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Part II** 

5. THE VALIDITY OF THE SPLITTING TECHNIQUE 

In this section we show that ,  given any  admissible n- term sequence 
St( l ,1)  containing no zeros, the procedure specified in Section 4 always 
results in a folded t ree whose loading sequence S(1,1) = S'(1,1). Thus  
we have a construct ive proof tha t  the  admissibil i ty of any  sequence of 
positive integers is a sufficient condition for it to be the loading sequence 
of a folded tree. The  most  difficult par t  of the proof is to show tha t  
the splitt ing technique is admissibili ty-preserving, tha t  is, to show tha t  
the sequences S'( i  + 1 , 2 j -  1) and S'( i  + 1,2j) which result from 
S' (i,j) by the split t ing technique are admissible if S t (i,j) is admissible. 

(We do not give a complete proof here but  rely on the results ob- 
ta ined in (_4). 3 We shall, however,  present  enough of the proof to give 
an intui t ive unders tand ing  of the argument . )  

Theorem 10: If S'(i , j)  is an admissible sequence with at  least two non- 
zero terms,  then  the two sequences which result  from applying the 
split t ing technique to it satisfy the unit  condition. 

Proof (here and in the  following proofs we use the  notat ion developed 
in Section 4):  Since S'(i , j)  has a t  least two non-zero terms,  dl must  
exist, dl > 1 since M(St( i , j ) )  satisfies the partial  sum condition. If 
dl = 2, then  bl = cl = 1. If dl > 2, then  S'(i , j)  cannot  have exact ly  
two non-zero terms,  otherwise S'(i , j)  would not satisfy the total  sum 
condition ; hence, d2 also exists and Cl = b~ = 1. 

Theorem 11: Both of the  sequences which result  from applying the 
spli t t ing technique to an admissible sequence satisfy the total  sum 
condition. 
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Proof: We need two lemmas.  

Lemma 1. If 4 ~ x - - - p +  1, then  ~ ,  = 0 or 1; if dl = 2, then  
this is so for x = 1,2,3 as well. 

The  proof is by  induction,  and can be found on p. 33 of (4) 
(Lemma 1). (Note t ha t  " d / '  of this paper  corresponds to "a~" of (4).) 

Lemma 2. Apq_l = O. 

Proof: We show first t ha t  Ar+l = 0  or 1. By L e m m a  1 the 
only  possible exceptions to this would be where dl > 2 and  p = 1 or 2. 
If p = 1, then  dx = 2, in order  t h a t  M(S'(i , j))  satisfy the  total  sum 
condition. If p = 2, then  dl q- d~ = 6 by  the  total  sum condition. If 
dl > 2, then  dl = d2 = 3, since the  d-sequence is monotonic  non- 
decreasing. H e r e c l =  b2 = 1 a n d b l  = c~ = 2 s o t h a t  A3 = 0. Hav-  
ing shown tha t  in every  case A~+x = 0 or 1, we must  now show tha t  
the  value is ac tual ly  0. As ment ioned  in the preceding section, for each 
x, c~ q- b~ = d~; hence, 

E c x +  E b x =  E d ~ .  

But,  since M(S'  (i,j)) satisfies the total  sum condition, 

] ~ d x = 2  ~ + 1 - 2 ,  

which is even. But  h~+l is precisely the  difference between 
lo p 

Z c~ and Z b~. 

If a~+l were 1, then  their  sum would have to be odd. Hence,  z~+~ = 0. 
The  theorem now follows directly.  

P 

~] c~ and ~ b 

are equal, it follows tha t  
P P 

Hence,  

Since L e m m a  2 entails t ha t  

~ d x  = 2 ~ ] b x =  2 ~ c x  = 2 ~ + 1 - 2 .  

P 

~ b x  = ~ c x  = 2 ~ - -  1 

and Theorem 11 is proved. 

