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Selection Rules for the Vibrational Spectra of High Polymers 

C. Y. LIANG~ 

The Harrison M. Randall Laboratory of Physics, University of 
Michigan, Ann Arbor, Michigan 

With the aid of the Born cyclic postulate, the selection rules for the vibra- 
tional modes of a crystalline polymer and an oriented infinite chain-molecule 
have been discussed. The necessary conditions for the modes to be active in 
the infrared or Raman spectrum have been deduced from the translation 
group of the crystal or of the chain. Approximate methods have also been 
discussed for a finite chain-molecule and for a high polymer of amorphous form. 

INTRODUCTION 

It is well known that the methods of group theory can be used to analyze 
the spectra of small molecules and crystals. Some authors have also applied 
this theory to the spectra of high polymers (1-G). One difficulty in applying 
group theory to the spectra of high polymers is that the polymer samples avail- 
able are always partly crystalline and partly amorphous, and mixed spectra 
are often observed. In addition, the interpretation of the spectra in the overtone 
region is generally complicated. 

In the present work we will discuss the necessary conditions for the vibrational 
modes of crystalline or oriented polymers to be active in the infrared or Raman 
spectrum. Approximate methods will also be discussed for finite chain molecules 
and for high polymers of amorphous form. 

THE SELECTION RULES FOR THE SPECTRA OF CRYSTALLINE POLYMERS 

Let us consider first the spectra of high polymers in the crystalline state. In 

this case we can treat the problem the same as that of an ordinary three dimen- 
sional crystal. The basic postulate for the possible normal vibrations of a three- 

dimensional lattice is the Born cyclic lattice condition (7). From Born dynamics 

the normal frequencies are functions of the wave-vector k. Let us consider a 

block in the infinite crystal. The cyclic condition requires 
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where LY, p, and y are integers from 0 to (nl - l), (nz - 1) and (nl - l), respec- 

tively. The no , nz , and n3 are the number of lattice vectors a1 , a2 , and a3 , re- 
spectively, counted along the principle axes. The hi’s are the reciprocal vectors. 

The scalar product ai.bj is one for i = j and zero for i # j. The physical inter- 

pretation of the cyclic condition is that any vibrational mode of the atoms in 

the block must repeat again and again inside the crystal. In other words, all 

equivalent blocks of the crystal are oscillating in phase. In applying this postu- 

late, an immediate question arises; namely, how to select this block from the 

crystal. There are a few cases that can be mentioned: (a) In the original Born 

dynamics, the selected block containes n3 unit cells with n any larger integer. 

(b) In the finite space group discussed by Winston and Harford (8), the block 

contains nln2 723 unit cells with n1 , 7~2 , 7~3 integers. (c) In the special case of 
Born dynamics used by Raman in interpreting the spectrum of Diamond (9), 

the block contains 23 or 8 unit cells. (d) In the factor group of the space group 

discussed by Bhagavantam and Venkatarayudu (10) [or the unit cell group by 

Hornig (II)], the block contains only one unit cell. 

For the selection rules concerned only with the possible active fundamentals 

of a crystal, the analysis based on the factor group (unit cell group) of the space 

group has been proven correct. Only the normal vibrations deduced from the 

factor group may be active in the infrared or Raman spectrum. These modes are 

all totally symmetrical to the lattice translation group; or in other words, all 

the unit cells swing in phase. This is the necessary condition for the modes to 

be active and can be shown as follows. Consider a block of the crystal with nl 

n2 n3 unit cells. The symmetry operations of the translation group are 

tk,, = Xal + pa2 + va3 , (59 

where X = 0, 1, 2, . . . , nl - 1, etc. The irreducible representations of the trans- 

lation group (12) are given in Table I. By the well-known formulas of group 
theory, we can calculate the number of active and forbidden modes under the 

translation group. These are also given in Table I. Only the modes under the 

totally symmetrical representation J?(O) are active. If the unit cell group is for 

example, C1 , C, or C2 , the condition for the modes to be active is necessary 

and sufficient. If the unit cell group is of higher symmetry, then all the modes 
which are totally symmetrical to the translation group may not be active, and 
the condition becomes necessary but not sufficient. The more complete selection 

rule in this case can be deduced by considering the finite space group of a chosen 

block of the crystal. 
For overtones and combinations of the spectra of crystals we have to consider 

the block of nl n2 n3 unit, cells with sufficiently large numbers of ni’s. Since numer- 

ous overtones and combinations of inactive fundamentals may be active, the 
bands are thus overlapped with each other. The necessary condition for the 
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TABLE I 

