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The in format ion  channel  capaci ty  of a model neuron  wi th  a fixed 
re f rac tory  per iod ~ has  been calcula ted for op t imum cont inuous  t ime  
in te rva l  coding. Two types  of noise pe r tu rba t ions  have  been  consid- 
ered, a Gauss ian  p robab i l i ty  d i s t r ibu t ion  and  a rec tangula r  d is t r ibu-  
t ion  of the  t ime  of occurrence of the  response to a s t imulus .  Labora-  
to ry  measurements  indica te  a Gauss ian  d i s t r ibu t ion  wi th  a s t anda rd  
devia t ion  of la tency  ~, of abou t  5 ~sec gives the  bes t  fit to  an  ac tua l  
nerve  fiber. This  resul ts  in  a max imum informat ion  t ransmiss ion  of 
s l ight ly over 40(D bi ts  per  second. The  resul ts  are compared  wi th  the  
discrete theory  of M a c K a y  and  McCulloch.  

L IST  OF SYMBOLS 

Dead time of neuron 
Minimum discriminable time interval 

a Average input rate in pulses per second of a Poisson shower 
q(r) Probability frequency distribution of perturbing "noise" 

Width of square distribution funct ion 
H Information per signal 
C Channel capacity 

p(x) Probability frequency distribution of input signal 
p(y) Probability frequency distribution of received signal 

p(x,y) Joint probability distribution function 
W. S. McCulloch and D. MacKay (1952) have calculated the channel 

capacity of a "neuronal link" assuming two types of coding, namely, 
pulse code modulation and pulse interval modulation. In the former type, 
time is supposedly divided into equal intervals. Each interval Contains 
a signal, which in this case is either the presence or the absence of a 

* This  work was suppor ted  in pa r t  by  the  U. S. Air Force under  con t rac t  AF 
33(616)-6272 wi th  the  Wright  Air  Deve lopment  Center .  
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336 R A P O P O R T  AND H O R V A T H  

pulse (the neuron either fires or does not fire). The channel capacity 
associated with this coding is defined as the maximum rate of informa- 
tion transmission possible under this interpretation of signal. Obviously 
the greatest average information per signal will be attained when the 
occurrence or nonoccurrence are equally probable and statistically in- 
dependent, that  is, at the rate of one bit per signal. If this duration is 
taken as ~, the "dead t ime" of the system, which includes the time of its 
firing and of the period of absolute refractoriness which follows, then 
the time rate of information transmission has the maximum value of 1/~ 
bits/see, and this can be taken as the channel capacity associated with 
pulse code modulation. 

In pulse interval modulation, the situation is different. Here the in- 
formation is supplied not by the answer to the question whether the 
neuron fires in a quantized time interval of fixed length, but to the ques- 
tion when it fires on the time axis. If the moment of firing could be as- 
certained precisely (as a "real number") ,  the average amount of informa- 
tion per signal would, of course, be infinite, and its calculation would be 
meaningless. However, there is always some error in determining the 
exact moment of firing, and this makes the amount of information finite. 
Now there are two limiting factors to the rate of transmission, namely, 
the degree of precision in establishing the time of firing and the length 
of the refractory period. 

In pulse interval modulation, McCulloch and MacKay postulate a 
smallest discriminable time interval. As in pulse code modulation, the 
time is considered quantized. In the case of our idealized neuron, there 
must be two of these basic time intervals, namely, the dead time a, which 
has the same meaning as before, and the minimal discriminable interval 
~. Signals can now be interpreted as the numbers of z's which elapse be- 
tween successive firings. In other words, we may still view the system 
as pulse-code modulated but now the duration of the two signals "Yes" 
and " N o "  are not of equal length. The "Yes" signal has duration ~, and 
the " N o "  signal has duration ~. 

If  no further restrictions are imposed, the channel capacity of this 
system can be calculated in a straightforward manner (Shannon, 1949). 

Let N ( t )  be the number of different messages which can be sent in 
time t. Then one must have: 

N ( t )  = N ( t  - 5) + N ( t  - ~) (1) 

We can, without loss of generality, let ~ = 1, z = 1/k. For large values 
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FIG. 1. The calculated channel capacity of a model neuron with a refractory 
period of 1 msec, using discrete information theory with time quantized into 1/k 
units of the refractory period. 

of t, the solution of the resulting difference equation is asymptotically 
equal to x t, where x is the largest real root of the equation: 

-1 x-1/k x + = 1 ( 2 )  

Thus, the information capacity will be given by log2 x bits per unit 
time. Therefore, for this system of coding, the information capacity is 
given by: 

C = log2 x(k) (3) 

Figure 1 shows the plot of C as a function of k, where ~ has been taken 
as the unit of time. 