Theorem 12: If b l ,  • • • , b~ and cl, . . . , cp are the  sequences which 
result  from the  application of the  split t ing technique to an admissible 



Aug., I955.] THE FOLDED TREE i I 7 

! ° ° 

sequence S (, , j) ,  then  for every  x such tha t  1 =< x =< p, 

x 

b~ >_-2 ~ -  1 and ~c~_ ->2  ~ -  1. 
ll=l y = l  

This is proved as L e m m a  3 on p. 34 of (4). (The "der ived order ,"  
as the  t e rm is used in (4), is the  order  bl, b2, . . . , b~ and cl, c2, . . . , cp 
as opposed to the  monotonic  order.) Roughly,  Theorem 12 follows 
because M ( S '  (i ,j)) satisfies the  partial  sum condition and the  xth t e rm 
of the b-sequence and the  x th  te rm of the c-sequence are usually ob- 
ta ined from the  (x + 1)st t e rm of M ( S ' ( i , j ) )  in such a way  tha t  

by is near ly  equal to ~ c,. 
~ = 1  7 = 1  

x x 

Thus,  ~ by is approximate ly  ½ ~ d~. 

Since 1, dx . . . .  , d ,  are the  first x + 1 te rms of M ( S t ( i , j ) )  and, since 
S '  ( i , j )  satisfies the  partial  sum condition, 

x 

1 + ~ d ,  >-__2 * + 1 -  1 

and hence 

½ ~ d v > = 2 * - l .  

Theorem 13: If S ' ( i , j )  is admissible, then  S ' ( i  + 1 , 2 j -  1) and 
S ' ( i  + 1,2j) sat isfy the  partial  sum condition. 

This is proved as Theorem 3 on p. 40 of (4). In order  to prove 
Theorem 13 one mus t  extend the  result  of Theorem 12; for the  b- 
sequence and c-sequence are not  always in monotonic  non-decreasing 
order, and a sequence satisfying the  summat ion  condition of Theorem 
12 m a y  no longer sat isfy it when monotonized.  For tuna te ly ,  it can be 
proved tha t  af ter  the  third  t e rm the  b-sequence and c-sequence are each, 
in the  te rminology of (4), quasi-monotonic,  t ha t  is, for a n y  x and x', 
if 4 - -<x  <x '_- -<p,  then  b, = < b x , +  1 and c~ = < c x , +  1. I t  is ra ther  
easy  to show by  vir tue  of this fact and  Theorem 12 that ,  for each x, 

z 

b'~ ~ 2 • - 1, 
y ~ l  

where b'l, . . . , bP~ is monotonic  af ter  the  third  t e rm and results from 
bl . . . .  , b~ by  in terchanging the  appropr ia te  te rms af ter  b3; similarly 
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for the c-sequence. (Cf. the  theorem on p. 18 of (4).) The extension 
of this result  to the case where the  first three te rms are rearranged to 
make the entire sequence monotonic  is made  in the  proof in (4). 

Theorem 14: For eve ry  i < n, if S'( i , j )  has n te rms including exact ly  
i - 1 zero te rms and is admissible,  and if S'( i  + 1,2j - 1) and 
S'( i  + 1,2j) are obta ined  from S'(i , j)  b y  the spli t t ing technique,  
then S'( i  + 1,2j - 1) and S'( i  + 1,2j) are admissible and each 
contains exact ly  i zeros. 

Proof: T h a t  these are admissible follows from Theorems  10, 11, and 
13. S'( i  + 1,2j - 1) differs from bl . . . .  , bp in at  most  the  presence 
of zeros and the order  of terms,  which does not  affect admiss ibi l i ty ;  
similarly for S'( i  + 1,2j) and Cl, . . . , cp. To prove tha t  t hey  each 
have i zeros, it suffices to prove tha t  there  is one and only one uni t  
t e rm in S' (i,j). T h a t  there  is one follows from the fact t ha t  S' (i,j) 
satisfies the  unit  condition. T h a t  there is only one follows from the 
fact t ha t  S'(i , j)  satisfies the  part ial  sum condi t ion;  for if there  were at  
least two, then the sum of the  first two  terms of M(S' ( i , j ) )  would be 
2 < 2 2 - 1 .  