SELECTION RULES FOR THE NORMAL VIBRATIONAL MODES OF 
CRYSTALS UNDER THE LATTICE TRANSLATION GROUP 

(A-Active, F-Forbidden) 

E tKa h/I” . . Ni I. R. Raman 

r(o) 1 1 . . . 1 . . 3s A A 

r(kloo) 1 exp(2&kloo. tloo) . . . exp(2xikloo.thp,) ... 3s F F 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

r (ke6-J 1 exp(2rik,B,.tloo) - - - exp(2&k,PY-t,,,) e .. . 3s F F 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

U(R) 721122123s 0 . . . 0 . . . 
X” 3 3 . . . 3 . . . 
X&t. 6 6 . . . 6 . . . 

.s = number of atoms in the unit cell. U(R) = number of invariant atoms in the block 

under the symmetry operation R. Xv = character of the vector representation = fl + 2 
cos 4. Xa.t. = character of the symmetric tensor representation = 2 cos 0.X”. Ni = total 

number of normal modes under ith irreducible representation. 

overtone or combination to be active in the infrared or Raman spectrum is that 

the combined representations must be totally symmetrical to the translat,ion 

group. Consider the combination I’(kJ and I’(k,). From Table I we obtain t,he 

representation of r*(k;) . l?(k,) as 

1, .“) exp[2?ri(kr - ki) . txpy], . . . , . . . . 

if k, = ki , then I’*(kJ. l?(kf) = I’(O), which is the totally symmetric represen- 

tation of the translation group. Hence, this combination may be active in the 

infrared or Raman spectrum. If k, # ki , the combination is inactive. 

Let us consider next the possibility of using the site group (13) t,o analyze 
the spectra of crystalline high polymers. If the bands due to the interaction of 

neighboring groups in the same unit cell are not resolved, the site group could 

be used as an approximation. For example, crystalline polyisobutylene 

[-CH&(CH&-_I, may have a orthorhombic unit cell (14). The polymer has 
a spiral chain with 8 monomer units in a period. There are two chains passing 

through the unit cell. The space group of this structure is DZ4, and its factor 

group is isomorphic to the point group D2 . The total number of normal modes 

calculated from the factor group is 144 (A, + B, + Bz + &). Since the modes 

of species B1 , B2 , and BB are infrared active, we may expect to observe (3 X 
144) - 3 = 429 bands. Actually, we have observed less than 20 distinct bands 
in the fundamental region. In this case we need not use the analysis based on 

the unit cell group. We could interpret the spectrum by considering only one 
monomer unit. 
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It may be noted that the polarization properties of the spectra of crystals 
cannot be predicted from the site group. This is a great disadvantage of this 
approximation. In addition, the overtones and combinations of the funda- 
mentals deduced from the unit cell group cannot be interpreted. For example, 
since the unit cell group of crystalline polyethylene (1,4) contains the symmetry 
operation of center of inversion, no overtone or combination of the infrared 
fundamentals can be active in the infrared. If the analysis is based on the local 
symmetry CP~ , all the overtones of the infrared fundamentals are active in the 
infrared. The approximation is thus in contradiction to the more accurate 
approach. 

