
ON THE CHANGE IN RADAR CROSS-SECTION OF A SPHERICAL 
SATELLITE CAUSED BY A PLASMA SHEATH 

C. L. DOLPH and H. WEIL 
The Radiation Laboratory of The University of Michigan, b Arbor, Michigan 

Ah&act-A uniform neutral dilute ionized gas is assumed to be perturbed by a sphere moving through 
it. The radar retnrn from the disturbed region is obtained by integrating the Compton scattering 
from the electrons, taking phase into account, but ignoring secondary scattering and attenuation. 
The electron density dist~buti~ for this ~mpu~tion is obtained by integration of the zeroth order 
velocity distribution function for neutral particles obtained by Wang C&n&) as a soiution of the 
Boltzmann transport equation. 

Numerical results are obtained for the perturbation of the electron distribution by a sphere 
travelling at S km/set and an altitude of 500 km, tid for the radar cross-section of this perturbed 
region when viewed broadside.* 

IN’l’ROKXXTION 

A sphere is assumed to move with a constant 
velocity, V, through a dilute, electrically neutral, 
ionized gas that, in its unperturbed state, is 
assumed to have a uniform number distribution 
of electrons, n. The sphere disturbs the distribu- 
tion of electrons to a non-uniform one, N, with 
an excess ahead of the sphere and a deficiency 

this distribution since it forces the electron 
motion to be governed by the positive ions whose 
velocities and mass are similar to that of the 
neutral particles. This will be discussed in the 
second part of the paper where expressions for 
the distribution are found. In the third part 
numerical results for a specific sphere velocity 
and altitude are presented. 

behind it. The simplest estimate of the effect 
of this non-~ifo~, but eve~here dilute 

2. ‘l%E SCA TERING IIWEGRAL 

distribution on the radar return is obtained by The radiation field of each electron yields a 

summing the scattering by the individual back-scattered power per unit solid angle per 

electrons accelerated by the incident field. electron for unit incident power density given by 

Electrons only are considered since their return ff, = [e2/(4ne,mc2)]2. 
is far greater than that of the much heavier 
positive ions or the Rayleigh scattering from Here e is the charge on the electron, m its mass, 

non-ionized particles. The incident field on each E* the permittivity of free space, c the velocity 

electron is assumed to be a plane wave; this of light and m.k.s. units are to be used. The 

implies that secondary scattering is ignored. incident power is given by PC[fhrfi where P 

The approach is thus directly analogous to that is the total power emitted from the radar 

used to determine the radar return from under- antenna, G the antenna gain and r the distance 

dense meteor trails.“) from antenna to electron. The effective collecting 

There are three parts to the paper. The first area of the antenna is Gh2/(&) so that the 

part consists of a formulation of the expression 
for the back-scattered energy. This expression 

* The theoretical work and preliminary computations 

involves the perturbed density ~st~butio~. The 
wm supporte+ by USAF +mact AF ?oo_1853. 

condition of neutrality is used in determining 
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scattered power per electron received by the 
radar for large r is 

S- 
PG2A20 

@-yg&z=* 

We now assume the radar is well out of the 
ionized region of interest so that r is always 
large. Then the net power received from this 
region is 

where dv is a volume element. For simplicity a 
beam width wide enough to be essentially 
constant over the disturbance is assumed and the 
slowly varying factor r-’ repIaced by the range 
R,, to the sphere and removed from under the 
integral sign. Finally, N is referred to the con- 
stant n by writing N = (N - n) + n. The integral 
of n exp (2ikr) vanishes except for contribu- 
tions at the “edges” of the region of integration. 
Of course the distribution n extends beyond the 
beam-width of the radar and thus we know these 
“edges” are not physically significant. They may 
be neglected with the result that the desired 
quantity, the net power received due to the 
disturbance of the density distribution is given by 

&?- 
A2bppG2 

167r’R;: is 
elik’ (N- 8) dv 

I 
2. 

