
JOURNAL OF MOLECULAR SPECTROSCOPY 6, 355-389 (1960) 

The Vibration-Rotation Energies of Tetrahedral 

XY, Molecules 

Part I. Theory of Spherical Top Molecules* 

KARL T. HECHT 

The Harrison M. Randall Laboratory of Physics, The University of Michigan, 
Ann Arbor, Michigan 

The theory of vibration-rotational perturbations in tetrahedral XYI mole- 
cules has been reexamined in the light of the modern theory of angular momen- 
tum coupling. It is shown that, even to third order of approximation, the split- 
ting of a vibration rotation level into its tetrahedral sublevels is governed only 
by perturbation terms of one basic symmetry in all states in which vibrational 
quanta of ~1 , ~3 , and pq are excited and to a certain approximation in many of 
the infrared active states in which quanta of both Y? and ~3 or ~4 are excit.ed. 
The perturbation term is identified as the tetrahedrally symmetric lineal 
combination of fourth rank spherical tensor operators. In dominant approxi- 
mation the rotational fine structure splitting patterns are characterized solely 
by the rotational angular momentum of the state. Only the overall extent of 
t,he patterns depends on the vibrational and total angular momentum quantum 
numbers and the vibrational character of the stat,e. In next approximation the 
basic splitting patterns are all deformed to a certain extent by matrix elements 
off-diagonal in the rotational angular momentum quantum number. These 
cannot be neglected if theory is to account for the modern high resolution 
spectra. 

The terms of the vibration-rotation Hamiltonian to third order of approxi- 
mation are classified according to their symmetry. Explicit expressions are 
given for the pure vibrational energies of the simpler bands. Explicit numeri- 
cal values are also given for the matrix elements of the rotational sublevels of 
types AI , AZ, E, F, , and FI from which the rotational energies of the vibra- 
tional ground state and the infrared active fundamentals can be computed. 
These matrix elements also give the numbers for the basic splitting patterns of 
the dominant approximation for any state involving combinations of ~1 , ~3 , and 

y4 . 

* A preliminary report on this work was given by the author at the 1957 Symposium on 
Molecular Structure and Spectroscopy, Columbus, Ohio [Appt. Spectroscopy 11, 203 (1957)]. 
A similar approach has been used by J. D. Louck [Dissertation Abst. 19,840 (1958)l. 
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ISTROI~UCTIO~ 

Advances in infrared spwt roscopy in recent years have made it possible to 

cwmpletely resolve the complex rotational fine structure of many of the vibra- 
tional bands of t,he methane molecule (1-d). In order to account for the experi- 

mentally observed spectra it has proved useful to reexamine the theory of the 
vibration-rotation interactions in spherical top molecules in the light, of the 

modern theory of angular momentum coupling and the concept of irreducible 
spherical tensor operators (6, 6). 

The complete vibration-rotation Hamiltonian for tetrahedrally symmetric 

XY4 molecules has been derived to second order of approximation by Shaffer 

et al. (7, 8) who have also computed the matrix elements of this Hamiltonian for 

the states which give rise to the fundamentals and the simpler combination and 
overtone bands. In order to compute the energies of the vibration-rotat#ion levels, 

however, it is almost mandatory to make full use of the symmet,ry of the mole- 
cule to factor the Hamiltonian matrix as much as possible. This symmet,ry has 
been exploited by Jahn (9, 20) to facilitate t,he computation of the energy levels 

of the fundamental v4 . Jahn, however, has considered only the dominant per- 
turbation for this band, the Coriolis interaction with the nearby fundamental 

v? In order to account for the modern high resolution spectra it’ is important to 

inrlude the effects of all vibration-rotation interactions not only t,o second order 

but to third order of approximation. By classifying the perturbation terms ac- 

cording to their symmetry, however, it can be shown that the task of computing 

the vibration-rot,ation energy levels, even to third order, is not much more com- 
plicated than that, undertaken by Jahn since the perturbation terms group 

themselves into a very few basic types. Since the Hamiltonian has spherical and 
inversion symmetry in zeroth approximat#ion it is advantageous t,o classify the 

perturbation terms according to the irreducible representations of t#he full rota- 
Con-inversion group, where the possible types of pertjurbation terms are severely 
restricted by the additional reyuirement that they must transform according to 
the totally symmet,ric irreducible representat,ion (A,) of the point group of the 
regular tetrahedron (Td). Because of this restriction it can be seen that most of 

the vibrational states of the molecule are influenced by only two types of per- 
t,urbation terms. There are scalar perturbation terms which cannot remove the 
first order degeneracy of the vibration-rot,ation levels but merely shift the posi- 

tions of the levels giving contributions to t,he effective B, D, and zet#a values of 
the bands. There is in addition, in the case of most. states, only one basic type of 
tensor perturbation operator which can split a vibration-rotation level into its 
A i12 , E, F1 , and Fz sublevels without influencing its center of gravity. In 

dbminant approximation this perturbation gives rise to a basic fine st,ructure 
pattern which is characterized solely by the rotational angular momentum and 
is completely independent of the total angular momentum or the vibrational 
angular momentum of the level, t’he vibrational character of the state, or the 
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TABLE I 

OBSEX+VED FINE STRUCTURE PATTERNS FOR STATES WITH A ROTATIONAL 

ANGULAR MOMENTUM, R = 4 

Theory 
(Dominant approximation) VI P(4)” ~3 Q(41a 

-+ll(Az) + 14 Al + 14.0 x (0.0138 cm-l) A2 + 14.0 x (-0.0173 cm-l) 
F,(F21 + 7 F1 + 7.0 Fz + 7.5 
E + 2 E + 2.3 E + 4.4 
P,(Pl) - 13 F.J - 13.3 F, - 15.0 

Y1 + Y4 P(41b Y4 P(4)C Y2 + Y% R(4)” 

d, + 14.0 x (0.061 cm-*) A, + 14.0 X (.060 cm-l) A, + 14.0 X (.022 cm-‘) 
F, + 7.1 E, + 7.7 F, + 8.0 
E + 1.8 P + 2.5 E + 3.8 
I$‘- 13.0 F, - 14.0 Fz - 15.2 

8 Reference 1. b Reference 2. c Reference 4. 

dynamical nature of the dominant perturbation term (whet#her of Coriolis, 

cenkifugal distortion, anharmonic, etc., type). Only the extent, of the pattern 

depends on all these lat,ter quantit’ies. The effect is illustrated in Table I by some 

of the experimentally observed fine skucture patterns where states with a rota- 

tional angular momentum of four unit,s have been chosen. Such states have four 
rotat,ional sublevels, either of symmetry A1, F1, E, and Fz , or of symmetry 
AZ, F2, E, and F, (9). In dominant, approximat’ion theory predicts that the four 
sublevels are split from their center of gravity in the ratios 14, 7, 2, and -13, 

respectively, where the A, E, and F sublevels are given weights of 1, 2, and 3, 

respectively, in determining their common center of gravity. It can be seen that 

the experimentally observed split’tings follow t’he predict’ed patterns rather closely 
for states of very different vibrational character as well as for P, &, and R branch 

transitions for which the total angular moment’um quantum numbers of the 

upper state are 3, 4, and 5, respectively. (The observed splittings in these exam- 

ples arise almost exclusively from the upper state). The differences bet)ween the 
experimentally observed splitt.ing ratios and the theoretically predicted numbers 
may arise partly from experimental uncertainties (the overall separat’ion of the 
four lines, determined by t’he numbers in parentheses, is considerably less than 
1 cm-l in some of the examples). However, theory predicts that the basic split- 
ting patterns can be deformed if the splitting of a vibration-rotation level into 
its A1, AZ, E, Fl , and F? components is large compared with the first-order 
energy separation of states with the same total but, different rotational angular 
momentum. In that case the fact that the rotational angular moment’um is not, 
a “good quant,um number” becomes important. Matrix elements between nearby 
states of different rotational angular momentum (which were neglected by Jahn) 
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may give significant c*ontribut ions to the energy and lead to st utrs which are 

mixtures involving several rot utionnl angular momenta. Since t tic hnsic theorct i- 

cal splitting patterns of the dominaut approximation are eharactcrizcd by the 

rotational angular momentum quant urn numbers swh a mising will lead to :I 
deformation of the basic patterns which may hewme especially important fog 

states with large angular momentum quantum numbers. Since the degree of 
mixing depends on the separations of states of different rotstioual angular 
momentum which in turn are fulwtions of the B and zeta values of the hand, the 
rotational fine structure pat terns will differ somewhat from hand to hand. 

In this first paper of a series an outline of the hasie theory is given. The 
vibration-rotation perturbat ion terms to third order of approximation are classi- 

tied awording to their symmetry, and it is shown how this classification ~a11 he 

used to simplify the calrulat ion of the energies. Explicit cspressions arc givwr 

for the pure vibrational energies of the simpler hands. Explicit numerical valuw 
are also giveu for the matrix elemeuts of the Hamiltonian for the rotational sul)- 

levels of types ‘4, , 4 L’ , Is’, F1 , ad F2 from which the rotational energies of the 

vibrational ground state and the infrared active fundamcut als can be wmput cd. 

In thr swond paper the numerical results for the fundamental y3 of CH, xi11 Iw 
presented and compared with the experimentally observed spectrum xhicbh has 

rcceutly heen remeasured by Plylcr et al. (1) uuder high resolution. In suhsequcllt 
papers some of the simpler overtone and combination hands will he discussetl. 

