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Abstract-Using a statistical model, equations are developed for the variation of the reversible 

susceptibility both parallel with and normal to the biasing magnetization as a function of the mag- 

netization assuming that the susceptibility arises by domain rotation. The results are contrasted with 

previous results based upon domain-wall motion. It is concluded that the theory points out a new 

technique for the separation of the origins of the susceptibility. Equations are also given for the ex- 

pected variation of the differential magnetostriction with magnetization both parallel with and 

normal to the field and for both domain-wall motion and domain rotation. 

Quantitative results depend upon the fraction of the moments oriented in each direction. A func- 

tion describing this distribution is discussed. 

An expression is given for the susceptibility matrix arising from domain rotation as a function of 

magnetization. 

INTRODUCTION 

THE reversible properties of polycrystalline ferro- 
magnets result from the ferromagnetic nature 
of the material when a differential disturbance 
of some kind is applied. To fit the reversible 
criterion, internal oscillations to the material must 
be carried out about fixed equilibrium positions and 
must be vanishingly small. Thus, reversibility in- 
dicates repeatability and, for the special case of a 
zero-frequency applied disturbance, it implies 
reversibility in the thermodynamic sense of zero 
energy dissipation. GAN# pointed out that the 
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reversible susceptibility of iron could be closely 
approximated analytically as a function of the 
magnetization only, independently of the magnetic 
history, BROWN( 2.3*4) extended GANS’ work to in- 
clude the cases of the derived distribution function 
f(0) de, the fraction of the presumed equal volume 
domains oriented between 8 and B+d8, and with 
this knowledge was able to express the reversible 
susceptibilities and the magnetostriction in terms 
of the magnetization. 

GRI~L~ES and MARTIN(~) extended BROWN’S work 

to include the reversible susceptibility measured 
both normal and parallel to the magnetization. 
They compared their results favorably with mea- 
surements on several ferrites. In the meantime, 
TEBBLE and CORNER(~) and STONER(‘) pointed out 
that the reversible susceptibility is not a unique 
function of the magnetization, but does depend 
upon the magnetic history. It is the point of view 
of this paper that although the susceptibilities do 
indeed depend upon the magnetic history, as a first 
approximation they can be first considered as 
functions of the magnetization only. Variations 
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142 D. M. GRlMES 

from this idealized behavior can then be dis- 
cussed. 

It is pointed out that under usual conditions the 
equations for the parallel reversible susceptibili~ 

X?P and the transverse (normal) reversible sus- 
ceptibility Xrt as given by BROWN(~) and by GRIMES 
and MARTIN(~) are applicable when the suscepti- 
bility has its origin in domain-wall motion. In this 
paper the susceptibility matrix is derived as a 
function of the magnetization when that matrix 
arises by domain rotation. The diagonal terms give 
the reversible susceptibilities XT9 and Xrt due to 
domain rotation. 

The expected variation of the parallel differ- 
ential magnetostriction with magnetization has 
been computed by BOZORTH and WILLIAMS. 
They assumed that both the reversible suscepti- 
bility and the change in biasing moment had their 
origin in the rotation of the magnetic moments. In 
this paper equations are derived for each of the 
four possibilities when the biasing moment changes 
by domain-wall motion. The differential magneto- 
striction of several ferrites has been discussed by 
VAN DEH BvRGT.(~) 

THE REVERSIBLE QUANTITIES, GENERAL CASE 

The susceptibilities 

The magnetic properties of a ferromagnet can be 
described in terms of the f~~nction~(~) de, the frac- 
tion of the total atomic moments of the material 
which are oriented between 6 and B+dBwith respect 
to the applied magnetic field. The magnetization 
is then given by: 

s 

;I.fC@) sin 0 d0 

where the symbol < > indicates the weighted aver- 
age over the polycr~stal, NI is the gross magnetiza- 
tion, M, is the spontaneous or saturation moment 
and 6 is the angle between the gross magnetization 
and the moment vector in question. The validity of 
equation 1 is limited by the equality of the satura- 
tion and spontaneous moments but not by any 
particular magnetization mechanism. A discussion 
of f(8) will be left until later. The reversible sus- 
ceptibility measured parallel to the appiied mag- 
netic field is: 

where H is the magnetic field, subject to the con- 
dition that the same mechanisms which allow the 
static value of M to be different from zero also give 
rise to the reversible susceptibility. The partial 
derivative indicates that the external stress and the 
magnetic history of the specimen remain constant. 
The latter implies that the susceptibility is initially 
measured opposite in direction to the change in H 
which brought the material to the position (111, H) at 
which the measurement was taken. This is assumed 
to be the susceptibility measured by a vanishingly 
small alternating field. 

