ENGINEERING RESEARCH INSTITUTE UNIVERSITY OF MICHIGAN ANN ARBOR FINAL REPORT TORSIONAL RIGIDITY TESTS OF SEVENTEEN SUPERSONIC AIRFOIL SECTIONS By HAROLD F. ALLEN Project M927-1 WRIGHT AIR DEVELOPMENT CENTER, U. S. AIR FORCE CONTRACT NO. AF 5533(038)-17737 April, 19553

TABLE OF CONTENTS Page LIST OF PIATES iii LIST OF FIGURES iv I SIUMARY 1 Ii METHOD OF TESTING 1 III TEST RESULTS 7 IV ANALYSIS OF TEST RESULTS 10 REFERENCES 30 APPENDIX OF CONFIGURATIONS 52 ii

LIST OF PLATES Plate Page I Typical Model 3 II Test Setup III Torque Arm 4 IV Extension Frame 4 V Model with Extension Frames 5 VI 00001-inch Dial Gage with Platform 5 VII Vernier Height Gate with Point 8 VIII Vernier Height Gage with Platform 8 iii

LIST OF FIGURES Figure Page Extension Frame 6 2 Torsional Deflection Measurements 9 3 Angle of Twist -as a Function of Distance from Root Model 927-1A 11 4 Angle of Twist as a Function of Distance from Root Model 927-1B 12 5 Angi of Twistas a Function of Distance from Root Model 927-2A 13 6 A e of Twist as a Function of Distance from Root Model 927-2B 14 7 Angle of Twist as a Functin of Distance from Root Model 927-3A 15 8 Angle of Twist as a Function of Distance from Rpot Model 927-35B 16 9 Angle of Twist as a Function of Distance from Root Model 927-4A 17 10 Angle of Twist as a Function of Distance from Root Model 927-4B 18 11 Angle of Twist as a Function of Distance from Root Model 927-5A 19 12 Angle of Twist as. Function of Distance from Root Model 927-5B 20 13 Angle of Twist as a Function of Distance from Root Model 927-6A 21 14 Angle of Twist as a Function of Distance from Root MCO 927-.6B 22 15 Angle of Twist as a Function of Distance from Root Model 927-7A 23 16 Angle of Twist as a Function of Distance from Rpot Model 927-7B 24 17 Angle of Twist as a Function of Distance from Root -Mol'927-7C 25 18 Angle of Twist as a Function of Distance from Root Model 9278A 26 19 Angle of Twist as a Function of Distance from Root Model 927~8B. 27 20 Stress-Strain Curve for 24ST Aluminum Alloy 29 iv

ENGINEERING RESEARCH INSTITUTE * UNIVERSITY OF MICHIGAN TORSIONAL RIGIDITY TESTS OF SEVENTEEN SUPERSONIC AIRFOIL SECTIONS I SUMMARY In connection with an investigation of airfoil sections for possible use in propellers whose blades may operate at supersonic speeds, the torsional characteristics of eight basic sections at various thickness ratios were determined experimentally. Models with a 6-inch chord and a 24-inch span, machined from 24ST aluminum alloy, were clamped at one end and subjected to a pure torque at the other end.Angular deflection measurements were taken over the center 12 inches of the span, from which the torsional rigidity and torsional axis location were computed. It was assumed that the unit twist could be represented by the equation L = K and values of K were determined and tabulated for all sections tested, Thevalues of K as tabulated correspond to unit twist in degrees per inch, and should be multiplied by -t/180 to yield the unit twist in radians per inch. II METHOD OF TESTING Eight different basic sections were tested, seven at thickness ratios of 5 and 6 per cent, and one at thickness ratios of 3, 6, and 8 per cent, for a total of seventeenmodels It was decided to make the models of 24ST aluminum alloy for ease in manufacturing, and so that fairly large deflections would be produced by a given loads The models were machined from rolled plat F. and a stress-strain curve was plotted from a tension test on a specimen machined from the same stock. In order to reduce the percentage errors of measurement, the chord length should be as large as practicable. A chord length of 6 inches was selected, and the span was made 24 inches, so that the center 12 inches of the model would be free of end effects., Larger models would have required special machinery for manufacturing..

ENGINEERING RESEARCH INSTITUTE * UNIVERSITY OF MICHIGAN In order to keep the cost of the models within available funds, it was necessary to specify tolerances of +.010 inch on airfoil ordinates. This amounts to approximately 5 per cent of the thickness of the 3 per cent sections, but actual tolerances on the models as manufactured are less than this figure, except for the models with concave lower surfaces, which were most difficult to machine. Some of the thinner models exhibit some longitudinal warpage, which is a maximum of approximately 0.5 per cent of the span, This results in a slight inclination of the free end of the mounted model, producing a chordwise bending moment amounting to about 0.5 per cent of the applied torsional moment. The depth of the beam resisting this bending moment is the 6-inch chord, so the effect is negligible. Model 8 had the greatest amount of warpage in both thickness ratios, so equivalent models were constructed of steel, However, these gave more erratic test results than the aluminum models, so only the tests on the aluminum models are reported herein. Plate I is a photograph of a typical model, and drawings of all models are included as an Appendix, The three-digit prefix on the model numbers is a locally assigned project number, and has no other significance. The test setup is shown in Plate II. The model is clamped at the root in a cantilever jig which can be adapted to any contour, and which permits the model to be levelled in both chordwise and spanwise directions. The torque is applied at the tip by means of a torque arm shown in Plate IV. The clamping arrangement is similar to that at the root, A load is applied to each end of the arm by cables which pass around circular arcs on the ends of the torque arm, so that the cables remain vertical and are always a constant distance apart. The torque arm and half the weight of the model are carefully counterbalanced, so that the model is supported at the root and the titbut is not constrained to rotate about a particular axis. The axis of rotation will therefore be the torsional axis of the section under test. The cable providing the upward load and the counterbalance cable pass over ballbearing pulleys which were carefully selected for low friction. Standard laboratory weights were used to provide the torque. The deflection was determined by measuring the height of the leading and trailing edges above a carefully levelled surface plate by means of a vernier height gage, The first method tried involved the use of slotted extension frames, shown in Fig. 1 and Plate I. Balls 1/4 inch in diameter were held on rods extending forward and aft from each frame, the balls being 12 inches apart Frames were fastened to the model at seven stations 2 inches apart, as shown in Plate V. The height of the bottom of each ball above the surface plate was measured by mounting a dial gage on the vernier height gage. The dial gage was graduated in 0,0001-inch increments, and was actuated by a small platform, as shown in Plate VIo Normally this method of measuring is accurate to within 0*0001 inch, However, the force required to produce a measurable deflection of the thinner models is very small, and the slight pressure required on the platform of the dial gage was sufficient to cause 2

Plate I Typical Model Plate II Test Setup

*HiS Plate III Torque Arm Plate& IV Extension Frame

iiiiiiiii i _(.~ i iiiii ii: iii-:iiii:-si:iiiiiiii~~i ~iiii!1111iiii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~iiii!,,... —::.,ii-ii-i-iii_iiiiiiiiii i~iii ii:: _ -:-ii:~, i i-:ii ~-...,: ziiiiiiiii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~iiiiiii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i~~~~~~~~~~~~~~~iiiiiii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:iiiii:iiiii:-i:ii_-::i - i~:-:i i:::-: -: -Dlate V Model with Ext'ension Frames — i-i~~~~~~~~~~~~~~~-::iii —:::i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_: iii -,_,: -:::-.i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~li i~~~~~~~~~~~~~iiiii -::: ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ iiii~~i:(::: iii_:::::.i-$; iii-::i —: —i::: — iiiiii-'' i:-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~iiiiiii: $ — -_::~.::I-S___-:::::jii~i~i~iiii~i!i P late V I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-:-i_-:: — ~:_i~::-:-::::i::l:::i::-::_::_i:ii:~ O.0001-inch Dial Gage with Platform~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- ii —iii-i-ii —!~i~i-ii~i-~-iii::'ii;i~''si-ii~-~-i"li