CLASSIFICATION OF THlI: \V.\CI<; FI!S(:TIONS ASI) t’I~:RTITRBATI0~S ‘1’l~RAlS 

The complete vihrat,iou-rot at ion H:m~iltoninn can he wit ten in the usutll \\-a~, 

( 8) in terms of the f-‘, , 1 he components of t hc tot al angular momentum along 

a molecule-fixed coordinate system, and the nine uormal coordinates Q1 , Q?,, , 

Q2b , Qa+ , QIY , Qaz , Qhr , Q& , :md QIZ associated with the four fundamental fre- 

cluencies. It is convenient to introduce dimensionless coordinates ~1~ , c, ,f, .r:! , 

!/:i 3 23 , .r4 , !/4 1 24 , ’ which are related to the Q;,, as follows 

Q1 = (h j 17r’cw,)‘2y,) &, = ( h. / Ar’cw:! )’ ‘v, 

QZh = ( h j 47r’CW~ 1’ y, Cd;{, = ( h ( 17rJCW( ) ’ 2.1.:( , 

etc., ill which the w, or ( Y;!c) are the lwrmal frequencies esprcssed iu cm ‘. III 

terms of these coordinates the zrrot h order H:uniltoniau hccomrs 

(I) 
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in which p,’ = - 13~/~3~~~. r2’ = e2 + f2, p2’ = - ( a2/ae2 + a"/af'), ra2 = x3’ + 

Y3” + h2, p,2 = p:, + p:# + PL = -( a"/ax,' + a'/ay? + a2/azt), etc., and 
B, = (h 1 %r’cI,), while P2 = Pz2 + Pv2 + P: is also a dimensionless quantity 

with eigenvalue J( J + 1). In order to obtain the correct stabilized zeroth- 
order wave functions the Hamiltonian HI’ must be added to Ho 

H,‘lhc = -2BdTzP.L + shP.L), (2) 

in which 13 and 14 are the internal vibrational angular momentum vectors. The 

components along the molecule-fixed coordinate system are given by 

13s = (YsP,z - q%/), l3Y = (z3p3z - %Pk), z3r = (GP3Y - Y3Pd 

with similar expressions for 1, . In states in which vibrational quanta of bobh 

normal modes y3 and v4 are excited the internal angular momenta couple quantum 

vectorially t,o a resultant total vibrat)ional angular momentum 1. The eigenvalues 

of 13’, h, , 1,‘. and kr are Z3( Z3 + 1)) m3 , Z4(Z4 + l), and m4 , respectively, while 
t,he eigenvalues of l2 and 1, are Z(Z + 1) and m = m3 + m4 where the integer Z has 

the possible values (Z3 + C) , . . * , 1 Z3 - 14 1, as usual. The vibrational angular 

momentum 1 couples with the rotational angular momentum, to be denoted by 
R, to give the resultant total angular momentum P.2 The eigenvalues of R2, P2 
and the molecule-fixed components R, and P, will be denoted by R(R + l), 
J( J + l), K, , and K, respectively. The operators I, satisfy t’he usual angular 

momentum commutation relations 

[I, , l,] = +iz, . . . 

The operators P, (and similarly R,), on the other hand, satisfy the commuta- 

tion relations with the anomalous algebraic sign before i 

[Pz, P,] = -iP, .a. . 

As a consequence it is natural to speak of quantum vector subtraction rather 

than quantum vector addition (see for example Van Vleck (11), or to build up 
the st,at,es by adding the vector ( -1) to the vector P to give a resultant R = 
P - 1. This is t,he natural way to perform t,he addition since all the components 

of P commute with all the components of 1, whereas the component’s of R do not 
commute wit,h t,hose of 1. The wave functions must therefore be built up from 
linear combinations of products of eigenfunctions of the vectors P and 1, re- 

spectively. The wave function of a state characterized by the resultant rota- 
tional angular moment)um quantum numbers R and KR is given by 

* The angular momenta R and 1 are identical with Nielsen’s P1 and P, (Ref. 8). In this 
paper the subscripts 1 and 2 will be reserved for the normal modes 1 and 2. 
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in which the coupling coefficients (I./V& j l.JRK,t) arc the usual angular mo- 

mentum addition or Clehsch-Gordan coefficients with K = i KR - ,nz) .3 The 

formula for t,he coupled wave funct,ion in the case of angular momentum suh- 

traction is t,herefore the same as the usual addition formula with the exception 

that the eigenfunct,ions of the negat,ive vector, -1, are replaced by their rom- 

plex conjugate, where 

&& = ( -l)‘“+lLm . 

Wit,h t,his small modificat8ion the whole machinery of angular momentum addi- 

tion theory (5, S), can be applied to t’he problem of angular momentum subtrac- 

tion of molecular physics. The +lrn are the usual vibrational eigenfunctions. The 

dependence on all the principal vibrational quantum numbers ~1; has not been 

written explicitly. For example, if only one vibrational quantum of y3 is excited, 

t,hat is with o3 = 1,13 = 1, (21~ = ~12 = v4 = 0, 14 = 0), the functions +lrn are given 

bY 

&I = =t= -& [C$( 100) f iC#4010)1, 4WJ = 440011, 

in which 4(v3= uly vs2) are product’s of one-dimensional harmonic oscillator func- 

tions in the coordinates 23 , y3 , and 23 with quantum numbers 213+ , zjay , and z’:~~ , 
respectively. If vibrational quanta of both v3 and v4 are excited the vibrationa, 

wave functions 41rn are themselves given by the angular momentum addition 

formula as linear combinat,ions of pr0duct.s of eigenfunctions of l3 and 14 . 

4 Zm = C (1314m3m4 I 13Um)~~3n3&4ma m4 = (m - ma). (1) 
m3 

The #JR are the spherical (or symmet)ric) rotator eigenfunctions, functions of 
t,he three Euler angles which give the orient,ation of the molecular framework 

in space. In Eq. (3) t’he dependence of $ JK on the quantum number M, the 
eigenvalue of the sapce-fixed z-component of P, has not been written explicitly. 
The rot’ational wave functions are related t’o t’he coefficients, D”,, , of the 
(25 + l)-dimensional irreducible representations of the rotation group as de- 

fined in (5), by 

$ _,MX = [(2J + l,/8?Tz]L’2D;K . 

The wave funct’ions fiJK transform according to the irreducible representations 
of t,he group of all rotations and reflections, according to DgJ (for J even) and 
DuJ (for J odd). Since the vibrat,ional wave functions, &, tsansform according 
t,o t,he product representat,ions of the eigenfunctions of l3 and 14 , they transform 
according to Do1 (if Z3 + 14 is even) or D,’ (if Z3 + Z4 is odd). The eigenfunctions 
of t,he resultant! rotational angular momentum, tiRKR , therefore transform accord- 

3 For the case I = 1 the wave functions (3) have been written out explicitly by Jahn. 
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ing to the represent,ation DgR (if J + 13 + 14 is even) or DuR (if J + l3 + l4 is 
odd). 

Since the zeroth-order wave functions transform according to one of the ir- 

reducible representat’ions of the full rotation-reflection group it is advantageous 

to classify the tet,rshedrally symmetric vibration-rotation perturbation terms 
according t,o their transformation properties under this more extended group. 
It should be pointed out, however, that not all vibrational wave functions t,rans- 

form according to one of t,he irreducible representations of the full rot’at,ion- 
reflect,ion group. For example, t,he vibrational wave functions of the doubly 

degenerat,e fundamental state vq (a state of zero vibrational angular momentum) 

transform according to the irreducible representation E of the tetrahedral group. 

This is not, one of the irreducible representations of the full rotation-reflect,ion 
group. The rotational fine structure patterns for the “infrared forbidden” 

fundamental v2 are therefore very different from the basic patterns discussed in 

connection with Table I. In this paper the discussion will be restricted to vibra- 

tional states whose wave functions transform according to one of the irreducible 

representations of the full rotation-reflection group. This includes all possible 

combinations and overtones of the states vi, v3 , and ~4. Although it, does not, 
include t,he fundamental vg itself it does include many states in which quanta of 

both vq and v3 or v4 are excited. (The excited states for all “infrared active” 
t,ransitions originating from the vibrat,ional ground state fall into this cat,egory.) 

The combination state v? + v3 , for example, has vibrational substates Fz and Fl 
whose wave functions transform according to t’he irreducible represent,ations 
D,,’ and Dgl, respectively. As a result the rotational fine structure patterns for 

this band are the basic ones discussed in connect,ion with Table I. 

The perturbation terms of the vibration-rotat.ion Hamiltonian will be ordered 

according to the scheme of Nielsen et al. (12, 13) in which the wi and the rota- 

tional energy BJ( J + 1) are considered to be quantities of the same order of 
magnitude.4 The Hamilt,onian is subjected t’o t,he usual contact, transformation 

(7, 12, 13) so that, the transformed Hamiltonian, Hi’, contains only t,erms diag- 

onal in the vibrat,ional quantum numbers, z)i , Eq. (2). In order t,o exploit’ t,he 
symmetries of t’he zerot,h-order wave funct,ions the perturbation terms of H,‘, 
Ha’ will be classified according to their t,ensor character. An examination of the 

transformed Hamiltonian, H’, shows that’ the individual perturbation terms in 

Hz’, H,‘, H4’, . . . are at most’ tensors of rank 4, 5, or 6 . . ., respectively. Char- 

acteristic terms of Hs’: for example, have the form q,,pJ’,P#, or qaqbqcpJ’or (I,%‘), 
in which the individual qa , pb , Y, , . . . transform at most, as tensors of rank 1. 

