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Abstract--The variation of the magnetic Q with internal magnetization is discussed, using 

both the domain rotation and the domain-wall motion model of magnetization change. The var- 

iation of the reversible susceptibilities with magnetic moment is reported on four samples, and 
the results are compared with results from the frequency spectra in the initial and remanent 

states. The distribution of magnetic moments in the system as a function of the angle between 

individual and averaged moments is discussed in terms of an infinite series expansion in Legen- 

dre polynomials. The coefficients of the first four terms can be measured. Experimental data 

are given for the first three. 

1. INTRODUCTION 

THE magnetic susceptibility is defined as the 
ratio of resultant magnetization to magnetic 
field intensity. In ferrimagnets it is a function 
of both field strength and frequency. The re- 
versible susceptibility is that susceptibility ef- 
fective with a differential magnetic field. The 
differential field can be superimposed upon 
a finite biasing field. The reversible suscepti- 
bility depends upon the angle between biasing 
and differential fields, upon the magnetization 
level in the material, and upon the magnetic 
history of the specimen. 

The susceptibility-producing mechanism is 
not completely understood. It is often assumed 
either that domain moments rotate in unison 
or that the domain walls move to change the 
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net averaged moment of the sample. The rever- 
sible susceptibility and resulting differential 
magnetostriction for each mechanism were dis- 
cussed and contrasted in an earlier paper, which 
will be referred to as I.(l) 

In that paper, the reversible quantities were 
discussed in terms of the distribution of mag- 
netic moments. The calculations of predicted 
behavior of the reversible quantities with mag- 
netic moment were carried out with the as- 
sumption that the moments would be distribu- 
ted in some most probable state determined by 
a Boltzmann-type distribution of moments 
about the unit sphere. This argument has the 
merit that the direction of the moments is 
strongly influenced by crystallographic orienta- 
tion, and that the orientation of neighboring 
grains can be considered independent. This 
does not mean, however, that the resulting mo- 
ments must be randomly oriented. A factor of 
considerable interest, therefore, is a calculation 
of what the distribution of moments is in a 
magnetic material. 
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The detailed calculation off(O) is possible, 
at this time, in only the simplest cases. The 
basic difficulty is that the solution of this pro- 
blem must involve the solution of essentially 
the same number of coupled differential equa- 
tions as there are atomic moments. If the mo- 
ments are treated in the aggregate, localized 
potential minima between neighboring grains 
and neighboring domains must be included, as 
must the effect of nonmagnetic inclusions. The 
dominant role played by this type of surface 
energy has been stressed by GOODENOUGH@). 

The calculation of f(G), then, requires first 
the development of as realistic as possible a mi- 
croscopic model of magnetic behavior followed 
with the distribution of this behavior over the 
sample. The microscopic models used in I 
were such that: (A) that the domain moments 
remained always oriented along the crystallo- 
graphic directions whichminimizedtheanisotrc- 
py energy, and (B) that the static moments rema- 
ined along “easy” directions, but that the sus- 
ceptibility arose by the rotation of the domain 
moments away from those directions in the dy- 
namic case. Neither model is completely cor- 
rect. Both are highly idealized and, for exam- 
ple, contain neither the “curling” concept dis- 
cussed by BROWN(~) and by FREI et al.,c4) 
nor the effect of inhomogeneous fields. A more 
correct formulation awaits the inclusion of 
more accurate microscopic models. 

There has, however, been ample precedent 
set for considering magnetic susceptibility as 
being due either to domain rotation or to do- 
main-wall motion. This lamentable state is 
continued in the present paper. 

It was assumed in I that the frequency of the 
measuring field was much less than the reso- 
nance or relaxation frequency of the magnet. 
Under these conditions, the magnetization-de- 
pendence of the transverse susceptibility on the 
biasing field is distinctly different for each of 
the assumed susceptibility sources as long as 

the anisotropy field remains much larger than 
the applied field. 