The reversible susceptibility for dilute material 
can also be calculated by applying the usual torque 
equation to all magnetic dipoles present in the 
system. This torque equation with the added damp 
ing term as given by LANDAU and LIFSHITZ~O) can 
be written as: 

PM 
__ = y(M x Ii)--$[M x(M x HII 
dt 

(3) 
s 

where t is the time, y the magnetomechanical 
coupling coefficient, and E a dimensionless para- 
meter proportional to the energy loss. It is the 
usual convention in solving equation 3 to assume 
that the spontaneous moment is oriented along the 
z axis and that the effective magnetic field in the 
x direction is large compared with the applied 
reversible field. The magnetization from equation 3 
can be written as a function of H using matrix 
notation, as: 

(iv) = &Y)(,i). (4) 

I,ct us now assume that al1 time varying quantities vary 
as eewL, and, to obtain a diagonalized matrix for (X), we 
use the co-ordinate system (x +z’y, .x -$I, z).(“) Using this 
notation the operator j represents a time delay of (a/20) 
set and the operator i represents a 7r/2 spatial rotation. 
The susceptibility matrix then becomes: 

-x33 = Xl, = Xl3 = x33 = x,, = x3, = x3, = 0, 
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where w0 = TM,, wi = rHz and w is the applied radial general matrix in terms of the Euler angles (0, q’, #), then 
frequency. The real parts of equation 5 with respect to i to average the result over a polycrystal. If the subscript 
represent diagonal terms in the co-ordinate system d indicates the z axis based system and g the arbitrarily 
(x, y, a) and imaginary parts represent off-diagonal based system, then M, = XdHa and MB = aXdHd = 
terms. Real parts with respect to j represent energy aX,a-‘Hg = X,H, where a is the Euler transformation 
stored and imaginary parts represent energy dissipated. matrix expressed in the system (x++, x;?t, z). Both u 

To extend equation 4 to a polycrystalline medium, let and a-’ have been computed by PARK.(“) In averaging 
us first average the susceptibility matrix over a poly- over a polycrystal, if all angles around the applied field 
crystalline sample, and then correct for interdomain are equally likely (physically this means that if crystalline 
effects. The procedure for averaging is to transform the orientation exists, it has rotational symmetry about the 
susceptibility matrix from one based upon the z axis to a field direction) then all off-diagonal terms of the matrix 

- X, average to zero and X, is given by: 

r 

((l+cos @2)x++ ((l-cos 8)2)X_, 0, 0 

x* =?I 0, ((1-cos e)s)x++ ((l+cos 0)2)X_, 0 1 (6) 
Lo, 0, 

In an attempt to account for the interactions of neigh- 
boring domains whose moments are rotating consider the 
effective field at a particular domain because of its neigh- 
bors. Following PARK let us assume that the neigh- 
boring domains have an averaged moment equal to that 
of the gross material. PARK showed that the interaction 
could be described as h = H--pM where h is the effec- 
tive magnetic field felt by the domain, H is the applied 
alternating field, ‘M the macroscopic alternating mag- 
netization and p a constant. External demagnetizing 
factors are describable by a similar equation. Thus it is 
to be assumed that the term (--p&Z) describes effects due 
to the external geometry and the internal domain inter- 
actions. This can be understood by assuming that the 
full demagnetizing factor of the domain by itself is only 

_ 

2(1- (cosse))(X++x_)_j 

partially cancelled by its contact with neighboring 
domains. Putting the h’s into the susceptibilities: 

Mg = 
xfl 

-H, = xgHg. 
1 +P% 

(7) 

