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A first order, momentum-configuration space transport equation for photons
is derived for low energy (nonrelativistic) systems. The derivation is first order
in the sense that the transition probabilities characterizing photon scattering
emission and absorption are computed only to the first nonvanishing order by
conventional perturbation methods,

The present approach provides an essentially axiom-deduction development
of the theory of radiative transfer (albeit via several ill-evaluated approxima-
tions) within the context of which various processes and their interrelation-
ships may be investigated. Most of these processes have hitherto been studied
only phenomenologically and usually piecemeal. Specific application to photon
scattering, cyclotron radiation, recombination radiation, de-excitation radia-
tion, and bremsstrahlung is made in the text.

The derivation of an H-theorem for photon-particle systems is sketched; and
contact is made with the usual statistical mechanical treatment of the equilib-
rium states of such systems.

1t is also shown that some aspects of collective partiele behavior ean be intro-
duced quite naturally into the description of photon transport in the fully
ionized plasma.

I. INTRODUCTION

It is the purpose of this paper to present in considerable detail some of the
formal aspects of “first-order” photon transport theory. By “first order” we
imply that an explicit calculation of the effects of specific physical processes on
photon balance shall be restricted to first- (nonvanishing) order perturbation
theory. This (as well as some other more subtle considerations to be discussed
in detail later) seems to suggest that the validity of the subsequent analysis
increases as the particle densities in the systems of interest decrease and as the
importance of collective (coherent) particle behavior decreases. However, at
this stage, it is perhaps unwise to attempt to formulate so simple a criterion of
validity, as any such attempt is apt to be too stringent. For example, the equa-
tion whose derivation and implications are the concern of the present investiga-

* All work on the paper was performed at the Radiation Laboratory of The University
of Michigan and was supported in part by the Advanced Projects Agency, and the U. S.
Army Signal Research and Development Laboratories under Contract DA 36-039 SC-75041.

105



106 OSBORN AND KLEVANS

tion has been employed extensively in the study of radiation transport in stellar
systems (1) as well as in fission reactors (2). Thus we shall concern ourselves
very little with such questions, but rather shall present in clearly stated opera-
tional terms a set of sufficient conditions in the context of which the equation
of interest is expected to be useful.

Some of the material to be presented herein was initially, but sketchily, de-
veloped in an earlier work (3) (hereafter referred to as I), particularly that of
Section IT in which we present the basie statement of our approach to the prob-
lem and a derivation of an equation of photon balance. This inclusion of repeti-
tive detail is for the purpose of completeness as well as to illuminate
some subtleties that the earlier treatment glossed over.

In Section IIT we discuss briefly and in somewhat general terms some aspeets
of the thermodynamics of systems of interacting particles and photons. In
Section IV we obtain explicit formulas for the transition probabilities (or eross-
sections) germane to the description of photon balance in partially or completely
ionized gases in the presence of externally applied, constant, uniform magnetic
fields. In particular, it will be interesting to note that the results of Drummond
and Rosenbluth’s (4) calculations of c¢yclotron radiation losses from hot plasmas
are contained nicely in the present “‘first-order” treatment, as well as estimates
of de-excitation and electron-ion recombination radiation losses. The emission
and absorption of radiation by bremsstrahlung is also accounted for in the sense
of the Born approximation, as well as photon scattering—which in the present
nonrelativistic treatment reduces to Thomson scattering. Finally, in Section V|
it is shown that some aspects of the effect of collective particle behavior upon
photon transport enters the theory quite naturally when dealing with fully
ionized plasmas. Specifically, it is found that—in such nstances—the photons
of momentum Ak propagate between successive events with phase velocity
e(1 + w, /2¢°k"), where w,” = 4mne’/m is the usual “plasma frequency.”

It is to be emphasized that none of the results of the present treatment are
original though the approach to radiation transport problems as developed herein
is, so far as the authors know, new.

II. DERIVATION OF A PHOTON BALANCE RELATION

The Hamiltonian to be employed in the present investigation is the same as the
one presented in (1), i.e.,

H=T"4+T +H +V+H" 4+ H"™+ H™, (1)

where

" = [ &% e+ (1/87) (v x A)], (2a)
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Hpe = Z,: l:%i:—cﬁ—/ / dsl' ¢U+A6'V¢a + < +ll/a':| ] (20)

4 ea €q 3.7 1[/U+(x)¢!f ('x ‘I/U(x)\bd <‘x ) 3
I—Wl+5”,fd:cd ey (2d)
oY ef / d'x A, VY, (2e)

e 2

pr = Z . 2 fd3x‘pa+'pv Ae'A) (21)
=Y [ & 4,9, A% (2g)

For some subsequent purposes it will be convenient to regroup some of the terms
in the Hamiltonian as follows:

T = 8 o [ () (), (3a)

B 4 B = =) S z [(79,") A + Ay (I9,)],  (3b)

where we have introduced the notation
II' = —hv — (e,/c)A". (4)

In (2) (or 3), ¥, is a wave operator for particles of kind o; A® is the divergence-
less vector potential for an externally applied electromagnetic field, and A and
P are the canonically conjugate wave operators for the photon field (). Note
that v-A = v.P = 0.

For caleulational purposes it is convenient to transform to momentum space
for the photons according to

A= /5 e Z mk) (5a)
P=i MWZVVMQ&) (5b)

where
OEk) = af(k) ea(k) = an(—k) ex( —k). (6)

The an(k) and a*(k) are destruction and creation operators for photons of
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morngentum k and polarization A, and &(k)(A = 1, 2) are the unit polariza-
tion vectors of the photon field. The volume of quantization is designated by
V7 and the sum over k is the usual sum over the integers permitted by the re-
quirement that A and P be periodic on the boundaries of V. The creation and
destruction operators for photons obey the commutation rules

[on(k), air (K')]- = dd(k — k'), (7)
whereas the wave operators for the particles will obey the rules
Wo(%), ¥o" (X')]3 = 8orrd(x — X'), (8)

depending on whether ¥, represents a boson or fermion field. We employ the
same notation for Dirac and Kronecker deltas, letting the context reveal which
interpretation of the symbol is appropriate in a given case.

Again as in I, we introduce a singlet photon density according to the defini-
tion

(X, K t) = (8/V) 2 ¢ UF, p(k, q)F), (9)
q

where
ok, @) = o (K + q)aa(k — q), (10)

and F is the state vector for the system which satisfies the Schrodinger equation,
HF = :hoF/at. (11)

The sense in which x» is to be interpreted as a density function is discussed in
1, as well as the interesting question as to its statistical significance. It should
be noted that the present introduction of a photon density in configuration and
momentum space is somewhat in contrast to previous treatments of photon dis-
tributions (6, 7). Analogous density functions for the particles were also in-
troduced and discussed in some detail in (1), but we shall not be concerned with
such densities in the present investigation.

To find an equation for the photon density, we introduce a method of tem-
poral coarse graining which bears some formal resemblance to that employed
by Mori and Ross (8) in their development of a transport equation for short-
range-force gases. For convenience, we first rewrite the relation (9) as

() = (8/V) 22 ¢ "™ TrD(1)pnlk, ), (12)
q
where D(¢) is the density matrix for the system in the photon interaction repre-

sentation. Explicitly, if F is the state vector defined by Eq. (11), and if G is a
new representation related to # by
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F = UG, (13)
where
U = exp [—iT"t/h), (14)
then
Doy () = bitrgtbny (15)

where the b’s are given by

buy(t) = <ny|G>
(16)
= <ng|U'F>.
Thus the b’s are simply the coefficients of the expansion of the state vector ¢
in terms of the set of base vectors {|ny>}. This set of base vectors is to be only

partially specified at this point. The set is presumed complete and orthonormal
and to diagonalize T7 with eigenvalues e,, i.e.,

T\ nn> = & ny>. (17)

The explicit determination of the particle-space dependence of these eigenvectors
will be accomplished variously in the subsequent development, depending upon
the specific quantity to be computed. The matrix elements of p\; are given by

(K, Q) gy = <nm U“(t)px(k, QU7(t) [n'9'>. (18)
Now congider’
(t+ 8) = (8/V) 2 e ITrD(t + s)pu(k, Q). (19)
q

The time (s) dependence of pyyy; may be approximated by
oo = U7 (8)onU7(s) 22 pue + (is/B)T”, pad) (20)

if only a linear dependence upon the time displacement is retained. If now we
rewrite