The reversible susceptibility, as defined 
above, is reversible in the thermodynamic sense 
of zero energy dissipation for only the special 
case of zero applied frequency. An associated 
energy loss exists for all nonzero frequencies. 
This loss is describable as the imaginary part 
of the complex magnetic susceptibility, (z = 
z’ - jz”). The magnetic Q is defined to be 
the ratio of real to imaginary susceptibility. It 
is convenient in the following section to dis- 
cuss the loss in terms of Q. The dependence 
of Q upon ma~eti~tion, field directions, and 
source of susceptibility is briefly discussed in 
this paper. 

Frequency spectra have commonly been used 
to investigate the susceptibility sources. This 
extensively used method depends upon the 
different dependence of the frequency of sus- 
ceptibi~~ fall-off on ma~etization mechanism 
to distinguish between sources.(5--8) Some in- 
vestigators have also measured the spectra of 
the material magnetized to remanence and have 
utilized these results to aid spectral interpreta- 
tion.@-lr) EPSTEIN and BIRKS(~~) in parti- 
cular have utilized spectral information to ob- 
tain quantitative dete~a~ons of the amount 
of w~l-motions and domain-rotational sus- 
ceptibility. 

2. DISCUSSION 

The macroscopic material is considered to 
be composed of randomly oriented crystallites. 
The crystallites are sufficiently small so that 
the moment of each crystallite is much less 
than the aggregate moment of the sample. 
The crystalline orientation of each grain is 
taken to be independent of the orientation of 
its neighbors. For such a model the static mo- 
ment is always parallel with the static field. 
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The distribution f(O) sin 0 d@ is defined to M-H loop. The coefficient A,/A, can be de- 
be the fraction of the atomic moments in the termined from equation (5) and the magneto- 
system oriented at an angle between 0 and strictiorP4J5) and independently from equa- 
0 + d8 with respect to the applied magnetic tions (9) and (10) of I, where it is stated that 
field. It is convenient to expand f(0) in an the susceptibility due to domain rotation is 
infinite series of Legendre factions such that: given by: 

F(O) = 2 A,P, (cos S) (11 
n=o 

where A, is a function of the magnetic field 
present and the magnetic history of the spec- 
imen. 

By definition, 

xp = 5 x0(1 - (COG 0)) 
I 

Xf = $ x0( 1+ (COS” 0,) . 
I 

(6) 

AS/A, can be determined from a knowledge 
of Al/A, and the use of equations (16) of I, 
relating the differential ma~etostrictions, 
namely : (cos” @> = SdfZ cos"@f(@> 

fdQf@) 
(2) 

where (cosn 0) represents the average value 
of (COS” 0) over the sample. Substituting equa- 
tion (1) into equation (2) and integrating over 
the unit sphere yields: 

o2os”o~ = 2A, _o m_l 
LiA j r”dy f’,(r). (3) 

Upon solving for the coefficients A,,, in equa- 
tion (3), using the orthogonality of the Le- 
gendre functions, 

A 
2 = (2m+ 1) (~~(COS~)). (41 

Thus the coefficient of the mth term in the 
infinite series expansion for the distribution 
function can be determined if ( cos O), (cod 0 ), 

. . . (CO@ 6% are known. So, of course, the first 
coefficients are: 

Al/A, = 3 (cos O> 
AS/A, = 5/2 [3 <co@ 0) - l] 

I 

(9 
AS/A, = 712 [5 (co9 0) - 3 (cos @>I . 

Thus the distribution function can be experi- 
mentally determined if (COP 0) can be meas- 
ured. The A, coefficients are factions of 
both magnetic field and magnetic history. The 
coefficient AJA, can be determined from the 

d, = + d,((cos 0) - tcos3 0,) 
1. 

d, = + d,(<cos 0, + (co9 0,) 
I 

(7) 

where $ = F. 
s 

(b) Magnetic Q (Domain rotation) 

To estimate the magnetization-dependence 
of the magnetic Q when the susceptibility 
arises from domain rotation, it is convenient 
to start with a single-crystal fe~oma~et. The 
domain-rotation effects are assumed to obey 
the differential equatiorW 

aM a aM 
,,=dMx H)-KMx dt, (81 

where M is the magnetic moment, y is the 
ma~etomechanic~ ratio, MS is the spon- 
taneous moment, H is the applied magnetic 
field, and a is a dimensionless parameter pro- 
portional to the power loss. The total sample 
moment is assumed to be the sum of moments 
from all crystallites. It is thus necessary to 
first calculate intergranular effects, then to 
sum up all moments over the polyc~st~~ne 
sample. 
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PARK@) showed that if the magnetic mo- 
ment of the grains neighboring a given grain 
averages that of the gross material, then grain 
size and particle interaction is described by 
a single constant p, defined by the equation 