EXTENSION FRAME MODEL 0% C' FIG.cI. EXTENSION FRAME FIG. I. EXTENSION FRAME

ENGINEERING RESEARCH INSTITUTE ~ UNIVERSITY OF MICHIGAN significant bending and torsional deflections, which introduced considerable error, especially in the location of the torsional axis. Furthermore, the errors were not consistent, possibly due to friction in the dial gage or slight inclinations of the platform, Consequently, this method was abandoned, and a sharp point was substituted for the dial gage on the vernier height gage, as shown in Plate VII. By this means the height of leading and trailing edges, without extension frames, can be consistently measured to within less than 0.005 inch, and for the 6-inch chord length this corresponds to a rotation of 0o048 degree, This introduces a small amount of scatter in the curves of angle of twist as a function of model span, and somewhat more scatter in the values of twist per inch as found from. angles of twist between adjacent stations, especially at the lower values of torque. Consequently, since the angular deflection per unit length is substantially constant in the center portion of the span, the unit twist is found from the slope of the angular deflection curves, rather than by averaging the individual values between stations, and one value of unit twist is tabulated for each model at each value of applied torque. After some of the models had been tested, it was found that a level platform mounted on the vernier height gage, as shown in Plate VIII# could be used with the extension frames, contact of the platform with the balls on the extension frames being indicated by means of a 1.5-volt flashlight bulb. This method reduced the amount of scatter in the test points, and was adopted for the remaining tests. III'TEST RESULTS The measurements taken during the course of the tests are shown schematically in Fig. 2, in which ho represents the initial vertical distance from the surface plate to the extension frame (or to the LE or TEr of the airfoil, if tested without extension frames) and h represents the vertical distance with torque applied to the model. From these measurements, knowing the model chord and the overall chord of the extension frames, it is possible to calculate the angle of twist and the location of the torsional axis. This was done at stations located 2 inches apart in the central 12 inches of each model. The station locations are shown in Plates I and V. The torsional-axis locations were checked in a number of cases by a conventional elastic axis determination, The elastic axis is defined as the point at which the application of a concentrated load produces bending without torsional deflection~ The chordwise locations of the elastic axis were approximately the same as those of the torsional axis in all cases.

:000i:~ii::::;::ffi~ii~i-!i!::0:::V;:;::i-il;-iC —'':;:::-::':::::::::::::::::::::: f: iiiiiilii-:-i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ii-iiiii~ ~ ~ ~ ~~~~~~i..... iiiiiii_:i~~~~~~~~~~~~~~~~~~:~ii~~~~~~~~~~~~:;:' ~ ~ ~ ~?ii! i:~~~i:~~ii~~i~a:'i~~~siilii~~~iiii'!Jl.%/:;000::~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~Ij::.:S::::::::;:i::d::: ft0:::: I fff: He t00S 000300 t0~~~~~~~~~~~~~~~~~~~~~~~~;?~:: j S f; f ff: f: 0 f f; iii-i: f:: Sci~i:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-:::: -i'ii-:rii::::':,'-~:: Plate VIII Vernier Height Gage with Pltormt -`::-::::::::-:-_:~ _ ~ ~~~~~~~~::.:: i:i i:-'l-...:~-.': ~i~~~~~~ii?!?!ii. ~ ~~~~~~~~~:s'i /:,:~i. ~,:::::1:;::-~:j:::- a~,lili~'~:-: L1''i!;:~{iiiiii:,~~~~~~~~~~~~~~~~~~~~ai -iisi ~.!-,i:niii'"~~-::~~~~~~~~~~~;r~~:~5~~~~~~~~~~~':'~~~~~~'~"':: ":.ii s:;:...ii~;::i~i-~::3il:..................~~~~~~~~~~~i;~ii —- ~i-i:-'-: —iiii:iii:i;::::i:i~;~iri::ii.' iri~si~ii:~,i-iiiii —::i;:?ii:;!? i ~: —-:..: -_:i: ~_:: —i::: ii i -;iii-iiiii:, "~.. ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.i::i:::::-i::: -_:::i' P:''~::'':::::::::: ~i-~-l at II~I-i; g": ~. Vern~~~~~~~~~~~~~~~~~~~~~~i:iiier Hei-isiii:ii~S~iiight Gag wi~iiii~-itPlatformiis

\ Y^^^ \ ^-^^S^Q Ah —E 1I \ ^ ^ ^________________________________________________- l _ _ AhLh. lh AhELE. SURFACE PLATE 7 FIG. 2. TORSIONAL DEFLECTION MEASUREMENTS

ENGINEERING RESEARCH INSTITUTE * UNIVERSITY OF MICHIGAN The resulting values of angular deflection and chordwise location of the torsional axis are tabulated for each model at various values of applied torque in Tables I to XXXVIII. Models 7-13 were tested at six values of applied torque, but all other models were tested at only two values, as angular deflection was directly proportional to applied torque. Angle of twist is plotted as a function of spanwise station location in Figs, 5 to 19. Values of angle of twist per unit length taken from these figures are tabulated in Table XXXIX, IV ANALYSIS OF TEST RESULTS Reference 1 gives the unit angle of twist of a rectangular bar in radians per inch, as G 4L_' (1) L A' G where Ip is the polar moment of inertia of the section, A is the cross-sectional area, T is the applied torque, and G is the shear modulus of the material. If the chord of the rectangle is c and the thickness t, A = 1/12 (ct3 + tc3) c2 + t2 c4t4 12c3t' Then ) 40 c- + \t2 T 2 _ t2_l (2) -L - (i 3 ) G 3 3 c G Reference 1 also gives the unit twist of an elliptical section with semi-axes a and b as T(a2 +T b2) L = Ga (3) But 2a = c and 2b = t, so c2 + t2 a2 + b-2 _ 4 =4 16 c2 + t2 64 10

I~-I I — - - MODEL-927- IA 0 TORQUE 157.8 IN.-LBS. 8 _ A TORQUE 105.2 IN-LBS. 7 6 bJ I5 0 2 ^"! 6 8 10 12 14 16 18 STATION IN INCHES FROM ROOT FIG. 3. 1

MODEL-927- IB 0 TORQUE. 698 IN.- LBS. 8 _ A TORQUE ~ 478 IN.-LBS __ 7 6 6 8 10 12 14 16 18 STATION I N INCHES F ROM ROOT z FIG. 4. 12

MODEL-927- 2A 0 TORQUE 157.8 IN.-LBS. g8 _A TORQUE 105.2 IN.-LBS.___ 7 6 (0 U) IIL z 0 2 4c 4 ---— 8 I0 12'- 14 16 -l STATION IN INCHES FROM ROOT FIG. 5. 13

MODEL-927- 2B 0 TORQUEs 698 IN.-LBS. 8 _A _TORQUE 478 IN.-LBS& __ 7 ----- 6 _ rJ (3 I(0 6 8 10 12 1416 18 STATION IN INCHES FROM ROOT FIG. 6.

MODEL-927-3A 0 TORQUE 157.8 IN.-LBS. 8 I_ A, TORQUE 10.2 IN.-LBS., 7 6 b, co w a 5!4: 4 I[ _______.j 3 6 8 10 12 14 16 18 STATION IN INCHES FROM ROOT FIG. 7 15

I -- MODEL-927-3B 0 TORQUE' 698 IN.-LBS. TORQUE 478 IN.-LBS.. tL 0 1____ 3 — a 0 z 49 0 6 8 10 12 14 16 18 STATION IN INCHES FROM ROOT FIG. 8. 16

MODEL-927-4A 0 TORQUE 157.8 IN.- LBS. 8 __-A TORQUEu 105.2 I-LBS. ___________ 7 6 0 z 0 U3 IL Q -j CD Z 4 2 6 8 10 12 14 16 18 STATION IN INCHES FROM ROOT. FIG. 9. 17.

