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Abstract-The isotherma galvanomagnetic tensor components associated with the Halt effect and 
the magnetoresistance effect are analyzed for arbitrary orientation of the crystal axes in the sample, 
arbitrary orientation of the magnetic field B, and arbitrary crystal symmetry. The conductivity 
components in suitable co-ordinates are expanded in powers of the components of B. The coefficients 
are the galvanomagnetic material constants, called “brackets”. By means of ONSAGER’S relations, it is 
shown that the magnetoresistance effect is always even in B, whereas the Hall effect is odd in B only 
with special geometry. Further, the Hall effect is even or zero for some geometric and crystallographic 
conditions. The effects of the crystal symmetry on the brackets are covered by a theorem. The re- 
sultant dependencies between the brackets are tabulated completely for all powers of B for the crystal 
classes other than trigonal and hexagonal. For the latter, the bracket relations are given up to the 
sixth power of B. Formulae for the number of independent brackets up to any power of B are given 
for all crystal symmetries. The significance of the results obtained is pointed out. 

1. INTRODUCTION AND MOTIVATION 

IN an isothermal$ single crystal, placed in a homo- 
geneous magnetic field B, a constant current den- 
sityJ is maintained by means of a suitable electric 
field F (see Fig. 1). Evidently 

F = F(J, B). 

FIG. 1. Orientation of vectors J, .F, B and potential 
probes ub in an anisotropic single crystal. 

The dependence of F on 3 represents the galvano- 
- 1~-. 

* This work was supported by the U.S. Signal Corps 
Engineering Laboratories under a contract with The 
University of Michigan. 

t This work represents, in effect, part of the doctoral 
thesis of L. P. Kao (1956). 

$’ Isotherma conditions are assumed throughout this 
paper without further explicit statement. 

magnetic effect.$ The component Fd of F along 
an arbitrary direction d can be measured by means 
of potential probes ab. If d is parallel to], the re- 
sulting dependence of F#(J, 23) is called the mag- 
netoresistance effect; if d is normal to J, then 
FJJ, B) is called a Hall effect.11 Both are special 
cases of the galvanomagnetic (g.m.) effect. 

The early literature is summarized by CAMP- 

BELL(I) and by MEISSNER.(~) Both effects are 
markedly dependent on the crystal structure and 
orientation@) (anisotropy). For weak magnetic 
fields the Hall effect is known to be proportional to 
23, and the magnetoresistance effect is proportional 
to 3s. For stronger fields, and especially at lower 
temperatures, the dependences are much more 
complicated.(*-11) In 1905 VoIGT(12) laid the found- 
ation for an appropriate description of the aniso- 
tropy of the g.m. effects. Further contributions to 
the phenomenological theory were made by 
KONLER, (13) CASIMIR, (4) SEITZ, (14) JURETSCHKE, (16). 
-.__--_ - 

5 Throughout this paper we restrict ourselves to non- 
ferromagnetic substances. 

I/ We shall adhere to this definition, though some ex- 
perimenters prefer to define the Hall effect as measured 
with d along an equipotential. when B = 0. 
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and others, but a general treatment of the aniso- 
tropy was not available up to the present. 

The objective of the present paper* is to general- 

ize the phenomenological theory of the anisotropic 
g.m. effects, so as to include all magnitudes of J 
and B, oriented arbitrarily with respect to the axes 
of a crystal belonging to any symmetry group. The 
results may assist experimenters in deciding how 
many and what types of measurements are re- 
quired and how data can best be compared; 
theoreticians may find a framework with which 
model theories must comply. 

In Section 2 some general definitions and re- 

lations are established. In Section 3 a general 
method is developed to take into account the effects 
of crystal symmetry. In Section 4 formulae are 
given for the number of independent g.m. con- 
stants for the various crystal classes. In Section 5 
the significance of the results is discussed. We have 
purposely avoided in this paper to introduce any 
model of the mechanism by means of which these 
complex phenomena may take place. 

2. DEFINITIONS AND GENERAL RELATIONS 

(a) Purity relations 

The results of g.m. measurements are best 
described in terms of “laboratory co-ordinates” 

X~(GC = 1, 2, 3) with ~1 along the current density 
J, x2 in the plane of J and d, and ~3 accordingly. In 
the case of magnetoresistance, d lies along J, allow- 
ing one degree of freedom for ~2 and ~3 in the plane 
normal to ~1. Vector and tensor components with 
respect to the laboratory co-ordinates will carry 
Greek superscripts. No confusion between super- 
scripts and exponents should arise in practice. The 
definition of the laboratory system implies 

J2 = J3 zzvz 0. (2) 

We assume Ohm’s law. In laboratory co-ordinates: 

Fa = ,4(B) J1. (3) 

The g.m. resistivity tensor components pal depend 
on B. We assume also Onsager’s relations. In 