H=h-pM (9) 
where A is the effective differential field, 
h is the applied differential field, and M is the 
gross magnetization. The constant p is a fimc- 
tion of the localized packing and remains 
essentially independent of M; p can be re- 
garded as the demagnetizing factor of the grain 
partially canceled by the moments of its neigh- 
bors. 

Upon substituting equation (9) into equa- 
tion (8) and using the additional assumptions 
that a large static biasing field is oriented in 
the Z-direction and sinusoidal time-depen- 
dence of an additional applied field, the rever- 
sible susceptibility matrix is given by: 
(equation (8) of I) 

l- 2 $(l- CJ’) 
( ) 

1+ 
( 1 

o *(G’ 
WO 

(12) 

where o is the applied radian frequency, and 
w. = yH,. H,, in turn, is the sum of the static 
applied and anisotropy fields, Hap and Ha,, and 
the effective internal field pM. 

Thus : 

Ht = Hap+ H,n+pM. 

In the low-frequency limit: 

(13) 

QC!!& (14) 

Note that Qr is independent of field direction. 
The low-frequency initial susceptibility is ob- 
tained by combining equations (5) and (10) of 
I. The result is: 

X0 = 20, 
3WO 

(15) 

x=f l 
[ 1+ tcos” @>I (X_+ X+), 2 ccos 0) (L- X+), 0 

- 2 (COS 0) (X_- X+), [l+ <cos* @>I (x-i- x+), 0 , (10) 
0, 0, 2 [l- <cos* O,] (X-C X+> i 

where ( ) represents the average value in the 
polycrystal and 0 represents the angle be- 
tween the spontaneous moment and the appli- 
ed field. The susceptibilities z, are defined by 
the equation 

(11) 

where M, and H, are the components of the 
differential magnetization and field in the 
x-direction and i = ~“-1. The i operator re- 
presents a spatial rotation of n/2 radians. The 
resultant algebra from combining equations (8), 
(9), and (11) for the Q of the elements on the 
diagonal of equation (lo), yields: 

where CD~ = yM,. Combining equations (14) 
and (15), 

201 xoQr= 3aw. (16) 

The product depends upon a and directly mea- 
surable quantities, and does not explicitly con- 
tain the biasing magnetic field through oo. 

(c) Magnetic Q (Wd motion) 
The change in magnetic moment due to 180” 

wall movement is, in unit volume, given by: 

AM=~2MsA,xk (17) 
k 

where A, is the area of the Kth wall, and xk is 
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the distance through which it is moved by an 
applied magnetic field H. The wall movement 
is presumed to be governed by the differential 
equation: 

where fk is the restoring constant for the kth 
wall, ,d depends upon the structure-insensitive 
properties of the material and the parameter 
a of equation (8), while m depends only upon 
the structure-insensitive properties of the ma- 
terial. /co is the permeability of free space. 

Combining equations ( 17) and (18), the wall- 
motional reversible susceptibility under sinus- 
oidal excitation is found to be: 

(19) 
In the low-frequency limit, the real suscepti- 
bility and the Q become: 

xw = 4~, M: 

Thus for a given material at a fixed low fre- 
quency, the Q varies only with ,& A,, and fk. 

The reversible susceptibility is given as a 
function of magnetization not only by the de- 
tailed mech~stic*equation (20) above, but also 
by equations (2) and (18) of I. From these, if 
5 = $’ = II, for virgin material with M = 0 
and if xP decreases montonically with incre- 
asing M, then so must xt. Indeed the suscepti- 
bilities are related by the equation: 

If the average stiffness term fk increases with 
magnetization, then so will Q. Since both A, 
and fk vary with field orientation, the parallel 
and transverse Q’s will, in general, differ. This 
feature is distinctly different from domain ro- 
tation. 