The susceptibilities (x) from equation 7 are formally 
identical with the susceptibilities (X) of equation 6 when 
wi is replaced by (w,+pw,). Thus the effect of external 
demagnetizing factors and nearest-neighbor domain 
interactions as here considered are describable as an in- 
creased effective anisotropy field. This is also true when 
the effective fields vary throughout the sample.(ia) 

In terms of the system (.x, ~1, z) ,-.nd the x’s, the aver- 
aged susceptibility matrix is : 

r v+ <cos2 e>xX-+X+), 2 033s 0 xx--x+), 0 
1 

xs = t L --2(cos o(x--x+), 

0, 

For a nonoriented polycrystal in the virgin state it follows 
that <co9 0) = l/3 and (cos S> = 0 so equation 8 is 
proportional to the unit matrix. For saturated material 
{cos @>= <co9 8) = 1 and the matrix is the sus- 
ceptibility matrix of a single crystal.(i3) The off-diagonal 
terms are propo:tional to the macroscopic magnetiza- 
tion, a fact in agreement with previous calculations of 
RAL)o.(“) Sincef(0) is not known, the diagonal terms can- 
not be calcvlnted unambiguously from a knowledge of 
the normalized magnetization only. 

Remembering that equation 8 is based upon the 
biasing magnetization being in the z direction, the 
transverse and parallel reversible susceptibilities 
for domain rotation are seen to be 

cl+ <cos2 e>)(X-+X+), 0 

0, 2(1 - <cos2 e>)(X-+X+) 1 (8) 

Xrt’ = ?(I+ (cos2 e)); 

XV - r -+(l--(cos2ej) 

(9) 

independently of the particular averaging function 
f(e). The susceptibilities are then related by: 

(x,+x-) = 2xrtr+xrpr = 3xor. 

where the superscript r’s indicate domain rotation, 
the subscript r’s indicate a reversible property and 
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the subscripts p and t represent parallel and trans- 
verse respectively. 
The assumptions made in deriving equations 9 and 
10 arc: 

1. that the susceptibility is describable by the 
small signal solution to the LANDAU-LIFSHITZ 
equation. 

2. that’the sum of the biasing field and magnetic 
anisotropy effects are describable as an effective 
magnetic field; and 

3. that either domain interactions do not exist 
or that they arc describable by the field (-pM). 
Presumably, so long as assumption (2) is valid, 
assumption (1) will also be. 

From equation 10 it is apparent that so long as 

(x-+x_) remains constant, if xrl,T is a monotonic 
decreasing function of JZ, then xrlr will be a mono- 
tonic increasing function with ratio of slopes equal 
(--21. 

l%e magnetosfrictions 

If a demagnetized sphere of polycrystalline 
material is magnetized the material ceases to be 
spherical and becomes elongated or shortened in 

the field direction. The coefficient As is defined to 
be: 

Al Ln - &I 

As=T= ~ ( ) 1 

where I,,, is the length of the saturated material in 
the field direction and I,, is the diameter of the 

sphere. Because parallel-antiparallel orientation 
changes leave AZ unaltered the angular dependence 
of the magnetostriction must involve even powers 
of cos 19. Under the restricting conditions that the 
magnetostriction is independent of the crystal- 

lographic direction (i.e., h,< =y A,,,,, =- X,,,) then for 
each crystallite:(l”,‘“.“) 

hd = $h,(cos2 0-i). (11) 

where & is the ratio AZ/Z for each crystallite as a 
function of 19. If the effects of microscopic strain 
interactions are completely described by the deter- 
mination ofJ(e), then each crystallite separately con- 
tributes according to equation 11 and the gross 
magnetostriction ,$, is given by: 

h, = qx,( (COG B)--J$). (12) 

Subject to the condition that the susceptibility has 

its origin in the mechanism which produced a gross 
magnetization other than zero, the parallel differ- 
ential magnetostriction is given by: 

8 ices’ 0) 
(& = ;f = !!! -J-iZL, (13) 

where the partial indicates that the magnetic 
history and the external stress are constant. Since 
X and M are both functions of 0, the differential 
magnetostriction can also be expressed as: 

d = (2) = (~/f!!$!f!!, (14) 

For alternating differential fields dM/dH is taken 
to be the reversible susceptibility x,.. Thus, com- 
bining equations 1 and 11 for each crystallite with 
the bracket in equation 14. 