D(t + s) = D(t) + D(t, 5), (21)
we obtaln the equation,
(4 8) = xa(t) + (8/V)s X e 9 TrD() (i/R)[T”, prdd
q (22)
+ (8/V) X e DY, sl a),

1 A few of the succeeding steps in the derivation of an equation for x, presented here in
detail were erroneously summarized in 1.
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ignoring the term containing the factor, sD(¢, s). A straightforward caleulation
(see Appendix A) leads to an evaluation of the second term on the right-hand
side as

-« >

(. v,V
~2scx ism z k} | k|, (23)

2

which, if we neglect terms of order #° in the description of photon transport,
hecomes simply,

_SCQ'VX)\ ) (24.)
where
Q =k/| k| (25)
Thus we now exhibit Eq. (22) as
o
0 T eV = (%;)1 , (26)
ni
after identifying
sxa = xalt + s) — xa(t), (27)
and
<6—XA> = 3T D, )k, @). (28)
6t Int IIS q

Our task now is to calculate to some approximation the effect of photon-
particle interactions on the time rate of change of x, . To do this we choose our
quantization volume V sufficiently small that we may assume that x, is essen-
tially constant throughout it. This assumption enables us to reinterpret x, as a
mean density which may still be usefully regarded as a continuously variable
funetion of position such that

fy & T + @Vl = Vi + c@-9x]. (29)

Since the volume of integration in (29) coincides with the volume of quantiza-
tion, we find that

fdgx % > eTEITD(t, s)pai(k, q) = % TrD(t, s)pr:(K, 0). (30)
q

Equation (29) implies an effective upper limit on the size of V' if macroscopic
spatial variation in a system of specified dimensions is to be meaningfully de-
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seribed. Conversely, Eq. (30) relates a lower limit on V to the maximum wave-
length of the photons to be considered. This latter condition obtains because
the minimum relative uncertainty (Ak/k) allowable in our specification of the
momenta described by x, is essentially given by the ratio of the uncertainty in
the momenta assigned to the initial and final states of the emitting particles to
that of the emitted photon, i.c., Ak/k ~AK, ;/k. But since the emitting par-
ticle is confined to the volume V(V = L*), it follows that AK,,;, > 1/L, and
thus further that Ak/k > 1/kL = X/L. Hence if X, is the maximum wave-
length of the radiation to be considered in a given case, it would seem that the
quantization volume would have to be so chosen that X,.../L < 1.

This spatial coarse-graining is somewhat reminiscent of Ono’s method of
quantization in cells—though far less formally executed. The present treatment
is admittedly cavalier with respect to these approximations—particularly so
with regard to the possibility of reconciling the opposing assumptions leading to
Eqgs. (29) and (30). But it was our stated intention here to merely make the
assumptions and then explore the consequent implications.

We note that in the representation (17) the photon number operator is diag-
onal, and hence the matrix px;(k, 0) has no off-diagonal elements, i.e.,

P)\z(_k’ O)'nn.n’n’ = ﬂkkarm’aﬂn' y <31)

whe_re 7w i3 the eigenvalue of the number operator, ax ' (k)an(k). Our calculation
of D is elementary but a little devious. Recalling Eqs. (15) and (16), we find
that

bon(t 4 8) = exp [—iE.8/A){bany(1)
(32)
+ 2 exp [i(ey — e )1/ lQuunrw (5)burw (1)),

where @ is the matrix whose elements are

_y (- f f e dry
ann’n’(s) - ]Z=:1< ﬁ) =0 7j=0 dry dT’ (33)

Hignyn (11) =<+ Hiy_gi_yuen (7).
The time dependent matrix elements of the interaction, H' = H — T7 — H”,
are
Hopry (1) = (exp {(T" + H ) 7/BH" exp [—i(T" 4 H )7 /T ngrn . (34)
The eigenstates with respect to which these matrix elements are to be calcu-

lated are formally defined by [as well as the eigenvalues E, appearing in Eq.
(32) above]

(TV+HP)'7“7> = (€n+En) in77>- (35)
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Since we require only the diagonal elements of D, we find after inserting (32)
into (15) that

Dyin(t, 8) = Dygun(t 4+ 8) = Diyuy (1)
= Z oxp (10 e — &)t/ T)Qupnra () Dornrin()

n'n
. 36
+ Z (\\(p L en)t,//ﬁ](thn (S‘)l)nvm 'q’( t ( ))
n’y
+ :,Z exXp |7 [ L En! T €y )t/}l]anu 'y’ (2mm”n”( [)n’n”n n (l
w'n n"n”

Finally, if we assume that the off-diagonal elements of the matrices D make a
contribution to the desired balance relation which is small compared to that
provided by the diagonal elements, we find for Fq. (26),

X)\ _‘,' c€2- VXA (1 1 '5 Z k383 (r.)m'; n + (Jnn nrx] 1);;7; ny

o 1y . (37)
+ (1 I S.) Z Mk ’Z’ (JILT],IL,'”’Qtﬂ,YL'TI' ])n'ﬂ'ﬂi"fl, .

ny r’n

An explicit caleulation of the Q’s through terms second order in the interac-
tions (3) leads to the equation,

X)\ + CQ VX)\ Z TIM[Z (117(111),711(1 + ”'r?n),rna)([)ma,ma - Dnr,,nq»)], (38)

"y mao
where
o 2 Why T Whnea
s M’T
1
1’V§L-q),ma = 9 l (I{ )nn mal *—*_—"—*, ’
Vf $(Wpy — Wma)? (39)
gin? Do T Gma
1 r 9 T
”7()) _ ‘-_L_, Z’ (H )'nn,ra(H )m.ma: 2
nyma Vﬁz ﬁ(wm, _ wﬂ) ! -S‘(w,,,, . wma)2
Asusual
Aoy = Fouy, (10)

the energy of the system when in the state characterized by the oceupation
numbers {ny}.

The only second-order process which will be considered here is bremsstrahlung,
and is considered only because it first enters at this order. IFurthermore, since
only those transitions in which the photon number changes can contribute to
the rate of change of x, , we see that W will be independent of 7% + H™. Hence,
for subsequent purposes, we may explicitly exhibit W™ and W® ag,
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4 sin? £ _; Dmet
w,r(l) = - - o e ny.mo na.ma
Vﬁ2 S(wnv/ - wma)z H H + H ) K \ \H ki \J
(41)
gin? @ T Gma . oyl 2
4 2 ‘ n, r:rHra ma

w = 4
Vi s(wny — Wme)? | 7e ﬁ(wm, — wr,)

The cross terms that have been ignored in W vanish since H*" + H™™ have
nonvanishing elements only between states in which the photon number differs
by one, whereas the matrix elements of H”" are zero for such pairs of states—
being nonzero only if the photon numbers of the pair differ by two.

The transitions described by H”™ (which is bilinear or quadratic in the
photon creation and destruction operators) are essenfially those which represent
the scattering of photons, while those accomplished by (H"™ + H?*) (which
is linear in the photon creation and destruction operators) are transitions in
which cither one or both of the initial and final particle states are bound states
or both are the magnetic states of free (spinless) charged particles. Because of
the dependence of the relevant matrix elements upon the mass of the particle
interacting with the photons, it is clear that we may largely ignore the ions and
neutrals except insofar as they provide electron scatterers for one stage in the
bremsstrahlung process and centers of force in the context of which atomie
bound states can he defined.