(d) InitiaE and remanent susLgtibility 

The initial susceptibility due to domain-wall 
motion has been approximated by BOZORTH(~~) 

for sinusoidal internal strains arising from mag- 
netostrictive forces present when annealed ma- 
terial is cooled below the Curie temperature. 
The result is: 

4~0 M: 

x0 = 3~15 E 

where 1, is the saturation magnetostriction and 
E is the Young’s modulus of the material. Like- 
wise the initial susceptibi~~ due to domain 
rotation can be approximated as: 

2~0 M: 
x,= 3K, 

where p. is the permeability of free space and 
K1 is the first-order anisotropy constant. From 
equations (23) and (24) it is apparent that in 
pure material the relative importance of the 
two susceptibility mechanisms depends upon 
the relative magnitudes of the effective aniso- 
tropy and magnetostrictive energy densities in 
the material. 

For material with susceptibility arising by 
domain rotation, the relationship between the 
initial susceptibi~~ and the resonant frequency 
should satisfy the equation: 

(25) 

where y is a constant taken to be 2.21 x IO5 
m/A-set, f. is the resonant frequency, MS is the 
spontaneous moment of the material, and x0 
is the initial susceptibility. 
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BECKER and DORING@) discuss a model 
of magnetic remanence in which, as the field 
is decreased from the saturation value to zero, 
the moments rotate to occupy the same “easy” 
crystallographic directions occupied in virgin 
material, except that all components initially 
antiparallel to the saturation direction become 
parallel. For this model, the remanent magnet- 
ization is 05 M, and the remanent rotational 
reversible susceptibilities equal the initial ro- 
tational susceptibility. This model is valid for 
hexagonal material with K, > 0. FOMENKC(~) 

used it to interpret his permeability spectrum 
results. If this is also the position of maximum 
parallel and minimum transverse field sus- 
ceptibility, then going around the M-H loop 
the parallel susceptibility peak occurs for 1M’ 
decreasing in magnitude. The remanent and 
initial susceptibilities will be equal. 

The rotational model of gross flux change 
in cubic crystals would predict moments orien- 
ted in the “easy” directions nearest the field 
directions at remanence. For this case the re- 
manent and rotational susceptibilities taken 
from the results of I are given in Table 1 for 
all anisotropy coefficients save K1 = 0. (These 
are the expected values from reference (1) 
for 71-+ CG). 

Table 1. Remanent results MJM, 

~ Hexago- 

’ nal 

Cubic 1 Cubic ~ Hexago- 

jK,>O’ 
/ i nal 

K,cOIK,>O, K, < 0 
_ 

WM, 0500 0.866 0.831 i 0.785 

x;lx: 1 .ooo 

I ~ 

0.366 0.449 ' 0.500 

x:1x: 1 .ooo 1.318 1.276 1.250 

An analysis of the relationships between re- 
manent condition and the reversible suscepti- 
bility has been carried out by FREI and 
SHTRIKMAK(~~) on the assumption that the 
reversible susceptibility is due to domain ro- 

5 

tation. Their analysis contains the assump- 
tion that the reversible quantities are due to 
rotation and that the expansion of magneti- 
zation in terms of applied field must obey the 
rotational equations through second order in 
the ratio of applied to anisotropy fields, as 
can be seen from their equation (10). Their 
resulting equation (29) can be put in the form: 

for comparison with experimental values. 

3. EXPERIMENTAL 

(a) Samples measured 

Four samples were subjected to detailed mea- 
surements and are reported here. The compo- 
sitions of the samples are listed in Table 2. 
All except the magnesium ferrite sample were 
fabricated at the University of Michigan. 