* The essential ideas of the present paper were first 

given by the authors at the Baltimore meeting of the 
American Physical Society in 1955(16) and by E. KATZ in 
a contract report, with the U.S. Signal Corps Engineer- 
ing Laboratories, of November, 1954, entitled: “Mag- 
netically Sensitive Electrical Resistor Material.” 

laboratory co-ordinates : 

pqB) = py --B). (4) 

Taking M. = /3 = 1 in equations (3) and (4), one 
sees that the magnetoresistance is an even function 
of B. In the literature(l7) there has been some con- 
troversy about the evenness of $1. The above ap- 
proach shows that under the very broad assump- 
tions stated, $1 must be an even function of B 
without exception. Taking c( # 1 in equations (3) 
and (4), one sees that the Hall effect is in general 
neither an odd nor an even function of B, contrary 
to a suggestion by CASIMIR.(@ However, in a num- 

ber of special configurations the crystal symmetry 
may impose an even or odd parity on the Hall 
effect. The complete list of such configurations is 
as follows. Consider the crystallographic point 
group, obtained from that of the crystal by aug- 
menting it with an inversion center. The physical 
significance of this augmented group is explained 
in Section 3. Then one can easily prove with re- 
spect to the rotation axes of this augmented group: 

(1) The Hall effect is odd if either 

(a) B lies along a rotation axis of order higher 
than 2 and either J or d is normal to B, or 
if 

(b) B is normal to an axis of even order and 
either J or d is along that axis. 

(2) The Hall effect is even if either 

(a) B lies along any rotation axis and is 
coplanar with J and d, or if 

(b) B, J, and a are normal to the same axis of 
even order. 

(3) The Hall effect vanishes if B and either J or d 
lie along the same arbitrary rotation axis. 

The “new” galvanomagnetic effect reported by 
GOLDBERG and DAvIs(l@t illustrates cases (2b) and 

(3). 

(b) Symmetry co-ordinates 

For the purpose of deriving the effects of crystal 
symmetry, it is convenient to refer to “symmetry 
co-ordinates” ki(i = 1,2, 3). These are adapted to 
the crystallographic point group of the crystal, 
augmented again by an inversion center, as follows: 

t The slight discrepancy between the axis direction 
and the direction of zero Hall effect in their Fig. 1 must 

be due to an experimental error of imperfect alignment. 
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Ks is taken along the rotation axis of highest order, 
except for Th where it is taken along a twofold 
axis. Then Kr is taken along a rotation axis normal 
to KS if there be one, and k2 accordingly. Vector or 
tensor components with respect to the symmetry 
co-ordinates will carry Latin subscripts. The com- 
ponents ai@) of the conductivity tensor and 
p,,(B) of the resistivity tensor are functions char- 
acteristic of the material at any given temperature 
and independent of the geometry of galvano- 
magnetic measurements. The crystal symmetry 
will place restrictions on them. 

(cf Powti series e~pun~~n of bij(B) 

Most g.m. measurements suggesW) that a&?) 
can be expanded as a series in powers* of the com- 
ponents B1, Bz, Bs, Thus: 

n=O m=O p=o 

fZ=O m-0 p=o 

X r1”-py3l”r3n-“- V4 

Here 78 are the direction cosines of B with respect 
to the symmetry co-ordinates. The coefficients, the 
“brackets” symbols, are independent of B. They 
are the true phenomenological g.m. constants for 
each material at a given temperature. They are 
sums of components of tensors? of rank 2nf2, 
since B is an antisymmetric tensor of rank two. 
-_ 

* Such a power series expansion may have a limited 
domain of convergence, for example, if saturation is ap- 
proached according to W/(1. +CB2). Also, experi- 
mentaltzof g.m. effects at low temperatures often contain 
oscillatory terms of the form B sin BJB, which do not 
possess a derivative with respect to B at B = 0, and hence 
cannot be expanded in powers of 3 (de Haas-van 
Alphen effect). Consequently, the development pre- 
sented here applies only within the radius of convergence 
of the power series (7), and after that part of the g.m. 
effects which is due to oscillatory terms has been sub- 
tracted out, if present. 

t In order to set the tensor character in evidence, the 
brackets will sometimes be denoted by [(23)m-a, (31)a, 
(12)*-mlii. The quantities (23), (31), (12) will be referred 
to as the pairs of inner indices and rj as the outer in- 
dices. 

P 

Onsager’s relations imply 

@--P,P, n--mlif = (-)n[m-p,P,n-m]ji (8) 

and 

[m--P,?5 w-m)ii = 0 (84 

where w is any odd number. Thus only six pairs of 
i values will be used: 11, 22, 33, 23, 31, 12. The 
remaining three pairs are expressed in the former 
by equation (8). 

The effects of crystal symmetry on the measured 
functions pal(B) are obtained in two steps which 
will be discussed in this order: 

(a) The anisotropy effects on the brackets (coefli- 
cients of the expansion) of c,~(B)$ (see Sections 3 
and 4). 