The integration is to be extended over the 
region of interest. In general this will include 
the entire region over which N---n differs 
appreciably from zero. However, one might also 
be interested in considering separately the 
efI%cts of the region ahead of the sphere and the 
region behind it. If these were to act as indepen- 
dent scatterers the average returned power 
(averaged over all relative phases) would be the 
sum of two expressions S,, and SD, corre- 
sponding to S, with the integration in SD, over 
the region ahead of the sphere and the region in 
SD, over the region behind the sphere. 

To put the integral in S in a form suitable for 
computation it is convenient to refer to Fig. 1. 

P 

Fig. I. Satellite-receiver geometry. 

The density N must be symmetric about z so 
that it is convenient to use cylindrical co- 
ordinates p, $, z in the integration. Furthermore, 
one can simplify the integral by using in the 
expression for r(p) 

(rp) = ro-_p; r2 = r;+j?2-22r*p 

the fact that 1) $ 1, so that 
TO 

r=rl-J 1-L 
[ 

2 2p. 

ro” 
-rO sm 8 cos (c$-$) 1 

-r,-psinOcos($-*)+i $- 
0 

g sin2 8 ~0s’ (f# - $) 
0 

In turn r, is approximated by 

WJ 

t- . . . 

z2 1 z2 roeR,SR -22cosO----cos20+... 
0 8 Ro 

We shall be interested in 60”<0<120” and 
hence will neglect the last term as well as those of 
higher order in z/R,. Then 

s = L2aePG2 

1679R;: 

I 
2 

p dp[N(p,z) - Fl] e2ik*(p**++ 

N-- dz. exp [2ik(d --z cos Q] 
0 

-Eo 
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The term fp2/r, is neglected in the phase since 
it will appr~iably affect the phase only if 
0 = 90” and then only where p exceeds N 0.11/%+ 
For such large p’s the amplitude N-n is 
negligible, This is not quite true for correspond- 
ing values of z. In this consideration we have 
assumed k c - 20 m - I. Note that in this integral 
sin 0(z)==& sin O/r,(z). 

2. COMPUTATISOTI&~ JJJJKXRON 

The steady-state problem of a point charge 
moving through a fully ionized medium of 
sufficiently low density has been treated by 
Kraus and Watson.@) Their work was extended 
to the case where a constant magnetic field is 
present by Greifinger. (3) A good deal of insight 
into the physical meaning of the above theories 
which started from the linearized Landau- 
Vaslov equation was provided by the report of 
Pappcrt. f4) In this report Pappert deduced the 
results of Kraus and Watson from the random 
phase approximation of Bohm and Pine@ and 
also demonstrated the equivalence of these 
methods to the linearization of the equations of 
motion and contin~ty for the ions and electrons 
under the assumption that an isothermal state 
exists. 

The problem of an object of hnite size has 
been approached by using the expression 
obtained in 1950 by Wang Chang? She obtained 
the zeroth order velocity distribution function for 
a sphere of radius R at rest in a neutral gas with a 
streaming velocity V under the assumption that 
the sphere was su~cien~y small and the gas 
sufficiently dilute that the collisions between the 
main stream particles and those reflected from 
the sphere could be neglected. The distribution 
function so determined satisfies : 

(a) The collision-free Boltzmann transport 
equation in the absence of external forces; 

(b) A boundary condition on the surface of 

the sphere that implies that the sphere neither 
absorbs nor emits gas particles by itself so that 
all particles that hit the sphere are re-emitted; 

(c) The property that it reduces to the Max- 
well-Boltzmann distribution around the 
steaming velocity at infinity inde~ndent of 
angle. 

In addition, this distribution allows for 
arbitrary amounts of diffuse or specular reflec- 
tion at the spherical surface. Since the region of 
interest here involves velocities of the sphere 
much greater than that of the ions and at the 
same time much smaller than that of the 
electrons and altitudes where the mean free 
paths are large compared to the expected 
dimensions of the disturbed area, Chang’s 
distribution may be used to provide an order of 
magnitude estimate of the electron distribution 
around the sphere when it is assumed that the 
charge on the sphere is so small that it can be 
ignored so that the ions will (to all intents and 
purposes) behave as neutral particles as far as 
their interaction with the sphere is concerned. 
The strong Coulomb forces should provide 
electrical neutrality which will then force the 
electrons to assume a distribution identical in 
form to Chang’s in which only the mass and 
velocity parameters can be different. 