Table 2. Composition of ferrites surveyed 

Designation Composition 

F-l-2 Ni 0.487 Zr,.,s, I% 0, 
F-6-2 Ni 

AA-107-4 
0’168 Z~0.w Coo.zse Fc, 0, 

Fe, Y, % 
I-15-1 Mg Fe, 0, 

The samples with designation starting F-l 
and F-6 were prepared by first ball-milling 
the C.P. oxides weighed to the desired com- 
position in acetone, then decanting, drying, 
and pressing into a toroidal pill. They were 
then heated rapidly to 115O”C, heated slowly 
to 1375°C for +$ hr, slowly cooled to 12OO”C, 
and held for 2 hr. The furnace was then flu- 
shed with nitrogen and de-energized. The 
I-15-1 core was prepared by Dr. D. L. FRESH 

and is from the same material as that reported 
on previously by RADO et aI. as their 
type-F core. The AA-107-4 core was prepared 
by firing in air at 1350°C for 4 hr. The mixing 
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and pressing procedure was the same as for 
the type-F-l and F-6 cores. 

(b) Procedures and techniques 

All measurements were taken at ambient 
temperatures on toroidal samples, since this 
geometry avoids the complexities of demagnet- 
izing factors. Coaxial line techniques were 
utilized for the spectral measurements. The 
complex susceptibility of the F-6 samples was 
measured from 1 .O to 40 MC, using the radio- 
frequency permeameter in conjunction with 
a Q-meter. For the F-l samples the real 
susceptibility from 0.1 to 40 MC and the imag- 
inary susceptibility from 0.1 to 15 MC were 
measured with the permeameter. A fixed- 
length coaxial line and a radio-frequency 
bridge were used for the remaining higher 
loss measurements up to 50 MC. From 50 
to 5000 MC, variable-length coaxial-cavity 
methods were used for complex susceptibility 
measurements on both types of samples. 

The susceptibility and Q for the variable- 
field measurements were taken with a Q-meter. 
For the transverse field measurements, the 
sample was placed between the pole faces of 
an electromagnet. The biasing field was along 
the axis of the toroid. Girdle windings about 
both outer and inner periphery of the toroid 
were used to determine the field and magnet- 
ization. An extra winding was placed about 
the toroid to furnish the biasing magnetic 
field when the parallel field measurements were 
taken. 

(i) F-6 samples. Two different samples of 
F-6 material, code designated F-6-l and 
F-6-17, were measured for the frequency 
spectra. The initial spectrum of F-6-l is shown 
in Fig. 1. Both the initial and the remanent 
parallel spectra of F-6-17 are shown in Fig. 2. 
All spectra show but a single resonant peak 
in the real susceptibility. The resonant fre- 
quency as determined by the peak in the imag- 

inary susceptibility is seen to be about 130 
MC for F-6-1, with a corresponding low-fre- 
quency susceptibility of 47. For F-6-17, the 
resonant frequency is about 75 MC, with an 
initial low-frequency susceptibility of about 
82. The remanent loss for F-6-17 also peaked 
at 80 MC, with a low-frequency susceptibility 
of 75. An instability of a few per cent was 
noted in both samples between different mea- 
suring runs. 

50 

40 

Lx 30 
0,. 
a 
x 20 

IO 

0 

I IO I00 lml IOOKl 

FREOUENCY, MC 

FIG. 1. 

100 
= INITIAL STATE 

80 . ,.: REMANENT STATE 

*x 60 
0 
5 
-x 40 

20 

0 

I IO 100 1000 IOOQO 

FREOUENCY. MC 

FIG. 2. 

Comparing the initial and remanent curves, 
it is apparent that the positions of the peak 
in both real and imaginary susceptibilities 
occur at essentially the same frequency, and 
that the ratio of remanent to initial suscepti- 
bility is about 0.91. 
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The varation of the low-frequency suscepti- 
bility with magnetization is depicted in Fig. 3. 
These data were taken on sample F-6-2. The 
transverse susceptibility passes through a de- 
cided minimum near it4 = 0. Both the meas- 
ured Q’s are essentially constant over a wide 
range of ma~etization, and indeed were never 
observed to rise to a value equal to twice the 
initial value. 

E: 
I8 I2 

I6 IO 

IO 04 

08 02 

MM- 

FIG. 3.’ Parallel and transverse field susceptibilities; 

Core F-6-2. 