In this and in subsequent models, we shall be interested also in the 
actual rate of information output  of the single neuron when a Poisson 
shower of stimuli impinges upon it. The Poisson shower is characterized 
by the function ae -at, which gives the frequency distribution of t, the 
time of occurrence of the next stimulus. Moreover, the Poisson shower 
has the property that  the above-mentioned frequency distribution is 
independent of the choice of the reference moment. 

Assume, then, tha t  such a shower impinges on our neuron and take 
for the origin of the time axis the moment when the refractory period ~, 
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following a firing, has just elapsed. The time is assumed to be quantized 
in intervals of length cr and we need to compute the average number of 
time intervals until the next firing. Since the probability of a " N o "  re- 
sponse in an interval ~ is given by e -~ ,  the average number of consecutive 
"No"  responses in an infinite sequence will be given by  e-a~/(1 - e-a~). 
The average number of signals sent between refractory periods will be 
this number of "No"  signals plus one "Yes" signal, or a total of 

1 
N = 1 e - ~  

signals in all. Since the nerve will be blocked for a time 8 and live for a 
time N~ then a total  of 

N 1 
+ N ~  ~ + 8 ( 1 -  e - ~ )  

signals will be sent per second. 
On the other hand, the information per signal can be calculated from 

the probability of receiving a "No"  signal during the time ~ following 
our time origin. Since this is e -°~, the information per signal can be seen 
to be: 

H = a ( T e  - a ¢  - -  (1 - -  e - a a )  loge(1 - -  e -a° ' )  (z~) 

Combining these results, we have the information in "ni ts"  per sec- 
ond)  

H *  = [ a a e - ~  - (1 - e - ~ )  loge(1 - e-~)] (5) 
+ 8 (1 - e - ~ )  

Figure 2 shows the plot of H *  as a function of input frequency a for 
several values of ~ considered as a parameter, where 8 has been set equal 
to 0.001 sec. 

Note, however, that  the capacity (3) is simply inversely proportional 
to 8, but  the information output  is not. Keeping the value of ¢ arbitrarily 
at 0.05 msec, H ' i s  shown as a function of a for different values of 8 as 
a parameter in Fig. 3. 

T H E  S I G N A L  AS A C O N T I N U O U S  V A R I A B L E  

Now instead of viewing the intervals between pulses as an integral 
number of "smallest distinguishable intervals," consider these intervals 

1 One  n i t  = logs e b i t s .  T h i s  u n i t  a n d  t h e  n a t u r a l  ba se  for l o g a r i t h m s  will  be  
u s e d  t h r o u g h o u t  our  c a l c u l a t i o n s .  
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FIG. 2. The information transmitted by a model neuron as a function of aver- 
age inpu~ frequency for a Poisson distribution of stimuli. Calculated by discrete 
information theory for different values of the least discriminable time interval, 
~. The refractory period is fixed at 1.0 msec. 

as real numbers. The impossibility of determining these numbers exactly 
will be represented by  a perturbing function q( r ) .  Thus, if an interval 
is measured to be of length x, the probability that  its true value departs  
from x by  r is given by  a probability frequency distribution q( r ) .  

As for the probability frequency distribution of x we shall take the 
distribution which maximizes the integral 

fj -- p ( x )  log p ( x )  dx 

under the constraints, 

f0 f0 p ( x )  dx = 1, x p ( x )  dx = 1/a  (6) 

and will neglect for the time being the refractory period. That  is to say 
we take the frequency distribution of the signals which maximizes the 
"relative entropy" for a given fixed average frequency. Later, we shall 
find the maximizing frequency under the constraint of t h e  refractory 
period and thus the capacity. 