This use of electrical neutrality, while 
appropriate in ionospheric physics, is less exact 
than the assumptions usually used in physics of 
confined plasmas where(‘) it is more customary 

@ 

A, n 

Fig. 2. Relation between C and fi. 
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to assume electrical neutrality except for 
consideration of Poisson’s equation while here 
we ignore any deviations from neutrality in this 
equation as well. While it would be more exact 
to assume the Chang distribution as the iirst 
term in a perturbation procedure for the Landau- 
Vlasov equations, it is unlikely that such a 
refined analysis would affect the radar cross- 
section results.* Other approaches such as that 
used by Bernstein and Rabinowitztg) in their 
discussion of spherical probes would seem to 
encounter even more intractable analytical 
difficulties were the Chang distribution to be 
used in place of the mono-energetic one used by 
them. 

The zeroth order velocity distribution ob- 
tained by Chang is expressed in terms of the 
following variables. 

V’ = the velocity of the main stream 

R = the radius of the sphere 

f = the point under consideration, or the 
point at which the velocity is being 
calculated 

ri = the outward normal to the sphere which 
passes through the point; r= rii if the 
centre of the sphere is taken as the 
origin of the co-ordinate system 

C’ = the velocity vector of gas particles 

a = the fraction of molecules that 
diffusely reflected from the sphere 

1 - a= the fraction of molecules that 
specularly reflected from the sphere 

is 

is 

V =V’/- non-dimensional streaming 
velocity 

C = C’/d2kt/m, non-dimensional velocity 
vector 

* Actually the indicated procedure for +e second 
approximation is presently under investigation under 
another contract for a different purpose. Preliminary 
analysis seems to indicate the existence of oscillatory 
solutions for the electron density with frequencies of the 
order of those characteristic for plasmas modified by an 
increment dependent upon electron temperature and 
form factors appropriate to the geometry. See Ref. (8). 

“I 

n = the normal to the sphere at the point 
from which the molecules arriving at r 
with velocity C originated. From Fig. 2 
it is found that 

..l r r.C 
n =_- 

R jg+r J !g-(l-$)R; 
1 

nc = unit vector in the direction of C 
n = the number of particles present in the 

unperturbed state 

erfc (x) = -5 
J7I : s 

exp (- t2) dt = 1 - erf(x) 

S = S(X, y, z, ii& a discontinuous function 
which is zero if the particles of velocity 
C at point r& X, z) come from the 
sphere and which is one otherwise. That 
is, S =0 if tic points away from the 
sphere and lies in the solid angle sub- 
tended by the sphere at the point 
under consideration. 

The distribution can be written as 

j(a)=-${Sexp -(C-V)2+a[exp-(V+?)2- 

-Jn(V+i’) erfc (V4’)](1-S) exp -Cz+ 

+(l-a)(l-S) exp -[C-V-2ii’(ii’*C)]z} 

The function S which is described above can 
be represented analytically as 

S = $(l -sign (A * C) + [+( 1 + sign (A * C)] 

[ 1 l+sign (l- 
$)l’2_ n; II 

and it has the properties that for r approaching 
inGnity, S approaches 1, while for r approaching 
the sphere R, 

S = )(l-sign A-C). 

Furthermore, if 0 is the angle between r and C 
then, as can be seen from Fig. 3, 

R2 112 
s=oifl>cose>(1--$ =cosei 

S=lifcos8ccos6,. 
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Fig. 3. Region where S = 0. 

The Density Distribution for Ions and Electrons 
in the Neighbourhood of the Sphere for the Case 

of Difsuse Reflection 
The necessary calculations are ~nsiderably 

simplified if it is assumed that only diffuse. 
reflection occurs so that a may be set equal to 
unity. Fortunately this appears to be a good 
approximation to the physical situation.(6* lo* rl) 

We shall therefore calculate 

f f(I) d3C 

and take up the two terms separately, treating 
first the contribution 

I1 
II = - 

7t3/2 
s 

S exp -(C-V)2 dV 

from the main stream. To evaluate I, we 
determine S in rectangular C space C,, C,, C,. 
For convenience set It in the direction of C,. If 

( > 1 R2 l/2 cz -_ 
t2 - (c;+c;+cy2 

<o 

then C, > 0 and 

S=*[l-signC,]=O, C,>O. 