Calculation of the vibration-rotation energies to third order of approximation 
will therefore involve only tensors of rank $5. In order to apply the machinery 

4 In this scheme quantities of order B, (B*/w)J*, (B3/02)J4, the quartic ‘potential ron- 
stants, and the squares of the cubic constants divided byw are all considered to be of second 
order, whereas quant,ities of order (B2/w)J, (B3/d)J3, . . are considered to be of t,hird order. 
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of angular momentum coupling theory the perturbat ion t.erms must, be classi- 

fied as irreducible spherical tensor operat’ors (5), but t’he possible types of tensor 

operators are restricted by t)he requirement t,hat they must transform according 
t’o the totally symmet,ric irreducible representation (Al) of t)he group T, . Only 
those linear combinatlions of spherical tensor operators which remain invariant 

under all t,he symmetry operat,ions of the tetrahedral group can occur in the 

Hamiltonian. The reduct8ion of the representat’ions D,‘, D,’ of the full rot’atlion- 
inversion group into irreducible represent,ations of Td has been given by Jahn 

(9). The result is shown in Table II for small values of j. For j 5 5 t,he only 

representat,ions which cont,ain A, are those with j = 0, 3, and 4. The only tetra- 

hedrally symmetric linear combinations of spherical tensor operators of rank 

55 therefore involve only t,ensors of rank 0,3, and 4. The correct linear combina- 

tions have also been given by Jahn. They are 

T(OO), 

[T(3-2) - T(32)], 
(5) 

and 

((2.5*7)“‘T(40) + 5[T(44) + T(H)]], 

in which the individual tensor operators T(jm) transform under rotations and 

inversion as do the spherical harmonics Yj, . It is to be noted t,hat the inclusion 

of third-order perturbation terms (tensors of rank 55) cannot8 introduce any 

new types of spherical t,ensor operators, (D5 does not contain ill), so that the 

calculation of the vibration-rot,ation energies to third order of approximation 

involves terms of the same basic symmetries as the calculat,ion to second order. 

Inclusion of fourth-order perturbat,ion terms, on the other hand, would intro- 

duce entirely new types of tensor operators since the representations D” cont,ain 
the irreducible representation A1. It is t,o be noted further that the third-rank 

tensor operator [T(3-2) - T(32)] transforms according to a representation of 
type U. In calculating energies of t)he levels bo t,hird order, however, only matrix 

TABLE II 

REDUCTION OF D,i,D,f INTO IRREDUCIBLE REPRESENTATIONS OF Td 

i D,i D,i 

0 81 

1 Ft 
2 E + FI 
3 Az + F1 + F, 

4 A1 + E + FI + Fz 

5 -E + 2F1 + F, 
6 ~1 + 112 + E + FI + 2Fz 

A? 

F2 
E + 8’1 

AI + Fz + FL 

Azt E + F, + FI 

E + 2F2 + FI 
112 + A, + E + FP + 2F1 
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elements diagonal in v; and J are needed. For given vi the angular momentum 

quantum numbers Ei are either even or odd. The required matrix elements of H’ 
therefore connect states which are either both of type g (if J + l8 + l4 is even) 

or both of type u (if J + l3 + 14 is odd). Consequently matrix elements of an 
operator of type u are zero, and t’he operator [T(3-2) - T(32)l cannot con- 
tribute to the vibration-rotation energies. The spacing of the vibrat’ion-rotation 
levels is t’herefore governed by only two types of pert#urbat’ion terms, scalars 

T(O0) which, as will be shown, cannot remove the first-order degeneracies of the 
levels, and one linear combination of fourth-rank tensors which can split a level 

into its A1 , A2 , E, Fl , and Fz fine st,ructure components. The splitting patterns 

are therefore governed by perturbat,ion terms of one basic symmetry. The above 

applies st’rictly only t’o states in which quanta of only v1 , v3 , and v4 are excited. 

Combination bands involving vz may have vibrational substates of both type g 

and U. The state v2 + v3, for example, has vibrational substates F2 and F, with 

I = 1 which transform according to D,’ and D,‘, respectively (Table II). The 

t,hird-rank t,ensor operator may make contributions to t’he energies of this state 
since it may have nonzero matrix elements connect,ing t’he vibrational substate 

Fz with the substat’e F1 . The scalar and fourth-rank operat,ors on the ot.her hand 
can connect only either the vibrational substate F2 wit’h Fz or F, with F, . If 

the separation into t’he rotat’ional fine structure components is small compared 
with the separation of t,he Fz and F, vibrational substates, it might be expected, 

however, t,hat the splitt,ing patterns are dominated by t’he fourth-rank tensor 

operators. This seems t’o be the case for the states of small angular momentum 

so that, the basic splitt#ing patterns of vg + v3 are very similar to t.hose of all other 

infrared active bands (Table I). For st,ates of large angular momentum, however, 

t,he effect of t,he t’hird-rank tensor operator seems to become important and the 

splitting pat’terns diverge more and more from the basic ones (2). 

THE VIBRATION-ROTATION HAMILTONIAN 

To carry out the calculat8ion of the energy levels of an XY, molecule to third 
order of approximation the t,etrahedrally symmetric cubic and quart,ic potential 

t,erms must be added to t,he harmonic part, of the potential fun&ion. These have 

been given by Shaffer et al. (7) but are listed again in Appendix I in order to 
establish the notation to be used in this paper. The individual terms of the trans- 

formed Hamilt80nian are listed below. The only terms which can contribute to 
t,he energies t,o within third order of approximation are those terms of Hz’ and 

H,’ whose matrix elements are diagonal in the principal vibrat’ional quantum 
numbers v; . These will be denoted by H’(diag). To pick out these terms from 
t,he complete Hamiltonian, H’, it is only necessary to rewrite the vibrational 
operators. The operator ql’, for example, can be rewritten 

(112 = >2/(P12 + 419 - !,i(P12 - 412). 



The only nonzero matrix elements of the first term are diagonal in the quantum 

number ~~~ , whereas t,he diagonal matrix elements of the second term are zero. 
Since t,he second term has matrix elements otf-diagonal in 2’1 only, it can be 
neglected to within t,he approximat,ion of interest. As another example of this 

process t,he operator 532~~ can be writ)ten 

.l$l$ = 13ii(& + .&(p& + u:?) - ?.& - r+J 

- >C(pL - .rn2)(& + ya’) - I,s(pL + .rs2.J(p& - us’) 

+ l’,a[(p;I - .r:c’)(&, - 1/3) - (psr.ra + .kP,,) (p,,ys + y3p32/)1. 

Only the first term, enclosed in braces ( ), is completely diagonal in 21:~ whereas 

the remaining terms are completely off-diagonal in 2’3 and can therefore be neg- 

lected. 
For convenience the terms of H’( disg) are subdivided into pure vibrational 

perturbation terms and vibration-rot,ation terms which are classified according 

to their dependence on the angular momentum quantum number J. 

H’( ding) = Hz’(vib, diag) + H,‘( P4) + H,‘( P’, diag) + Hs)( I’“, diag) 

+ Hi( P, diag) + . . . . 
(6) 

The pure vibrational terms are given by 

H?‘(vib, diag) 

= Xl1 h’ + Pl?) (P,” + ql‘9 + x,2 (pz2 + Tpz) (& + 7.;) 
2 2 2 2 

+ Gzzmk + G.&’ + G4414’ + Ga4( 13.14 1 + Sa4034( scalar) 

+ T34034( tensor) + T,,O,( tensor) + T44044( tJensor) 

+ T23023(tensor) + Tz4024(tensor). 

The operator rn2= is the angular moment’um operator in the space of the two-fold 
degenerate normal coordinates (but not, in three-dimensional space), rn?, = 

-i(ea/af -ja/tJe). Its eigenvalues are fz~~, *(212 - 2), f(~~ - -l), . .f . 
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The operators 0a4 , 033 , . . * are givm by 

0S4(scalar) = (pL + ra2)(pk + ~42) + (6, + Ua’)(z& + g/4?) 

+ (pk + za’>(& + .24?) + qp3zp3, + x31/3) (P4$42/ + 24Y4) 

+ 2( p,,p,* + s3z3) (p,.rp4z + x424) 

+ fi?(&,p,z + 93.23) (p4,p4, + L/424) - ?i(d + f.32) (p42 + T421, 

0a4(tensor) = ,!%j(& + x32)(& + x4’) + ,%(Pi, + L/32) (I& + Y42) 

+ “$gpiz + 23*)(p:z + 247 

- 2(p3$32/ + ~3Y3)(f-‘4.$‘4~ + x4Y4) 

- 2 (p,,paz + 2323) (p4zp4z + x424) 

- -3(p3up,z + !I3231 (P4d-J4z + !I4241 

- >i(p32 + T32)(7J42 + T42), 

Os3(tensor) = (piI + a,“)(&, + .r:~‘) + (P& + Y32)(& + 932) 

+ (pi. + 23*)(PL + 23*1 - :q& + 53*)(p:Y + y/3?) 