MODEL-927-4B 0 TORQUE, 698 IN.-LBS. s8 ~A TORQUE 478 IN.-LBS. 7 L ----._ —hi Id J I 0 2 ---- Ir 6 8 10 12 14 16 18 STATION IN INCHES FROM ROOT FIG. 10. 18

MODEL- 927- 5A 0 TORQUE = 105.2 IN.-LBS. 8 -A TORQUE = 52.6 IN.-LBS. 7 6 CD 0 UJ 0 3 w -I z 2 6 8 10 12 14 16 18 STATION IN INCHES FROM ROOT FIG. II. 19

MODEL-927- 5B 0 TORQUE s 998 IN.-LBS. 8 rA TORQUE 717 IN.-LBS. 6 0 uJ ~fi 5 -.1,3 6 48 1-0 12 14 16 18 STATION IN INCHES FROM ROOT FIG. 12. 20

I I I MODEL-927-6A 0 TORQUE~ 157.8 IN.-LBS. g8 _A TORQUE~ 105.2 IN- LBS. t7 6 Il m m 0 ii, STATION IN INCHES FROM ROOT FIG. 13. 21

MODEL- 927-68 0 TORQUE 698 IN.-LBS.A TORQUEs 478 IN.-LBS. _____ I5 I,- I I ^I ~~2~~~~ ~22 6 8 10 12 14 I I8 STATION IN INCHES FROM ROOT FlG. 14. 22

MODEL- 927-7A 0 TORQUEs 157.8 IN.-LBS. 8 _ TORQUE 105.2 IN.-LBS. -7 6 w > lJ' OS.__ _ 6 8 10 12 14 16 18.STATION IN INCHES FROM ROOT FIG. 15. 23

MODEL-927-7B 0 TORQUE * 698 IN.-LBS. 8,A TORQUE 588 IN.-LBS. ___ O TORQUE a 459 IN.-LBS. 0 TORQUE 349 IN.-LBS. -0' TORQUE ~ 221 IN.-LBS. 7 - -0- TORQUE 110 IN.-LBS& laU~~~~~J~~a 2k

MODEL-927-7C 0 TORQUE 698 IN.-LBS. 8 A TORQUE 478 IN.-LBS. ___ CD 0 5 O U. L.i 2 0 ~~6 ~8 10 12 14 16 18 STATION IN INCHES FROM ROOT FIG. 17. 25

MODEL-927-8A- 24ST 0 TORQUE x 157.8 IN.-LBS. 8 --- A TORQUE a 105.7 IN.-LBS. 7 6 6 L - i -........... UJ Ou I- - 6 8 10 12 14 16 18 af2ts a a &A26 STATION IN INCHES FROM ROOT FIG. 18. 26

..... I I I I.-. 1 MODEL-927-8B-24ST 0 TORQUE - 698 IN.- LBS. 8 _ A TORQUE: 478 IN.-LBS. l 7 6 C,) LJ 1, w 3 Z -j 0 6 8 10 12 14 16 18 STATION N INCHES FROM ROOT FIG. 19. 2.7

ENGINEERING RESEARCH INSTITUTE * UNIVERSITY OF MICHIGAN and ~ _ 16 (c2 + t,2 T.0 + t2 T (4) I ( 5.09 (^ ~ (4) L G c5 G Equations (2) and (4) differ only in the values of the coefficient. The airfoil sections tested approximate highly eccentric ellipses, or thin rectangles, and it is therefore assumed that the angle of twist of such sections can be represented by the same formula, with appropriate values of the constant coefficient which can be found by experiment. If t is small in comparison with c, we may rewrite Equations (2) and (4) as = _ p ) (5) L K c G which is the relationship given in Reference 2 for thin rectangular sections. The constant K may be found experimentally for any cross section by the relation K = ct53G 4 A(6) The values of G/LT tabulated in Table XXXIX are found from the twist in degrees, so the values of K found by substitution of these values in Equation (6) can be used with Equation (5) to find unit twist in degrees per inch. Values of K are calculated for all models in Table XL. The value of G used was found from a stress-strain curve obtained from a specimen machined from the plate from which the airfoil models were manufactured. The stress-strain curve is shown on Figo 20, from which E = 10.75 x 106 AssumingL &= 0.33, G = = x 106 = 4.03 x 106 2(1 +",>) 2,66 and this is the value used in Table XL. 28

30 STRESS-STRAIN CURVE 24ST ALUMINUM ALLOY.e 25 z k 0 _______2 IL Co 0 z i1o <0 I Id 7 Ea 10.75 x l06 0 "____________________________________ 0o0.001 0.002 0.003 STRAIN - INCHES PER INCH. FIG. 20. 29

ENGINEERING RESEARCH INSTITUTE ~ UNIVERSITY OF MICHIGAN REFERENCES 1. Niles, Alfred S., and Newell, Joseph S., Airplane Structures, John Wiley and Sons, Inc., New York, 1938. 2. Peery, David J., Aircraft Structures, MeGraw-Hill Book Co. Inc., New York, 1950. 350

TABLE I Model-927-lA With Extension Frames Material-24ST E = 10.85 x 106 Torque = 157.8 in.-lbs Station ho, in. hn. Ah, in, d, in. x, in. 6 L.E. 3.358 3.205.153.315 1.58 5.57 3.00 T.E. 3.585 3.747.162 8 L.E. 3.369 3.147.222.454 2.27 5.61 3.04 T.E. 3.604 3.836.232 10 L.E. 3.258 2.972.286.586 2.93 5.59 3.02 T.E. 3.698 3.998.300 12 L.E. 3.180 2.826.354.725 3.63 5.59 3,02 T.E. 3.788 4.159 3.71 14 L.E. 3.231 2.814.418.858 4.29 5.58 3.01 T.E. 3.807 4.247.440 16 L.E. 3.180 2.697.483.991 4.96 5.58 3,01 T.E. 3.844 4.352.508 18 L.E. 3.116 2.594.522 1.103 5.52 5.43 2.86 T.E. 3.873 4.454.581 Average Value of G/L = 0.336 degree per inch Average Value of x/c = 49.7% from L.E. TABLE II Model-927-lA With Extension Frames Material-24ST E = 10.85 x 106 Torque = 105.2 in.-lbs Station ho, in. h in. Ah, in. h, in 09, deg x' in. x, in 6 L.E. 3.358 3.252.106 217 1.09 5.58 3.01 T.E. 3.585 3.696.111 8 L.E. 3.369 35.216.153.311 1.56 5.63 3.06 T.E. 3.604 3.762.158 10 L.E. 3.258 3.059.199.405 2.03 5.63 3.06 T.E. 3.698 3.904.206 12 L.E. 3.180 2.936,244.499 2.49 5.60 3.03 T.E. 3.788 4.043.255 14 L.E. 3.231 2.942.289.582 2.91 5.68 3.11 T.E. 3.807 4.110.293 16 L.E. 3.180 2.849.331.683 3.42 5.56 2.99 T.E. 3.844 4.196 5352 18 L.E. 3.116 2.793.373.775 3.87 5.53 2.96 T.E. 3-.873 4.273.400 Average Value of 0/L = 0.233 degree per inch Average Value of x/c = 50.5% from L.E. 31

TABLE III Model-927-lB Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 698 in.-lbs Station ho, in. h, in. Ah, in. Jh, in. G, deg x, in. 6 L.E. 3.652 3.605.047.097 0.93 2.91 T.E. 35.704 3.754.050 8 L.E. 5.636 3.563.073.148 1.41 2.96 T.E. 3.701 3.778.075 10 L.E. 35.673 3.528.095.191 1.83 2.98 T.E. 3.729 3.825.096 12 L.E. 3.623 3.485.124.252 2.41 2.95 T.E. 3.723 3.851.128 14 L.E. 3.592 35.443.149.5300 2.87 2.98 T.E. 3.735 3.886.151 16 L.E. 3.579 35.401.178.5356 3.40 35.00 T.E. 3.738 3.916.178 18 L.E. 3.552 3.3557.195.595 3.78 2.96 T.E, 3.738 3.938.200 Average Value of G/L = 0.244 degree per inch Average Value of x/c = 49.4% from L.E. TABLE IV Model-927-1B Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 478 in. -lbs Station ho, in. h, in. Ah, in, Jh, in. in. deg x, in. 6 L.E. 3.652 3.621.051.063 0.60 2.95 T.E. 3.704 3.736.032 8 L.E. 3.636 3.584.052.100 0.96 35.12 T.E. 3.701 5.749.p48 10 L.E. 3.673 3.557.066.127 1.21 5.11 T.E. 3.729 35790.061 12 L.E. 35.623 3.527.082.168 1.61 2.93 T.E. 3.723 3.809.086 14 L.E. 3.592 35.492.100.203 1.94 2.95 T.E. 3.735 3.838.103 16 L.E. 3.579 3.456.125.242 2.531 3.05 T.E. 3.738 3.857.119 18 L.E. 3.552 3.420.132.270 2.58 2.93 T.E. 35.738 5.876.138 Average Value of G/L = 0.170 degree per in. Average Value of x/c = 50.1% from L.E. 32