Also, for all C for which 

( > 1 R2 112 G -_ 
T2 - (es+ cz,+ c;)l’2 

> 0, 

S=l. Since both sides of the first inequality are 
positive it may be squared and solved for C,. 
The result is 

r2 ( > 
112 

CI> --1 
R2 

(CT:+ cy= c,,, 

so that if C, > C,,, S =O. Similarly if Cz< C,, 
S=l. 

Thus we must evaluate 

- [(C,-vJ2+ (Cy-J-g2f (Cz-~)“]. 

The C, integral is 

Go -v, 
exp -(Cz-Vz)2 dC, = [“’ 

exp ( - t2) dt = JR 
2 v,)+1 * 

1 
-I 

Hence 
m s s * 

I n+ n 1=5 T- 

exp LiCzl>J2+ (C,- V,)“] 
erf (C,, - V) dC,dC,. 

Introduce polar co-ordinates as follows : 

c, = p cos I$ v, = J(V” - V,“) cos lj 

C, = p sin 6, 

Then 

V, = J( V2 - Vi) sin $. 

exp CQJ( p ’ - vf> ~0s (4 - N]d4 

1+2 exp -(V’- I’:) 

where I,[ ] is the Bessel function of imaginary 
argument and zero order and 

V,=V*n= vcoseo 
V2 - V$ = V2 sin’ 8. 
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Hence 
and one obtains 

For the two cases of B0 = 0 and 0, = ?Z the 

In the limiting case, r-R, 
quantity I1 can be evaluated exactly if spherical 
co-ordinates are used. If one uses r as axis 

ii = -I 1 1+2exp(-V2sin20,)erf(-Vcos@,) r =r(O, 0, 1) 

m 

s 1 

V= V (sin Be cos (bO, sin 0, sin &, cos 0,) 

dpp exp ( -p2)10(2pV sin 0,) . 
0 

C= C (sin 0 cos (6, sin 0 sin 4, cos 0) 

To carry out the integration, integrate once by 
and 

parts to obtain 
co m 

1 = 
s 

exp ( -p2)pIo(2up) = -4 exp ( -p2) 
0 I 0 exp (- (C2+V2)+2CV [COS B cos O. + 

co 

I 
+ sin 8 sin e. (cos 4- o]} d0. 

f-24 exp (-~2)~~(2~~~ dp, 
0 By straightforward integration of this form of I, 

with u = V sin Bo. The integral on the right when ‘O=’ One finds 
is given in the Bateman Manuscript Project 
series(i2) leading to the result I,(O) =t 

I 
erfc V + exp (- V2 sin2 0,) 

Since 

ii12(z) = 

one gets 
I = 4 exp (a”), 

and hence for r = R, 

cos tJ1 erfc [ - V cos e,] 
I 

+&v+J(1-$) 

exp(-V’$)erfc[-V/(1-$)I}. 

A similar discussion for i$ = ?r leads to the 
value 

I, = c 
i 2 

I+erf(-Vcos80) 
1 

= ierfc (V cos 8,). ~~~~)=~~(-v)+~(~-~) 

This checks the direct integration of II for r set 
equal to R in advance, since in this case S = 1 
only if C&O. 

exp (-Y’ $) erfc [VJ(l-$)]~. 