To proceed further it is necessary to specify in somewhat greater detail the
nature of the particle-space dependence of the base vectors, |nn>. To do this
we first note that, if we neglect terms in the Hamiltonian which describe par-
ticle-photon interactions, the wave operators satisfy the equation

(H")2¢, + < i 0_«;’_6; , f‘l’v (X "pa (X) >¢a — a‘l/a, (42)

where
¥o(%, t) = exp [¢H't/hlY,(x) exp [—<H't/H)], (43)

H’ being the part of H (Eq. (2)) that survives after setting A = P = 0. Thus
to find an appropriate set of base vectors in configuration space, we look for
separable solutions of (42) with a time dependence of the form e( —iEt/#).
Defining an effective potential experienced by the eth particle at x by

[PA2% f‘p” (X )‘P,/ﬂ (X) 3 ’

v(x) = 2 5
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Eq. (42) then becomes®
(Ha)z\l/u + Z‘U‘PU = E‘Pv - (45)

For a quantization volume sufficiently large compared to the radius of the larg-
est orbit of any bound state terminating transitions which are expected to con-
tribute appreciably to our balance relation, and also large compared to the radii
of gyration of the majority of the electrons in our system, we may anticipate
that Kq. (45) defines a complete, nearly orthogonal set of states corresponding
to both positive and negative eigenvalues. We are, of course, concerning our-
selves only with electron eigenstates, and are working in the “binary collision”
limit in which we assume that not more than one ion (or electron) is interacting
with a given electron at any one time. Thus the potential », is to be regarded for
the purpose of computing contributions from transitions involving bound states,
as simply the Coulomb potential of a single ion (which for the purpose of con-
structing our approximate representation may be taken to be infinitely massive
and at rest) and consequently the states corresponding to negative eigenvalues
will be bound Coulomb states with—to first order in the external magnetic
field—-no azimuthal degeneracy. The states corresponding to positive eigenvalues
are expeeted to be quite well approximated by (for sufficiently large positive
cigenvalues at least) the usual magnetic states (70) for electrons in a spatially
uniform, temporally constant external magnetic field. Furthermore, for suf-
ficiently high particle kinetie energies and sufficiently weak magnetic fields,
the positive eigenvalue states should be further approximatable by plane waves.
The states corresponding to positive and negative eigenvalues are not expected
to be truly orthogonal for a finite volume of quantization. 'urthermore the
overlap between two such vectors will be the greater the smaller the absolute
value of their respective eigenvalues. Nevertheless it will simply be asserted that
Iq. (45) with periodic boundary conditions provides us with a sufficiently or-
thogonal set of base vectors to enable us to proceed to a calculation of the transi-
tion probabilities, Foq. (41).

In accordance with these remarks, we designate the eigenstates of Fq. (45)
by u,g(x) and their corresponding eigenvalues by Fx , where here K 1s simply a

2 According to Eq. (41), the Coulomb energy of the particles was incorporated into the
perturbing energy H!, whereas Eq. (45) indicates explicitly that it is to be considered rather
as part of H?, This awkward treatment of the electrostatic interaction occurred hecause we
wished to caleulate the transition probabilities for hremsstrahlung employing free (plane
wave) states for the particles. More accurately, the calculation of the transition proba-
bilities for bremsstrahlung and inverse-bremsstrahlung should be viewed as a first-order
process in Eq. (37)—the relevant matrix elements being defined with respect to positive
energy Coulomb wave functions. Then the formula for the transition probhability appearing

in Eq. (47) arises as the consequence of approximating, by first-order perturbation theory,
the positive energy Coulomb wave functions as plane waves plus a correction.
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set of labels sufficient for complete specification of each state. We then expand

Yo(x) = (1/\/1_7); ao(K)uox (x), (46)

where now a,(K) is a destruction operator for a sth type particle in the Kth
state. The factor 1/4/V merely symbolizes that the eigenvectors have been
normalized to unity.

In these terms it is a straightforward matter to compute the five “first’”-
order transition probabilities contained in Eq. (41). The physical processes they
represent and the further assumptions employed in their calculation are:

(1) Photon scattering. Relevant matrix elements are those of H?™. For this
calculation we approximate the initial and final particle states as plane waves.

(2) Emission and absorption of cyclotron radiation comes from the matrix
elements of H*" + H”". Here we approximate the particle states as electron
magnetic states—ignoring the perturbing influence of the Coulomb potential.

(3) The emission and absorption of photoradiation produced by electrons
undergoing free-bound and bound-free transitions, respectively. In this case we
approximate the free particle states by plane waves and the bound states as the
usual Coulomb states in the absence of external fields.

(4) Emission and absorption of excitation radiation produced by electrons
undergoing transitions between atomic bound states. Again we approximate
these states by Coulomb wave functions appropriate to the instance when no
external fields are present.

(5) Bremsstrahlung and inverse bremsstrahlung. Here, as in the scattering
case, we approximate the initial and final electron states by plane waves. Per-
forming the calculations of the quantities in Eq. (41) as indicated and sub-
stituting the results into Eq. (38), and carrying out the indicated summations
(see Appendix B) we finally obtain (after replacing averages of products of
particle and photon occupation numbers by products of averages) (11)*

Xt eV = Z ST Ve (KD Vxa(k) + 1

[ ¢. TP

X Vie(K{l = Vf,,(K)} — V() Vxu (k) + BVA(K)HL £ VE(Ky)}]
+ Z ch()\k rvK(Ak) + TEVK()\k)][{ VX)\(k) + 1}

oKK;

X VI(K){1 + VI(K)} — Vaa(k) VA (K){1 + Vi, (K)}] (47)
+ > TeOR)EESUVak) + BVA(K) V. (K)

oo’ KK 1K3K3

XL £ V(K1 = Vie(Ka)} — Voa(k) Vie(Ke) Vi (K;)
X A1 = VA(K}H1L £ Vi (Kl

% In this reference, as in Ref. 9, Ono develops a transport equation in which the influence
of scattering is described in terms formally similar to those presented therein.
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This is the balance relation sought. The quantities S, T,, T., T., and T
are transition probabilities per unit time for scattering, cyclotron emission,
electron-ion recombination emission, de-excitation emission, and bremsstrahlung
renpectively. The scattering matrix is characterized by the symmetry property,

2.0 oK N k'

bal(l ANi! = qu Ak 5 (4’8)

whereas the emission probabilities transform to the corresponding absorption
probabilities under interchange of particle coordinates. As will be seen explicitly,
all transition probabilities guarantee appropriate conservation of energy and
momentum. The quantities f,(K) are the particle analogs of x , e.g., f,(K) is
the expected number of particles per em® in the volume V having momentum
fK at time £. The plus or minus sighs arise because the oth type particles may
be either hosons or fermions. (In most of the sueceeding discussion we shall
assume Boltzmann statistics for the particles, i.e., assume that states to which
transitions go are sufficiently improbably occupied that we may neglect 1f,(K)
compared to one. However, for the time being, and for most of the next section,
we retain the quantum statistics as indicated.)

The specific formulas for the transition probabilities occurring in Eq. (47),
computed to the level of approximation discussed above, are:

S;I;M{A = <eu> 87[' (1 IC)\(k) i % (k )l

m.ct) V3 Ekk (49a)
Kk’ + K —k— K)ﬁ(wm — Wrr);

KPS -\ 1 P ) ,
Tiw(Ak) = %,f <7:——c> i len(k)- <Ky |e ™0 | K> [*8(wxe — wxi); (49b)
2
PReOk) = TR = 27 ¢ fiel
l 2me 2 m; k (49¢)

X | <Ki|e (k) -V | K> " 6(wr — wx);

2 2 2
PO KK If,( o ) (—) UK, - K ) [

1V+\m, he

Sx(k) 'Kz 4 Sx(k) ‘K i (49(1)

|
wx T wr — Wk, — WKotk | @Ky 4 Wk; — Orp — WKk |

- 3K+ K, — K, - K; — k)é(wKZng — wKK1>,

X

where the momentum &’s are Kronecker &’s, but é(w) 1s a Dirac delta arising from
the identification

sin® (ws/2) =« . .
- L -—)i S(w). (50)

Sw?
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In (49¢) we have lumped the formulas for 7. (recombination emission} and
T. (de-excitation emission) together, since they differ only in the selection of the
states |[K> and |K;> for the final step in the caleulation of the emission and
absorption coefficients conventionally employed in descriptions of radiative
transfer. The Fourier transform of the Coulomb potential is defined by

vk = [CFex

II1. SOME ASPECTS OF EQUILIBRIUM

Before proceeding to the final reduction of Eq. (47) to the form commonly
employed in the deseription of problems in radiative transfer, it is convenient
to digress briefly for a discussion of some of the anticipated implications of the
present analysis for equilibrium systems. Though most of these implications are
perhaps obvious from the form of the equation itself (and in fact are generally
well known), it nevertheless seems to us of some interest to point them out in
the present context which is not quite the usual one. Actually not all of these
implications are completely obvious from the form of Eq. (47) itself. The one
that is obvious is the fact that this equation admits steady state solutions
appropriate to the description of the equilibrium state. But the further fact that
the noncquilibrium system is in some sense driven irreversibly to that state in
which the densities assume their conventional form is not obvious from Eq.
(47). One needs an H-theorem deducible from (47), but this is not possible since
it describes only the behavior of the photon density in terms of the particle
densities. In order to deduce an H-theorem in terms of the densities directly,
it would be necessary to have at hand the equations for the particle densities (1)
completed to account for all processes to the same order of approximation as
they are in the photon Eq. (47) see reference (72). However, as we are not
primarily concerned with the description of the particle densities in this paper,
we shall base our discussion of an H-theorem in the present context upon an
earlier phase of the analysis.