THE SPECTRA OF ONE-DIMENSIONAL ORIENTED HIGH POLYMERS 

If the interaction between chains in the same unit cell is weak, we can set up 
the selection rules for the spectra of oriented long chain polymers by considering 
the one-dimensional space group. The treatment for the one-dimensional lattice 
can be deduced from the three-dimensional case discussed in the last section. 
However, there are two main differences: 

(1) For the three-dimensional crystal, the symmetry axes, C, , are restricted 
to p = 1, 2, 3, 4, and 6 (15). For the one-dimensional case, p may be any real 
number. Let us, for example, consider a spiral chain. If p is a whole number N, 
(for example, p = 8 for polyisobutylene), the chain will repeat after N monomer 
units. If p is a whole number N plus a real fraction h/g, then the chain will 
repeat after Ng + k monomer units. If p is an irrational number, the chain will 
never repeat and the cyclic group C, becomes infinite. These cases are all pos- 
sible. 

(2) There are no pure rotational modes in the three-dimensional case. In the 
one-dimensional case one pure rotational mode, the rotation about the chain 
axis, is present. If s is the number of atoms per unit cell, then 3s-3 is the number 
of nonzero fundamental frequencies under the unit cell group in the three-di- 
mensional case. In the one-dimensional case the number of nonzero fundamental 
frequencies under the factor group of the one-dimensional space group is 3.9-4, 
where s’ is the number of atoms per repeating unit of the chain. 

It may be pointed out that the one-dimensional approximation does not cor- 
respond to the analysis of the site group. The site group is a point group, while 
the one-dimensional space group is not. Furthermore, the site group is a sub- 
group of the unit cell group, but the factor group of the one-dimensional space 
group is not in general a sub-group of the unit cell group. For example, the unit 
cell group of crystalline polyisobutylene, as we have mentioned, is isomorphic 
to Dz . For a single spiral chain of polyisobutylene the factor group of the one- 
dimensional space group is isomorphic to Ca , which is not a subgroup of Dt . 
In t,he case of crystalline rubber hydrochloride (16) the factor group of one- 
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dimensional space group for a single chain is isomorphic to C, , which is a sub- 
group of the unit cell group CU, . 

Next let us determine the necessary conditions for the modes to be active in 
the one-dimensional case. Let n be the number of the smallest repeating unit in 
a selected segment of the infinite chain. Then, by analogy to the Born cyclic 
condition, we have 

where 1 = 0, 1,2, . . ., n - 1. The physical interpretation is that for the permitted 
modes all equivalent segments of the chain oscillating in phase. If we take n = 1, 
the treatment is reduced to the analysis of the factor group of the one-dimensional 
space group. Just as in the three-dimensional case, the necessary condition for 
the fundamentals to be active in the infrared or Raman spectrum is that the 
smallest repeating units of the chain must all swing in phase. This condition can 
be formulated by the phase difference 13 between adjacent characteristic units 
which can be reached from each other by screw rotations of the chain. Let p 
be the number of characteristic units in a repeating period. It can be seen that 
if something occurred at the first characteristic unit of the period, the same thing 
occurred at the first characteristic unit of the next period, and so on. Therefore, 
PO must be 27r times a whole number. We then have 

0 = (2rlP)r, with r = 0, 1, 2, . . +, p - 1. (4) 

For r > p - 1 we get nothing new since r = p is equivalent to r = 0, and so 
on. Since --T is equivalent to p - r, we can also put the condition in the follow- 
ing form: 

with r = 0, fl, &2, . . * , =t(p - 1)/2 for p odd, or r = 0, fl, f2, 1.. , 
&(p - 2)/2, p/2 for p even. An infinite planar zig-zag chain of (-CH2CH2-), 
is a special example with P = 2, and 19 = 0 and u. For a single chain of poly- 
chlorotrifluoroethylene (5), we have p = 14, and f? = (2~/14), with r = 0, 
fl, . . . , f6 and 7. 

So far we have discussed the necessary conditions for the vibrational funda- 
mental modes of an infinite chain polymer to be active in the infrared and Ra- 
man Spectrum. For the overtones and combinations, we have to consider, as 
in the three-dimensional case, a large segment of the chain, and treat the prob- 
lem with a finite one-dimensional space group. Let us consider a segment of the 
plane zig-zag chain of (-CH&HZ-), . We can treat the problem by the factor 
group of the one dimensional space group by putting n = 1. This factor group is 
isomorphic to D2h with eight symmetry operations (1, 4). If we choose n = 2, 
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the one dimensional finite space group contains 16 symmetry operations, which 
may be easily shown to form a non-Abelian group. Degenerate modes are thus 
present, because the irreducible representations of a non-Abelian group cannot 
ail be one-dimensional.-It is interesting to note that, for a point group, if the 
highest symmetry axis is two fold, we can have only nondegenerate modes. This 
conclusion is no longer true in general for a finite space group. 