- QlL + s32)(& + 232) - :qp& + d)(P~z + .& 

+ 213’ + 6, 

Oz3( tensor) = (p,’ + e* - pf2 - j’)(p32 + 732 - $& - :3232) 

+ 2& (pep, + ef) (pil, + r32 - & - Y32). 

(8) 

The operators 044 , 024 , are obtained from 033, and 023 by an interchange of 
indices 3 and 4. The coefficients Xij , Gij , Sij 1 and T;j are tabulated in terms 

of the molecular paramet,ers in Appendix I. 

The purely vibrational corrections to the zeroth order energies are 

AEvib = c Xij(a; -k di/2)(Uj -k dj/2) -k W(mzZ, h, 14, I, SYmmetrY). (9) 
i<i 

The first sum gives an anharmonicit)y correction similar to that found in less 
symmetrical molecules. The contribution W, which is a function of t,he vibra- 
tional angular momentum quantum numbers and the symmetries of the vibra- 

tional substates, gives the eigenvalues of the operators li2 and Oij and determines 
the splitting of a pure vibrational level into its possible tetrahedral sublevels. 
The energies W are listed in Table III for all vibrat,ional states in which one, two, 

or t’hree vibrational quanta have been excited. These energies have been com- 
puted by the techniques to be discussed in connect’ion with the computation of 
t,he vibration-rotation energies. 

The vibration-rotation pert,urbation terms are given by 

H,‘(P4) - -Dn,P4 = DIOPPP,(tensor), (IO) 



TABLE III 

VIBRATI0N.4L ENERGIES 

State W(m,, , I?, I4 , 1, symmetry) 

Ground state 

Y1 F? 2, = 1 

A,& = 0 
2va 

i 

E 13 = 2 
Fs 13 = 2 

f-41 1, = 3 
3v:s{ F, Zr = 3 

(2Fx la = 3, 18 

(2iil Zr = 4, 0 
hb 2E 13 = 4, 2 

F, /a = 4 
2F2 13 = 4, 2 

(All = 0 

y3 + JF1 1 = 1 
13 = 11 El=2 

Ir = IjF?l = 2 

I1Y? mr 

~2 + YJ Fz 1, = 1 

nlL* = 1 { F, 1, = 1 

2V? + “a F1 m2z = 2 
I3 = 1 i 2F2 rnzs = 2, 0 

1:’ ;a z ; 
,A ? 3 

Y$ f 2~3jF1 la = 2 
1 Ff l3 = 2 

rnz, = l(2E Z3 = 2, 0 

! 

A11 = 2 
Azl = 2 
2El = 2,0 

0 
2G:n 
0 
6Gnr + 12Tm 

6Gn - ST33 

12G 33 - 241’ 33 

12G,, - 47’33 

7Ga + 61133 f [ (5Gas + 6Td* + 384Ti:l”’ 

lOGa + 122’33 f [(IOGaa + 12T,,P + l,536T:a1”e 
13633 + 18T,, f [(7G,, - (1”2,f)Tax)2 + (3~~40Y~~)T~J1’2 

2OG,, + 12Tza 
13Gax - 22T33 f [(7G,3 - (?f)T,# + (g.6”%g)T:&‘2 

2(G,, + Gu) - 2Gu + P’%)& 
2(Gsa + Gu) - Ga - (‘%s’)& 

2(G13 + Gu) + Gu + (,2.5)&a + 61134 
2 (G:,, + Gu) + Gza + Pi )Su - 42’~ 

m&G?:! 

G2:! + 2Gas + 87’~~ 
Gz.’ + 2633 - 8T?3 

4G,z + 2G:u 
2G,, + 2Ga3 f [ (2G?:!)2 + 256T,?,]1/2 

Gr, + 6G3a + 12263 + 16Ta 
Gm + 6Ga:, + 122’33 - 16T’~a 

Gzz + 6633 - 8T33 + 8Ts 
Gz:! + 6G13 - ST33 - ST,, 
Gz? + 3G,, + 6T,3 f [(3Gzs + 6T,,12 + 256T:P 

G?P + 2(G, + G,,) + Gas + &)&a + 67’31 + 8(Tz3 + 2’4 
Gm + 2(G33 + Ga,) -I- G, + (25)&a + 6T31 - 8(2’?, + Ts) 

Gzz + 2(Gn + Gu) + (-?bGu + l!S&~ + 3T3,) 
f [(42Ga - 3S3, + 3Tsr)* + 64(Tzz + Tz~)~]“~ 

Gs, + 2(G33 + G,a) - %fh - 2Trr 
zt [ (G34 + 2&r - 2Ta4 - 4T23 - -ITe$)* + 48(Ts - T~r)211’2 

G?z + 2 (Ga + G+,) - % Sad - 2Ta4 
zt [ (G34 + 2Su - 22’34 + ST23 + 4Tza)’ + 48(Tnz - T2~)2]” 

20 + Y4 A1 /a = 2,l = 3 2G,, + 6G,, + 2G3r - 8Ts + ($$)& - 8T31 
1, = 1 E I, = 2,l = 2 2G,, + 6G33 - Gz4 - ST,, - (‘Ss)S,, - 2T31 

2F1 /a = 2; 
1 = 3,2 2Gu + 6Gu + (;)G,, + 2Tu - (;)Su 

f 
[( 

;G31 - FTsa - ;T,, + 3Sa)’ 

+ 83 ( T,, JJ 5 
2 It2 

_ 9 2 >I 
- 

366 
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TABLE III-Continued 

367 

State W(m2, , Z3 , 1, , I, symmetry) 

2va + Yil 3F _,J 

Eigenvalues of the S X 9 matrix: 

2Gar + 6G33 + 2G3r 

* The notation 3~3 2Fz la = 3, 1 is to be interpreted as follows: The state 3~ has two sub- 
states of symmetry Ft with eigenfunctions which are mixtures of wave functions with l3 = 
3 and la = 1. In the limit in which Ga3 >> T, , the wave function of the state listed first 
(E3 = 3) becomes the eigenfunction associated with the eigenvalue given by the upper sign 
in the expression for W. 

b Excited states involving ~1 are obtained from those involving ~3 by an interchange of 

subscripts 3 and 4. Combinations with V, do not affect the energies W. 

with 

Opppp(tensor) = 4(Pz4 + Pu4 + P,“) 

- 6(Pz2P,2 + P;P: + P,2P,2 + P,2P,” + P;P: + P.‘P,“) f 2P2, 
(11) 

H,‘(P’, d&d = ?~[YI(P? + ~112) + Ydpz” + ~22) + Y&I? + ~2) 

+ Y4(p42 + f-42)lP2 + Z3sOPP33(scalar) 

+ Z48Pp44( scalar 1 + Z3tOPP33( tensor) 
(12) 

+ Z4tOpi=44(t’ensor) + &Oppzdtensor), 

where the operat’ors are given by 

OPPS3(scalar) = %i[(P.r3)(P.r3) + (P*pd(P.p3) - %P2(p32 + ~71, 

0ppa3( tensor) = 

I + 

1 + - 
- 
- 

P32(& + x32) - (p& + Y32) - (& + &I 

P,‘[2(p”;, + gay - (& + .$I - (Piz + &% 

P,‘[2(& + 232) - (p23, + s82) - (P23u + Y32)l 

2(P,P, + PYPZ)(P,$~, + s3g3) 

2 (P,Z’, + P,P,> (p3zp3z + X3%) 

2(P,P, + PJ’,)(P3YP3Z + Uaz3) 

0 PP22 = - “g[(Px” + Pg2 - 2P,2)(p,2 + e’ - pfB - f’) 

+ 2~9 (P> - P,2)(pgf + e.03. 
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The coefficients D, and Dt are independent of the anharmonic potential con- 

st.ants. The coefficie1lt.s I’; and Zi are functions of thr unknowns cubic potrllti;ll 
constants. All t’hese coefficients are again tabulated in terms of the molecular 

parameters in Appendix I. 
The third-order vibration-rotation perturkion terms are given hy 

H3’(p3, diag) = F3,P’(P.la) + F4,f”(P.14) 

+ Fa10ppp3(tensor) + F4tOPPP4( tensor) 

+ F2jn4z/s) (1’.J’,E’, + PJ’J’, + P,P,P, 
(14) 

+ P,P,P.r -I- PJ'ZP, + PzP,l',J, 

H3'(P, diag) = [M~n(p? + ql’) + Yll&po’ + rt) + N33y(p32 + it) 

+ M&4’) + n’))l(P4~ + W4&12 + q?) 

+ M*&$ + Q’)) + dl,,,(pn” + Q2) 

+ &4(& + T4’?)l(P.lJ 

+ J~233%r[J’r( p3ypaz + y.d + P,(p32p3, + WY) 

+ pd. p3a3, + wa! 1 + ~~~?rrmz[~‘&k&z + !/424) 

+ Pd~4~p4~ + 24x41 + P,(p4+~4~ + x41/4) 1 

+ N3PPvOP344(scahr) + N43dh3(sca1ar~ 

+ N34410P:~44( tellsor) + N433tOP433(temor) 

+ N343tOP333( tensor) + N444tOp444( tensor1 

+ NmOmr + NwOm , 

where the operators are 

(15) 

Oppp3(tensor) = 10(Pr3Z~r + 2”,3Z~U i- Pz3Z3,) - 6P2(P~l~) i- 2(P.&), (16) 

0p3t4(scalar) = ?,4l(P.r4)(13.r4) + (P~p4)(13.p4) - ?&(P.L)Cp42 + Tq2)1, 

0P341(tens0r) = 3P&(pL + x.4') + RP,Za,(& + Y4?) + .7PA(& + 242) 

- 2(P& + P,ZYXl (P4zP4, + X4Y4! 