A cursory reappraisal of the argument leading to Eq. (38) reveals that it
contains the more basic equation

D.'“?v"ﬂ = Z Ile,ma[Dma,ma - Dnn.nn], (51)

where
Ian,ma = Wma,m) . (52)

Recalling that the diagonal elements of the density matrix, D, have the inter-
pretation of the probability of finding the system in a state characterized by a
particular set of occupation numbers, it is convenient to introduce a notation
which emphasises this interpretation; so we define
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P(’nﬂ, t) = D"Tl-"ﬂ(t)7 (53)
and rewrite (51) as

P(nn, t) = mZ: Won malP(ma, t) — P(ny, t)]. (54)

This equation and its implications have long been well known (13), so we merely
sketch the succeeding argument. We first define a function H by

H = > P(nn) In P(ny). (55)

It is then readily shown that
dH/dt £ 0, (56)
the equality holding only when
P{ma) = P{ng), (57)

all m, a, n, and 5. The monotonicity of the time derivative of H suggests that we
may tentatively interpret it as closely related to the entropy of the system,
hence we identify

S = —«H, (58)

where « is a constant of dimension ergs/°K.* It then follows that we should
interpret the state for which

dS/dt = 0, S a maximum, (59)

as the equilibrium state. A solution of (57) which immediately suggests itself by
virtue of the energy conservation condition contained in W is

P(nn) = P(E.). (60)
A further condition on the solution if it is to describe the thermodynamic state
of weakly interacting systems is;
if Enm=E,+ E,, then P(E, + E,) = P(E,)P(E,). (61)
A solution to the functional Eq. (61) is, of course,
P(E) = Ce ™, (62)

where C is to be determined by the requirement that P be a probability. Since
8 must be the same for both the photon and particle systems—and is the only
macroscopic parameter they share—it follows that it must be related to the
temperature, and is in fact 1/«7T.

4 The interpretation as an entropy of a functional of the distribution functions whose
time derivative is always zero seems somewhat inappropriate (14).
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One now readily establishes that the equilibrium photon and particle densities
are:

1
(k) = Z"?}\&P("?) = a1, and f(K)
8
5 e -1 \
1 (63)
= ZL_‘, TLK] (n) = B*-—FEK 1 .

It is also now readily established that the function identified above as the system
entropy becomes, in the equilibrium state, the sum of the photon and particle
entropies, respectively; and that the functional dependence of these partial en-
vropies upon other thermodynamic variables is indeed that conventionally
deduced by statistical mechanical arguments (75). Iinally, employing the dis-
tribution functions (63), one easily shows that Eq. (47) 1s satisfied.

One of the principal reasons for presenting the relatively familiar detail of
this scetion is to emphasize the fact that this detail and these results obtain
naturally in the context of a description of systems with many degrees of free-
dom which introduces no specifically statistical considerations other than those
inherent in the axioms of quantum mechanics themselves (16).

IV. SOME APPLICATIONS OF THE BALANCE RELATION

Although the processes influencing photon transport are well known and, to
the order of approximation characterizing the present analysis, have been more
or less thoroughly investigated, Eq. (47) is not in a form that is easily recognized.
Thus in this section, the photon balance equation will be reduced to a more
familiar form. The processes contributing to the scattering, emission, and ab-
sorption of radiation, enumerated in Section II, will be discussed in somewhat
greater detail; and the corresponding transition probabilities will be reduced,
when feasible, to forms that have already found useful application.

To initiate this reduction we now explicitly assume that the number of occu-
pied particle states in any given energy range is small compared to the actual
number of states in the same range. The effect of this assumption is to exclude
from present consideration all systems characterized by particle degeneracy,
and leads to a description of the particle densities in terms of Boltzmann statis-
tics. We then go to the continuum in photon momentum space by defining

2 = xdk dQ(k), (64a)

ked3k

and

S 1 = g dk do(k) = Y dkd2(k)
* 2n)?

ked?

(64b)
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IFurthermore, for the treatment of photon scattering—for which free-particle
states arc employed to describe the particles before and after collision—it is
also convenient to go to the continuum in particle momentum space, i.e.,

>, fo=J.dK. (64c)

Ked3K

Then kKq. (47) can be written as

it e@vh=(sl+e te +e +e) (50\ + Bﬁ)
’ (63)
— (3" + &' + &+ @+ @),

where the reaction rates for scattering (s), emission (e), and absorption («)
are now given by:

st =2, fx e &K PKydk dQ VESoeis o0 (K)f.(Ky), (66a)

s = ; fK o LK Ky dk d2 ViSexia [,-Q,(k’) + %i] J.(K), (66b)

e = > VTR . (NK)f(K), (66¢)
KK,
e = 2 VTEL (NK)f(Ky), (66d)
KK,
= 2 VTR (K (Ky), (66e)
o0 KK K9K3
s = 2 VTe(NK) I, (Ka)fe (Ks). (66f)

00’ KK1KoKg

These reaction rates are, in general, complicated functions of the photon wave
vector, photon polarization, position, and time—the space and time dependence
arising through the dependence of % and f, on space and time. They represent
total transition probabilities per unit time for transitions between all possible
initial and final states such that a photon of momentum #k and polarization A
is either gained or lost. The quantities s; , are the “scattering in” and “‘scattering
out’ transition probabilities, whereas the ¢'s and «’s are the corresponding prob-
abilities for emission and absorption, respectively. The omission of the sum over
the particle index for the cyclotron, recombination, and de-excitation radiation
reaction rates is in accordance with the earlier discussion, in which it was indi-
cated that essentially only electron transitions are important.

All of the emission and absorption processes enter the present analysisin the
same fundamental way. In excitation and de-excitation for example, the photon
field and the atom constitute two weakly coupled systems. The interaction be-



PHOTON TRANSPORT THEORY 121

tween them causes an electronic transition from one atomic state to another
accompanied by the emission or absorption of a photon. Electronic transitions
leading to emission may proceed either spontaneously (at a rate independent
of the presence or absence of photons) or at a rate proportional to the number
of photons present (induced emission). The absorption rate is, of course, always
proportional to the number of photons present. The other processes are de-
seribed here in basically the same terms——cyclotron emission or absorption re-
sulting from electronic transitions between unperturbed magnetic states, whereas
bremsstrahlung and inverse bremsstrahlung are radiative free-free electronice
transitions occurring in the field of another charged particle. Because of the
present nonrelativistic treatment of the particles, Eq. (65) should probably be
restricted to a description of systems in which the mean particle energies are
not expected to much exceed 50 kev. Under such circumstances, pair creation
and annihilation should not contribute appreciably to the photon balance, and
hence the necessary absence of a description of such processes in Eq. (65) should
lead to negligible error.

The scattering process is not of particular interest when dealing with non-
relativistic systems because the scattering rate (and corresponding cross sec-
tion) is small in comparison with that of some of the absorption and emission
processes. Since the cross section for nonrelativistic photon scattering is roughly
proportional to the square of the radius of the electron, it is seen that, even for
free electron densities of order 10" per em® the scattering mean-free-path is of
order 10° em. Such a process can hardly be expected to significantly influence
photon distributions in laboratory-scale systems. Thus, in investigations of
radiative transfer in this energy range, scattering rates which would be charac-
teristically dependent upon the photon densities in both the initial and final
collision states are not usually given any consideration.

Conversely, for the treatment of the problem of shielding high-energy gamma
rays from a nuclear reactor, the scattering process does become a significant com-
petitor with other relevant photon reactions. This is due in large part to the
fact that the interactions of such high-energy photons with the electrons in the
atoms in such systems may be satisfactorily treated as if the electrons were free,
i.e., as if all such reactions are describable as Compton seattering. Consequently
there is an enormous increase in the effective density of scatterers, leading to
scattering mean-free-paths of the order of centimeters or less. However, in the
description of scattering in these instances, the dependence of the scattering
rates upon photon densities in post-collision states is always ignored (2). This
is justified, of course, because in these far-from-photon-equilibrium systems,
the photon densities are always very small when compared to the densities of
available states.