(b) The dependence of pal(B) on crti(B) (Section 

9 

3. THE EFFECTS OF CRYSTAL SYMMETRY 

In this section a method will be developed and 
applied to take into account the effects of crystal 
symmetry on the brackets under a wide variety of 
circumstances. 

Material constants which are components of even 
rank tensors must be invariant under the operations 
of the point group of the crystal considered and 
transform identically into themselves under in- 
version. Consequently the brackets must be in- 
variant under the operations of the augmented 
point group of the crystal plus an inversion center. 
Thus it suffices to analyze the eleven point groups 
which possess such a center. They can all be 
generated by at most two rotations in addition to 
the inversion center. The first generating rotation 
will always be taken along k3 and where a second 
one is required, along kl except for the cubic 
groups, where it will be taken along the [ill] 
direction. 

Under a general rotation each bracket is trans- 
formed into a linear combination of other brackets. 
If the rotation be a covering operation, and thus 
~-...- _-. .~ 

$ The measurement of pat would seem to suggest a 
power series expansion of psi(B) instead of o<j(B). The 
latter is preferred because its coefficients admit of a 
simpler electron-theoretical interpretation. However, the 
symmetry properties of the p and CI brackets are exactly 
the same. 
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requires invariance of the bracket, then certain 
relations must hold between the brackets. 

Under inversion each bracket is transformed 
identically into itself. Hence, no relations between 
brackets can be derived from the requirement of 
invariance under inversion. 

(b) A theorem concerning the effect of an N-fold 
rotation axis along k3 

The effect of an N-fold rotation axis is that cer- 
tain linear equations must hold between the 
brackets. The following theorem makes it easy to 
produce and to survey all such equations. 

For an N-fold rotation axis along k3 the brackets 
satisfy the equations 

..- , cc g(WP, +(ii, a)+P,P, n--m]ij = 0 (9) 
rj p=o 

provided that the quantity h F m+s--2(w+z) 
satisfies the inequality 

h#kN (k=O, -j=l, 52, . ..) (10) 

i.e. h is not a multiple of N. 
Here the prime on the first summation signifies 

that of the six independent ij combinations only 
those with the same number s of ones plus twos are 
included. Each equation is specified by five integers 
n, m, s, z, w, where n is the sum of the powers of B1, 
Bz, and Bs of which the brackets occurring in the 
equation are coefficients, m is the sum of the powers 
of BI and Bz, s is the number of ones plus twos in 
ij, and the integers z and w are arbitrary in their 
ranges 0 < z < s and 0 6 w < m. All brackets 
occurring in one equation have the same n, m, s, 
but differ in p, and in ii, insofar as is permitted by 
constant s. The parameters Z, w label the various 
equations with the same n, m, s, involving the 
same brackets with different coefficients. The real 
or imaginary coefficient g(m, p, w) is defined in 
terms of binomial coefficients by 

The factor l (zj, Z) is given in Table 1 for all values 
for which it is defined. The proof of this basic 
theorem is given in the Appendix. It can be shown 
that the only solution for the complete set (9) for 

given n, m, s is that all brackets involved vanish. 
Consequently the equations (9) with the conditions 
(10) represent a complete description of the sym- 
metry properties of the brackets. 

Table 1. The values of l (ij, z) 
___--. ~~ 

n = even n = odd 

s zj z+ 0 12’0 12 

0 33 (l-- --- 

1 31 1 l- 1 -1 - 
1 23 i -_i - 1 -_i -_i - 
2 11 11 1 --- 
2 12 2i 0 -2i 0 -2i 0 
2 22 -1 1 __1 , - - - 

For example, the equation for n = 2, m = 2, 
s=2, z=l, and w = 0 is [200]11+ [2OO]ss+ 
+i[110]~~+i[110]sz-[020]~~-[020]lz = 0. The 
equation is valid provided that h = 2 # kN, i.e. 
k3 may be a 3-, 4-, or 6-fold axis. 

By suitably combining the equations (9) with 
the same n, m, s and different w, Z, the brackets 
with these n, m, s values can be solved in terms of a 
few of them which are independent (see Section 4). 
These solutions are tabulated below. Before des- 
cribing the results it is expedient to observe certain 
general properties of the equations (9) which have 
guided the form in which the tables could be con- 
structed. 

(c) Some consequences of the theorem 

In formulating the fundamental theorem, a 
rotation axis was taken along k3. It is simple to 
apply the theorem to a rotation axis along k1 or k2 
by permutation of both inner and outer indices. 
The effect of a threefold axis along the [ill] direc- 
tion can be taken into account by requiring in- 
variance for the brackets under cyclic permutation 
of the indices 1, 2, 3 both in and outside any 
bracket. Thus the effect of symmetry for the 
eleven point groups is completely described by 
the theorem with these generalizations. However, 
in a number of cases the application of the theorem 
is greatly simplified by means of some corollaries, 
which are stated below. Their proofs are straight- 
forward and are left to the reader. 
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Corollaries 

(I) For N = even about As, brackets with the 
index 3 occurring an odd number of times (inside 
plus outside, the inside being written in the nota- 
tion of pairs of indices) vanish. 