TABLE V Model-927-2A Without Extension Frames Material-24ST E = 1085 x 106 Torque = 105.2 in.-lbs Station ho, in., h, n h in. h, in., deg x, in 6 LE. 3.646 3.616.030.055 0553 3.27 T.E. 3.699 3.724.025 8 L4E. 3.672 3.630.042.084 0.80 3,00 T.E. 3*718 3.760.042 10 L.E. 3.692 3.633.059.116 1.11 3.05 T.E. 3.753 3.810.057 12 L.E. 35735 3.665.070.142 1.36 2.95 T.E. 3.796 3.868.072 14 L.E. 3.773 3.683.090.178 1.70 3.03 T.E. 3.854 3.942.088 16 L.E. 3.810 3-708.102.208 1.99 2.94 T.E. 3.913 4.019.106 18 L.E. 3.868 3*750.118.236 2.26 3.00 T.E. 3.970 4.088.118 Average Value of 0/L = 0.145 degree per inch Average Value of x/c = 50.4% from L.E. TABLE VI Model-927-2A Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 157.8 in.-lbs Station ho, in. h, in. Ah, in. <h, in. 9, deg x in 6 L.E. 3.646 3.602.044.084 0080 3,14 T.E. 3.699 3.738.040 8 L.E. 3.672 3.602.070.137 1*31 3.07 T.E. 3.718 3.785 o067 10 L.E. 3.692 3.599.093.182 1.74 3.o6 T.E. 3.753 3.841.089 12 L.E. 3.735 3.620.115.226 2.16 3.05 T.E. 3.796 3.907.111 14 LE. 3.773 3.632.141.275 2.63 3.07 T.E. 3854 3.988.134 16 L.E. 3.810 3.645.155.314 3.00 2.96 T.E. 3.913 4.072.159 18 L.E. 3-868 3.678.190.376 3.59 3.05 T.E. 3.970 4156.186 Average Value of @/L = 0,226 degree per inch Average Value of x/c = 50,*8 from L.E. 33

TABLE VII Model-927-2B Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 698 in.-lb. Station ho, in. h, in, Ah, in. d.h, in..G, deg x, in. 6 L.E. 3.698 3.672.026.050 0.48 3.12 T.E. 3.678 3.702.024 8 L.E. 3.704 3.666.038.075 0.72 3.04 T.E. 3.699 3.736.037 10 L.E. 3.728 3.681,047.093 0.89 3.03 T.E 3.709 3.755.046 12 L.E. 3.699 3.637.062.120 1.15 3.10 T.E. 3.688 3.746.058 14 L.E. 3.716 3.643.073.143 1.37 3.06 T.E. 3.688 3.758.070 16 L.E. 3.665 3.584.081.163 1.56 2.98 T.E. 3.687 3.769.082 18 L.E. 3.674 3.581.093.189 1.81 2.95 T.E. 3.712 3.808.096 Average Value of Q/L = 0.108 degree per inch Average Value of x/c = 50.7% from L.E. TABLE VIII Model-927-2B Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 478 in.-lbs Station ho, in. h, in. Ah, in. 2Lh, in. 0, deg x, in. 6 L.E. 3.698 3.681.017.034 0.33 3.00 T.E. 3.678 3.695.017 8 L.E. 3.704 3.678.026.050 0.48 3.12 T.E. 3.699 3.723.024 10 L.E. 3.728 3.694.034.o66 0.63 3.09 T.E. 3.709 3.741.032 12 L.E. 3.699 3.659.040.080 0.76 3.00 T.E. 3.668 3.728.040 14 L.E. 3.716 3.688.048.098 0.94 2.94 T.E. 3.688 3.738.050 16 L.E. 3.665 3.608.057.116 1.11 2.95 T.E. 3.687 3.746.059 18 L.E. 3.674 3.608.066.131 1.25 3.02 T.E. 3.712 35.777.065 Average Value of 0/L = 0.076 degree per inch Average Value of x/c = 50.35 from L.E. 34

TABLE IX Model-927-3A Without Extension Frames Material-24ST E = 10.85 x 106 Torque 105.2 in. -lbs Station ho, in. Ia,., h in. Ah, in. in. 0 deg x, in. 6 L.E. 35622 3.597.025.050 0.48 3.00 T.E. 3.666 3.691.025 8 L.E. 3.605 3.568.037.076 0.73 2.92 T.E. 3,668 35707.039 10 L.E. 35584 3.534.050.099 0.95 3.03 T.E. 3669 3.718.049 12 L.E. 3.560 3.497.063 127 1.21 2*98 T.E. 35664 3.728.064 14 L.E. 5.532.455.077.151 1.44 3o06 TE, 3.659 3 733.074 16 L.E. 3.503 3.413 090.184 1.76 2,93'T.E. 3.642 3*736.094 18 L.E. 3.470 35.64 *106.214 2.05 2.97 T.E. 3.628 3.736.108 Average Value of G/L = 0.128 degree per inch Average Value of x/c = 49.,8% from L.E. TABLE X Model-927S3A Without Extension Frames Material-24ST E = 10,85 x 10~ Torque = 157.8 in.-lbs Station ho, in. h, in. Ah, in. fh, in. 9Q deg x, in. 6 LE. 3.622 35585.039.076 0.73 3.08 TI.E 35666 3.703.037 8 L.E. 3.605 3.546.059.119 1.14 2.97 -T.E. 3.668 3.728.060 10 L.E. 3*584 3-504.080 158 1.51 3.04 T.E. 3.669 3.747.078 12 L.E. 35560 3,458.102.201 1.92 3.04 T.E. 35664 3*763.099 14 L.E. 35532 3,412.120 *237 2.27 3.04 T.E, 3*659 3,776.117 16 L.E. 3.503 35363.140.281 2.69 2.99 T.E. 3.642 3.783.141 18 LE. 35.470 3.305.165.328 3.14 3502 T.E 35.628 3.791.163 Average Value of G/L = 0.200 degree per inch Average Value of x/c = 50,4% from Lt E, 35

TABLE XI Model-927-3B- Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 698 in.-lbs Station ho, in, hin Ah in. hh in. h, in.,, Jdeg x, in. 6 L E. 3567,4 3.648.026.054 0.52 2.89 T.E. 35674 3.702.028 8 L.E. 3.674 3.637.037.076 0.73 2.92 T.E. 3.687 3.726.039 10 LE. 3.679 3.626.053.103 0.98 3.08 T.E, 3. 701 35.751.050 12 L.E. 3.683 3.68.065.128 1.22 3.04 T.E. 3.713 3.776 o063 14 L.E. 3.689 3.612,077.152 1.45 3.03 T.E. 35729 3.804.075 16 L.E. 3.695 35605.090.180 1.72 5.00 T.E. 3.742 3.832.090 18 L.E. 5.705 3,601.104.204 1.95 3.06 T.E. 3.760 3.860.100 Average Value of'/L = 0.119 degree per inch Average Value of x/c = 50.1% from L.E. TABLE XII Model-927-3B Without Extension Frames Material-24ST E = 10.85 x 106 Torque =478 in.-lbs Station _.ho, in, h, in. Ahh, in. G, deg in. deg 6 L.E. 3.674 3*655.019.040 0.38 2.85' T.E. 3.674 3.695.021 8 L.E. 3.674 3*649.025.054 0.52 2.78 T.E. 3,687 3 716.029 10 L.E, 3,679 3.644.035.072.069 2.92 T.E, 3;701 3.738.037 12 L.E. 3.685 3.640.043.088 o084 2.94 TE. 3.713 3.758.045 14 L.E. 3.689 35636.053.103 0.98 3.09 TE., 3.729 3.779.050 16 L.E. 3.695 3.633.062.134 1.28 3.00 T.E. 35742 3.804 062 18 L.E. 3.705 3.632.073.144 1.38 3.04 T.E. 35760 3.831.071 Average Value of Q/L = 0.082 degree per inch Average Value of x/c = 50.9% from L.E. 36