(15) 

for each domain. Equation 15 can be combined 

with the non-averaged values of the susceptibility 
for each domain corresponding to equation 9, then 
the product averaged over the polycrystal to ob- 
tain : 

d,r = ;;!$lcos /I)+ (cog3 Sj]. (16b)” 
s 

From equation 16 it is apparent that for constant 
x0 the maximum value of d should occur for crossed 
magnetic fields with M =- il!fs. Since H,, is not 
negligible for M == M,q, this maximum value of 
(9X,x,~/2M,) cannot be attained in nonoriented 
material. 

Results of an efSective history field 

For many materials, the magnetic moment 

* The equation for dnr is similar in form to the ex- 
pression for A given by BOZORTH and WILLIAMS.(~) 

Using their approach (a) the biasing moment as well as 
the differential moment is assumed to vary by rotational 
processes, (b) it is not clear how the values of 1.37 to 1.60 
were obtained for their f, and (c) they put <cos S)a = 
(co2 8.). 
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vectors remain oriented very nearly along crystallo- 
graphically “easy” directions when M 5 Magi. 
Under these conditions the parallel reversible 
susceptibility and differential magnetostriction 
when calculated by equations 2 and 13 must also 
have magnetic moments in “easy” directions. This 
criterion is consistent with the movement of do- 
main walls but not with rotation of domains. Thus 
so long as the static moment is oriented in “easy” 
directions equations 2 and 13 will be applicable to 
domain-wall motional effects. 

It is convenient to introduce the dimensionless 
parameter q defined by 3 = if(Hap+B), where 
H,, is the applied biasing field, A is a constant and 
I) is a history dependent field. It is now necessary 
to make the restricting assumption that the mag- 
netic history of the sample is completely described 
by the effective magnetic field D. The physical 
significance of the parameter 7 and the field D are 
discussed in the appendix. This assumption implies 
that the sum of the component of local moments in 
the field direction uniquely determines that in all 
other directions. With this assumptionf(8) and the 
resulting (COP @) will be unique functions of 17, 
and experimental plots of different functions of 
(COP 8) should eliminate hysteresis effects. Modi- 
fication of this assumption will be discussed later. 
Since the (COP 8) are assumed to be unique func- 
tions of 7, let us define: 

F(T) 3 (cos e> 

G(T) z (toss 0) (17) 

H(q) S (cos3 e>. 

The values of M and xrPw as given in Table 1, 
row I, follow from equations 1, 2, and 17. Note 
that the partial with respect to H is taken at con- 
stant L>. D is presumed to change with each change 
in domain configuration. The values for xr@r, x$, 
dPf, dSr, d,” and the susceptibility matrix in Table 
1, row 1, follow from equation 17 and equations 
9,16, 13, and 8 respectively. To compute xrtW note 
that when the biasing field is increased by a normal 

1 

AM 

M ti 

FIG. 1. The relationship utilized to determine the trans- 
verse properties due to domain-wall motion. 

K 

differential field the increasing magnitude is 
second order in ~dHlM) (i.e., H = l/[HGps+ 
(AH)7 2 Hapl/[l +~(~lH~~)z]), but the change 
normal to H,, is first order in (AH/H,,). Thus, for 
a differential field, the transverse susceptibility 
can be seen from the similar triangles of Fig. 1, if 
the field and moment remain parallel: 

AM AM 
xrtwsjirnoA- = ~ = 

AM JYrl) 

+ h 
8. (18) 

rl 71 

The transverse-field differential magnetostric- 
tion due to domain-wall motion follows bya similar 
argument and is given by: 

A 
dtw = 3f2& -_IG(+-_3]. 

77 
(19) 

Upon comparing the parallel and transverse sus- 
ceptibilities it is apparent that: 

dxrt w 
XrP w = xp+q----. 

6 
Thus, if xro”’ is a monotonic decreasing function of 
M, then xrtW must also be decreasing in contrast 
with the expected results from domain rotation. 