The maximizing probability frequency distribution is known to be 

p ( x )  = ae -a~ (7) 



340 R A P O P O R T  A N D  H O R V A T H  

5 - -  ~ =0,5 m sec 

g 
~n 4 ~ 

~- 8=1 .0  
3 

~ = 2.0 

F - - - - - - - - -  ~ =5,0 
~E ¢ 
2 

0 t , I . I I I L I I I 
0 t 2 3 4 5 6 7 8 9 I0 

AVERAGE INPUT FREQUENC'f P,P.S x tO 5 (PO[SSON INPUT) 

Fz~. 3. Information transmitted by a model neuron as a function of average 
input rate with a Poisson distribution of stimuli. Calculated by discrete informa- 
tion theory with the least discriminable time interval fixed at 0.05 msec and the 
refrtte~ory period, ~, varied from 0.5 to 5.0 msee. 

that  is, the probability frequency distribution of the Poisson shower of 
impulses. 

For our "noise," tha t  is, the  perturbing function q(7) we take first 
the "square" distribution 

q ( ~ ) = l / ~  for I T [ < ~ / 2  
(s) 

q(r)  = 0 for I r ]  > e/2 

That  is to say, there is an uncertainty interval of length e around the 
apparent time of each firing. 

The general formula for the information transmission of a continuous 
noisy channel is given (Shannon, 1949) by  

It = f f  p(x,y) log p(x,y) dx dy (9) p (x) p (y) 

Here p(x) is the probability frequency of x, the signal sent; p(y) is the 
probability frequency of y, the signal received; p(x,y) is the joint proba- 
bility. Obviously if x and y are independent, p(x,y) = p(x)p(y), the 
logarithm and therefore the integrand vanishes, and H = 0. 

The distribution p(x) is given by (7). We will calculate p(x,y) and 
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p (y )  and thus reduce the problem of calculating H to a double quadra- 
ture. 

Using (5) and (6), we note that  

p(x ,y )  a _~  e =-eE if I x - y l <= -2 

E 
p(x ,y )  = 0 if Ix -- Y l > 

(10) 

Using this result and the fact that  x must not be negative, we note 
that  p (y )  consists of three parts: 

y-t-(e/2)  p ( y )  = a - - a x  e e 
- -e  dx  i f  - - -  < y < - 

~0 e 2 = = 2 

fy+(~/2) e (11) p ( y )  = a e_~ dx if y > 
y-(~/2) 

p (y )  = 0 if Y <  e _  
2 

Although the value of x, the interval between successive pulses, is by 
definition nonnegative, the value of y may be negative as indicated in 
(11). This is a consequence of our formal model. In practice, of course, 
y, the interval measured between two successive pulses, will be nonnega- 
tive; but then, if we apply our uncertainty interval q(r )  to infer the 
" t rue"  intervals, some of these may be negative, which is to say the 
relative positions on the time axis of two pulses may be transposed. 

For the purpose of formal calculation, the two interpretations are 
equivalent, and we have adopted the convention that  x is nonnegative. 

Performing the integrations indicated in (11), we get 

p ( y )  1 [1 e -ay-a(~/2)] for e < y 
2 = = 2  

(12) 
- -  E p ( y )  = e-~U [e ~(~/2) -- e -a(~/2)] for y > 

E 

From this, it follows that  our integration in (9) must be performed in 
two regions, defined by the following limits: 

I I  

e e < y < e  
I O ~ x ~ y + ~ ,  2 

Y 2 = x ~  Y + ~ ,  ~ Y ~  ~ 

(13) 
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These are the regions in which none of the factors in the integrand of 
(9) vanish. Substituting the expressions for p ( x , y )  and p ( y )  into (9), 
canceling wherever possible, and taking the limits given in (13) into 
account, we now obtain: 

H = - e log[1 - dx dy 
' - -  J - - ( e [ 2 )  JO E 

(14) 

fff - -  - e log[e-aU(e +°(~12) -- e-a(~/2))] dx dy 
( ~ / 2 )  J y - ( ~ / 2 )  e 

Integrating with respect to x, this reduces to: 

H f,/2 _1 (1 e -ay-a(~/2)) log(1 -- e -~y-~(~/2)) dy 
- -  J - - (e /2)  E (15) 

--f~/2 le (e-ay+a(~/2) -- e-aY-a(~/2)) l°g(e-~U+°(~/:) - -  e-~Y-°(~m) dy 

To simplify the first integral of (15), we introduce the change of 
variable z = 1 - e -ay-°(~12), which transforms this integral to 

f l-~-~" z logz dz (16) 
a e ~ 0  1 - -  z 

In the second integral we let z = e - a U ( e  a(~/2) - e-~('/2)), which trans- 
forms that  integral into 