In preparation of Corollary (II) let two brackets 
be called “adjoint” with respect to As, if they can 
be obtained from one another by interchanging the 
indices 1 and 2,” both inside and outside, and 
writing the resulting pairs of indices in the con- 
ventional order. For example, the brackets 

[m-p,p, n-m]ss and [p, m-p, n---ml31 

are adjoint. 
(II) For N = 4 about As, non-vanishing adjoint 

brackets are either equal or opposite. They are 
equal if the number of occurrences of the index 2 
is even, opposite if this number is odd. The same 
is true for the index 1. 

(III) If in an equation of the type (9) each 
bracket [m-p, p, n-rnlij is replaced by [m-p, 
p, n’-m], j, where n’ has the same parity as n, the 
resulting equation also belongs to the set (9) and has 
the same h. 

(IV) Two equations of the type (9) with equal 
n, m, s having parameter values w, z and w’ = m-w, 
z’ = S---X, hence h’ = --h, are conjugate complex. 

(V) If in an equation of the type (9) each bracket 
is replaced by its adjoint, the resulting equation 
also belongs to the set (9) and has the same l/z\. 

The corollaries (I-V) are useful in tabulating the 
relations between the brackets for the various 
crystal classes. The corollaries (VI-IX) are useful 
as checking relations. 

(VI) Any relation between brackets with s = 1 
is invariant for interchange of q = 23 and 31, 
followed by reversal of the sign of the coefficients of 
all terms with q = 31. 

(VII) Any relation between brackets with s = 2 
is invariant for the interchange of ;i = 11 and 22, 
followed by reversal of the sign of the coefficients 
of all terms with ;i = 12. 

(VIII) Any relation between brackets for s = 1, 
n = even, is transformed to a valid relation for 
n = odd with the same m, p, s by changing the 
sign of all brackets with ;j = 23, and vice versa. 

(IX) For m = odd any relation between brackets 

* Similarly we define adjoint with respect to kl (or kJ 
by interchanging the indices 2 and 3 (or 3 and 1). 

is invariant for the substitution p’ = m -_P followed 
by reversal of the sign of the coefficients of all 
terms with @ = 31 and 12. 

(d) The bracket relations for the eleven point groups 

(i) 5’s. No relations other than (8) and (8a). 
(ii) Csh and D3h. The relations are given in Table 

2. The effect of symmetry is manifest entirely in 
the vanishing of certain brackets; all non- 
vanishing brackets are independent. Thus, we have 
used three symbols as explained under the table to 
indicate the state of a bracket whose inner part is 
given by the second column and whose outer 
indices appear in the top row. The inner parts of 
brackets contain the symbols e for an arbitrary 
even number and w for an arbitrary odd one. 

Table 2. Bracket relations for Czh and Dzn 

- 

- 

f 
: 

- 

T! 
c 

- 

ij- 

Pee 1 

(eww) 

(w-4 

@we) 

bww) 

(wee) 

(ewe) 

(eeo) 

+ , bracket independent for C,a and 0,~. 
0 , bracket independent for C,n. zero for Dti. 
0, bracket zero for C,r ind Da. 

Examples [203]33 is found to be zero as shown 
by [eew]ss in the eighth row, 
[204]rs is found to be independent 
for Csh and zero for Deb as shown by 
[eee] in the first row. 

The outer indices 11, 22, 33 cannot occur with 
n = odd, according to equation @a). Table 2 is 
complete for all n. 

(iii) Cdh and Ddh. The relations are given in 
Table 3. The effect of symmetry is manifest in 
two ways: either a bracket is zero or it is equal to 
plus or minus its adjoint (as defined in Corollary II 
of the theorem). Of each such pair of adjoint 
brackets, one bracket can be chosen as independent. 



228 L. P. KAO and E. KATZ 

Table 3. Bracket relations for Clh and DBh 

(eee) 0 0 

(eww) k ,+ 

(wew) 
*A 

3 

b-3 0 0 m (www) 0 0 

bee) t, ,* 

(e-3 */“\+ 
(eew) 0 0 

t, bracket is one of an independent pair and equal to its adjoint for 

C, and D,A. 
8, bracket is one of an independent pair and equal to minus.its ad- 

joint for C,n, zero for D,r. 
6, 8 and in addition zero if self-adjoint. 

0, zero for C,b and for D,n. 

Brokenlines connect adjoint places. 

In the first, fourth, fifth, and eighth or last row self- 
adjoint brackets may occur. A self-adjoint bracket 
may be forced to vanish if it must be minus its ad- 
joint. Thus it turns out that four symbols are 
needed, whose meaning is explained under the 
Table 3, which gives the complete bracket re- 
lations for all n. 