The differential equation of motion which 
describes the movement of 180’ domain walls is 

* . . 
2poMsH = ox+/3x+mx (21) 

where x represents the spatial co-ordinate of the 
wall measured from its equilibrium position in the 
absence of the field, and a, /I and m are constants 
and pa is the permeability of free space. Inherent 
in equations 18 and 19 is the assumption that 
ax $ (j?~+rn~). The magnetic Q of the material 
for a sinusoidal applied signal is: 

cc- w2m 
Q=---& 

Thus, so long as the material remains inductive, the 
Q remains large, and wall-motion processes pre- 
dominate, equations 18 and 19 will be valid. 

The functionf(8) d@ is, by definition, the fraction 
of the magnetic moments in the system of interest 
at an angle between 6 and 8+dt? with respect to the 
biasing field. f(8) will be constant for nonoriented 
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material which has been cooled through its Curie 
temperature in the absence of any magnetic fields. 
For saturated materialf(B) will be unity in the field 
direction and zero in all other directions. If the 
magnetization is decreased from saturation, the 
first effect is the rotation of the magnetic moment 
vectors of the different crystallites towards “easy” 
crystallographic directions as determined by the 
anisotropy fields. The exact result as the field is 
further decreased is open to considerable variation 
as well as conjecture. However, demagnetizing 
fields will exist and, if the crystallites are suffici- 
ently large, domain walls will be nucleated. These 
effects, as well as effective magnetostrictive fields 
arising from internal strains, will disorder the 
moments of the system. For single crystals, 
HEISENBEI&~) has proposed a model based upon 
the most probable domain behavior, while 
AKULOVQ@) considered a mode1 of either parallel or 
anti-parallel moments. Since the present system 
has the additional factor of random~ crystallite 
orientation, it is expected that the results will more 
nearly approximate the model proposed by HEISEN- 
BERG. 

With the assumption that the domains are all of 
fixed and equal volume, BROWN has shown that 
the HEISENBERG model leads to the distribution 
function 

f(e) = eq cos e (23) 

where T is the same as discussed in the previous 
section. In the appendix the same distribution 
function is derived without the restricting equal 
volume domain assumption, but with other re- 
stricting assumptions. For this section equation 23 
will be assumed valid; then deviations from this 
equation are considered to give rise to the remain- 
ing hysteresis in plots of the susceptibilities versus 
the magnetization. 

For calculation, we compute the weighted- 
average values by first averaging over each crystal- 
lite, then averaging the crystallite average over the 
polycrystal. We first assume effectively infinite 
first order anisotropy fields, then for rotational 
effects we assume these fields are stilt small enough 
to allow a finite moment rotation. The following 
cases will be considered: Cubic, Ki > 0; cubic, 
Ki < 0; cubic, an infinite number of possible 
directions ; hexagonal, Ki > 0; hexagonal, Ki < 0 ; 
and all moments either parallel or anti-parallel 

with the field direction. The results are shown in 
integral form in Table 2 along with the low field 
expansions and the numerical values for fields 
effectively infinite but still much less than the 
anisotropy fields. 

The reversible ~unc~~o~ 

Upon comparing the low field expansion terms 
for the cubic and isotropic materials, they are iden- 
tical to the (7-m) power of 7. Further each type 
assumes infinite anisotropy fields; the [loo] 
oriented material has six possible directions, the 
[Ill] oriented material has eight possible direc- 
tions, and the isotropic material an infinite number 
of directions. Since for large M the assumption of 
large anisotropy fields ceases to be valid, the 
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FIG. 2. The variation of the parallel t’iower curves) and 
transverse (upper curves) normalized reversible sus- 
ceptibilities with normalized magnetization when the 
susceptibility is due to domain-wail motion. The 
different figures represent different anisotropy classes. 
FIG. 2a, isotropic material; FIG. 2b, cubic, & < 0; FIG. 
2c, cubic Ki > 0; FIG. 2d, hexagonal, Kl > 0; FIG. 2e, 
hexagonal, K1 < 0, zero basal plane anisotropy; Fro. 