(ii) F-l samples. The spectra of the sample 
code designated F-l-5 were tested. Fig. 4 

600 

0 

01 IO IO 100 1000 IOCQO 

FREOUENCY, MC 

FIG. 4. 

shows the complex susceptibility for both 
initial and parallel remanent states. The ini- 

5* 

tial spectrum of F-l-6 was also measured and 
found to be similar in all respects to F-l-5. 
The resonant frequency of F-l-5 was mea- 
sured at 4.5 MC as determined by the peak 
in the imaginary value. The low-frequency 
susceptibility was measured as 561. The ratio 
of remanent to initial value of sus~eptibi~~ 
was O-66. The peak in imaginary susceptibi- 
lity at remanence occurred at about 6 MC. 

The susceptibility was measured as a func- 

I20 I2 

00 IO 

80 08 

’ 6-o 

40 04 

20 02 

-08 -04 0 04 08 
M/MS - 

FIG. 5. Parallel and transverse field susceptibilities; 

Core F-l-2. 

tion of the magnetization on specimen F-l-2 
(see Fig. 5). For this core, the transverse sus- 
ceptibility remained essentially constant over 
a wide range of magnetization values. The 
Q’s pass through a minimum near M = 0. 
As in the case of F-6-2, the transverse suscep- 
tibility remained always larger than the par- 
allel value. The Q’s increased rapidly with 
increasing field to a value more than 10 times 
the initial value. 

(iii) 1-15-l. The frequency spectrum for this 
material has been published by l?ADO et al.fzo) 

and corresponds to their “Ferrite F”. They 
conclude that the low-frequency susceptibi- 
lity is predominately due to the movement of 
domain walls. The variation of the suscep- 
tibilities with magnetization is shown in Fig. 6. 
For this core, both the susceptibilities pass 
through a maximum in the vicinity of zero 
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moment, while the Q’s pass through a mini- 
mum. 

(iv) &l-107-4. The frequency spectra for 
this material have been published by two of 

I2 

I 10 

08 

$J- 
06 + 

I 04 

I 02 

M/MS - 

FIG. 6. Parallel and transverse field susceptibilities; 

Core I-15-1. 

us.@‘) It was concluded on the basis of spectral 
information that the susceptibility was pre- 
dominantely due to domain-wall motion. The 
variation of the susceptibilities with magnet- 
ization is shown in Fig. 7. The transverse susce- 
ptibility does not pass through a minimum. 

JO Ik+ 

302 12 

2 KJ 

$2 08 c 
t 

I 06’ 

I 04 

0 02 

-08 -04 0 04 08 
MiM< - ._ 

FIG. 7. Parallel and transverse field susceptibilities; 

Core AA-107-4. 

1. INTERPRETATION OF RESULTS 

The values of f,, measured experimentally 
are listed in Table 3, along with the values 

calculated from equation (25). The experi- 
mental value of f,, was determined by the 
frequency of the peak value of imaginary sus- 
ceptibility. 

Table 3. Resonant frequency (MC). 
.______ 

Sample type / Measured I Calculated I iE@$$ 

F-6-l 179 I 
F-6-17 102 0.91 
F-l-2 15 0.66 

The expected variation of the parallel sus- 
ceptibility with magnetization can be com- 
puted from the transverse susceptibility de- 
pendence. For the case of wall-motional sus- 
ceptibility, equation (22) is the proper equa- 
tion. For the case of rotational susceptibility, 
equation (10) of I is the proper equation. For 
equation (10) to be useful, however, the var- 
iation of x0 with applied field must be known. 
From equation (15) and the definition of oO, 
it follows that in the absence of a detailed 
knowledge of the effective anisotropy field, 
which is always the case for polycrystalline 
material, x0 is known only so long as the bias- 
ing field is small compared with the aniso- 
tropy field. 

The magnetic parameters of the four cores 
are listed in Table 4. 