In the absence of an external magnetic field, information about photon dis-
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tributions in particular polarization states is no longer significant. In fact, in
such instances, it is reasonable to agssume random polarization for the photons—
in which case, x(k) = L5%(k). Then Eq. (65) becomes

X+eQ V=G +&+ e+ ax+ (20/V)]

(67)
— (8 + & + a + a)x,
where we have defined
Sio= 142 st
X
€ e.B = 1’2)2 Ei‘C’,B}
O-(r e, B — ]Z/ 2\: a)):,u,B .
The scattering rates may now be rewritten somewhat more explicitly as,
§ = 4n Zf &K &°K, di’ dQ’;‘;T{ﬁca(k—{—K—k'—Kl}
KKk’ viv
RK _EES (68a)
X 6<Tzc/c—}——9- - — hek >x(k ). (KL,
My, _/m
s=ar X [ PKEKK a9 7 ok + K — K — K|
4 Kk’
- K’ WKy (68b)
<TLCI\ + —_— ﬁCl\" - 7};}}){ (k) + -Pk’} fcr(K)

where we have introduced the Thomson cross seetion,
o2y 2 a2
or = Lale, /me) [l + (k-K')7.

Fquation (67) may now be readily reduced further to a form familiar in reactor
shiclding studies (2). According to the above remarks about the ratio of photon
densities to available state densities in these systems, we may drop (k) when-
ever it is compared with the corresponding density of states, pr/V. We then
define a macroscopie linear ahbsorption coeflicient p by

= (1/¢)[5 + & + a. + asl,

where “scattering out” is considered as an effective absorption. In this sense, u
represents a probability per unit path for small paths for the loss of a photon
of momentum #ik. Equation (67) may now be written as
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1. 9
Ei—*_Q.Vi—I—“i:%(ET_{PEe—‘I_EB)
(69)
+ 2 f dk’ dQ' n,x(K)e.(K, Q' k, @),
where
(Tl‘l(kl’ Q” k, Q) = f dsK d3K1 [fa(K)] ii’:T]{) or

K , KK
om, hek” — 2m,,>'

><8(k+K—k'—K1)6<ﬁck+

When finally cognizance is taken of the fact that atomic de-excitation radiation is
considered to be of negligible importance in reactor shielding situations, and the
high-energy photon transport equation is reduced to nonrelativistic form, it is
seen that Eq. (69) is essentially the same as the one employed by Goldstein (2).

For the remainder of this section we shall be primarily concerned with low-
energy plasma systems near kinetic equilibrium for which scattering can be
neglected. Returning to Eq. (65) (without scattering), we accomplish a reduc-
tion to a form conventional in the discussion of low-energy radiative transfer
by defining a source function, M(x, k, t); an “effective” absorption coefficient,
o™(x, k, t); and a radiation intensity, Ix(x, k, ) such that:

. : Fopren
‘])\ = m=ze B ]m)\ B m=;e B ﬂ){ff— ’ (7031)
[s7 » — € »
o= D (70b)
m=c¢,r,e,B C
and
I\ = hwck . (70¢)

Then radiation transport is described by the familiar expression (1),
(1/e)[ + @ VI, = j* — . (71)

The effective absorption coefficient o' is a probability per unit path for small
paths for energy loss by “net’” absorption. The qualifications “effective’”” and/or
“net’ absorption imply a difference between the absorption and induced emis-
sion processes. The source function is essentially the rate of spontaneous emis-
sion of energy per cm® per unit k (frequency) per unit solid angle.

When a strong magnetic field is present, cyclotron radiation can cause a sig-
nificant energy loss from a plasma system. For fully ionized plasmas it may even
be the dominant mechanism for radiant energy loss. When this situation obtains,
Eq. (71) becomes
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(1/¢)Iy + @-VvI, = j — &I, (72)

We note that the source function j," is completely specified when . is specified,
and that ¢ is known (at least formally) when the electron distribution function
is known and appropriate single-electron wave functions (previously discussed)
are chosen.

To evaluate e, we choose [following Parzen (17)°] a coordinate system in
which the external magnetic field is along the z-axis, and the photon propagation
vector K lies in the y—z plane. We specify the polarization vectors by the usual
sphelical base vectors in the polar and azimuthal directions. The Cal(‘ulation
of TE(\k) then follows directly from the work of Parzen, after replacing his K
and 8 by k and v = v,/¢, respectively—except that we have allowed arbitrary
electron momenta in the z-direction, rather than restricting it to be zero. The
results (Appendix C) are

VT8 (o, k) = “e (mv Vo (wry — wx)
(73a)
x 8(K, — k, — Klz)e|: Zhekiik, :| I, (ny sin 6))°
hwymo
for the azimuthally polarized radiation, and
VTS, ) = 2T ()6 — )
m2hek
2hckhk o . 'V, s ?
X 8(K, — K,))e [—MI-]—*} cos” 0 [1 — wtan 0} (73b)
fuw, mv . me
y |:Jn(n—y. sin(}):r
v sin 6

for the photons polarized in the direction of the polar unit vector. We have in-
troduced the notation w, to represent the electron gyromagnetic frequency.
The symbol n occurring in Eqgs. (73a, b) is an integer equal to the difference
between the radial energy quantum numbers characterizing the initial and final
electron magnetic states appropriate to the transition under consideration.
The quantity #k./mv. occurring in the exponentials is the ratio of the per-
pendicular (to the magnetic field) component of the photon momentum to the
corresponding component of the electron momentum. IFor frequencies of in-
terest, this quantity is so small that for all practical purposes these exponentials
may be replaced by unity. Energy and momentum conservation require that

5 Note that although one of his approximations was not valid for the extreme relativistic

case (18), Parzen’s analysis is quite accurate for our problem. Also note that in his Eq. (26),
k should be replaced by R.
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nw, = ck — vk, ¥ (fk.S/2m). (74)
Direct substitution of Egs. (73a, b) into the definition (66¢) of € gives,

b An'd f [ np, sin 0>:|“)
o _ ps cos B fik, cos @
X B[nwo ck (1 o + Sme >:|,
o in'e Z /‘ 7 1(p) [J np, sin 0):'2
T ek 4 pJiP " me

% (p, sin 8 — me cot 6)% |:nw0 — ck <1 _ P cos 9 + ik, cos 0>:|,
me 2me

(75a)

(75b)

where we have converted to the continuum in momentum space for the de-
seription of the pre-transition particle distributions, f(p).

The evaluation of a)° is also of great importance. This parameter has been
calculated in various ways by various authors (4, 19). It is seen from Eqs. (66c,
d) and (70b) that it can be written as

= (1/c) Z VTS ROK)[f(Ky) — J(K)) (76)

This expression for the effective absorption coefficient is quite general. Kir-
choff’s law——consisting of a relation between «.' and ¢, —can be developed at
this point if we now assume local equilibrium for the particles, e.g., take

J(K) = n(BR/2mn)"" exp [—BHK"/2m), (77)

where n is the (generally space- and time-dependent) particle density in con-
figuration space, and 8 = 1/«7T is also permitted an arbitrary space-time de-
pendence.

Since Ths(A\k) conserves energy, f(K;) may be cxpressed as

f(Ky) = f(K) exp [hek],
with the consequences that
al = & exp [Bhick], and & = (1/¢)(exp [Bfick] — 1)e. (78)
Observing that j.' is proportional to e, Eq. (71) assumes the form
(1/e)h + @-VIx = —aX(Ix — 15145), (79)
where

[ﬁw3/ 8#362] dw

IBBdw=7ﬁT, w = ck.
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Thus again (see Section III) we have arrived at an expression which provides
us with an equilibrium solution for the photons, namely, I, independent of space
and time and equal to 1415, . The condition for the thermodynamic solution
can also be rephrased as
.7'X/C¥)\e = 1815y,

which is a statement of Kirchoff’s law for radiation of polarization .