- 2(Prlaz + P,lP~)(p4,p4* + x*24) 

- qr,z,z + rJ,,>( p4,p4z + :ll4z4) - (p.13)(p42 + T47, 

(17) 

Op&tensor) = P,Z&(pk + ~3~) - (pi, + !/a’)) - (P::, + 232)1 

+ PzlZ&(pL + yap) - (PL + .G2) - (Pi, + Q”)l 

+ PJ&(& + 232) - (pk + .?sT - (Pi, + .Ys2)lt 
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0 P32? = y [(pr” + f’> - (p,’ + e’> - h.h(p,pf + e.01 

+ y [(p/” + f”> - (p,’ + e’> + 2&!(p,pf + ef)l 

+ ‘+ [(p,” + e2> - (pf* + f*)l. 

The coefficients F; are tabulated in Appendix I. The coefficients Mijk and Nijk 

are extremely complicated functions of both the cubic and quartic potential 

constants, and although t#heir numerical value may be deduced from the ex- 
perimentally observed rotational fine st,ruct’ures, these values will never be useful 

in t.he determination of the molecular parameters. For t,his reason ,these coeffi- 
cient,s are not’ explicitly tabulated although one of the very simplest is given in 

Appendix I to illustrate t,heir dependence on t’he potent’ial constants. Third-order 

perturbation terms have t’o be included in order to get, a good fit between t,heory 
and experiment and may even be importJantf in making correct assignments of 

the rotational fine structure lines in regions where there is much overlapping of 

lines, but it is doubtful whether they give significant information about t,he 

molecule. Because of hhe breakdown of the BornOppenheimer approximation 

in t>his order it may in fact even be questioned whether the coefficients of these 

terms are meaningful when computed by t.he usual met,hods (12, 13). Because 

of symmetry considerations it may perhaps be expected that. t’he omitted elec- 
tronic-vibration-rotation corrections will give terms of t’he same general form 

and will thus merely alter the coefficients. 

EVALUATION OF THE MATRIX ELEMEKTS 

The terms of the Hamiltjonian, H’(diag), have been classified according to 

their irreducible spherica, tensor character and will now be ident,ified as t,ensors 
of rank k, with the possible values F = 0, 3, and 4. The individual tensors are 

all built up from t.he vector P and vectors such as r:{ , pa , and 13, The spherical 

components of these vectors are given, for example, by 

CT3)l = --& c.I.3 + G/3), !rah = 23 ) (b-1 = -& (x3 - iy,). 

On the ot,her hand 

The anomalous sign before i is related t’o t,he anomalous sign in the commutation 
relations of the P, . The vibratjion rotation tensor operators of rank lc are built 
up from pure vibrational tensor operators of rank 12, and commuting rotational 
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t,ensor operators of rank k2 , where spherical vibration-rotational tensors of any 
rank Ic may be const’ructed by the usual vector coupling methods 

T(h-,q) = C (kl&qlq2 j ~,k,kq)Tvih(klql)*Trot(ICIqZ) with ~1 = (a - nl>. (18) 
91 

The coefficients are the angular moment’um addition coefficients. The anomalous 

complex conjugat,e sign arises from the anomalous behavior of the P, and the 

relat,ed fact that the operators are t’o be applied to an angular momentum sub- 
traction coupling scheme. [Compare wit’h Eq. (3) .] The vibrational and rotat,ional 

tensor operators are themselves built up from t.he vibrat’ional and rotat’ional 
vect,ors by a repeated application of analogous vect’or coupling formulas. 

Matrix elements of these tensor operat’ors in the coupling scheme (1 J R) are 

given by t,he Wigner-Eckart t,heorem 

(v’l’JR’K/ I T(kq) I vlJRK,t) 

= (RkK,q 1 RkR’KR’) (19) 

(2R’ + l)liz 
(v’Z’JR’ 11 T(k) 11 vZJR). 

The dependence on KR is given solely by the Clebsch-Gordan coefficient. The 

reduced or double-bar mat’rix element is a funct’ion only of the quantum numbers 
1, J, R, and v which stands as a collective label for the remaining vibrational 

quantum numbers. Since t’he A, , Az , E, F1 , and F, fine structure components 
of a given vibration-rotation level differ only in their KR values (the specific 

linear combinations of K, values have been given by Jahn), it can now be seen 
that the relative split’tings in the fine structure patterns are characterized solely 

by the rot!at’ional angular momentum quant,um number, R. With k = 0 the 
Clebsch-Gordan coefficient is unit,y (independent of KR) . Scalar perturbation 

operators can therefore not’ split a vibration-rotation level into its fine structure 

component)s. 
The reduced or double-bar matrix element can itself be written in terms of 

vibrat,ional and rot#ational reduced matrix elements and a 9-j symbol. 

(v’Z’JR’ jj T(k) II vlJR) 
[(2k + 1)(2R + 1)(2R’ + l)]“” 

i 

1’ 1 k, (20) 

= 

I 

J J kz (V’l’ Ij Tvib(k1) II d)(J II Trot I[ J). 

R’ R k 

The notation of Edmonds (5) is used throughout’ this section. The 9-j symbol 
call be evaluated in terms of 6-j symbols (or Racah coefficient’s) which are 
t,abulated by Edmonds. The matrix element’s are diagonal in J, ( P2 commutes 
with H), but not, in general diagonal in R and 1. If the vibrational tensor operator 
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of rank kr is itself built up from operators of rank kp and kq which are in t’urn 
built up from vectors r3 , ~3, 13 and r4 , ~4, 1, , respectively, the vibrational 
reduced matrix element, can be further written as a product of reduced matrix 
elements 

(8’1’ 11 Tvib(h) I/ vl) 

[(Zh + 1)(2Z + 1)(21’ + 1)l”” 

(21) 

The pure vibrational perturbation operators O,( scalar) and 034( tensor) are 
examples of such operators with ks = k4 = 2, and kl = 0 or 4, respectively; 
(Ic, = 0). The matrix elements of the pure vibrational states are again given by 
t,he Wigner-Eckart t’heorem, where the m dependence is given solely by a 
Glebsch-Gordan coefficient. 

SCALAR PERTURBATION OPERATORS. THE EFFECTIVE ROTATIONAL 
CONSTANTS OF THE INFRARED ACTIVE FUNDAMENTALS 

The effective rotational constants of a vibration-rotation band are determined 
by the scalar perturbation t’erms. For states in which only quanta of v3 are 
excited, for example, the rot,at,ional constants are determined by the following 
scalar perturbation terms 

H’(scalar, v3) = Hc, - 2&S_3(P.13) - l&P4 + &,0~~~dscalar) 

+ F,,P2(P&) + MYdpl’ + PA + YdP22 + 4 

+ Y&G + 7-f) + Y4Cp42 + ~4%~’ (22) 

+ [M,dpl? + 917 + M322(m2 + rz”> 

+ df333(& + d) + hf344(p,2 + ~4wPU 

The simplest type of scalar vibration-rotation perturbation operators are those 
which are themselves built. up from scalar perturbation operators, t.hat is those 
for which kl = k2 = k = 0. Operators such as (p3’ + rs2)P2 fall into this category. 
Examples of operators wit,h k, = k, = 1, k = 0 are given by P”(P+l,), (~3” + ~32) . 
(P.&), and operators such as 0 p344(scalar). In all but combination stat,es of v3 
and v4 their matrix elements can be written down at once. A third class of scalar 
perturbation operators are those with k, = k, = 2, k = 0. The operator 0ppa3- 
(scalar) is an example [as defined by Eq. (13) Oppsa(scalar) = (5)“’ T(OO)]. 
Since this operator contributes to the energy of t#he rotational levels of the funda- 
mental ~3 its matrix elements will be evaluated explicitly. Wit’h k = 0, the 9-j 
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symbol of Ey. (20) reduces t.o a single S-j symbol and the matrix element is 
diagonal in R and K, 

.(J I[ Trot(2) II J)* 

The reduced matrix elements are listed in Table IV. They have been computed 

by applicat,ion of the Wigner-Eckart theorem to specific vibrational and rota- 

TABLE IV 
REDUCED MATRIX ELEMENTS 

v II T*dO) /I J) = (W + 111’2 (1 II Tvib(O) I/ 1) = (21 + l)“* 

(J /I Trot(l) II J) = vu + 1)(25 + l)P 

(J )I Tmt(2) II J) = 2 2(6)“2 [W - 112JC2.J + lIC2.J + 2)(2X + 3)1”2 

v II T,“d3) II J) = l 4(10)‘/~ [(2J - 2)(25 - 1)25(25 + 1)(25 + 21C2.J + 3)(2X + 4)11’2 

v II Td(4 II 4 1 = - 4(,o)*,* [(2.J - 3)(25 - 2)(2J - 1) 

