qu/dx) (x/v)8(r — v1), (5.1)
where @ is the total charge and & is the Dirac delta function. This is a purely
longitudinal current which will not radiate in an isotropic medium but which
will radiate in a plasma in the presence of an external magnetic field.

The first step is the calculation of the space-time Fourier transform of the
current density (5.1).

. _ 1 © —i{qg-r—wt)s
oo = gy [ e [ de i)

Q f r —igq-r ilwr/r) -
= — 52
mmp ] TR (52)

z @ fm w/vyr (€OS qr  sin qr)
= 1k —— d syt ]
! (27r)4 o re gr q?r"’

Here we should remind ourselves that k is a unit vector in the direction of q.
If in this last integral we introduce gr as a new variable and write gv/w = np,
where

n = cq/w (5.3)
and
B8 =v/e, (5.4)
we find we can write:
juq = thHQ/(27)'qlL (nB), (5.5)
where
I(z) = fow due’"[(cos u/u) — (sin w/u>)). (5.6)

1t is possible to show that in general
I(x) = —1 4+ (1/2x) In [(1 4+ 2)/(1 — x)], r <1
-1+ (1/22) In [{(x + 1) /(x — 1) — 2x/2, r>1
However, we shall restrict our discussion to the case n3 >> 1, 1.e., to the case where
the radial velocity of the burst is much greater than the phase velocity of the
electromagnetic waves. The radiation might then be properly called Cerenkov

radiation (see Ref. 2, esp. Chapter I1). It is a simple matter to show that for ng
large, I(n8) = —1, and (5.5) becomes:

(5.7)

. —ikQ
Joa = T, (5.8)
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Inserting this result in the expression (4.8) for D,/(r), valid at low frequencies,
we find

, Qu  / 3cos? + 1 N
D,'(r) ~ — cos b L e 1 [f — + 5
(1) 2wre /‘7(3 cosf — 1) 7 Gos 0 (6 — E-Bk) + ik X B (59)

The asymptotic electric field, E,/(r), is obtained using (2.3), which in the low-
frequency limit becomes:

E.(r) = (i/n’ cos 8)b X D,/ (1), (5.10)

where we have used the low-frequency limit expression (4.1) for n,°. Inserting
(5.9) gives:

Q /S 3costf + 1 T
" 2rren, 1/ 2(3 cos? 6 — 1) cos 6

. o st
-I:(b — BBk) 4 ih x § = "k].
cos 6

Ew,(r) ~

(5.11)

Finally, we obtain B,(r) from (2.7),

"3costf 41 ¢
B, ~
(r) 2rre 1/ 2(3 cos’8 — 1) cos 8

iqy-T R

e X b—1ib— kb)) (512)

The complex Poynting vector, S, , is defined as (see, e.g., Ref. 5, pp. 135-37)
= (¢/2)E, X Bj . (5.13)

«

The real part of this vector is equal to the energy flux density per frequency
interval. If P(w; ¢, $)dQdw is the total energy with frequency between w and
w + dw radiated into solid angle dQ = sin ydyd®, then

Plw; ¢, ®) = 2 lim rr- RIS, (5.14)

%

where the factor 2 accounts for the redundancy of positive and negative fre-
quencies. Here ¢ and @ are, respectively, the polar and azimuthal angle of the
position vector r, which points from the source to the field point. If we choose
the direction of the external magnetic field as polar axis, then ¢ is related to 6 hy
(4.4). Using (5.11) and (5.12) we find that
Q (% cos’ 8+ D sin"0r

3 5.15
167, ¢ |3 cos?@ — 1| cos® 8 72 (5.15)

RIS, =

where the expression (4.2) for r/r has been used. Note that this result says that
the radiated energy propagates radially away from the source, as one must ex-
pect. Inserting in (5.14) we find

Q@ (Beosta+ 1) sin’ 0

S 5.16
8r*nic |3 cos’d — 1| costd (5.16)

Plojy, ®) =
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The total radiated energy per frequency interval is obtained by integrating over
all solid angles within the cone to which the radiation is confined.

. /dQP(w; ¥, @)
(5.17)

- g f dy sin ¢ (3 cos’ 6+ 1)7sin 6
C

3costf — 1| cos®ony’

In the integrand the angles ¢ and 6 are related by (4.4) from which one can
readily show that
3cos’ 6 — 1

Sin |,b d]l/ = m cos @ Sin 8 d0 (518)

Hence, if the variable of integration is changed from ¢ to 6 (5.17) becomes:

' wwo sin® 8 -
= a.1
Plo) = 47rc 1/ f [ cos [#2° (5:19)

where the expression (4.1) for n,® has been used. Here we see explicitly that,
since the integral does not diverge on the cone hounding the radiation field, i.e.,
at 8 = arcos 1/4/3, the divergence of the fields on this cone does not lead to any
physical diffieulty. However the integral in (5.19) does diverge at 8 = =/2. It
can be shown that this divergence is related to the breakdown of low-frequency
approximation at such angles. A more careful analysis shows that the integrand
in fact drops sharply to zero for angles such that

cos B l S w— sz .

W plip

(5.20)
If we approximate this behavior by simply cutting off the integral for such
angles we find:

Plw) =~ (QQ/WC)[ouo/(.ui,”?(,o.)g2 + wpg)l"q], (h.21)

where we have kept only the largest terms.

Trom the above discussion we see that the largest contribution to the total
radiated energy comes from those values of 8 near x/2. Irom the relation (4.4)
between ¢ and 8 we sec that this corresponds to very small values of ¢. In other
words, the most intense radiation is confined within a narrow cone, angular
width of order wa/wy* 4+ w,?/wpwy , about the direction of the external magnetic
field. From (5.11) we see that the electric field in this wave is longitudinal, i.e.,
it points in the direction of the wave normal k, which means that the eleetric
field oscillates in a direction perpendicular to the direction of propagation. On
the other hand from (5.9) and (5.12) we see that the dielectric displacement and
the magnetic field of the wave are transverse. In fact these two fields rotate with
uniform angular velocity in a plane perpendicular to the wave normal, a plane
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which includes the direction of propagation. The peculiar form of this electro-
magnetic wave reflects the extreme anisotropy of the medium.

Although the current (5.1) is undoubtedly only the crudest sort of an approxi-
mation to the current arising from a nuclear explosion in the upper atmosphere,
the general features of the low-frequency radiation should still follow. There
should be a very narrow intense burst of electromagnetic radiation along the
earth’s magnetic field lines. Since both the plasma frequency and the electron
gyrofrequency in the ionosphere are of the order of a megacycle per sec," the
spectrum of this radiation is confined to frequencies of the order of 10 to 100 ke.
There is a difficulty, however, in that one would expect that this radiation would
be totally reflected at the lower boundary of the ionosphere, since the wave
normal is nearly parallel to the boundary and the index of refraction changes
from a very large value in the ionosphere to a value of order unity in the atmos-
phere. On the other hand one would expect in general that a narrow bundle of
radiation which is totally reflected at an interface between two media will give
rise to surface waves propagating along the interface away from the region of
impact."” In the case of the lower boundary of the ionosphere whese waves would
surely be coupled to surface waves on the earth, which could be detected.

Recerven: May 1, 1961
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10 The plasma frequency w, varies with height through the variation of electron density
N with height. If ¥ = 10% em™ then w,/2 7 = 3 X 10% sec™'. This value of N corresponds to
a height of about 200 km. See Ref. 8.

11 For the case isotropic media the finite pulse effect was first studied hy Picht (9).