Zf, all moments paraflel or anti-parallel with H. 
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assumption of isotropic material should closely ap- 
proximate the results for cubic material. The re- 
versible functions for isotropic material are listed 
in Table 1, row 2. The variations of the wall 
motional and rotational susceptibilities are shown 
in Figs. 2 and 3, respectively, for each of the six 
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FIG. 3. The variation of the parallel (lower curves) and 
transverse (upper curves) normalized reversible sus- 
ceptibility with normalized magnetization when the 
susceptibility is due to domain rotation. The anisotropy 
conditions for the figures are the same as in FIG. 2. 
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FIG. 4. The variation of the parallel and transverse 
differential magnetostrictions with magnetization in iso- 
tropic material when the susceptibility is due to domain- 

wall motion. 

cases. Fig. 4 illustrates the wall motional differen- 
tial magnetostriction, and Fig. 5 shows the rota- 
tional differential magnetostrictions for isotropic 
material. 
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FIG. 5. The variation of the parallel and transverse 
differential magnetostrictions with magnetization in iso- 
tropic material when the susceptibility is due to domain 

rotation. 

The rotational initial susceptibility can be ap- 
proximated by: 

c”OJG2 

Xo=3K1’ 
(24) 

Putting equation 24 into the value of d, as given in 
Table 1 yields: 

!WW& 
da = --. 

Kl 
(25) 

If this form of d, is substituted into equation 16a, 
the coefficient differs from that of the equation 
given for A by BOZORTH and WILLIAMS only by 
their “small factor” f. 

The large values of the rotational reversible 
properties for crossed fields will not be realized 
because of the N term in the denominator of the 
expression for xW 

Theoretical equations are developed for the 
variation of the reversible susceptibility with mag- 
netization if the susceptibility has its origin in 
domain rotation or in domain-wall motion. These 
equations are developed for both parallel and 
transverse moments. Because of the dependence of 
transverse field behavior upon susceptibility 
mechanism, it is concluded that the result provides 
a new technique for evaluating the relative im- 
portance of these two mechanisms (see equations 
10 and 20). 
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Without a detailed knowledge of domain distri- 
bution, if the ratios of the slope of transverse and 
parallel reversible susceptibilities with magnetiza- 
tion is negative, and if only the wall motional and 
domain rotational mechanisms exist, then the 
negative ratio can only result from domain rotation. 
If a more restrictive model is assumed, then cor- 
respondingly more detailed results can be cal- 
culated. With a detailed model as well as knowledge 
of the anisotropy constants, the percentage of the 
susceptibility for eachmechanism can be calculated, 

Similar results are derived for the differential 
magnet~tri~tions under the condition that X = 
$h,[ (cos2 O> -41. For an ideal moment distri- 
bution, the maximum value would arise for trans- 
verse fields and domain rotation. In most cases 
this result would carry over to useable samples. It 
is expected that a paper will follow comparing ex- 
perimental susceptibili~ results on selected ferrite 
samples with the theory developed here. 

An equation is given for the rotational sus- 
ceptibility matrix applicable to microwave mea- 
surements on nonsaturated material on the con- 
dition that only nearest-neighbor domain inter- 
actions are present and that the total moments of 
all nearest-neighbor domains to any particular 
domain be equal to the macroscopic moments. 
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APPENDIX 
:Modeis for considering the normalized volume of 

material with its magnetic moment between % and % +d% 
have been proposed by HEXSENBERG(“~) and by AK~LOV.('@) 
BROWN(~,~.*) has attempted to derive, on a model much 
like that proposed by HEISENBERE, an expression forf(%) 
in a polycrystal. BROWN’S model was one of domains with 
fixed and equal volume. The reasons for using such a 
model are, primarily, that it can be handled mathe- 
matically and that the important features are the energy 
densities. These energies will vary but little from mode1 
to model, so the results derived on the basis of the 
fictitious model must be expected to carry over to a more 
realistic one. This appendix uses mathematics similar to 
BROWN’S and obtains the same f(B). The model is more 
realistic but the technique of handling the exchange 
energy is questionable. 

Consider Natomic magnetic moments per unit volume 
distributed among an unknown but large numbet of 
randomly oriented cry&Bites. If r represents a prrti- 
cular direction in the macroscopic system and the num- 
ber of moments oriented in the r direction is NT, then it 
follows that 

N=ZN,. 
Y 

The i direction denotes different directions in different 
cry&llites. 

The effect of the anisotropy energy is to keep the 
moments of the system aligned along “easy” crystallo- 
graphic directions. It is to be assumed that all moments 
remain oriented along these easy directions, and that the 
effect of the anisotropy energy is entirely described by 
this assumption. 