Plots of xP computed from xr for each of the 
four samples measured are shown in Figs. 8-11 
and compared with the experimentally meas- 
ured curves. It is apparent that the rotational 
curve fits F-6-2 well and that the wall-mo- 
tional curve fits I-15-1 well. The fit is not 
good for either of the other specimens, but 
nevertheless the wall-motional curve fits AA- 
107 closer than the rotational curve. The con- 
clusion that cores F-6-2 and I-15-1 have sus- 
ceptibility arising predominantly from rota- 
tion and wall motion respectively is substan- 
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Table 4. Magnetic parameters of four ferrimagtzetic cores (320 kc) 
.---..-- ----....-. --_-___- ---.... -- --.. -..- ._..-- __~___ _~- .-.--_ - 

I 
I 

Parallel Transverse 
._, _ .--l _“__“.. ___..__ _________.__, __- - 

COX 1 z,,t 1 Q, j x,, j Q!, 1 %,r y 
-... -._-.._-. -- _~ /____--- -_. _--_ -.- ..- 

F-6-2 / - / 
F-1-2* j 410 ’ 
I-15-1 i - / 
AA-107-4 1 36.4 / 

* Values at 500 kc. 
t The subscript 0 indicates measurements in the virgin state, p indicates parallel and t trans- 

verse measurements. p. and ts represent measurements around the M-H loop at the position M = 0 
in parallel and transverse fields. pr and tr represent similar measurements at the remanent position. 

FIG. 8. Parallel reversible susceptibilities; Core F-6-Z. 

FIG. 9. Parallel reversible susceptibihties; Core F-l-2. 

tiated by the spectral interpretation of Figs. 1 
and 2 and by RADO et al.@@ 

The curve calculated for xP for rotation is 
valid so long as the anisotropy field remains 
quch larger than the applied biasing field. 

12 

i-0 

00% 
$ 

06 

04 

02 

M/Ms.---e 

FIG. 10. Parallel reversible susceptibilities; Core AA- 
107-4. 

FIG. 11. Parallel reversible susceptibilities; Core I-15-1 

F-6-2 contains cobalt, and therefore will have 
a large anisotropy field. Core F-l-2 s a mixed 
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nickel-zinc ferrite with a corresponding small anisotropy, but does satisfy the conditions of 
anisotropy. Thus the lack of agreement with FREI and SHTRIKMAN. Table 5 compares 
rotational curves is not significant. For the the values of remanent moment calculated 

Table 5 
_._-- ____-. 

Specimen 
’ Measured i Calcuiated / H 1 

MrIMs WM, c I MS i Mr x 10-b x 10-S 
- - _.._~~~~~ __~ .‘_.-_ __-. __ ____- --._. -.__. -.-_ 

AA-107-4 0.389 , 0.259 160 1,06 1 0.41 

F-6-2 0.660 / 0.041 127 3.58 ! 237 

F-I-2 0.610 o-330 100 / 3.67 2.24 

I-15-1 0.730 
I._ ___ I 

0.675 175 ’ 1.35 
I 

0.98 
- ..~_ _. m_==_z._ -__ ._..._. _ 

F-l-2 core, there was a slight but real mini- 
mum in the xr in the vinicity of zero moment. 
This feature is not consistent with wall mo- 
tion and the accompanying ?I,, behavior. There- 
fore it is concluded that domain rotation 
must be present. No such behavior was found 
in AA-107. In the spectral data, two peaks in 
the imaginary susceptibility were observed 
for AA-107, and only one for F-l-2. There 
must, therefore, be two impo~ant mech~sms 
for the AA-107. These mechanisms are assum- 
ed to be rotation and wall motion. For F-l-2, 
one can say only that domain-rotational effects 
enter. If w~l-mo~onal effects are present, the 
resonant frequency must occur at the same 
point as the rotational effect. The essential 
difference between F-l and F-6 lies in the 
value of the anisotropy. Since rotational effects 
have been shown to exist in the high-aniso- 
tropy material, it is expected that they should 
also exist in the low-anisotropy material. 

Material F-6-2 apparently fits the condi- 
tions imposed in this paper for the static con- 
ditions, nameIy oriented along easy crystallo- 
graphic directions, and the susceptibility obeys 
the rotational equations. This material would 
not satisfy the conditions of FREI and 
SHTRIKMAN@~). On the other hand, F-l-2 
does not satisfy the conditions as described 
in this paper, apparently because of the small 

from equation (26) with experimentally meas- 

ured values. The agreement is not good, and 
indeed the best agreement is with the material 
whose susceptibility arises from wall motion. 