: 1 f~-°-°' - - - -  log z dz (17) 
a e  ~ o  

Noting that  the limits of the two integrals are now identical, we com- 
bine (16) and (17), obtaining 

H =  -aej01fl-~-"'l_zl°gz dz (18) 

I t  is convenient to introduce still another change of variable, namely, 
z = 1 - t which yields: 

H = --_1 fl log(1 -- t) dt (19) 
a e  d e - o .  t 

In spite of the singularity of the integrand at the upper limit, the 
integral in (19) can be easily shown to be convergent. Expressed as a 
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series in ae, its value is given by :  

e-aE J 

y=l ~ y=l 

The sum of the first series is known to be ~r 2/6. We obtain, therefore, 
as our final expression for the information transmitted by  a neuron, 
receiving a Poisson shower of impulses of frequency a, without a re- 
fractory period: 

. =  1 a-~ y=1 j ~ - J  nits/signal (21) 

This channel capacity must, of course, be a function of the product 
aE not of each parameter  independently, because it must be independent 
of the unit of time (ae is dimensionless). 

Consider now H as a function of its single parameter (ae). Obviously 
H(  ~ ) = 0. At the other extreme H(0)  is indeterminate, since the sum- 
mation in the bracket approaches ~r2/6 as ae approaches zero. We can, 
however, calculate l im~0  H(ae) by L'Hospital 's  rule from (19), where 
both the numerator  and the denominator approach zero. Differentiating 
both with respect to ae, we obtain: 

lim H = log(1 - e -at) (22) 
tte--~O 

which tends to infinity as a~ tends to zero. The result is intuitively evi- 
dent since H should increase as ~ decreases and also as a decreases (be- 
cause the variance of the interval length increases with the average 
interval length).  

Our principal concern is the rate of transmission per unit time under 
the restraint of a finite refractory period 5. To introduce the refractory 
period, we take for our p(x) the function: 

p(x) = 0 for x = 
(23) 

p(x) = a e  - a ( * - ~ )  for x > 

Calculation analogous to the above leads to exactly the same expres- 
sion for H, which is intuitively evident since the variance of the inter- 
vals can be taken from the moment the refractory period is over. Time 
delays make no difference in how much information is transmitted per 

signal, provided that the probability frequency distribution of the next 
firing is independent of the moment chosen as the origin of time. But it 
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is so independent in the case of a Poisson shower; hence the result fol- 
lows. However, the time rate capacity becomes, with the introduction 
of the refractory period 5, 

1 f l log(1 - t) 
C - ~(1 + a~) _ - o ,  t dt (24 )  

This is because the refractory period "blots out"  blocks of signals of 
duration 5. Accordingly the average frequency of impulses put  out by  
the neuron is not a but  a(1 + a~) -I. 

Here the parameter a can be regarded as the frequency of a Poisson 
shower impinging on our neuron from the outside, to which the neuron 
responds as a "counter"  with dead time & I t  is intuitively evident tha t  
as a becomes infinite, the limiting frequency of the response approaches 
1/5 and its variance becomes infinitesimal. Therefore, C should tend to 
zero as a tends to infinity, as the inspection of (24) shows to be the case. 
On t h e  other hand C (like H)  vanishes for a = 0. Therefore, by  the 
continuity properties of tha t  expression, C must have a maximum for 
some value of a. That  is to say, given ~ and e, there is an optimum fre- 
quency of the impinging Poisson shower which causes the neuron to put  
out signals at the maximum rate of information per unit time. 

6 

~3 
. ~ = l O 0  

o I I I I I 
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FIG. 4. T h e  c h a n n e l  c a p a c i t y  of a m o d e l  n e u r o n  c a l c u l a t e d  b y  c o n t i n u o u s  in-  
f o r m a t i o n  t h e o r y  for  a r e c t a n g u l a r  no i se  d i s t r i b u t i o n  of t o t a l  w i d t h  e. R e f r a c t o r y  
pe r iod  t a k e n  to  be  1 msec .  
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Figure 4 shows the plot of (24) as a function of a for several values of 
e with ~ = 1 msec. 