Table 4. Bracket relations for T,, and 0, 

ij+ 23 31 12 11 22 33 

(eee) 0 0 0 +---+-_-+ 

!j ;:I; 

Cl ; 

y\+ 

0 0 0 

: \o 0 0 0 

(woe) 0 0 ‘+ 0 0 0 

+, nonvanishing bracket for Th and 0~. 

0, zero bracket for T,, and Oh. 

In Th + is one of an independent cyclic set of three equal brackets. 

In On + is one of an independent permuted set of three or six equal 

brackets (three, if brackets are pairnise self-adjoint). 

Broken lines indicate places of brackets of the same set. 

Examples: [202]rs = -[022]rs for C’J~, zero for 

Dqh (first row). 
[22O]rz = self-adjoint and - [22O]rs, 
hence zero for Cdh and Ddh. 
[202]rr = + [022]ss; one of the pair 
is independent, both for CQh and 

D4h. 

(iv) Th and oh. Table 4 for these groups is 

derived from Table 2 for Dsh and Table 3 for Dqh 
by requiring that brackets remain invariant under 
cyclic permutation of all indices. The six permuta- 
tions of the indices 1, 2, 3 fall into two groups of 
three cyclic permutations. Brackets belonging to 
two such cyclic groups are pairwise adjoint with 
respect to kl, kz, and k3. If adjoint brackets are to 
be equal, such as happens in oh, or if brackets are 
pairwise self-adjoint, the two cyclic groups coin- 
cide. For example, for Th a cyclic group of three 
equal brackets, obtained by cyclic interchange of 
inner and outer indices from the first one, is: 

[202]11= [22O]az = [022]39. 

The other cyclic group of three equal brackets can 
be obtained from these by interchanging the in- 
dices 1 and 2, i.e. adjoining with respect to k3: 

[022]22 = [220]11= [202]sa. 

For Th the two sets of three are not equal in 
general, but for Oh all six are equal. On the other 
hand, the bracket [220]s3 is self-adjoint with re- 
spect to ks; hence there is only one cyclic group of 
three brackets derived from it, and they are equal 
both for Th and oh, namely: 

[22O]ss = [022]n = [202]sa. 

(v) Csg, 032, Csh, Dsh. No simple rules for the 
complete tabulation are available and the theorem 
plus corollaries will be used. In order to obtain the 
most compact form for the results, the following 
scheme has been adopted. 

For any particular bracket we must first decide 
whether or not it is zero. For Csf all zero brackets 
are listed in Table 5. The groups 036, Csh, and 
Dsh have the same zeros as Cai plus the additional 
zeros listed in Table 6. If a bracket does not vanish 
according to Tables 5 and 6, then its relations to 
other brackets are shown in Table 7, up to m = 6 
inclusive. 
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Table 5. Zero brackets for C,i D,i Cab Dsh 

s (we3 
b 
II 

i 

c (awe) 

(103 

(tie) 

(31 e) 

(me) 

(eew 1 (004(00~) 

Table 7 is arranged in three parts, according to 
s = 0, 1, or 2. Each part consists of seven sub- 
tablesform=O, I,... 6. The sub-tables, except 
the simplest ones, have the form of a core array of 
coefficients bordered by brackets. This arrange- 
ment represents a double-entry table, similar to 

Table 6. Zero brackets for Dsi Csh DSh 

ij- 23 31 12 11 22 33 

(eee) i v.A i 

i 
(eww) ama* i 

z 
(wew) A ~~IlamA 

(cawoe) m iz A & A 

A , zero bracket for D,< and for D.L.. 

m , zero bracket for c,,, and for D.r. 

*, Is a reminder to check Table 5. 

the familiar trigonometric tables: brackets on the 
left are equal to the linear combinations of those at 
the top, with the listed coefficients; whereas 

brackets on the right use these same coefficients 
with those at the bottom. That this arrangement, 
in which adjoint brackets stand at opposite ends of 
rows and columns, is possible is due to Corollary 
(V). For example, for s = 1, m = 4 we have 

[31el23 = POel31+ 3[04el31 

[13e]31= 3[40e]23+ [04el23. 

The two equations are adjoint with respect to KS. 

4. THE NUMBER OF NON-VANISHING IN- 
DEPENDENT BRACKETS 

By means of suitable counting methods, it can 
be shown that the number of non-vanishing in- 
dependent brackets depends on 71, the total power 
of B, as a&+bn+c. The values of a, b, and c are 
given in Table 8 for the various symmetries. 

5. DISCUSSION 

The anisotropy of galvanomagnetic effects, first 
studied by RIGHI in 1883, have never been analyzed 
comprehensively for the 32 point groups, as 
attempted in the present study. The resulting 
tables of brackets include as special cases the work 
of VOIGT, of JURETSCHKE for Dsa and m < 4, of 
SEITZ, PEARSON and SUHL, and GOLDBERG and 
DAVIS for cubic crystals, and some of the work of 
KOHLER insofar as it is concordant with ONSAGER’S 
relations. In order to facilitate the comparison of 
our bracket notations with the notations of some 
other authors, Table 9 has been prepared for the 
case Oh. 