When r+ce, For r=R both of these reduce to our previously 

erf(pJ$-K)+erf(m)= I 

obtained approximation since the additional 
term is zero there. Likewise in the limit as r-+m 
we obtain the free stream density as we should. 
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For either 8 = 0 or 19 = 1~ the above reduces to The integral I, is therefore evaluated as 

lim Z,=i[erfc(v)+erfc(-o]=n I, gzI,“= n 
n3~2 

s 

mexp (- C2)C2dC 
s 

zh+ 
r+m 0 0 

which is correct. 
To evaluate the term containing the effect of 

~sinBdf+xp(-~cos&o- 

the dBusely reflected particles, it is necessary to 
consider the integral J7c( V-9) erfc rr~Oo~l I2 = A!- 713,2 

s 
d’C[exp -(V .fi’)2 - where the full expression for (V$) is used where 

it appears explicitly. Straightforward integration 
Jz(V . it’) erfc (V . 1;‘)](1 -s) exp (- C2). then yields the following expression for Z2” 

Introducing r as the polar axis again so that 

ri’ = (( - cos 6) r/R + r/R 
,/[cos’ 8 - (1 - R2/r2)]) sin 8 cos 4, 

{( - cos 6) r/R + r/R 
,/[cos’ 8 - (1 - R”/r’)]} sin 8 sin 4, 

(r/R)(( - r cos Q/R + r/R 
J[COS~ e - (l- R2/r2)]} cos 8 

leads to 

[COS 8 - JCOS~ e - (1 - R2/r2)] 
[COS e cos e. + sin 8 sin 8, COS(C#J-fj5,)]} 

so that Ia is quite intractable without approxima- 
tion. However, as mentioned earlier (1 -S)=l if 
and only if 

o<e<el =arcos 

and in this range 

is a very slowly varying function which has 
extremes at t7= 0 and 8=8,, with values (1 -R/r) 
and 2/(1 -R8/ra), respectively. We will therefore 
replace the complicated expression for (V.3) in 
exp -(V.R’) and erfc (V.2) by its first term 

cos e. 
V*fi’r Vr -. 

R 

where 
2n et 

I,= [ {(V.G’)sineded~ 

=27tj$~eo-[roJe-\/EO12e-(1_T)] 

0 

cos 8 cos 8, 
1 

sin ede 

=2+0seo{i-J(1-~)+ _ 

+!R3 3 r3 -Q-(1-$Y”]}. 

The approximation of I, by Zi is poorest in 
intermediate ranges of r and hence it is of interest 
to have an upper bound in this region. The 
difference between Z< and I2 is bounded above by 
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2 1 cos B0 I. The plus sign is to be used for cos B0 
-exp[-(~~~os~‘e]l* (I-\/<)+ <Oandtheminussignforcos8,>0. 

+Jn; 
2 2 

( >J 115 cos eo 3. NUMERICAL RJf.SULm FOR ELECTRON 
DENSITY DXSTRIBUTION AND RADAR 

CROSS-SECIIONS 
The formulas of Part 2 were applied to a 

typical(‘) case of interest for which V = 5. This 

1 J 

corresponds, for example, to a satellite altitude 

x l- 1 R_’ + I_ K’ 
- r2 3 r’3 - 

of 500 km and speed v’ = 8 km/set. Curves of 
constant relative density N/n are presented in 

-;[l-(l-zJ’2]}, 
Figs. 4 and 5. They clearly show the build-up of 
density ahead of the sphere and the “hole” 
developed in the rear. The ion deficiency in the 

for all r and 8, such that y’fl - (RSjr2).2)1 < rear extends to about 50 sphere radii. 

UPSTREAM DOWNSTREAM 

DENSITY 
FREE STREAM DENSITY 

.-CONST. 

Fig. 4. Equi-density contours. 

1 

DOWNSTREAM 

OENSITY = CONST. 
FREE STREAM DENSITY 

Fig. 5. Downstream equi-density contours. 

More detailed data for N on the sphere and 
along the positive z axis (behind the sphere) is 
given in Table 1. 

Radar cross-sections (4~ times differential 
cross-sections) were computed from the formula 

Q = 47rcF,nz /j$-l)ezi’rduj 

according to the development in Part 1, For 
electrons 4x0, N 10m2” m2. A value of n = 10” 
electronslms is used for the electron density at 
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500 km altitude and the resulting values of a as 
well as 

J\* I 
are given in Table 2 for various regions I’. It 
was assumed that k = (2744 = 1 m-‘, that the 
sphere radius is 1 m, and that the sphere was 
viewed broadside, i.e. 43 = 90”. 