TABLE XIII Model-927-4A Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 105.2 in.-lbs Station ho, in h, in. Ah, in. in. h, in deg x, in. 6 L.E. 3.625 3.597.028.056 0.54 3500 T.E. 3.676 3.704.028 8 L.E. 3.616 3.574.042.081 0.77 3.11 T.E. 3.688 3.727.039 10 L.E. 3.608 3.549.059.117 1.12 3502 T.E. 3.697 3.755.058 12 L.E. 3.599 3.526.073.148 1.41 2.96 T.E. 3.713 3.788.075 14 L.E. 3 595 3.505.090.182 1.74 2.97 T.E. 3.728 3.820.092 16 L.E. 3.595 35491.104.205 1.96 3.04 T.E. 3.746 3.847.101 18 L.E. 35593 3.474.119.235 2.25 3.04 T.E. 3.768 3.884.116 Average Value of G/L = 0.149 degree per inch Average Value of x/c = 50.3% from L.E. TABLE XIV Model-927-4A Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 157.8 in.-lbs. Station h0o in. h, in. Ah, in. ah, in. G, deg x, in. 6 LE. 35.625 3.579.046.092 0.88 3.00 T.E. 5.676 3.722.046 8 L.E. 3.616 3.549.067.134 1.28 3.00 T.E. 3.688 5.755.067 10 L.E. 3.608 3.516.092.186 1.78 2.97 T.E. 3.697 35791.094 12 L.E. 3.599 3*486.113.227 2.17 2.99 T.E. 3.713 3.827.114 14 L.E. 3.595 3.457.138.274 2.62 3.02 T.E. 3.728 3.864.136 16 L.E. 35595 3.432.163. 25 3.11 3.01 T.E. 3.746 3.908.162 18 L.E. 3.595 3.404.189 374 3.58 3.03 T.E. 3.768 3.953.185 Average Value of G/L = 0.224 degree per inch Average Value of -s/c = 50.1% from L,.E 37

TABLE XV Model-927-4B Without Extension Frames Material-24ST' E = 10.85 x 106 Torque = 478 in.-lbs Station ho, in. h, in. in. Ah in. ih n, dleg x, in. 6 L.E. 3.659 3.638.021.041 0.39 3.07 T.E. 3.680 3.700.020 8 L.E. 3.650 3.622.028.056 0.59 3.00 T.E. 3.680 3.708.028 10 L.E. 3.645 3.608.037.071.069 3.13 T.E. 3.684 3.718.034 12 L.E. 3.637 3.591.046.093.089 2.97 T.E. 3.688 3.735.047 14 L.E. 3.631 3.574.057.114 1.09 3.00 T.E. 3.691 3.748.057 16 L.E. 3.629 3.566.063.127 1.21 2.97 T.E. 3.700 3.764.064 18 L.E. 3.626 3.552.074.149 1.42 2.97 T.E. 3.708 3.783.075 Average Value of G/L = 0.088 degree per inch Average Value of x/c = 50.2% from L.E. TABLE XVI Model-927-4B Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 698 in.-lbs Station ho, in. h, in. Ah, in. fh, in. G, deg. x, in. 6 L.E. 3.659 3.628.031.059 0.56 5.15 T.E. 3.680 3.708.028 8 L.E. 3.650 3.611.039.080 0.76 2.93 T,E, 3.680 3.721.041 10 L.E. 3 645 3.588.057.110 1.05 3.11 T.E. 3.684 3.737.053 12 L.E. 3.637 3.568.069.136 1.30 3.04 T.E. 3.688 3.755.067 14 L.Eo 3.631 3.549.082.162 1.55 3.03 T.E. 3.691 3.771.080 16 L.E. 3.629 3.539.090.183 1.75 2.95 T.E. 3.700 3.793.093 18 L.E. 3.626 3.514.112.223 2.13 3.01 T.E. 3.708 3.819.111 Average Value of G/L = 0.128 degree per inch Average Value of x/c = 50.5% from L.E. 38

TABLE XVII Model-927-5A Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 52.6 in.-lbs Station ho, in. h, in. Ah, in. hh, in. 9_, deg x, in. 6 L.E. 3.796 3.811.015.027 0.26 3*33 T.E. 3.796 3.784.012 8 L.E. 3.823 3.844.021.041 0.59 3.07 T.E. 3.780 3.760.020 10 L.E. 3.845 3.877.032.060 0.57 3.20 T.E. 35.768 3.740.028 12 L.E. 35.875 35.911.036.071 0.68 3.04 T.E. 3.764 3.729.035 14 L.E. 3.901 3.944.043.086 0.82 3.00 T.E. 3.758 3.715.043 16 L.E. 3.929 3.979.050.097 0.93 3.10 T.E. 3.752 3.705.047 18 L.E. 3.958 4.016.058.113 1.o8 3.07 T.E. 3.751 3.696.055 Average Value of Q/L = 0.069 degree per inch Average Value of x/c = 51.9% from L.E. Elastic Axis Location = 52% from L.E. TABLE XVIII Model-927-g5A Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 105.2 in. -lbs Station, n ho, in, h inh in Ah in. in., deg x, in. 6 L.E 35.796 3.825.029.056 0.55 35.11 TE. 35.o 796 5.769.027 8 L.E. 53823 3.865.040.079 0.75 3.04 T.E. 3.780 3.741.039 10 L.E. 3.845 35.901.056.108 1.03 35.11 T.E. 3.768 35716.052 12 L.E, 3.875 5.942.067.134 1.28 35.00 T.E. 5.764 5. 697.067 14 L.E. 3.901 3.983.082.164 1.57 3.00 T.E. 3.758 3.676.082 16 L.E. 3.929 4.023.094.187 1.78 3.02 T.E. 3.752 3.659.093 18 L.E. 3.958 4. 066.108.213 2.05 3.04 T.E. 3.751 3.646.105 Average Value of 4/L = 0.132 degree per inch Average Value of x/c = 50.5% from L.E. Elastic Axis Location = 52% from L.E. 39

TABLE XIX Model-927-5B With Extension Frames Material-24ST E = 10.85 x 106 Torque = 717 in. -lbs Station ho, in. h, in. Ah, in. fh, in. G deg x', in. x, in. 6 L.E. 3.407 3.360.047.096 0.48 5.61 3.04 T.E. 3.500 3.549,049 8 L.E. 3.390 3.320.070.144 0.72 5.55 2.98 T.E. 3.493 3.567.074 10 L.E. 3.392 3.302.090.183 0.92 5.63 3.o6 T.E. 3.545 3.638.093 12 L.E. 3.396 3.286.110.226 1.13 5.57 3.00 T.E. 3.541 3.657.116 14 L.E. 3.349 3.216.133.269 1.35 5.66 3.09 T.E. 3.564 3.700.136 16 L.E. 3.360 3.205.155.314 1.57 5.65 3508 TE. 3.515 3.674.159 18 L.E. 3.308 3.130.178.358 1.79 5.68 3.11 T.E. 3.557 3.737.180 Average Value of G/L = 0.105 degree per inch Average Value of x/c = 50.8% from L.E. Elastic Axis Location 52% from L.E. TABLE XX Model-927-5B With Extension Frames Material-24ST E = 10,85 x 106 Torque = 998 in.-lbs Station ho, in. h, in. Ah, in. hb, in. G, deg x', in. x, in. 6 L.E. 3.407 3.343.64.129 o.65 5.68 3.11 T.E. 3.500 3.565.065 8 L.E. 3.390 3.298.092.186 0.93 5.67 3.10 T.E. 3.493 3.587.094 10 L.E. 3.392 3.271.121.245 1.23 5.65.08 T.E. 3.545 3.669.124 12 L.E. 3.396 3.248.148.300 1.50 5.65 3.08 T.E. 3.541 3.693.152 14 L.E. 3.349 3.172.177.361 1.81 5.62 3.05 T.E. 3.564 3.748.184 16 L.E. 3.360 3.155.205,418 2.09 5.62 3.05 T.E. 3.515 3.728.213 18 L.E. 3.308 3.073.235.480 2.40 5.61 3.04 T.E 3.557 3.802.245 Average Value of G/L = 0.144 degree per inch Average Value of x/c = 51.53 from L.E. Elastic Axis Location = 52% from L.E. 40