When Bfiw < 1 (which is the situation discussed in (4) and (19)), the Ray-
leigh-Jeans approximation to the black body distribution is valid. Then Eq.
(79), for the steady state, takes the form used in these analyses, i.e.,

Q-VI) = —a(In — L4Ins). (80)

Furthermore, in this instance, the effective absorption coefficients can be ap-
proximated from Eqs. (75a, b) and (78) as,

be 41('2626 3 2[ r (NP, sin 0)]2
X = Zn:fdpf(p)m Jo |7

me

(81a)
% 6[nw0 — ok (1 _ p.cos b 4 ﬁkzcos(9>:|,
me 2me
oo AreB 3 np, sin 6 ]2
o = [ a1 (P
(81b)

p. cos 8 | Ak, cos 0)]
— + .
me 2me
Setting m = ¢ = 1 and restricting attention to radiation proceeding nearly
perpendicularly to the magnetic field (6 ~ x/2), it is seen that (81a) becomes
the nonrelativistic limit of the effective absorption coefficient obtained by Drum-
mond and Rosenbluth (DR) (4). For 8 = 0, the absorption coefficients for the
different polarizations vanish for all transitions except those between successive
states, i.e., » = 1, and are equal for these transitions. However, the mean
free path for absorption when § = 0 is much greater than for absorption at § =
x/2. (Observe that limg..s a2 — 0). Thus it is reasonable to expect that, for
systems for which all the linear dimensions are of the same order of magnitude,
the radiation loss parallel to the magnetic field will be only a small percentage
of the total radiation loss. This seems to be a reasonable inference to be drawn
from the caleulations of DR for the infinite slab, which also indicate that the
bulk of the radiation is emitted into an angular interval for which o < al so
that radiation into the #-polarization can probably be neglected entirely.

It is shown by Berman (20) that for a hydrogen plasma with no magnetic
field and a kinetic temperature from 3 ev to 200 ev, radiative recombination is
the dominant energy emission process. The calculation of the emission coeffi-

X (p, sin 8 — me cot 6)% |:nw0 — ck <1
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cient for this case in the present context can proceed in a rather general way
by choosing for the electron and atomic wave functions,

| K> = (1/A/V)e™®™, | Ki> = ¢, (82)

where » represents a sufficient set of labels to completely specify each atomic
state. Since we have chosen a quantization volume such that only one ion is
present, the ion density in the system is simply given by n, = 1/V.

After converting to the continuum for the electron’s initial momenta and
summing over photon polarizations, we obtain for the recombination radiation
emission coeflicient

(=2 () E LS [ @K ) (0K sone = o0 00, (8

mlv

Yu(x) = flh*(X)e‘m'x d’x

and ¥ = k — K. It is now a straightforward matter to obtain the results pre-
sented by Heitler (21) (p. 207), for transitions to the K-shell; or alternatively
those presented by Bethe and Salpeter (22) for transitions into higher states
(see Appendix D).

The remarks about the effective absorption coeflicient for cyclotron radiation
are also applicable to radiative recombination. Calculations of recombination
radiation from a plasma have been performed by Berman (20) and Kogan (23).

Tor low-energy hydrogen plasmas (less than 3 ev), or for higher energy plasmas
containing atoms of higher charge number (24), de-excitation radiation can be
a serious energy loss mechanism. The transition probability Trex(Xk) can be put
in a more convenient form for caleulation in the dipole approximation by the
elimination of the gradient operator from the matrix element. It is observed
that (for the dipole approximation only),

<ng | H™ [ ma> = (e/he) < ny|¥'¥, Hyl| ma>, (84)

and thus, instead of (49b), we may write

2
eaK()‘k) = 47r

fgvz (%)m“c (6K1k - fx)g I Sx(k> -< K, l X l K> ‘2. (85)

k

Equation (85) is related to the corresponding expression for the rate of spon-
taneous de-excitation presented by Heitler (21) (p. 178, Eq. (10)) by
o A2 eﬁ(ck)3 dq

0 dQ = VTHx(\k) T " T ade | <Kilz|K > [Pcos’s, (86)
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where § is the angle between the direction of polarization and the vector, x. If
we now sum over polarization and integrate over angles, we obtain the transition
probability Ax,x given by Berman (20), q. (2-1). For further calculations
applied to a hydrogen plasma, see reference 20.

The last radiation mechanism which we will consider is bremsstrahlung. The
calculation of & for electron-ion and electron-electron bremsstrahlung proceeds
straightforwardly from Eqs. (49d) and (66e). However, nonrelativistic electron-
electron bremsstrahlung contributes negligibly when compared with the elec-
tron-ion radiative collisions (25), and hence shall be given no explicit considera-
tion here.

From the relations (49d), (66e), and (70a) we find that the source function
in this instance may be written as

jpdw = n; hw f of (E, Q) dE dQ / o dw dQ;, (87)
£, 2,

after assuming that the scattering ions are at rest before collision. The cross
section op dw ds is the one given by Heitler (21) (p. 245) for nonrelativistic
electron-ion bremsstrahlung. Of course, Eq. (87) also effectively provides us
with the emission coefficient &, (recall (70a)) (see Appendix E). Hence if we
again assume kinetic equilibrium for the particles, we may easily obtain the
absorption coefficient oz according to Eq. (78). However, for most laboratory
situations the large bremsstrahlung mean-free-paths (26) imply that the photon
densities will be exceedingly low (provided that bremsstrahlung is the principal
emission mechanism). Hence

C_YBeI/jB <1, (88)

and consequently the rate of loss of radiant energy from such systems is essen-
tially given by the rate of emission, j; . Extensive calculations of this emission
rate have been carried out by Kvasnica (27),° and an investigation of the range
of validity of the assumption in Eq. (88) is presented in reference 26.

V. FIRST-ORDER COLLECTIVE EFFECTS ON PHOTON TRANSPORT
IN THE FULLY IONIZED PLASMA
In the preceding sections we have developed a description of photon transport
which implicitly assumes that the photons travel with speed ¢ between successive
events. (This assumption is realized explicitly in the form of the transport term,
¢Q-Vx). The assumption slipped into the analysis through the choice of the
transformation operator (14) which defined the interaction representation (13).
However, a brief reappraisal of the discussion in Section II reveals that a certain

6 Included among these calculations were rates of electron-electron bremsstrahlung as
well.
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amount of the information available about the system in the Hamiltonian (2)
has simply been discarded. It is our purpose in this section to show that this
information can be exploited with but trivial modification of the preceding
analysis to enrich the treatment of radiative transfer in the fully ionized plasma.

The point is that in the term H”™ [Eq. (2g)] in the Hamiltonian for the system
there is a part that describes simply an energy level shift for the photons in the
medium, as well as other parts deseribing interactions between photons and
particles leading to changes in the states of the photons. Only the latter parts
of this interaction term were employed in the calculation of the influence of
transitions upon the rate of change of the photon distribution function. To
Incorporate the effect of the former part, one need only add it to the energy of
the “‘free’”” photon in the definition of the unitary transformation taking us to an
appropriate interaction representation. Since it iz this unitary transformation
that describes how the photons propagate between events, we will then find
that the phase velocity of photons of momentum 7k is modified to be

e(1 + w, /26",

where w,’ is the usual plasma frequency. The group velocity which enters into
the transport term will be correspondingly modified to be ¢(1 — w,’/2¢’k").

For an explicit realization of the content of these remarks, we rewrite H?™ in
momentum space as

fﬁ Z i aa+(K)au<K)()\+<k)'{)\+(_k)

cV Xkke Mo k

o5 6 ar (K)a (KNG (k) - o (—k)s(k + K — k' — K')
cV MeKe Mg ’\/}\“Ak,’ ’

NE'R'

Hm2 —

(90)

where the prime on the second summation implies that the terms for which
A= N,k =F, and K = K’ are to be deleted. These latter terms are just the
ones that have been employed in the discussion of photon scattering and hence
shall be largely ignored in the following. Recalling Eq. (6), it is seen that the
terms in the first summation in (90) include some that are proportional to the
photon number operator. These we single out for special consideration and
designate them as

gre _ 2l s el a,” (K)a,(K)an" (k) an (k)
: G ‘ :

01’7 McKa Mg ]\/

(91)

Now define a transformation to an interaction representation by
F = UG, (92)

where now
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U = exp [—i(T" + H")t/R]. (93)

Proceeding as in Section II, we find that Eq. (47) is reproduced with the follow-
ing two modifications:
(1) The transport term is altered from ¢Q-Vyxy to

Ixn 9 27 ec,2 4
AN k = h ; .
az; ak;{c +cw§mq (F,a, (K)a.(K)F) ¢, (94)

where we have employed the approximation
(F, a,"aF) =2 (F, a, 0, ) (F, pF). (95)