THE SPECTRA OF FINITE CHAINS 

In the foregoing discussion we have used the Born cyclic postulate to set up 
the selection rules for both the three dimensional crystal and the infinite chain 
polymer. For a finite chain the situation is different. Rigorous selection rules in 
such a case may be deduced by considering the point symmetry of the whole 
molecule. Let us consider, for example, the normal paraffins I!J~H~,+~ (N > 2) 
with plane zig-zag backbones. The methyl groups at the ends may be arranged 
either in trans or in cis form. The cis form for odd N belongs to the point sym- 
metry CZ,, . Both the trans form for odd N and the cis form for even N belong 
to the point symmetry C, . The remaining case the trans form with even N, be- 
longs to the point symmetry CV, . The selection rules for all these cases can be 
worked out readily. If the chain is quite long and extended (plane zig-zag form 
or repeating helix), we can treat the problem by the following approximate 
method. Consider one smallest repeating unit of the chain at a certain normal 
vibration. By various phase combinations of the vibrations between successive 
units, we can obtain a series of normal vibrations of the chain. If all the units 
of the chain swing in phase, the mode is potentially active. The intensity (I8) 
of the potentially active spectral line is proportional to (wzA)~, where m is the 
number of the repeating units in the chain and A is the maximum amplitude of 
the dipole moment change in the unit. If, for the same type of normal vibrations 
in the unit, the units of the chain do not all swing in phase, the modes may still 
be active, but the intensities are much weaker. The condition for the modes to 
be weakly active is that an odd integer of half a wavelength (the wavelength of 
the normal pattern) must be completed within the chain. The intensity (IW) 
of the weakly active spectral is approximately proportional to 

where q = 0, 1, 2, -. - . Hence, we have 

1 
IUJ’18 = [2(2q + l)]“’ 

The potentially active mode and the weakly active modes of the same type of 
vibration form a branch of frequencies or a band. 
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THE SPECTRA OF AMORPHOUS POLYMERS 

l+‘or the spectra of high polymers in the amorphous state, no exact selection 

rules are possible. The spectrum of the amorphous form is generally more diffuse 

than that of the crystalline form. A number of other differences between the 

spectra of these two forms has been observed. For examples, t,he strong bands of 

the infrared spectrum of polethylene are doublets in the crystalline form but 

become singlets in the amorphous form (4). In the spectrum of polethylene ter- 

ephthalate the relative intensity of the band at 972 cm-’ is increased markedly 

when the cryst,allinity of the sample is increased (17). For the infrared spectrum 

of rubber (18, 19) the differences are: (a) The band at 1665 cm-l is nearly the 

same for both crystalline and amorphous forms. (b) The bands at 836,1135,1330, 

and 1365 cm-’ change their intensities and positions with change of form. (c) The 

bands at 870 and 962 cm-’ are observed only in crystalline rubber. (d) The band 

1240 cm-’ of amorphous rubber is resolved into three components at 1245, 1230, 

and 1210 cm-’ in the crystalline form. It may be that the band observed only in 

the crystalline state is due to the interaction between neighboring chains in the 

unit cell (3, 4,20), while the band observed only in the amorphous state may be 
due either to breakdown of selection rules operative in the crystal or to the 

exist’ence of different rotational isomers. In interpreting the spectra of amorphous 
high polymers, we have to consider all the characteristic groups of atoms in the 

polymer. If a special arrangement of a characteristic group of atoms is considered, 

local symmetry can be used. For example, the selection rules for the normal vibra- 

tions associated with the benzene ring in amorphous polystyrene may be deduced 

from the local symmetry CzV of the ring (21). 
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