The experimenter can make use of the results 
obtained in this paper in various ways. That the 
Hall effect may contain odd and even terms, as re- 
ported by GOLDBERG and DAVIS as well as by 
LOGAN and MARCUS,@) is in perfect order. How- 
ever, if magnetoresistance measurements are not 
free from odd terms,(17) this must be interpreted as 
an indication that insufficient attention has been 
paid to isothermal conditions in the experimental 
arrangement. 

The tables are useful in planning and interpret- 
ing galvanomagnetic measurements, and in esti- 
mating errors due to misalignment. For these pur- 
poses the following steps are required. 

According to equation (3), the measured quan- 
tity is pal = Fa,lJl. I n t erms of the brackets one has 
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Table 7. Relations for non-vanishing brackets for C&, Ds(, c@,, Deb 

(1) z = 0 

m I 
0 [OOelas 

1 I 

2 

- 

12Oelss = WeIs 

3 [12wl,, = -3[30w]ss 
[2lw],, = -3[03w],, 

4 

5 

2[40elaa = [22e]aa = 2[04elaa 

150~18s 

132w13s -z 
[23 da3 

[I4wl*s 141 wl*s 
t05w1,s 

6 16Oelss t33slss tO6elss 
[5Ielss 0 -3/lO 0 II5elss 
[42elss 

iL]ss 133ylss 

9 124elss 
[6Oelss 

(2) s = 1 n = even* 

0 - 

1 UO~ls1 = [OIWI,, 
[OI ~111 = - [IOwl,, 

2 2[20e]si = -[lle]ss = -2[02e]s, 
2[20e]1s = [llelsl = -2[02e],, 

3 [3Ow),, = [12W]Q = t21w1,s = to3uJ1,, 
-[3Ow],, = -_[12w],, = [Zlwl,, = [03wl,, 

4 [4Oel,i tO4els, 

1 3 -3 1; t::“3st e 28 
-3 t31elsi 

[04elzs ’ We&s 

5 

p: 
6 

[5OWlSl [05olm [5Owl,s [05 wls1 
[4IoJlzs --24 3 [I4~1,1 [4Iwls, 2 3 U4wlm 
t32~1si 6 [23 ~1~~ [32~1,, ~23 w181 

105Olza [50wlai [o;:,,, [5&z,,, 

[6Oelsi tO6slsi - 
t51elzs 1 _i U5elsi 
[42els* -2 [24elzs 
;;3$?jzs 1; 2 t33elai 

e 81 -2 [42elza 
[15elzs 

[t&s [60e;zs 
15Ielai 

+ The same table can be used for lt = odd if each bracket with outer indices 23 receives a minus sign and e, w 
are replaced by w, e according to Corollary (VIII). 
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m 

0 

1 

5 

6 

__ 

__ 

-_ 

__ 

(3) s = 2 n = even 

[OOeh = [OOeln 

[lOWIll = [oluJ]ll = [lOw]#$ 
[olw]pp = - [IOwl1* = 101 WI11 

[llelu = [20el11-- [20e], 
we111 = weI% 
WeI, = POeIll 

[lie],, = -[lle]pa = 2[20e], = -2[02eln 

13Owln 13Owlm 
121 wla -l/2 112 [12wll¶ 
U2wln -1 
[12Wln -2 

-; 121 wltl 
[2I 0111 

LO3 Win -l/2 I/2 [3Owll¶ 
[03 OlI 103 WI11 

Well1 ([04eh + Welp) [04& 
-l/2 5/Z [13elU 

112 712 WeIs 
II2 -I/2 WeIs 

WeI, ( WeI= + WellJ W& 

[3Iel,t 
W;IU WeI, 

3 

[22el, 

[50~111 [OS WI11 15Owlaa 
[4IOllS 1 3 -1 [I4wl, 
[32w],, -3 -6 1 

[32w1p l 6 [230],, -3 -4 -: [32~1,, 

[60& [60elLg [06eh [06el, 
[51ella -1 1 -3 3 Wells 
[42elll -4 -2 3 
[42e], -2 -4 6 
[33e],* 2 -2 -2 2 133eln [33eh 

106ela [06elll [6Oel= [6Oeh 

[6Oel,, 106eh [33e11, 
215 18/S -3110 

-8/S -12/S -3/10 
-2 -3 0 

[O&, [6;:,,, [33!& 

U 5el. 
[I5& 
124eh 
[33elll 

(4) s = 2 n = odd 

m 

0 PO Will 

- 

[0201,* = [2Owlm 

[21~],~ = -3[03e], 
[12e],, = -3[30e],, 

4 I 2[400], = [220]~~ = 2[04w],, 

5 2[41ellp = 3 [23ellp = - [OSS]~, 
2[14e&, = 3 [32el19 = - [SOells 

6 [51wln = -3/10[330]1* = [lSw],, 
142011, = -6[60~1,,+9[06~],, 
[24w],, = 9[6Ow],,-6[060],, 
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Table 8. The number of non-vanishing independent 
brackets a&‘+ bn + c 