Let the perturbation function now be Gaussian, namely, 

1 e_72]2a2 

Then: 

p(x,y) = p(x)p~(y) - 
ae - ~  ( (x -- y)2~ 

~ / ~  ~ exp_ ~¢2- -/ 

a [---x 2 + 2x(y -- aa 2) -- y2-] 
- ~/--G-~ ~ expL ~ J  J 

The last expression can be written also as: 

a exp(- -ay  q- 1/~a2¢~) f Ix -- (y -- a~2)]2\ 
~/~ ~ exp ~. 2 ~ f 

Then: 

where 

f0 ~ p(y) = p(x,y) dx 

a 2 2 \  

= aexp --ay -~ a~_~) ,~(y_ no.2) 

(25) 

(26) 

(27) 

F • (z) = q(r) dr 

Combining these results, we can write H as a sum of three integrals: 
H = I l q - I 2 + I s , w h e r e  

f ~ f o  ~ ae-'~ I - - ( 2 - - Y ) 2 1  1 = exp 11 ~ X/2-~ ¢ ~ 2~2 (28)  

• ( - - x  2 q- 2xy -- y2 + 2aa2y _ a2 4) dx dy 

f ~  f f f  ae-~ [---(x -- y)~ 1 I2 = ~ ~¢/~  exPL ~ j  log(~c /~aa)  dxdy  (29) 

f ~ f o ~ a e - a ~ I x _ 2 1  Is = ~ / ~ a e x p  - ( --Y)2 ~ log[~(y -- aa2)] dx dy (30) 

Integrating I1,  first with respect to y, we note that  the integrand con- 
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tains the Gaussian frequency function of y with mean x and standard 
deviation 0-. Let us transform this into a Gaussian distribution-with 
mean zero and the same.standard devia~i, on. Thusi let y - .  x = :z. Then 
the polynominal in the bracket reduces to the following polynominal in 
x and z: . . . . .  

1 ( _ z  ~ + 2a0-2x _]_ 2a0-2z _ a20-4) (31) 
20- 2 

Noting that  the first moment:of zlvanishes, while the second moment 
i s  02, we have, after integrating wiih respect to y, the following quad- 
rature: - '. 

• " ~ ( 2 ' :  a2a2) f o a e  -a~ ÷ ax - ~ :  dx (32~ _ 

This, upon integration with respect to x, gives us th e •value of: 

I1 = 1/~(1 - a:z 2) 2 (33) 

The integration of 12 is straightforward and yields immediately: 

I~ = - l o g ( ~ / ~  a0-) ( 3 4 )  

To evaluate Ia ,  we integrate  first with respect to x and accordingly 
"complete the square" so :as to get a Gaussian distribution in x whose 
mean is y - a0- 2, namely: 

a - - a0-:)]2 dx 
2 0  -2 . 

This leaves outside the integral sign the expression 

a e x p ( - - a y  + ~ - )  " (36) 

The integral (35) is not the complete Gaussian integral, since its 
lower limit is zero, not ( -  ~ ). However, its value is immediately ap- 
parent, namely 

®!y - a0- ~) (37) 

Therefore, the integration with respect to y to be performed to ob- 
tain the value of Ia is: 

I_; p( -- a ex - - a y  -t- ~ ( y  -- aa 2) log (I,(y - -  a(T 2 )  dy (38) 
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Here it is convenient to introduce a change of variable, z = y - a~ ~. 
The limits and the differential are left unaltered, and (38) becomes: 

f ~  ( a 2 ~ )  - ~ a exp - a z  - ~ ( z )  log q)(z) dz (39) 

This integral must be shown to be a function of a ~ only, by the same 
argument tha t  was advanced following Eq. (21). This we will now show. 
Let  ar  = w. Then 

f a x  dco = ~ (  az,a(r ) (40) 
e x p  ( 0,2 / 2a~2 

• (z,~) = ~-~ ~ ¢ / ~ a z  

Now let az = v. Then (40) becomes: 

- e  -~/2 e-~(v,7)  log ~(v,7) dr: (41) 

where 7 = az, i.e., a function of a~ alone. Combining these results, we 
have: 

H = ½ ( 1  - 7  2) l o g ( V ' ~ )  - e -*~/~ 

f 
'~ (42) 
i~ e-~O(v,7) log ~(v,7) dv 

The last term can now be expanded in powers of • as follows: Using 
the well-known relation: (~(-x)  = 1 " ~(x) and introducing x = 
- v ,  we can write the last term as follows: 