(2) The energies of the “free” photons—defined as the eigenvalues of T +
H?™ in the representation that diagonalizes the number operators for both
particles and photons—are

2
& = %: fick (1 + % %—/ ; %’U n,K> Mk - (96)
This shift in the photon energies requires a corresponding modification in the
energy conserving deita functions contained in the various transition proba-
bilities in Eq. (47).
The transport term, Eq. (94), can be expressed in a more interpretable form.
Iirst note that

(1/V) 22 (F, a," (K)a(K)F) = N, (97)

the expected density of particles of kind ¢ in the quantization volume V. Then,
ignoring terms proportional to the ratio of the electron mass to the ion mass,
one obtains

—Q,(8%:/82,)(8/0k) (ck + w,/2ck), (98)

where we have introduced the notation w,’ = 4nN.’/m. This suggests the as-
signment to photons of momentum 7k a frequency w = ck + w,’/2ck, a phase
velocity w/k = v, = ¢(1 + w,/2¢'k"), and a group velocity

dw/ok = v, = ¢(1 — w,'/2°k").
In these terms, transport is described by
—UHQ'VX)\ y (99)

and we see that photons whose momenta are such that w,’/2¢’k> = 1 do not
propagate through the plasma. This is substantially the same conclusion with
regard to “first-order” effects of collective particle behavior on electromagnetic
wave propagation in plasmas as is drawn from conventional macroscopic elec-
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trodynamics (28). The restriction of the remarks in this section to the fully
ionized gas 1s a consequence of the fact that in systems in which electron bound
states are important, considerable modification of, say, the energies [IEq. (96)]
is to be expected (29). Further investigation into the implications of the modi-
fications (1 and 2) for transport processes will not be entered into here.

A consequence of the present description of ‘‘noninteracting” photons for
the equilibrium state is of some interest. Recall that in Section III, the thermo-
dynamic state was presumed characterized by the canonical distribution,

P = g™ (100)
In the present instance, however, this distribution should be generalized to
O (101)

It is readily shown that the density matrix (101) leads to particle densities the
same as in Eq. (63). However, the photon density is altered to become

(k) = [exp (Be) — 1]7, (102)

where

& = ﬁck( w Z ¢ Z n.,K) . (103)

Since in this instance we are considering a large, spatially uniform system, the
quantization volume V may comprise the whole system and

(1/1/)%%r = N,, (104)

the density of particles of the oth kind. Thus (102) may be written as
xn(k) = {exp [Bhick(1 + w,'/2¢%")] — 1} (105)

Perhaps the most significant aspect of this modified thermal radiation spectrum
is the prediction of the rapid decrease in the expected number of photons with
momenta such that w,’/2¢’k* > 1.

APPENDIX A. A THEOREM ON TRANSPORT

A general theorem concerned with the transport term of the rate equation
can be stated:
If

= 3 00k en* (R)an(K),

then
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I L, s QIF)
(A1)

fV

..4

Z (F, O(\E) sln{v’” V’} ok, @) F)e ™9,

where
alk q) = a’(k + g)aa(k — q),
and O(Mk) represents an operator containing factors which commute with the
a operators.
Utilizing the commutation relation [ax(k), e’ (k')] = 8u-d(k — k') we obtain
[H,, o) (K, q)] =ka ONE ) [ox (K o' (K'), " (k + Q)an(k — q)]

=[O\ [+ a)) — O\, [k —q )]k, q). (A.2)
The left-hand side of Eq. (A.1) thus becomes

P00, k4 a]) = 00,k - 0) | ad OF)
-2 (8) S (F,00k) [ew - gm} (k QF)e?s  (A3)
AN ’ v 9 K, q e

= _%< ) > (F,00\k) \m{VkH }p)\(k q)F)e "™,

where the exponential operators are defined by their series expansion.

Two cases of interest are H, = T and H, = T" + H?"™. For H, = T", 0(\k) =
fick and Eq. (A.3) reduces to Eq. (23). When we use H, = T 4+ H?™ we ob-
tain, in the classical limit, Eq. (94).

APPENDIX B. DERIVATION OF THE CYCLOTRON RADIATION TERM
IN EQ. (49) FROM EQ. (38)

As pointed out in Section III, the cyclotron radiation results from that part
of Eq. (38) which contains H”"' + H®*. Ignoring scattering and bremsstrah-
lung, Eq. (38) becomes

+ CQ VX)\ Z 7))\1\2 Ifr(ln),mc((l)ma,mcz - Dnn,nn), (Bl)
ny
where
W75117,),ma = (,27'-/‘7ﬁ’2)5(wm’ - wmo;,)l(Hp‘Yl + Hpve)nn,ma \ ’ (B2)

and we have replaced
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. 2(“’7;1} — Wma )
Sin ﬁr S
by (7/2)6(wny — Wna).

$(Wng — Wia)?

It has been observed in Section II that a diagonal element of the density matrix
D, .y 18 interpretable as the probability of finding the system in the state char-
acterized by the occupation numbers | ny > at time {. Consequently, we in-
troduce P(nn, t) = Duynr® and note that

Va(k) = 3, muP(nn, t).
nn

Thus,
Via(k) = 3 quP(nn, t)
nn
with
P(ny, t) = 2, W dP(ma, t) — P(ny, 1)). (B.3)

Instead of performing this sum algebraically, we appeal to the physical
process, and recognize that the probability of the system being in the state
characterized by occupation numbers | n,xn.x,me > is affected in the following
way:

{(1). P(nexhox,me) is increased by:

(a) A photon absorption when the initial state has occupation numbers
lnaK - 1, Neky + 1, ome + 1 >,

(b) A photon emission when the initial state has occupation numbers
[fgr — 1, Mox, + 1, e — 1 >

(2). P(n.k , Nox,mx) 18 decreased by the reverse processes.
Now H® = H?™ 4+ H" can easily be put in the form

= e [20he
"= axkzlc:xl M€ 1/ Vk a, (Ky)a,(K)

(B4)
X o ()en(l) + al~K)a (k)] - [ v g,

where we have expanded

‘l/zr = Z aa(K)uo'K(x>7

K

the u,x(z) being the normalized magnetic states discussed in Appendix C. The
sum over k is over both positive and negative values, so that when (—k) ap-
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pears it can be replaced everywhere by (k). Equation (B.2) can now be written
W = TRNVE)| < ng o (K)a, (K)ao(K) | ma > |* (B.5)
or
TEL (VK| < np | a(k)a, (KD a,(K)| ma > |7,

where the first matrix element represents photon emission and the second matrix
element represents absorption, and where

tr’c e\ 1
aK1 _‘,L il
coK<)\ k ) ﬁV2 (muc> l\l s(lek OJK) (B.Ga)

X | e (K)- < Kp|e™™

7KL (VK 47"20 €o
cfaK(A k) = W <m,,c) k’ 5(60K1 - ka')
(B.6b)

X |ex(l)- < Ki|e"™ 1

The states | K> and <XK; | characterize the initial and final electron states.
Equation (B.1) can now be reduced to

(3x2/0t)ine = Z Mk Z IVrn,ma [P(ma, t) — P(nny, t)]

= 2o 2 TERVE) (L & ner)Raxmy
nn

eKE\E
X P(nox + 1, toxy — 1, mor —_1)
+ 2 1 Z,k Teaax(NE') (1 &= Ngr)or, (Mo + 1)
ny

KK A

X P(nex + 1, Noeg; — ], e + 1) (B7>
— Yo 2 TEVE ) ex(1 & Ror,) Mo
ny

gKE N\ lk
X P(norNor, k')
- 2™ Z, Toade(NE Y ox(1 = Nor,) (e +21)
ny

KK ANk

X P(naK'Ryxlﬂ)\’k’),

where the positive sign is appropriate for bosons and the negative sign is for
fermions. When the sums are broken into two parts, (N'k’ = Mk and Nk 5= k)
and the indices are appropriately shifted in the first two terms, we get
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(axh/ag)int = Z gfé(kk)no!(<naxl + 1)<7?AL + 1)P<?2'!7K %ax; 3 ??Mc)

oKEKnn
K .
- Z ZaalK()\k)naK<naK1 1)7])\kP(‘naK,n¢rK1 ’ 7])\k)
gKKnn

sz: Toan(NK) ok (Max, + 1) (i + 1) — (Mox + 1)70x 1]
KK inn
X P(naKnn‘Kl'rI)\k)- (B‘S)

If we approximate the average of the products by the product of averages,
we obtain

(3X0/ ) ine = “; T N [{ Vaa(k) + BV (K){1 + Vi, (Ky)} (B9
- VX)\(k) Vf,(KJ{I =+ va<K)}] ’ )

The minus sign where (=) appears would result from a rederivation with
anticommutation rules.