- 

Table 9. Notations of various authors for Oh 

SEITZ’S ’ Bracket notation 
notation 

___~ 

00 = l/PO : [000111 
cc UOOl,3 = PO11,, 
3 [2001,, = IOO21,, 

;+v+s 
[0111,3 = [1101,, 
120% = [0021,, 

Group c 

c, = s, I even 

Odd 
3 I 9 6 

3,2 1 9.i2 3 

even 3,‘2 4 
odd 314 ~ $2 714 

even 

odd 
1 3 2 

l/2 312 1 

even 
4kfl 
4k-1 

6k-2 
6k 
6k+2 
6k-1 
6k+l 
6k+3 

3i4 5/2 2 
318 514 II/S 
3/8 514 7/s 

i 

413 
l/2 513 2 

813 
7112 

l/4 1 516 23112 
514 

even 314 3 3 
odd 318 312 918 

even l/2 2 2 
odd I:‘4 1 314 

D,h even 3,‘s 714 2 
’ 4k+l 3116 7/s lSj16 

4k-1 3,‘16 718 II/16 

&.h 6k-2 513 

~ 66:+2 
1;4 413 2 

7,‘3 
j 6k-1 
’ 6k+l 1 118 

1 

13/24 

213 29124 
6k+3 718 

-__ -- I _. 

Th 1 Fg: 
1,‘4 1 1 
118 l/2 3!8 

Oh even I,8 314 
4k+l l/l6 3/8 9:16 
4k-1 l/l6 3,‘8 S/16 

_. -- 
I 

Isotropic even10 0 0 2 

I O 0 0 1 
odd 0 0 1 

I __- 

PEARSON and 
SUHL’S 
notation 

; 
I1ool*,: POOL, 
(Pool,, tooo1,1+ I1ool232)i Ioo%2 

: 
(Ilool,8z- ~~~~1,,~~~~1,,~1~00~1,,~ 
(r2oolu - Pool,, - LO1 ll,,);’ [OOOI,, 

where Aij(B) is the cofactor of air(B) in A(B) = 
det u,~(B), and Zja is the direction cosine of the 
laboratory co-ordinate axis a with respect to the 
symmetry co-ordinate axis j. For a = 1 the equa- 
tion represents the magnetoresistance and for 
a # 1 the Hall effect. Substitution of equation 
(7a) into (12) leads to expressions of the form 

where the constants A(O):‘, Q$, R$ can be 
tabulated in terms of the brackets for each crystal 
class. Such tables have been prepared in the thesis 
of Dr. KAO, but are omitted here for the sake of 
brevity. They are helpful in answering such ques- 
tions as: 

(a) How should the samples be grown (I)? 
(b) How should they be placed with respect to 

B(y) for the measurement of certain brackets? 
(c) What errors are caused by slight deviations 

from the desired I or y values? 
(d) What is the minimum number of samples, 

required for the determination of all brackets up to 
order n for the various classes? 

(with the summation convention on repeated 

indices) : 
b(B) l.“l,l 

f+(B) = pj@)zj”l,l= __ 
A(B) ’ ’ 

(12) 

It can be shown, for example, that magneto- 
resistance measurements on no matter how many 
samples will not break up certain bracket combina- 
tions. To obtain all brackets individuallv, a com- 
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bination of Hall and magnetoresistance measure- 
ments is best. 

For the zeroth order brackets, the minimum 
number of samples is three for &, Csh, Dzh, one for 
li, and Oh, and two for all others. For the first- 
order brackets, the minimum number of samples is 
one for all classes provided the zero-order brackets 
are known and that Hall probes can be attached to 
the sample in various directions. 

Finally, if among the measured brackets of order 
n certain ones are much smaller than the majority, 
the tables afford an easy check whether such 
smallness can be interpreted as the result of a slight 
distortion of another lattice for which the bracket 
would vanish. For example, bismuth has the (aug- 
mented) group 031 but can be considered as a 
slightly distorted case of DGh. Since the brackets 

_ 

We prefer a pair of co-ordinate systems of a different 
type (complex, non-orthogonal) defined by 

- 
K1’ = Al’+ &’ 

and likewise for double primes. Quantities referring to 
the complex co-ordinates will be marked by a bar through- 
out. We define the complex components of B by 

B, = B1’+&’ 
- 
Bz’ = B1’ - iBz’ 64.4) 

B3’ = B3’ 1 

and likewise for double primes. The complex com- 
ponents of the second-rank conductivity tensor are de- 
fined by* 

-t 

on-422+i(m2+021) 0~+422-i((r12-~21) 013+io23 

Oij = 011+022+i(o12-021) a11--22-i(m2+021) m3-io23 

031+ is32 031- io32 033 
I 

(A.9 

[ZOO]as and [Oll]n vanish for Dsh, their relative 
smallness for bismuth is thus made plausible. 