TABLE XXI Model-927-6A With Extension Frames Material-24ST E = 10.85 x 106 Torque = 157.8 in.-lbs Station ho, in. h, in. Ah, in. Jh, in. G, deg x' in. x, in 6 L.E. 3.427 3.504.077.169 0.85 5.22 2.65 T.E. 3.380 3.288.092 8 L.E. 3.500 3.616.116.258 1.29 5.15 2.58 ToE. 3.311 3.169.142 10 L.E. 3.457 3.612.155.342 1.71 5.18 2.61 T.E. 3.343 3.156.187 12 L.E. 3.442 3.640.198.434 2.17 5.22 2.65 T.E. 3.344 3.108.236 14 L.E. 3.534 3.768.234.520 2.60 5.15 2.58 T.E. 3.283 2.997.286 16 L.E. 3.524 30798.274.615 3.08 5.10 2.53 T.E. 3.229 2.888.341 18 L.E. 3.502 3.815.313.704 3.52 5.09 2.52 T.E. 3.192 2.801.391 Average Value of G/L = 0.222 degree per inch Average Value of x/c = 43.2% from L.E. Elastic Axis Location = 44% from L.E. TABLE XXII Model-927-6A With Extension Frames Material-24ST E = 10.85 x 10O Torque 105.2 in.-lbs Station ho, in h, in Ah, in dh, in., deg x' in. x, in. 6 L.E. 3.427 3.480.053.115 0.58 5.28 2.71 T.E. 3.380 3.318.062 8 LE. 3.500 3.579.079.175 0.88 5.18 2.61 T.E. 3.311 3.215.096 10 L.E. 3.457 3.562.105.232 1,16 5.18 2.61 T.E. 3.343 3.216.127 12 L.E. 3.442 3.578.136.296 1.48 5.25 2.68 T.E. 3.344 3.184.160 14 L.E. 3.534 3.693.159.352 1.76 5.18 2.61 T.E. 3.283 3.090.193 16 L.E. 3.524 3.711.187.418 2.09 5.12 2.55 T.E. 3.229 2.998.231 18 L.E. 3.502 3.716.214.476 2.38 5.15 2.58 T.E. 3.192 2.930.262 Average Value of G/L = 0.149 degree per inch Average Value of x/c = 43.7% from L.E. Elastic Axis Location = 44% from L.E. 41

TABLE XXIII Model-927-6B Without Extension Frames Material-24ST E = 10,85 x 106 Torque = 478 in,-lbs Station ho, in. h_,, in. Ahin. n. h, in, 6, deg _ x, in. 6 LE. 53724 3.705.021.043 0o41 2.93 T.E. 3.787 3.809.022 8 L.E. 5.722 3.688.054.070 0.67 2.91 T.E. 3.801 3.837.036 10 L.E. 3.714 3.667.047,097 0.93 2.91 T.E. 3.795 3.845.050 12 L.E, 3.707 3.647 o060.122 1.17 2.95 T.E 3.795 3.857,062 14 L.E. 3.695 3.625.070.144 1.58 2.91 T.E. 3.802 3,876.074 16 L.E. 3.687 3.604.083.170 1.62 2.93 T.E. 3.803 3.890.087 18 L.E. 3.677 3.580.087.197 1.88 2.55 T.E. 3.815 3.915.100 Average Value 9/L = 0.125 degree per inch Average Value of x/c = 47.8% from L.E. Elastic Axis Location = 45% from L.E. TABLE XXIV Model-927-6B Without Extension Frames Material-24ST E = 10.85 x 106 Torque 698 ino-lbs Station hQ in h, in., h, inn 9. deg x in. 6 L.E. 3.724 3.693.031.065 0.62 2.86 T.E. 3.787 3.821.034 8 L.E. 3.722 3.672.050.103 0 98 2,91 T.E. 3.801 3.854.053 10 L.E. 3.714 3.648.066.138 1.32 2.86 T.E. 3.795 3.876.072 12 L.E. 3.707 3.623.084.177 1.69 2.85 T.E. 3.795 3.888.093 14 L.E. 3.695 35595.100.215 2.06 2.79 T.E. 3.802 3.917.115 16 L.E. 3.687 3.567.120.252 2.41 2.85 T.E. 3.803 3.935.132 18 L.E. 3.677 3.540.137.288 2.75 2.85 T.E. 3.815 3.966.151 Average Value of G/L = 0.180 degree per inch Average Value of x/c = 47.5% from L.E. Elastic Axis Location = 45% from L.E,. 42

TABLE XXV Model-927-7A Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 105.2 in.-lbs Station ho, in. h in, h in. Ahh, in. 0;, deg x, in. 6 L.E. 3.618 3.573.045.089 0.85 3.03 T.E. 3.658 3.702.044 8 L.E. 3.618 3.548.070.139 1533 3.02 TE, 35683 3.752.069 10 L.E. 3.625 3.532.093.187 1.79 2.98 T.E. 3.716 3.810.094 12 L.E. 3.645 3.528.117.235 2.25 2.99 T.E. 3.764 3.882.118 14 L.E. 3.668 3.530.138.281 2.69 2.95 T.E. 3.816 3.959.143 16 L.E. 3.699 3.536.163.328 3.14 2.98 T.E. 3.884 4.049.165 18 L.E. 3.732 3.546.186.373 3.56 2.99 T.E. 3.948 4.135.187 Average Value of G/L = 0.226 degree per inch Average Value of x/c = 49.9% from L.E. Elastic Axis Location = 51% from L.E. TABLE XXVI Model-927-7A Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 157.8 in.-lbs Station ho, in. _ h, in. Ah, in. fh, in., deg x, in. 6 L.E. 3.618 3.544.074.142 1.36 3.12 T.E. 5.658 3.726.068 8 L.E. 3.618 3.508.107.214 2.05 3500 T.E. 3.683 3.790.107 10 L.E. 3.625 3.480.145.289 2.76 3.01 T.E. 3.716 35860.144 12 L.E. 3.645 3.462.183.361 3.45 3 04 T.Eo 3.764 3.942.178 14 L.E. 3,668 3.450.218.433 4.14 3502 TE. 35816 4.031.215 16 L.E. 3.699 3.439.260.5o6 4.84 3.08 T.E. 3,884 4.130.246 18 L.E. 3.732 35436.296.579 5.53 3.07 T,E. 3.948 4.231.283 Average Value of G/L = 03.47 degree per inch Average Value of x/c = 50.5^ from L.E. Elastic Axis Location = 51% from L.E. 453

TABLE XXVII Model-927-7B Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 110 in.-lbs Station ho0 in. h, in. Ah, in. ih, in. G, deg x in. 6 L.E. 3.723 3.712.011.019 o.18 3.47 T.E. 3.728 3.736.008 8 L.E. 3.712 3.698.014.027 0.26 3.11 T.E. 3'.71 3.744.013 10 L.E. 3.703 3.682.021.041 0.39 3007 T.E. 3.732 3.752.020 12 L.E. 3.680 3.655.025.048 0.46 3.13 T.E. 3.746 3.769.023 14 L.E. 3.672 3.644.028.059 0 56 2.95 T.E. 3.762 3.793 o031 16 L.E. 3.654 3.623.031.064 0.61 2.91 T.E. 3.777 3.810.033 18 L.E. 3.672 3.635.037.076 0.73 2.92 T.E. 3.801 3.840.039 Average Value of Q/L = 0.047 degree per inch Average Value of x/c = 51.53 from L.E. Elastic Axis Location = 51% from L.E. TABLE XXVIII Model-927-7B Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 221 in.-lbs Station ho, in. h, in Ah, in. in h in. G, deg x, in. 6 L.E. 3.723 3.702.021.038 0.36 3.51 T.E. 3.728 3.745.017 8 L.E. 3.712 3.684.028.057 0.54 2.95 T.E, 3.731 3.760.029 10 L.E. 3.703 3.662.041.078 0.75 3516 T.E. 3.732 35769.037 12 L.E..3680 3.633.047.100 0o96 2.82 T.E. 3.746 3.799.053 14 L.E. 3.672 3.614.058.119 1,14 2.93 T.E. 3.762 3.823.061 16 L.E. 3.654 3.589.065.130 1.24 3.00 T.E. 3.777 3.842.065 18 L.E. 3.672 3.593.079.155 1.48 3.06 T.E. 3.801 3.877.076 Average Value of Q/L = 0.095 degree per inch Average Value of x/c = 50.6% from L.E. Elastic Axis Location = 51% from L.E. 44