APPENDIX C. REDUCTION OF EQ. (49b) TO EQS. (73a), (73b)
We first rewrite Eq. (49b) in the form

dr%c e, Y1
caK()\k) ﬁ ]: a(wxlk - wx)
Mo/ K (C.1)
X | <jUm' | e ¥ Lslen Il + e I7] 4+ ea 1L’} | jlm> |*

where (10)

1I\z~
| K> = |jIK.,> = u(p, ¢) ;_/—L
_1 /1 ap )V exp i(j — Do + iK.2 — 22 ) Li ' (ap?),
AV L ‘ S ’

with & = mwo/2%, L' being the box normalization length, and where Li Y ap®)
is the associated Laguerre polynomial. We have defined

IL° = IL° =+ 411,
and eg) = e & T . The operators 11" are creation and annihilation operators
with the property
L uy = imawbN/2(7 + Dujpra, O %u;; = —imewbN2ju;1, (C2)

where b® = #ic/eH. When the k vector is oriented in the y—z plane with the
magnetic field parallel to the z axis,

ar’c { e. Y 1
cax()\k> = 5 (m) E‘S(lek - OJK)
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X 5 e by/Zjeia (K, — k. — K)IGT |5 — 1,1)
+——mawo£kxb\/(zj+l)5(lx e — KW)IGU 5+ 1,0

+ slzf.)\ ﬁKz(s(Kz - l\-’z - Kl:)l(j/l, l]l) “y

where
IGU G = <jU e ™ ji> (C.3)

and §(K. — k. — Ki.) results from the z integration. Taking [ = 0 (the “well-
centered orbit” approximation (17)) which is valid to first order (30) it is seen
from Parzen that for cases of interest in plasmas only transitions between
different j states are important. Thus, letting n = j* — j, we obtain (17)

I(j',0150) = 1"e[— (hickhik ./ fiwme )], (ny sin 8)
I1(j,01j — 1,0)
17,017+ 1,0)

We specify the polarization \ectorsiby the usual spherwal base vectors in

II

i el — (hekbik o/ Fwgme )T wal(n)y sin 6] (C.4)

1" e[ — (Fickhik 1/ Tiwamv )1 o a[(n)y sin 6].

the polar and azimuthal directions, s0 g, = cos 6, s“, = 41, 859 = —sin 6, and
er.o = 0. Substituting Eq. (C4) into (C3) we obtain the desired result
o r'e’
VTlk(6, k) = 0 (mer,)0(wse = ox)
h) . N
X 6K, — k. — Ky.)e [—M] (/. (ny sin 8)°
fiwo My v,
(C5)
. 4r'e’
Ve chK(g k) = 2ﬁ T (mal' )5(wK1k - OJK) 5(IX -k, — Al)

T ) 2 PR P!
. _.chkﬁlu] cos? 6 [1 _ hK.sin 6 hK. sin g 0:| l:,&(n'y sin ) ’
fiwgm, vy m,C v sin 6
where we have made use of Bessel function recursion formulas and the relations

R~ b(2n)"* = v,/w,, where R is the radius of the orbit.
APPENDIX D. REDUCTION OF & TO A CROSS SECTION
The quantity &, is related to the cross section by

&= o [ 0 (K, K OF(K) @K, (D.1)

K,
where
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VT, ()\k)
Kcd3K C

o (Ky, K k) =
Then

7 ] 3/2 72
oKy, E, Qk) dE dQ = L(‘f)ﬁ—)ﬁ@ <ZZ> N (m, (D.2)

where we have assumed
BK*/2m ~ #ck.
We choose the plane wave state for the free electron as | K> = (1/4/}V ) Kx

the factor 1/V indicating the number density of ions. Then

VdE dQ € /9mek

2r  mck 3 (D.3)
X 8(Exy — Eo) | <Ky| e ™%, v K> |”

o, (K1, E, Qk) dE d9 =

We can arrive at the result of Bethe and Salpeter (22) by defining
Dix, = V/mEV/(20)7 < Kyl ¢ %%,V | K>, (D.4)

A .
where Dok, represents a matrix element with normalization different from that
used above. The cross section can now be written

oy (K1, Q k) dQ = fap*(Kl,E, Q k) dE= (47°¢'B/m’ck) | Digx, ' d2, (D.5)

which is just the result given in reference (22), Eq. (69.5), when obvious nota-
tion changes are made.

A further reduction can be achieved by use of the hydrogen-like atom ground-
state wave function

I

VAR
|K1>=/‘/ . P
a,"m

where a, = #/me’. The integration over x yields

20 75 ESR 2
o NK1, E, QK) dE d2 = dE do >2Z 4/2””1‘- ¢
a’k ) me?

. 2 D6
><6<EK1,C—EK)( 1 a-K QL. (D.6)
T[‘z + (k — K)ﬂf
(227
Assuming

(a) (WK/2m) ~ #ck, (b) a;? < K + K7,

. (D.7)
(e) (hek/me) < 1,
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we obtain

7oKy, 0K d2 = 3 [z 2K, B 2,%)

/2 2N\2 / N4 4
W < i) ( _ ) in?
427 <ﬁlc> <mcﬁ> <ﬁc 1 Gi) sin 6 dQ,
where u = cos 8 = k-K/kK. Lastly
ool ) = [ e 0k = a0 o 2vE (1), (Do)
where ¢, = dwr, /3, r, = € /mc’, and « = €/fic = 1/137. If we multiply by a

factor 2 to account for two electrons in the K shell, we obtain the result found
in Heitler (21) {Eq. (14), p. 207].

(D.8)

APPENDIX E. REDUCTION OF ¢g

In Eq. (66e) we let ¢ denote electrons and ¢’ ions, then convert the sums to
integrals to obtain

e = (91)7«02(1](11&(”& IK,d’K;6(K + K; — K; — K; — k)
X 8(w; — w)f (K)o (Ky) | U(| K — Ky ) [P
8)\(1{) K2 (E].)
X ek — (@ /2m,) — (P Ky/ms)
a(k) K ?

 hiek + (7kE2m,) — (kK /m,)|’
where 7, = ¢/me,’, a = ¢ /hic and we have utilized energy conservation,
JaKg + Ev’Kg + fick = E,x — Eu'xl .
In a nonrelativistic approximation

fick > Ui and fick > " EKe kK
m,, my my
If now we take the mass of the ions as infinite, then perform the A; and K, in-
tegrations, we find that
A C_ﬁ ff,(K) &K
(E.2)

e o lak) ‘K — e (k) K|
del&gﬁ(ﬂg E 4+ #ck) K, —K L k[
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Note that d’K, = +/2(m/F")*”E'? dE dQ. Now average over polarization
placing k along the z axis, and perform integrations over K; and K, to get

?

ts = 20/2mn, il ””" ffg(E) TCE — k) dE d do,
(E3)

% Esin’0 + (E — #ek) sin2 6 — 2~/ E(E — hck) sin 0 sin 6 cos (¢ — ¢.)
[E + (E — #fick) — 2uy\/E(E — kek)|’
where we have neglected k in comparison Ko — K, and written
|Ke — K| = (2m,/BVE + (E — #eck) — 2u/E(E — fick)|*

with po = uus + sin 6 sin 6, cos(¢p — ¢2) and u = cos 6. We arrive at a more
familiar form by observing that

Js dw = dwn,n; w f of, dE dQ / ap A, (E4)
where
fe. = fe,’/ne .
But
Jode = &(2k/(2x)" ) hew d(ck)

$0 that

22 2 I
oy dQ = LM@ E — fw

27 137 w E
Esin®9 4 (E — fick) sin® 6, — 2+/E (£ = fick) sin 6 sin 8; cos(¢ — ¢2)
[E + (B — fick) — 2ueN/E(E — hek)|’

When appropriate variable change is accomplished and one ¢ integration is
performed, this result is equivalent to that found in Heitler (27) [Eq. (17),
p. 245).

(E5)
X

RECEIVED: October 5, 1960
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