Another energy is the volume magnetostatic energy, 
i.e., the energy of a magnetic dipole in a magnetic field. 
This energy can be written: 

vs = x ivy&!& COS e 
Y 

(27) 

where : 

A is a constant, 
HI is the total magnetic field, 
6 is the angle between the magnetic field and the 

r-direction. 

The effect of local magnetostatic and magnetostrictive 
energies throughout the lattice will be to disorder the 
moments of the system. The number of ways in which 
the moments of the system can be distributed among N 
atoms such that NY have their moments in the r-direction 
is: 

N! 
w=-, 

?(&!I 
which by use of Stirling’s approximation becomes 

In W = NlnN-XA$lnN,. 
Y (28) 

Equations 26, 27, and 28 are applicable to a para- 
magnet. For a ferromagnet the exchange energy must 
also be considered and is given by: 

Vex = F ,I N,Aex[l-(A@)2] 

where A% represents the angle between nearest-neighbor 
moments, A,, is the exchange energy and B represents 

n.n. 
a sum over all nearest-neighbor moments to the moment 
in question. If at this point domain theory is introduced 
and intradomain moments are considered to be aligned, 
then the exchange energy can be written as : 

V,x = I; sNyAex 
Y 

-:(ile)2A,x ST WI 
a 

where s is the number of nearest neighbors, 8 is the wall 
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thickness, Q is the distance between moments, T is a 
constant of the order of unity and S is the domain wall 
area. The sum is exclusive of the walls. Note that the 
first term of equation 29 is a volume energy term and the 
second a surface energy term. It is now necessary to make 
the restricting assumption that the wall area surround- 
ing material oriented in the y-direction is proportional to 
N,‘. With this assumption: 

vex = z$ N,fsAex-L)I) 

where D, is a constant. 

(30) 

Since the magnetoelastic energies and the internal 
demagnetizing factors act to “randomize” the distribu- 
tion of the magnetiq moments, it is now to be assumed 
that they act to put the material in a most probable 
orientation in the sense of an extremum of equation 28. 
Equations 26, 27, and 30 must also be stable with respect 
to variations in N,. Thus, using the technique of Lag- 
range multipliers, and putting the sum of all such varia- 
tions equal zero gives : 

where B and C are constants. From this it follows that 

A$, = exp(B+ CM& cos 0) 

and that the fraction of the moments of the system in the 
;-direction is : 

exp(AHt cos 8) 
ffQ> = __ -------. 

: exp(AHt cos 0) 
(31) 

In the foregoing discussion, the result of the magneto- 
elastic energy and the internal demagnetizing fields is 
not such a “random” orientation as the corresponding 
thermal problem where the energy of a particular particle 
is independent of the energy of its momentary nearest 
neighbor. In a ferromagnet the disorder is a static dis- 
order and the configuration must move through a series 
of spatially interdependent configurations to arrive at a 
specified position, Under these circumstances the pres- 
ence of potential maxima would weight a changing con- 
- _ - 

* BROWN makes an attempt to make this assumption 
look reasonable in BROWN W. F., JR. Phys. Rev. 55, 570 
(1939). 

figuration away from an extremum of equation 28 and 
towards the previous equilibrium position. 

If a material is in a most probabie configuration in 
the presence of a magnetic field (H,.), by virtue of 
being cooled through its Curie temperature in the pres- 
ence of that field, and the field is changed by AH (where 
AH is not small), then the configuration will tend to the 
limiting value of a most probable configuration for 
(H, .+ AH). I-Iowever, since potential maxima must first 
be surpassed (i.e., domain walls must be broken free of 
localized potential barriers and in some cases nucleated), 
the configuration will be between that of material in 
equilibrium in a field H,, and in a field (H,,+ AH). If 
this material represents some most probable configura- 
tion for some intermediate field then the effective field 
can be represented as (H,,+xAH) where 0 < r < 1. 
The meaning of the “effective history field” D, used to 
define the parameter TJ, is D = (r -1) AH. The remain- 
ing error, after this type of correction, will depend upon 
the material and upon the magnitude of the AH. Dis- 
cussions arc given in references 4 and 5. 
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