.2J(2J + lj(2.J + 2)(25+ 3lC2.I + 4)W + 511”’ 

w3 II ~VihWd II 2)dd = L&(1, + 1)(2& + 1)P 

boo:, - 2) II z’“ib[2,(ps* + ra9/21 II Q/3) = - 
[ 

(83 + I:, + 1)hP - cl + 2)ls& - 1) 

(218 - 1) 1 (Q363 II Tvib[4,(Pa2 + ~3*)‘/41 I/ h&x) 

1’2 

l3(2v, + 3)” - (al, - 1)(2b + 3)1[(2& + 4)(2& + 2)(2/a + 1)2&(2& - 2)P = .-__ 
8[70(2/3 + 5)(2/s + 3)(2& - 1)(21r - 3)1”* 

(Us(la - 2) /I T,id4,(P:P + VP/41 II valr) 

(2zh + 3Nh + z3 + l)h - la + 2)@& + 2)2&(2L - am - 4)l’J’ = 
4[7(2& - 5)(215 - 1)(213 + 3)l”e 

I(% - & + 4)h - ls + 2)b.? + 13 - l)(us + 6 + l)@L - 6)(21, - 4)@L - 2)2W2 = 

4[(21, - 5)(2/s - 3)(21, - 1)]“2 
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tional tensor operators. Since the G-j symbol is zero unless (I’, I, 2) satisfy the 

t’riangular condiCon of quantum vector addition the operator 0pps3 does not 
contribute to the vibrational ground st,at,e energies (1 = I’ = 0). The 6-j sym- 

bols with I, I’ > 0 can be evaluated from the tables of Edmonds (5). In the 

fundament,al state y3 , with I = l3 = la = 1, the operator Opps3 has t,he following 

eigenvalues 

/ 
-$3J(J + 1) + >;J for states R = J + 1, 

+NJ(J + 1) - ,%$ for states R = J, 

->iJ(J + 1) - f,$‘(J + 1) for states R = J - 1. 

Since the eigenvalues of (P.1,) are -J, 1, and (J + 1) for the states 

R = (J + I), J, and (J - l), 

respe&vely, it can be seen that the operator 0 pp33 gives contributions to both 
the effective B-value (coefficient of t.he J( J + 1) term), and the effective (B[)- 

value (coefficient of the (P-1,) term) of the fundamental state. It is to be noted, 

however, t,hat, the effective B-value for t’he JJ levels (R = J) differs from that 

of t,he J,+l and J,_, levels. 
The eigenvalues of the operator r’(P.1,) can be writ’ten in similar fashion and 

are 

-(J + 1)” + 2J(J + 1) + J +l forstat’es R= J+l, 

J(J + 1) - 1 + 1 for states R = J, 

+ J3 + 2J(J + 1) - (J + 1) + 1 for states R = J - 1, 

so t,hat, this operator contributes not only t’o the effective B and (B{)-values but 

also to the vibrational energy (through the constant +l) and to a term cubic 
in the angular moment,um quantum numbers. Since the scalar centrifugal dis- 

t,ortion t,erm gives a contribution +4D,( J + 1)3 to the allowed P-branch fre- 

quencies of the vibrat’ional fundamentals (transitions t’o states JJ+l) and a con- 

tribution -4D,J3 t,o the allowed R-branch frequencies (transitions to st)ates 

JJ_,) while it’ does not affect the allowed Q-branch lines (transitions to st,ates 
JJ), it can be seen that, the operator P’(P+ls) in practice also makes a contribu- 
tion to t,he effective D-value. The eigenvalues of the remaining operators of Eq. 

(22) can be written down at once and toget’her with the above give the expres- 
sion for the effective rotational constants of the infrared act,ive fundamentals 

which are written out, in Table V. 

TENSOR PERTURBATION OPERATORS. THE SPLITTING PATTERNS 

In a state in which only vibrational quant)a of VI , vy , and v4 are excited the 
split,ting of the vibration-rot,ation levels into tetrahedral sublevels is governed 
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TABLE V 
EFFECTIVE ROTATIONAL CONSTANTS OF THE INFRARED A(:TIVE FUNDAMENTALS 

Rotational constant Value 

B =ff va = la R = (J - I) B, + &)I-, + 1’2 + C%)k-_, + (?i)ya - (!$)-%s + 28’3, 

or (J + 1) 
B eff vz = 1 R = J Be + &)I’, + Yz + (%)Yt + (%)ya + (?$)&s + F’s, 
B eff VI3 = 0 Be + (K)Y, + Yt + (%)Y4 + (%)Yz 

tB<dcff ~3 = 1 B&-z - (;,$)&I - Mm - (%)&u - (%)Mm -f- (!i)&, 

+ (%)Fa 
D eff Da - (>i)Fa 

a Constants for the fundamental v4 = 1 are obtained from the above through an inter- 
change of the indices 3 and 4. 

solely by the fourth-rank tensor operators. In states in which only vibrational 
quanta of u3 are excit.ed, for example, the splitting patt,erns are determined en- 
tirely by the following perturbation terms 

H’(4, v3) = -D, Opppp(tensor) + F,, 0PPP3(tensor) + & 0PPa3( tensor) 

+ N33st Of33dtensor) + T33 CUtensor), 

(23) 

where the operators, which are defined by Eqs. (8) through (17)) are all nor- 
malized in the same way and are of the basic type 

{ (2.5.7)“? T(40) + 5[T(44) + 1’(44)]). 

They are again built up from vibrational operat,ors of rank 12, and rotational oper- 
ators of rank Ic, . In OPPPP~l = O,~C, = 4; in OpPPl 1~1 = 1, I;, = 3; in 0pp33 k, = 2, 
lag = 2 ; in 0PS33 k1 = 3, hi, = 1; while in 0Z3 X:1 = 4, k, = 0. The mat,rix ele- 
ments of these operators het’ween st,at,es vlJR and v1’JR’ are zero unless (I’, 1, kl) 
satisfy the triangular condit,ion of quant,um vect,or addition. In the vibrational 
ground state therefore t.he only operat,or wit#h nonzero mat,rix elements is the 
operator OPPPP since I’ = I = 0 implies lil = 0. The splitting patterns of the 
vibrational ground state are therefore governed solely by this operator and in- 
crease essentially in proportion to J4. With lo, = 0, 1’ = 1 = 0, R = J, the Y-j 
symbol of Eq. (20) reduces t#o >j(2J + 1). The reduced matrix elements are 
given in Table IV, and the nonzero matrix elements of OPppp in the vibrat,ional 
ground stat’e become 

(OJJK 1 Onm 1 OJJK) = g&J; J) (J4KO ( J4JK), 

(OJJ(K f 4) (Omm [ OJJK) 

= g&J; J)(:~<a)1’2(J4K(h4) ( J4J(K f 4)). 

with 

(24) 

g,,J = [(2J - 3)(J - 1)(2J - l)J(J + 1)(2J + 3)(J + 2)(2J + 5)]““. 
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In the state of the vibrational fundament,al, I = I’ = 1. The triangular condi- 

t,ion is satisfied only by operators with Ic, = 0, 1, or 2, hence only by the opera- 

t’ors OPPPP , OPPPS , and 0PPS3 . The operators 0 P333 and OS3 cannot contribute to 

the energies of v3 . Wit’h the red uced matrix elements of Table IV and t,he 9-j 

symbols evaluated t’hrough the use of the 6-j symbols tabulated by Edmonds 

(5), the nonzero matrix elements of the tensor operators for the state v3 = 1 

become 

(IJR’KR ) H’(4) / 1JRKR) = j,,(R’; R)(R4K,O ) R4R’K,), 

(lJR’(KR f 4) 1 H’(1) I 1JRKR) (25) 

= fi,(R’; R) (,5’i4)1’2(R4KR( f4) 1 R4R’(Kd a)), 

in which the coefficients fiJ( R' ; R) are listed in Table VI as functions of the pos- 

TABLE VI 

fi.43’; R) = g,.r(R’; R) t&idw(J, R’, R) 1 

R’ R .f,i(R’;R) 

LJ + 1) (J + 1) 

J (J + 1) 

(J - 1) (J + 1) 

J J 

(J - 1) J 

(J - 1) (J - 1) 

(2J + 7)(2J + 6)(2J + 5)(2J + 4)25(2J - 1) I’* 

(2J + 1)(2J + 2) 1 { ‘4(2J* - 55 + 3)taac + (J - l)t,:<t - hr} 

[ 

5(2J + 6)(2J + 5)(2J + 4)(2J + 3)(2J - 1)(2J - 2) 

2OJ + O@J + 2) 1 “* 

((2J - 3)hr - ?S(J - 3)h + ha} 

[ 

5(2J + 5)(2J + 4)(2J + 3)(2J - 2)(2J - 3) “2 

2(2J + 1) 1 
l3toat - %tm - h] 