TABLE XXIX Model-927-TB Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 349 in.-lbs Station ho, in. h, in. Ah, in. h, in.,i deg x, in. 6 L.E. 3.723 3.692.051.059 0.55 3515 T.E. 5.728 35756.028 8 L.E. 53712 3.667.045.092 o.88 2.93 T.E. 3.751 3.778.047 10 L.E. 3.703 3.640.063.124 1.19 3.05 T.E. 3.732 3.793.061 12 L.E. 3.680 3.601.079.154 1.47 3.07 T.E. 3.746 3.821.075 14 L.E. 3.672 3.581.091.181 1.73 3.01 T.E. 3.762 3.852.090 16 L.E. 3.654 3.547.107.211 2.02 3.04 T.E. 3.777 3.881.104 18 L.E. 3.672 3.547.125.244 2.33 3.07 T.E. 3.801 5.920.119 Average Value of G/L = 0.147 degree per inch Average Value of x/c = 50.8% from L.E. Elastic Axis Location = 51% from L.E. TABLE XXX Model 927-7B Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 459 in.-lbs Station ho, in. h, in. Ah, in. &[h, in. 9, deg x, in. 6 L.E. 35.723 3.683.040.078 0.75 3.08 T.E. 3.728 5.766,038 8 L.E. 3.712 3.653.059.120 1.15 2.95 T.E. 3 731 3.792.061 10 L.E. 3.703 3.626.077.158 1.51 2.92 T.E. 3.752 3.813.081 12 L.E. 3,680 3.582.098.200 1.91 2.94 T.E. 3.746 3.848.102 14 L.E. 3.672 3.550.122.240 2.29 3.05 T.E 35.762 3.880.118 16 L.E. 3.654 3.518.136.278 2.66 2.94 T.E. 3.777 35919.142 18 L.E. 5.672 3.517.155.514 3.00 2.96 T.E. 3.801 3.960.159 Average Value of Q/L = 0.190 degree per inch Average Value of x/c = 49.7% from L.E. Elastic Axis Location = 51% from L.E. 45

TABLE XXXI Model-927-7B Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 588 in.-lbs Station ho, in. h, in. Ah, in. ih, in., deg x, in. 6 L.E. 3.723 3.672.051.099 0.97 3.09 T.E. 3.728 3.776.048 8 L.E. 3.712 3.637.075.155 1.48 2.90 T.E. 3.735 3 1 811 080 10 LE. 3.703 3.601.102.205 1.96 2.99 T.E. 3.732 3.835.103 12 L.E. 3.680 3.553.127.258 2.46 2.95 T.E. 3.746 3.877.131 14 L.E. 3.672 3.521.151.310 2.96 2.92 T.E. 3.762 3.921.159 16 L.E. 3 654 3.482.172.360 3.44 2.87 T.E. 3.777 3.965.188 18 L.E. 3.672 3.468.204.411 3.92 2.98 T.E. 3.801 4.008.207 Average Value of e/L' 0.263 degree per inch Average Value of x/c = 49.53 from L.E. Elastic Axis Location = 51% from L.E. TABLE XXXII Model-927-7B Without Extension Frames KMaterial-24ST E = 10.85 x 106 Torque = 698 in.-lbs Station_ h, in. h, in. Ah, in. r i h, in. 9, deg x, in. 6 L*E.. 3723 5.662.061.119 1 14 3.07 T.E. 3.728 3.786.058 8 L.E. 35712 3.624.088.181 1.73 2,92 TE. 5.731 3.824.093 10 L.E. 3.703 3.583.120.240 2.29 3.00 T.E. 3.732 35852.120 12 L E. 3.680 3.528.152.306 2.92 2.98 T.E. 3.746 35900.154 14 L.E. 5 672 34935..179.364 3.48 2.95 T.E. 3.762 3*947.185 16 L.E. 3.654 3.446.208.421 4.02 2.97 TE. 5.777 35.990.213 18 L.E, 5.672 35434.238.482 4.61 2.97 T.E. 3.801 4.045.244 Average Value of Q/L = 0.293 degree per inch Average Value of x/c = 49.7% from L.E, Elastic Axis Location = 51% from L.E. 46

TABLE XXXIII Model-927-7C Without Extension Frames Material^24ST E = 10.85 x 106 Torque = 698 in.-lbs Station ho, in. h, in. Ah, in h, in. G, deg x, in. 6 L.E.E 3.754 3.732.022.041 0.39 3.22 T.E. 3.669 3.688.019 8 L.E. 3.748 3.714.032.061 0.58 3.15 T.E. 3,676 3.705.029 10 L.E. 3.747 3.705.042.080 0.76 3.15 T.E. 3.677 3.715.038 12 L.E. 3.747 3.694.053.101 0.96 3.14 T.E. 3.697 3.745.o48 14 L.E. 3.761 3.698.063.121 1.16 3,12 T.E. 3.712 3.770.058 16 L.E. 3.763 3.691.072.138 1.32 3.13 T.E. 3.736 3.802.066 18 L.E. 3.787 3.706.081.160 1.53 3.03 T.E. 3.757 3.836.079 Average Value of G/L = 0.096 degree per inch Average Value of x/c = 52.0% from L.E. Elastic Axis Location = 52% from L.E. TABLE XXXIV Model-927-7C Without Extension Frames Material-24ST E = 10.85 x 106 Torque = 478 in.-lbs Station h_, in. h, in. Ah in. h, in. G, deg x, in. 6 L.E. 3.754 3.738.016.030 0.29 3.20 T.E. 3.669 3.683.014 8 L.E. 3.748 3.725.023.042 0.40 3.48 T.E. 5.676 3.695.019 10 L.E. 3.747 3.716.031.056 0,54 3.53 T.E. 3.677 3*703.026 12 L.E. 3.747 3.709.038.071 0.68 3.21 T.E. 3.697 3.750.033 14 L.E. 3.761 35716.045.085 0.81 3.18 T.E. 3.712 3.752.040 16 L.E. 3.763 35713.050.094 0.90 5.19 T.E. 3.736 3.780.044 18 L.E. 3.787 3.731.056.108 1.03 3511 T.E. 3.757 3.809.052 Average Value of @/L = 0.064 degree per inch Average Value of x/c = 54.5% from L.E. Elastic Axis Location = 52% from L.E. 47

TABLE XXXV Model-927-8A With Extension Frames Material-24ST E = 10.85 x 106 Torque = 157.8 in.-lbs Station ho, in. h, in in. h, h i n. G, in deg x' in. x, in. 6 L.E. 3.424 3.520.096.195 0.98 5.76 3.19 T.E. 3.412 3.313.099 8 L.E 3.455 3.595.140.289 1.45 5.55 2.98 TE. 3.407 3.258.149 10 L.E. 3.494 5.681.187.391 1.96 5.47 2.91 T.E. 3s408 3.204.204 12 L.E. 3.548 35778.230.488 2.44 5.39 2.83 T.E. 3.318 3.060.258 14 L.E. 3.536 3.811.275.588 2.94 5.36 2.80 T.E. 3.344 3.031.313 16 L.E. 3.509 3.824 3.15.685 3.43 5.27 2.71 T.E. 3.398 3.028.370 18 L.E. 3.589 3.949.360.787 3.94 5.23 2.67 T.E. 35341 2,914.427 Average Value of G/L = 0.247 degree per inch Average Value of x/c = 47.9% from L.E. Elastic Axis Location = 48% from L.E. TABLE XXXVI Model-927-8A With Extension Frames Material-24ST E = 10,85 x 106 Torque = 105.2 in.-lbs Station ho, in. h, in. A h, in in. deg x', in. x, in. 6 L.E. 3.424 3.489.065.131 0.66 5.68 3.11 T.E. 53412 346.066 8 L.E. 3.455 3.551.096.198 099 5.56 2.99 T.E. 3.407 3.305.102 10 L.E. 3.494 3.621.127.264 1.32 5.52 2.95 T.E. 3.408 3.271.137 12 L.E. 3.548 3.704.156 5330 1.65 5.42 2.85 T.E. 3.318 3.144.174 14 L.E. 3.536 3.723.187.397 1.99 5.39 2.82 T.E. 3.344 3.134.210 16 L.E. 3.509 3.727.218.468 2.34 5.33 2.76 T.E. 3.398 3.148.250 18 L.E. 3.589 3,832.243.530 2.65 5.26 2.69 T.E. 3.341 3.054.287 Average Value of 9/L = 0,165 degree per inch Average Value of x/c = 47.2% from L.E. Elastic Axis Location = 48% from L.E. 48