Upon equating x0 from equation (6>, the 
average value of tcos2 0) is found to be: 

Solving for tcos”@ from equations (7), 

(cos%@ = (is) ccos@>. (28) 

Note that (cos’O> should vary from l/3 in the 
demagnetized state to unity when the material 
is saturated. A similar we-motions equation 
yields : 

1__2 dlnxf 
&t-- XP ( ) dlnA4 

2xtf xp = -____-.- 3-- qg34 * (2g) 

If the values of xr and M are calculated assum- 
ing a Boltzmann ~stribution of moments, 
then x1 = Ai%f,L(?$l~ and M = i&L(q), where 
A is a constant for the material, L(9) represents 
the Langevin function of q., and ~1 = AH,, 
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where Ht is the totalized biasing field, includ- 
ing history, anisotropy, and applied field. 
Substituting these values into equation (29) 
yields a function which goes from l/3 for M = 
0 to unity for saturation. 

Plots of *XL as a function of (cos 0) are 
Xt P 

shown in Figs. 12 and 13. In Fig. 12, the the- 
oretical curve is the value of tcos” 0) calculated 
for domain rotation. In Fig. 13, the theoretical 
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FIG. 12. Variation of (cos’ 0) with (COS 8). 
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FIG. 13. --- 
c::, ::I versus M/M,. 

I I 

curve is based upon domain-wall motion. Both The inverse of this calculation can also be 
curves are based upon Boltzmann distribution made. The procedure consists of firstly expand- 
of moments. The rotational curve attributed ing the distribution function in an infinite ser- 

to domain rotation can be interpreted in terms 
of variation from the most probable condition. 
For F-6-2, as the moment is decreased, mo- 
ments parallel and antiparallel are initially in 
excess of the most probable condition. How- 
ever, as M is further decreased towards zero, the 
parallel-antiparallel components increase to lar- 
ger than the most probable value. This can be 
considered the reason for the transverse sus- 
ceptibility at zero moments being larger than 
the initial susceptibility, and the corresponding 
parallel susceptibility at zero moment being 
smaller than either. Sample F-l-2, if the sus- 
ceptibility is assumed entirely rotation, main- 
tains at all times a predominant parallel-anti- 
parallel moment configuration. The value of A, 
from equation (5) as a function of magnetic mo- 
ment can be read directly from Fig. 12 for 
sample F-6-2. 

More detailed determinations and analyses 
of the distribution functions in other materials 
must await simultaneous parallel and transverse 
susceptibility and differential magnetostriction 
measurements. 

5. CONCLUSIONS 

The magnetic properties of a ferromagnetic 
system can be described in terms of a distribu- 
tion of magnetic moments about the unit sphe- 
re. This function cannot be calculated in detail 
for macroscopic systems. However, assuming 
idealized models of magnetic behavior such as 
magnetization by domain-wall motion or mag- 
netization by domain rotation, some reversible 
properties of ferromagnets can be compared 
without detailed knowledge of the distribution 
function. If a detailed distribution function is 
assumed, then, of course, the magnetic proper- 
ties can be calculated in detail. 
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ies of Legendre polynomials. Due to the ortho- 
gonality properties of these functions, the coef- 
ficients of each term in the infinite series can 
be evaluated if the weighted average value of 
the proper power of tcos 8) over the sample is 
known; (cos 0) itself is, of course, proportional 
to the magnetic moment of the sample. Under 
certain conditions (cos” 8) is proportional to 
the static magnetostriction. It can also be found 
from a knowledge of the two reversible sus- 
ceptibilities, if domain rotation is the source of 
the susceptibility. Further, under the same sus- 
ceptibility conditions, the differential magnetc- 
striction can be utilized to find tcosa 0) and 
one additional coefficient in the expansion. 

The combination of frequency spectra and 
magnetization dependence of the susceptibili- 
ties on the same sample types is utilized to 
examine the source of the susceptibility. In 
agreement with other investigators, it is found 
that the major susceptibility source depends 
upon the type of ferrite, as well as the method 
of preparation. The nickel-zinc-cobalt ferrite 
F-6-2 shows distinctive domain-rotational ef- 
fects. Sample I-15-1 shows wall-motionaleffect. 
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