Table I. Density ratio = Density/Free Stream 

Density = x 

On sphere (r = R) 

ZE 

I 

9.0 x lo-l8 
1.0923 x lo-‘3 
19443 x la-l* 
4.9876 x lo-l9 
1.7947 x lo-‘1 
8.7137 x lo-= 
5.4587 x lo-‘0 
4.1834 x 10-O 
3.6932 x lo-* 
35343 x lo-7 
3.4398 x 1Dd 
3.1943 x 10-S 
2.6707 x lo-’ 
1.9583 x lo-8 
1.1018 x 10-a 
5*0194 x lo-8 
1.7613 x 10-l 
4.7471 x lo-1 
56145 x IO-t 
65761 x 10-l 
7.6306 x 10-l 

K73g x 1o-’ 

Behind sphere (at O”) 
- 

-- 

= 

N/n 

9.0 x lo-= 
1.6718 x lo-8 
5.8621 x lo-’ 
2.0296 x lo-’ 
3.6045 x 10-l 
4.9237 x lo-’ 
59422 x 10-g 
6.7133 x 10-l 
;O2g “x ;Og 

75384 x lo-: 
7.7490 x lo-’ 
9.3824 x lo-’ 
9.7206 x 10-l 
9.8419 x 1O-1 
9.8985 x 10-l 

Table 2 

Region (VI 

z > O(behmd) -1.x 1.3 

z < 0 (ahead) 064 0.41 

-a < z < 00 entire cloud -.48 0.23 

-00 < z <: CO entire cloud, 
with power con~b~tion 
fromr<Oandz<Oadded 
(i.e. the average result for 
random relative phase) 

- 1.7 

The fust two ff values above are of interest if 
the radar beam is respectivkly lagging or leading 
the satellite while the 1.7 cm% result would be 
most appropriate, for example, if many radar 
pulses are being received and added with a 
radar which is tracking ina~u~tely, “hunting” 
around the target. 

It is of interest to compare these results with a 
comparable cross-section estimate obtained by 
Davis(13’ in a much cruder but far simpler 
fashion. Davis negIected the density build-up 
ahead of the sphere and assumed the electrons 
were completely swept out of a cylindrical 
column one sphere diameter wide. On this 
~s~ption his computations led to a length 
estimate of 10 sphere diameters behind the 
sphere. The radar return from such a cavity is 
that of a column of electrons embedded in a 
vacuum and of electron number density given by 
the unperturbed number density. This number of 
electrons per unit voIume was then referred to an 
equivalent line density and the problem replaced 
by that of coherent scattering by a line source 
for which the cross-section is pro~~ional to 

line density times X4. To scale Davis’s numerical 
result of CT = 0.1 cmz for a 0.25 m radius sphere 
in a medium of n=1012/m* to the present 1 m 
radius sphere problem his equivalent line density 
(2 x fog/cm) is scaled by (IOO/25)a = 16 and the 
fact that a is proportional to line density squared 
leads to a scale factor of 256. On the other hand 
the present computations were made for h = 2~ m 
while Davis apparently used 15 m. Hence an 
additional wavelength scaling factor of (2+5}4 
is needed or a net scale factor of N 8. The cross- 
section value to compare with ours is thus 

bD N @8 cm2. 

An instructive insight into the behaviour ofthe 
perturbation at various distances ahead or 
behind the sphere is furnished by a plot of the 
contribution to the volume integral of the various 
axial stations; i.e. a plot of 
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vs. z. This is furnished in Fig. 6. The somewhat 
odd transition in s(z) as z crosses the origin 
reflects the fact that N within the sphere is zero. 
To complete the volume integration this function 

is to be multiplied by exp 
[ ( 

.z2 
2ik - - z cos 6’ 

2R I 
and integrated. It is clear that as 0 and 
hence 0 deviate from 90” or as k increases the 
rate of oscillation of the exponential will 
increase and the net contributions from both 
regions z > 0 and z < 0, will rapidly decrease 
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Fig. 6. Contribution to cross-section of the axial locations. 