The method of analysis developed here is 
applicable to a much wider field than only the 
galvanomagnetic effects, and could be useful when- 
ever power series expansions with tensor coefficients 
of increasing rank are studied. 

APPENDIX 

Proof of the Theorem concerning an N-Fold Rotation axis 
along k, 

Let k,‘k,‘k,’ be a set of symmetry co-ordinates of a 
point and let k,“k,“k,” be the transformed set of the 
same point after rotation of the co-ordinate axes through 
an angle t$ = 277/N about k,. With respect to these two 
systems of axes the components of a tensor T of arbitrary 
rank are related by 

T”ij . . . z = c artaju . . . azvT’tu . . . vu, (A.11 
tu 

where 

act = (A.21 

This is true in particular for the Cartesian components of 
the position vector k of a point, of the magnetic field 
vector B, and of the components oij of the second-rank 
conductivity tensor. 

According to Onsager’s relation 

G(B) = oji(--B), (A4 

hence terms below the diagonal of equation (A.5) are 
dependent, and it suffices to consider those on and above 
the diagonal. 

For convenience we shall now introduce another 
notation. Let s denote the number of ones and twos 
together, and z the number of twos, among the indices - 
of a oij. This definition of z is consistent with that given 

* For a tensor of arbitrary rank n the complex com- 
ponent T<j . . 1 is defined as follows. 

(a) Replace every index in the given order by a symbol 
according to this scheme: the index one by (ll+i2), the 
index two by (11-i2), the index three by (la). 

(b) Multiply the n-fold product of symbols so obtained 
according to the associative and distributive law, but do 
not use the commutative law. 

(c) Replace each “term” of the symbolic polynomial so 
obtained by T with the indices of that term in the given 
order and with a coefficient equal to the product of the 
coefficient parts (upper parts) of the “factors” of that 
term. The resulting polynomial in T is the desired ex- 
pression. 

For example, one wants to find the appropriate dk- 
finition of ?&,. According to (a) he writes the symbol 
(l,+&)(l,-&)(I,). According to (b) he obtains the 
symbolic polynomial (~1)(1~)(I~)-(11)(~~)(I.J+(~&11)(18) 
-(iJ(&)(ls). According to (c) the definition is now 

%,, = T1,,--iT1,,+iTzl,+ Ts23. 
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in Section 3b. The numbers s, z define uniquely one of 
the six independent pairs of indices ii and vice versa. We 
write (note the indices between parentheses): 

o(S.2) = Oij. (A-7) 

Thus, for example, 0~~~) is another notation for oz It can 
be verified by direct substitution of these definitions and 
comparison with equations (A.1) and (A.2) that the 
complex tensor components as defined transform under a 
rotation of co-ordinates about k, according to 

T”ij . ..I = c atqu **- - GZU...” (A4 
tu -2’ 

with the diagonalized matrix 

-- i 

e-*4 0 

arf, = 0 eiQ 

0 0 

In particular, 

B1” = We-W 

Bz” = BTeW 

B3”.= K 

0 

0 . 1 (A-9) 
1 

1 (A.lO) 

Let us write, in analogy with equation (7): 

-- 
x &'w&'m-wj@-m, (A.ll) 

Comparison of (A. 11) with equations (7) and (8) yields 

m 

~(S,& mt w) = (1/2)m(-_)W 2 2 g(m?pp w) x 

p=o 6 

(A.12) 

where g and E are the functions defined in the text by 
equation (11) and Table I. 

If the rotation is a “covering” operation of the crystal, 
then the equations (A.11) and (A.12) must be invariant, 
i.e. their form in terms of doubly primed quantities must 
be identical to that in singly primed quantities, using 
identical brackets. The brackets are therefore written 
without any primes. Consequently, also 

, 
c (8.2) (n,m,w) = c’(S,&, mt w> (A.13) 

in other words: also the primes on c can be omitted for a 
covering operation. 

The invariance requirement applied to equation 
(A.11) will yield equations (9) and (10). To see this, we 
express the doubly primed components of 07;(e,e) and 
Bk” in the doubly primed analog of (A.1 1) in terms of the 
singly primed ones by means of (A.10): 

m n m 

x et@B1'w&,'m-w&'n-m (A.14) 

with h = m+s-2(w+z). Comparing (A.14) with (A.ll), 
it is seen in view of (A.13) that the two results are com- 
patible only if 

either ~8,&, mj w, = o 

&M = 1. I 

(A.15) 
or 

In connection with (A.l2), the equations (A.15) are 
identical with equations (9) and (10) in the text, and the 
theorem is proved. 
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