(2J f 5)(2J + 4)(2J + 3)(2J - 1)(2J - 2)(2J - 3) ‘D 

2J(2J + 2) 1 (U2 + J - 10hora + 4h:u + 2hrI 

5(2J + 4)(2J + 3)(2J - 2)(2J - 3)(2J - 4) “* 

2.2J 1 
((2.J + 5)tou - ‘S(J + 4)tua - f?%I 

C (2J + 3)(2J + 2)(2J - 2)(2J - 3)(2J - 4)(2J - 5) 1’2 

2J(2J + 1) 1 
(2J* + ” + lo) &,,a - (J + 2)&4 - 

2 
t.ma _- 



sihlc rotntioual angular momeiitum quantum numbers R and K’. It is convenient 

IO use the following notation in additiotl: 

in which the tijk are the coefficients of the perturbation operators with subscripts 
i = k, , j = kS , and Z< = 4 to indicate their specific tensor character. To third 

order of approximation tOJ4 = - Zlt , tla4 = Fxt , and tYL4 = Z,, . The Clebsch- 
Cordan coefficients which occur in I+ls. (2-k) and (25) are given as functions of 

.I and K in Table WI. The matrix elements of the Hamiltonian, H’(1), can con- 
nect only vihr&tion-rotational substates of t’he same tetrahedral symmetry, for 
example A, st,ates with A1 , E, states wit,h E,, , . - . . Tetrahedrally irreducible 

harmonic functions have been tabulated by Jahn ( 9 ) up to the tenth angular 
momernum gu~ntum number. Since they involve specific linear combinations of 

the vibration-rotation wave functions, #RKH , with different values of K, , the 

matrix elements of H’(4) between the tetrahderal substates always involve 

TABLE VII 
CLEBSCH-GORDAN COEFFICIENTS 

6J(J - l)(J + l)(J f 2) - 10K2(6J2 + 6J - 5) + 70K4 

(J4Ko ’ J4J1i) = [(25 + 5)(25 + 4)(25 + 3)(25 + 2)2J(25 - 1,(2./ - 2)(2J - 3)1”’ 

S(3.T’ - 5 - - !J=o 1 J4(J 7@)[5(J mu + Ml”2 - NQ = 
[(ZJ + 4)(2J + 3)(5 + 1)(25 + l)J(J - 1)(25 - 3)(5 - 2)l”” 

(J f 1)4KO I (J + 1)&I - l)K) 

-2(52 + J - 2 - 7P)llO(J - K)(J + K)(J - K + l)(J + K + 1)l” 
= ((25 + 5)(25 + 4)(2J + 3)(2J + 2)(25 + 1)2J(2J - 2)(25 - 3)P 

(J4(K + 4) -4 I J4JK) 

[~O(J - K)(J - K - l)(J - K - 2)(5 - k’ - 3)(J + K + l)(J + K + 2) 
(J + K + 3)(J + K + ?&)I”” 

c-p 
[(25 + 5)(2J + 4)(2J + 3)(2J + 2)25(25 - 1)(25 - 2)(25 - 3)1”2 

(JJ(K + 4) -4 IJ4(5 - 1X) 

2[14(J + K)(J + K + l)(J + K + 2)(J + k’ + 3)(5 + ii + d)(J - fL - 1) 
(J - K - 2)(5 - K - 3)1”2 

= __ [(25 + 4)(2J + 3)(2J + 2)(2J + 1)25(25 - 2)(2J - 3)(25-Gr- 

((d + 1)4(K + 4) -4 I (J + 1)4(J - l)k’) 

2[7(J + K)(J + K + l)(J + k’ + 2)(5 + K + 3)(5 + I’C + 4)(x + K + 5) 
(J - K - l)(J - K - 2)j”’ 

= -- [(2.J + 5X2Jf4)(2J+ 3)(2J + 2)(U + 1)2X(2./ - 2)(2J -we-- - 
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specific linear combinations of the Clebech-Gordsn coefficients of Eqs. (24) and 

(25). For example, t’he Wave funct)ion for t,he state & Fe2 the (Fz2 vibration-rota- 
tional substate of the level lvith J = 3, R = 4) has the form 

f$$ (4L2 - $4). (26) 

The matrix element, diagonal in R, for this particular subst,ate, is therefore pro- 

portional to the following linear combination of Clebsch-Gordan coefficients 

g13( 4; 4) .,1,$ (44 - 20 1 444 - 2) + (4420 1 4442) 
i 1 
[ - (5’&)“‘[(44 - 24 14442) + (442 - 4 / 444 - 2)] J 

(27) 

\vith the numerical value - (390/7). Numerical values such as this one a.re given 

in Table WI1 where the numbers listed are glJ(R’; R) multiplied by the specific 

linear combinatjions of Clebsch-Gordan coefficients required by the symmetry 

of t,he tetrahedral substate. Only matrix elements connecting states JJ+l xvith 

J J+l , JJ , and J.,_l are tabulated, since matrix elements connecting states 

(J + l)J+tlwith (J + l)~+land (J + l)~, for example, or those comiecting 
states (J + 2)J+1 with (J + 2).,+1 involve exactly the same linear combina- 

tions of Clebsch-Gordan coefficients as those listed and differ from the numbers 
given in Table VIII only by t,he ratios of the gl., values. For example, the lvave 

functions for t.he st’ates 54 Fzz and 44 Fl{, with R = 4, also involve the linear com- 

bination of K, values of Eq. (26) .5 The matrix elements, diagonal in R, for these 

Tao states are therefore given by (g16/g13) ( - 390/7 ) and (g14/g13) ( - 390/7), re- 

spectively. 
As an example the complete Hamiltonian matrix for the substates F, of J = 3 

is exhibited on page 378 (I). 

If the values of the tilk are small compared wit’h B[J; that, is, if t,he elements 
off-diagonal in R are small compared with the differences between the diagonal 

matrix elements, the energies of the three st’ates 3K Fz are given to good approxi- 
mation by the diagonal matrix elements. The off-diagonal matrix elements give 
contributions to t’he energies of the order of (B3/[co2) J3, a quantity which is for- 

mally of third order in t,he Nielsen et al. (12, 13) ordering scheme ; but the off- 
diagonal matrix elements may in some cases give sizable contributions to the 
energies. In dominant approximation, in mhich the off-diagonal matrix elements 

are neglected, the tetrahedral substate 34 F2 is split from its unperturbed position 

by an amount - (390/7) (?A144 + 2t134 - t224). From Table VIII it can be seen 

5 It must he remembered that the wave functions for states 34 and 54 with J + I:, even 
transform according to Dg4, whereas those for 4, with J + I, odd transform according to 
D,,4. Those linear combinations of spherical harmonics which transform according to F? 
in a 9 representation transform acrording to F, in a u represent,ation and vice versa. A 
change from 9 to u also involves an interchange of -41 with ‘42 and E, with Ef . 
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that the E, F1 , and ill tetrahedral substates of :& are similarly split from their 
unperturbed position by amountjs of +(60/Y ), +X0, and +60, all time:: 

(3044 + 2t134 - t3.‘4). 

The four levels are therefore split from their common center of gravity in the 
ratios - 13 , 2, 7, and l-1, the splitting pattern used as an example in connection 
with Table I. In the same approximation the F, , F1 , E, and second Fz substates 
of & are split from their unperturbed position by the amounts +I(;( al)““, 

(112/3), -56, and - lA(21 )l,” all times [( 15/2)t044 + 3tla4 - tze4], see Tables VI 

and VIII, where the splitting ratios are characteristic of any state with H = 5. 
The numbers fl(i( 21)“’ are the eigenvalues of the 2 X 2 F2 matrix, diagonal in 
R. The examples show that the fourth-rank tensor operators do not shift the 
center of gravity of a vibration-rotation level and therefore camlot make any 
contribution to the effective B, D, and zeta values of the bands. (The rl, 13, and 
F levels are of course given weights of 1, 2, and 3, respectively, in determining 
their common center of gravity.) 

In the second paper of this series the theoretical predictions will be compared 
with the recent high resolution spectra of the fundamental v3 of CH, i 1 ). In 

order to get good agreement between theory and experiment the matrix elements 
off-diagonal in the quantum number R must be taken into account. The basic 
splitting patterns are therefore all deformed to a certain extent. This effect may 

become particularly significant in the case of large angular momentum quantum 
numbers. The true wave functions are mixtures of the wave functions for the 
three types of states .15+1, JJ , and J,,_1 . As a result some of the lines in the 
infrared-forbidden PO, P-, Q-, Q+, R”, and Rt branches become active. Such lines 
have been observed by I’lyler and Allen (1, I/,). Since the most severe test of the 
theory is given by st)at,es of large angular momentum the calculations have been 
carried out to include states with angular momenta of 13. The tetrahedrally ir- 
reducible harmonic functions for J = 11, 12, and 13 are listed in Table IX, an 
extension of the table of tetrahedral harmonic functions given by Jahn (9). 
The notation of Jahn has been used in connection with Table IX. The cTKJ. 

T’KJ, WoJ are real spherical harmonics as defined in ( 9). 

APPESI)IS I. COEFFICIEXTS OF THE VIBRATION-ROTATION HAMILTOSIAh- 

The cubic and cluart,ic parts of the potential function, v1 and 1’2 , have been 
given by Shaffer el al. (7) but are listed again below in order to establish the 
notation. There are some minor differences between ri, and that listed in Ref. 7. 