/ ,  0 o  

e-.t212 J_ d[1 - ¢(x)] log[1 - ¢(x)] dx (43) 
o~ 

Expanding the logarithm in powers of ¢, which converges for all 
values of x < ~ ,  and multiplying out, we get: 

e -~ /2  e ~ " ~ ( x )  4- j ( j -  1) 

We proceed to integrate by parts, putting e~dx = dv and u equal to 
the expression in the brackets. The integrated product vanishes at both 
limits. We have reduced the integral to:  

f ~  f 0 ~  e~ - e  -'~:/2 e~q(x,7) dx  4- e -~2/2 d(V (45) 
j=2 J ( J  - -  1 )  

where q(x,,),) is the Gaussian distribution with standard deviation 7. 
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The limits of the second integral are now (0,1), because we have 
changed our variable of integration to ~J. The first of these integrals 
has the value - 1 .  Let  us examine the second which has an interesting 
probabilistic interpretation. 

Consider the average value of e ~ with respect to the Gaussian distribu- 
tion, q(x,'y). This average value can be obtained as follows: Select from 
a large Gaussian-distributed population of x's a sequence of single 
representatives, note the value of e x each time, and obtain the average 
of this value. As the number of x's in the sequence increases to infinity, 
the average of e x will approach the true average. 

Now instead of selecting a single representative x at a time, select two 
at a time and note the value of e ~ where x is the larger of the two x's 
drawn. The average thus obtained can be shown to be 

f01 e x d(¢ (46) 

In general, if j x's are drawn each time and the value of e ~ for the 
largest of the j x's noted, the average thus obtained will be given by  

01 e ~ d(~ j) (47) 

Call these "j th  power" averages pj .  We have, then, the following ex- 
pression for H, combining the results so far obtained: 

H -- --1/~[1 + ~? + log(27r'~2)] + e-:'~/2j~=2 P-J (48) 
j ( i  ]) 

Another interpretation can be obtained by noting that  

e x d (~ ' )  = ~ eX(P'e -(~'/2~) dx 
j=~ j ( j  -- 1) j=l j ~ / ~ ,  

(49) 
~-, ~ '  exp[-- (x -- ~,)2/2~2] e~212 dx 

The quanti ty represented by  the integral 

f 
~ 4~ e x p [ -  (x - 5,)2/2~/2] 

is the j th  moment of the function ~(x)  with respect to a Gaussian distri- 
bution of x having the same standard deviation but  with its mean at ~, 
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instead of at zero. Call this quanti ty "vJ ." We have then as an alterna- 
tive representation of H, the expression 

H = --1/~[1 + ~/2 _{_ log(2~r~/2)] _~ ~ n=J (51) 
y=l 3 

As a check on our calculations, we note that  H(0)  = ~ . This is so 
because the quanti ty in the brackets increases without bound as y tends 
to zero, while the other term always remains positive. Further we must 
have H(  ~ ) = 0 and we must have the infinite sums converging for all 
finite •. These checks will not be derived here rigorously. Plotted graphs 
are in conformity with the results. 

The channel capacity is given as before: 

Ha 
C - (52) 

a ~ +  1 

Figure 5 shows the plot of (52) as a function of a for several values 
of ~. 

ESTIMATES OF ~ AND 

Actual data on the probability distribution and variance of the re- 
sponse time of a neuron are scarce. McCulloch and MacKay  in their 
calculation assume a ~ of 50 t~sec for a synaptic junction. Some careful 
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FIo .  5. The  channe l  capac i ty  of a model  neu ron  ca lcula ted  b y  con t inuous  in- 
f o r m a t i o n  t h e o r y  for a Gauss i an  noise d i s t r i bu t ion  wi th  a s t a n d a r d  devia t ion  a. 
Refractory period taken to be 1 msec. 



3 5 0  RAPOPORT AND HORVATH 

measurements  carried out by  Dr. Paul Halick in our laboratory on sin- 
gle fibers from the sciatic t ract  of a frog showed a Gaussian distribution 
of latencies with H varying from 3.6 to 4.6 t~sec. I t  appears, therefore, 
tha t  the top curve of Fig. 5 is t h e  best representat ion of the channel 
capacity of a single fiber employing an op t imum pulse interval code. 

RECEIVED: August 23, 1960. 
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