TABLE XXXIX SUMMARY OF TEST RESULTS e/L Elastic Model T (Degrees i/LT (/LT)Av x/ Axis (in.-lb) per inch)( ) (% C) per inch) C) 1A 157.8.336.00213 49.7 105.2.233.00220,00216 50.5 1B 698.244.000350 49.4 478.170.000355.000352 50.1 2A 157.8.226.00143 50.8 105.2.145.00137.00140 50.4 2B 698.108.000155 50.7 478.076.000159.000157 50.3 3A 157.8.200 00127 50.4 105.2.128.00121.00124 49.8 3B 698.119.000171 50.1 478.082.000171.000171 50.9;4A 157.8.224.00142 50.1 105.2.149.00141.00142 50.3 4B 698.128 000183 50.5 478.088.000184.ooo000184 50.2 5A 105.2.132.00125 o.8 52 52.6.069.00131.00128 51.9 52 5B 998.144.000144 51*.3 52 717.105.000146 000145 50.8 52 6A 157.8.222 00141 43.2 44 105.2.149.00141.00141 43.7 44 6B 698.180.000258 47.5 45 478.125.000261.000260 47.8 45 7A 157.8.347.00220 50.5 51 105.2.220.002135.00216 49.9 51 7B 110.047.000427 51.3 51 221,095.000429 50.6 51 349.147.000422 50.8 51 459.190 oo000415 497 51 588.263.000445 49.3 51 698.293.000422.000427 49.7 51 7C 698.096.000137 52*0 52 478.64.000134.000136 54.5 52 8A 157.8.247.00157 47.9 48 105.2.165.00156.00156 47.2 48 8B 698.211.000302 48.3 48 478.142.000297.000300 47.7 48 o50

TABLE XL Model t.ct3G (K/LT)AV K.IA 5% 141 x 103 2.16 x 10o- 305 1B 6 1129 0.352 397 2A3 141 1l40 197 B- 6 1129 0.157 177 35 3 141 1.24 175 3B 6 1129 0.171 193 4A 3 141 1.42 200 4B 6 1129 0.184 / 208 5Ar 3 141 1.28 180 5B 6 1129 0.145 164 6A 3 141 1.41 199 6B 6 1129 0.260 294 7A- 3 141 2.16 305 7B 6 1129 0.427 482 7C 8 2674 0.136 364 8A 3 141 1.56 220 8B 6 1129 0.300 339 c = 6 inches G = 4.03 x 106 K = ct3G (G/LT) 51

APPENDIX OF CONFIGURATIONS

..a..... I.co )..oo Z.oo { 2.0o o.?-o.^ 2.e. I-4,.oo~-'4|-E, I N; <6) I t'o-E. *PLAK.IIE.W\ APPLgE.S To ToTH -IA AD - IO S.C.TIoNS. SHovw N S\E., PANlT IDEIN'TIFICATtoN Nur -'I. oWN FIN iSH.D PAeT. INcl< BuLE. CoPRDWISt. DAG LINtS F'o TEST USE,,. $o. I i.. / ----- $. o03o.BAO. o, * / tT1 -I - / BoTH -IA AND -I tB SECT:tOS'>Mari. A9OOT HOF', A VPe e-T,. <O6 30.o6 - - - - -/. - EADI uS. 2ADI U)S, STRUCTUOAL A\ oRFL 927 — CONfIiUAR^TiON I. $Fo/c -'

12. -o 0) I0 Rair. I____ __________ __.I_____ i_ _ _1_ 1 ____ ___ PLAN /iE.v,/ APOLIES To BcrrH -2A A0o -2B SECTioNS. SHowTn 2 x StlE. PADN'T IOCErNl'tFICATlO I NIUMBEE ON F\I\SHEEO PDAeT. Ikc. Iu LE CH4gotowlS DAskW LIlES FoE. TE.S USE. B. Oo aI 3. oo. ~0 G6'.Q^. O a0 G/-. — ___________oo___ S.0 oO 92''-2 E 921T- Z^ SoTH -2A AmD -2b SECCTioTS SyMM. AbouT HoR, 4 VERT 4 s. SThUCTUetL AdRFOL 927- Z -ONFIURATlON 2. 3470'T/C |

,,.0 ^'2oo...o^ 2.Q ^12. o = oi o" 1t i I l -_ ](0 -..-.... —- - _ __ - ___ 0) I _ _ _ _ _ i_ I _ I _ I _ _i__ 4TE'PLAN VIEW APPLIES TO bOTH -SA AID -36 SECTIONS. SHoW4 X cX se. PAINTr IOtE4TlFCArTO4 NUt1BEt. OM Ir4SHteO P^ATr. INKJ RULE CHOOWISE. DASH LIttS POR TEST USE..495 PEF. Re.0 0 I 0, 927'3B EoT. - 927I- 3 A BOTH -SA 1J wD-3b *8eTIows YbMM. AC BOT NHoE. 4VERT.,. SIT CTUi AL 927-.C~___ f._n0,,i o.

24. o00 12.oo 2.00 _2.00 _ Z.oo _ 2.oo =_ 2.-o =_..o_ 1 PAI ETIFICIO UE O FIISH 4oTE'iN< RULE CHoRPWISE. DASH LIMES FOR TEST USE. G o2o &E.^__.51o0eG 2EG ______ 3.00 3oc ___ Ei.oo______________ G_. 00 92'7 -4B __ 2 -_4_A_ PLAoTH -A4A AWO -4B SECTioNS.YMM. AeouT H4ao. 4.VeRT 4. STeUCTULAILFOt L r o 7 —.4. CONFIU(eATlO 4. (oe

....- - or 24- oc RE eF.I _6..o12, oo ~oo _1_ 2-oo_1_ 2.oo _.2.oo_ 2.o0 _L 2.ooJ 6) I I 6CI _ I 1 I I \rNk. uLE CHoeO\QSE DASH LINES For TEST USE,,. 960~.10,.ie o-i " 3. __00__ _ _.495 _3.00 927 S'-5, _.927 -5A OTH -5A A ^ - SE sECTrowS syr1M. ABOUT HoetrorTAL 46. STCUCTUcAL sFeO\L 927- 5 P____,,____"I'__________,.[" _____CONF,6U^T10O,.. ON. FE > "'

'24 T 2.0 2.o. 2.00 12. 1 12. 12. 6.00 X -C I hOTE - PLAN V'IEW APPL1ES To -7A. -_7 3A1O -7C- SEC-Tlos., sNovW 1 4 SI\E. PAINT I0ENT1FICNTION NUt BE. o 0 FWISHE.D PA.T, IN<. RULE CgROWlSE DASi4 LIR4ES FOR TEST USG.-.OOZ eA. 9Z -7A.SI o 9t7- 7 A o.010 EA. 9Z7-7B 1._360 9Z_ - _ 7________________________.0a^D. 327-7C.4&0 27-7c DATA FOe CONFIG$URATIONS 7. A,B,C. \ z X Y Y Y |21 - 7A 927 —1 |9Z - C. \ L. E. RAo..002.010.018.000.000.000.000.075.020.035.o05.150.ozS.054.0-2 3.00. oo.038.o07. Ioo.450 04fa.090. IZ.Co00.o5.104.136 Is.900.06Z.124. 16 —' 1.2Zo.070.140.1 I.Ooo.6oz. 16.216 oT 4.o2 o.00.156.210 4. 8oo.. 2. 12.16I 5.400.03 07. oo 5.7oo.oZZ.o042. 05..o0o.Coz.1. oo 4..000.002.o003o. 004 T4ESE SELCTo4oS NOT CMB.itD Y OoDI4 ATES APPLY TO BOTI TOP ANO BOTTOM SURPACe-SSTrUCTUE.AL AR^FOILo 927 — CONFIGURY.AT ON 7. 3.4 -8%-c

2A 12.oo. L2.oo _L'2.eoo 1 2.oo_. Z.oo _ 2.oo _L 2-oo 4oTE - I - O~~~~~~~~~0I I e, PLAN VIEW APPULES To eoTH ->A A^lO-6& SecTVOS. SHIo-W S PANT IOETFCP \o y- AUMBE B ON FiISHE ON PA TAL s klsk PULE6 cHloELOWISE DASW ULNES FPR TEST USE. eADI 36U D,S 01eA V / TRAIL.IN| ED^E. -- TEAILMN E~5 Gj''^ OI t.OZo REF.,___ /.51o eet 3. oo __ 0 _ I_ 3. _ BoTH-EA ANO-6B SECTtoiS..oAD:US o0. SYMM. ABouT HcRIoNTAML.~eADlus 5T.UCTUIL AiPFOIL 927- 6 C COQ'FIGURATION U6. 34o/ — T/C

93 9015 0249