V, = clnqly + c12Eq1r22 + c13Rq1r34 + c144q1~42 + ck34q1(r3.r4) + c333wtz3 + c444x4.y4z4 

+ c344Cx3y424 + y3.r424 + w4y4) + C:dS41/3t3 + 1/4.r323 + z4.r3ya) 

+ ce&e2f - f, + c233[e(.r:f - y,', + Cf/dKr3" + j/:12 - a::)] 

+ s44kt x4? - !/47 + cf/&,(x4z + l/r2 - 2242)1 

+ c234LeCx3x4 - ~3~4) + (j/v5)(.ix4 + 1/31/4 - ~2324)3. 
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VZ = hq14 + d1122q12r22 + dll~3q12r~2 + h4q12r.t2 + d2222r24 + d22339r22r32 

+ dz244Rr22r42 + dadar.ra4 + d4444,rd4 + d3~(44rars2r42 + dl)a44nb(rs .r4)2 

+ dzz&(xs2 - y,2) + (e? - j2)(212 + y: - 2z37/2&j] 

+ dssACr42 - y42) + (e” - .f”) (.Q2 + y42 - 2$/2&l 

+ dmzt(x34 + y; + 2,” - :3r&~~~ - 3s:~; - :3y,2zs2) 

+ dw( x44 + ~4~ + zq4 - X~4~y42 - Sx42242 - 3~4224’) 

+ daaut(:3xs”x42 + 3y32!/42 + :k3%42 - ry2r42 - k3y3R.qyq - 4X323T4Z4 

- Ay323y424) + dl134q12(r3.r4) + d2234*r2’(r3. r4) + d:s334sr32(r3. r4) 

+ da444sr42(r~.r4) + dz2&.f(.w4 - ~3~4) + (e’ - f’) (x3s4 + y3y4 

- 2%24)/2&] i- &A( - d>e - f).r@&4 f (de - .f) ysw4 

+ 2fZ+W,‘41 + d&( -&e - f)x4y3Z3 + (de - f)y4X3% 

+ 2.fz4x3y3l + &34[5(.r4x33 + Y4y3” + 24~3~) - :+t(r3.r4)] 

+ dA5(xa3 + ~3~4’ + ~~24~) - 3r42(r3.r4)1 + d12?2q1(3e2S - f”) 

+ dmq~.um + &44y~.wz4 + dmuq&(x.a2 - yt) 

+ (Slti,(x~2 + ys2 - 2.41 + drmq&(aw - y3yr) 

+ (S/ti)(.~3X4 + ysy4 - 22324)] + dl244qlMs4” - ~42) 

+ (S/v% (x42 + ys2 - %,‘)I + dwql(x3y424 + 2/3x424 + 23x41/4) 

+ dl3a4yl[x4y,z3 + ~4x323 + 24x3~31. 

The coefficients of the pure vibrational perturbation terms are given below as 

functions of the cubic and quart’ic potential constants. 

3 15 &I 
XII = - dml - - - , 

2 4 a1 

cf2, (3~~~ - 8~2’) 
Xzz = ; dzzz2 - y 2 + - 

A 4~1 (4~2’ - WI’) ’ 

Xn = dnnn - 
2c;Lzzwz 3ClllC122 

(4_& - co?) , 
Wl 

X13 = dm - 
GwJ3 

(40x2 - w12) 

c;34w4(w42 - w32 - w2) 

+ 2(WI + as + w4)(CQ + w3 - w4)(w1 + w4 - w3)(w3 + w4 - WI) 

3ClllCl33 
--7 

Wl 



- 3 
2 

__ 633 cT3:$(3w,2 - 8ws2j 2c;33(:jw22 - x03 = 8W32) - 

2 d3333s 12w3 + 4Wl(4W32 + - WI”) 15w2(lw32 - w22) 

c;34(3w42 - 8w:~2) 

+ 2Ow4( ‘ha” - w4*) ’ 

1% = dmsa + ; dmsb - l 
2 

C344W4 ci34w3 

:s 4w42 - w3* 
+ 

4wa2 - w42 > 

+ 6(w + 

C1234Wl(Wl2 - W32 - u4*) 

w3 + W4)(Wl + W3 - W4)(Wl + w4 - W3)(W3 + W4 - WI) 

+ Y(W2 + 

%;34‘02(‘02* - 2 w3 - w4 “) 

W3 + W4)(W2 + W3 - w4) (w2 + a4 - W3) (W3 + W4 - w2) 
7 

G =_!d +21cs22_; 
I 

Cl22 
22 

2 
2223 

4 a2 4 (4w22 - q”) ’ 

G33 = - f d3333a 
1 Cf3a 1 CT33W1 

+ E w, - 3 (4w32 - Wl2) 

2~;~~(6w32 - We) 

+ Bi-32 + L5,2(4w3* - w22) 

1 ci34(6w32 - c.142) 

+ 20 (ha” - w42) ’ 

B 2 1 c:44w4* 
G34 = 5 c34 + 2Bl3[4 + 2 wac4w42 _ 

1 c134w1w3(J4 -~ 
2 (WI + ws + w4)(w1 + w3 - w4)(w1 + w4 - w3)(w3 + w4 - WI) 

2 
c234w2w3w4 

3 (w2 + w3 + W4)(‘d2 + W3 - W4)(W2 + W4 - W3)(W3 + W4 - W2) ’ 

d34Wl 

+ 8(Wl + W3 + W4)(Wl + 

( W12 - w32 - w4*) 

w3 - W4)(Wl + W4 - w3)(w3 + W4 - w) 

+ ~O(WZ + 

c;34W2( W2* - W32 - W4’) 

W3 + W4)(W2 + W3 - W4)(W2 + ‘d4 - w3)(w3 + w4 - w*> ’ 
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T34 = 

T33 = 

2 
W3C334 

+ (4& - u42) 1 c233c244 

- ~ - - 5~ 

+ lO(w2 + 

c;34‘d2(‘d22 - %2 - w42) 

W3 + W4)(‘d2 + ‘d3 - 04)(u2 + u4 - w3)(w3 + w4 - w2) ’ 

1 c;33(:%d22 - 8wa2) 
; d,,,,t + $ $ + - 

c;34(8w32 - 3W47 

20 W?(4wa2 - W?) + 8Ow4( iWY2 - c.042) ’ 

c;34u4((J42 - cd22 - u32) 

+ Mu2 + ~a + w4)(w2 + w3 - w4) (w2 + w4 - w3) (w3 + 04 - w2) ’ 

The coefficient Xd4 is obt’ained from X33 by replacing the index 3 by 4, etc. 
The scalar and tensor D values and t’he second-order vibration-rotation int,er- 

action constants are listed next. 

B3, 

ri4(w2 + 3~27 + $3(w2 + 3~27 

3w3(w32 - w42) ’ 

231 = - - 3 - B2 

10 w3 

[23 2 - + .WwE2) I c233 E 3’2 + L r 3’2 

lOw3(w22 - w3) (> 10 up 20 

1 2B 3’2 
+ 20 i-24c334 w, 

(> 
, 

&(w33 + 3~2’) + {;4(w42 + 3~2~) 

(w22 - 032) (w22 - w42) 1 
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IGually, some of the third-order interact iou constaut s are listed. Ouly t hv very 
simplest coefficient Jli,k is listed as au esamplc siurc these coefficients UP very 
complicated fmrctions of both the cubic aud cluartic potential coustauts. 

24 @<23b24[34h2 + w4’ + 2w32) _ ; c,,:~(2~)5’2~~:~(W2)L’2 
-_ 

5 (cd32 - w42) (a32 - cd22) 03( cd22 - u32) 

2 C234(2B)“2&&4 
-_ 

5 C_LY~(W~~ - f&2) 

+ d(2B%234[34 

I” 2 (2B)5’2[C&3( ‘04)‘” + c344{24( “‘3)3’2] 
-- 

- 5 w3w4(wB - w42) 
7 

FSt =z($+;j-:3) -;($r?,+;r:,) -$(;,,+-1,,,,,.) 

3 B3& 
-~ 

_ 6 B3{&3(w22 + ~2) 

5 (cd22 - a2) 

+ ” B3{233;4{34(‘d2’ + ‘Q2 + %a21 + (2B)5’2C~33~~3(~2)1’2 

5 (cd32 - 042) (w32 - u22) hd3(‘d22 - ‘d32) 

+ (2Bj5” li:! 
(34 

112 
+ 

w3w4 
~ c234 

10 (> 1 wz(w32 - w42) w2 

@B)“‘[34 

+ ik w3w4((J32 - w42) 
k334{23b4)3’L + c:~34{24(~3)3’2], 

p2 = 4B3 I _ & - h! - 

w2* cd32 w42 qw22 - (534) - 2(024 - Wf) 1 
_ 12B3 b3i-t3bZ2 + m3”) 

(cd22 - co,*)2 

+ [4~;4b22 + W2) + lZ:d24<:14( h2 + W2 + U42) 

( 
o;2 - w42)2 (m22 - ‘d3’) (w2’ - ‘042) 1 + 2(2B)5'2r~3C233(W2)"2 + 2(2B)5'2r~4C244(W2)"2 

w3(wz2 - w32) W4(Wz2 - Cdi2) 

l/Z 
+ c234 ( 2B ) 5’2!?23{24 

1 

112 

1 

w4(w22 ’ - w32) W3(W22 - ‘d42) 1 
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. (WI + w3 + w4)(w1 + Wd - W)(Wl + u4 - m)(w + a4 - WI) 

+ 
12B~34ClllCl34( cwJ4) Ii2 

Wl(W3’) - cdp2) 

111 these expressions the quantities {23 and fS4 have the OppOSitje Sigll from that 

defined by Shuffer, et al. (7). 

RECEIVED: *June 9, 1YtiO 
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