Theorem 15: Given S'(1,1) as an admissible n- term sequence wi thout  
zeros, the  procedure  specified in Section 4 results in an n-bay  folded 
tree whose S(1,1) = S '(1,1) .  

Proof: From Theorem 14 it follows tha t  for any  j < 2 "-1 the  
sequence S' (n,j) has n - 1 zeros and is admissible. I ts  one non-zero 
term, say, ak, mus t  be un i ty  b y  the to ta l  sum condition, and so V(n,j) 
is labeled Pk. Therefore,  (1) S'(n, j)  is S(n,j)  and T(n,j) is a folded 
tree. 

We  now go on to prove t ha t  (2) for any  i and j ,  if S'( i  + 1,2j - 1) 
is S ( i +  1 , 2 j -  1) and S ' ( i +  1,2j) is S ( i +  1,2j), and if 
T(i  + 1,2j - 1) and T( i  + 1,2j) are folded trees, then  S'(i , j)  is S(i , j)  
and T(i,j)  is a folded tree. There  is a set  

{ P = , , . . . ,  P=,_,} 
of n -- i dis t inct  labels such tha t  each chain of T(i  + 1,2j - 1) contains 
exact ly  one ver tex  labeled with each member  of the set. The  mlth, 
. . . .  m,_~th te rms of S(i  + 1,2j - 1), which is S'( i  + 1,2j - 1), 
are exact ly  those te rms which are non-zero terms.  There  is a similar 
set for T(i  + 1,2j). Now this set  is identical to the set  for T(i  + 1, 
2j  -- 1), since for any  q the  qth te rm of S' (i + 1,2j -- 1) will be made 
zero b y  the spl i t t ing technique if and only if the  qth term of S' (i + 1,2j) 
is made  zero. If V(i , j )  is labeled Pk, then k is not  one of the ml, . . . , 
m,_~; this is so because the kth te rm of 3'(i , j)  is one and, therefore,  
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the kth t e rm of S'(i + 1,2j - 1) and the  kth te rm of S'(i + 1,2j) are 
each zero. From this it follows tha t  every  chain of Y(i,j) has exact ly  
one ver tex  labeled with each member  of the set 

P . . . . . .  , Pm }, 

since a chain of T(i,j) is e i ther  a chain of T(i + 1,2j - 1) or a chain 
of T(i + 1,2j) with V(i,j) and its ver tex- input  added.  Hence T(i,j) 
is a folded tree. Now each t e rm of S'(i,j), except a'~(i,j) = 1, is equal 
to the sum of the  corresponding te rms  of S' (i + 1,2j - 1) and S' (i + 1, 
2 j ) ;  a'k(i + 1,2j - 1) = a'~(i + 1,2j) = 0. (This follows from the 
specification of the  split t ing technique.)  Since the  vertices of T(i,j) 
are those of T(i + 1,2j - 1) and T(i + 1,2j) together  with V(i,j), 
it follows, from the  fact t h a t  S'(i + 1,2j - 1) is S(i + 1,2j - 1) and 
S'(i + 1,2j) is S(i + 1,2j), t ha t  S'(i,j) is S(i,j). 

From (1) and (2) it follows immedia te ly  by induct ion tha t  S'(1,1) 
is S(1,1) and T(1,1) is a folded tree. 

6. TH~ ECONOMY OF THE FOLDED TREE 

The question arises as to whe the r  circuits represented by folded 
trees are the  most  "economical"  ones which can function as complete 
decoding circuits. As we have indicated earlier (Section 2) the  answer 
is in the  negative so far as electronic digital comput ing  circuits are 
concerned (see also Section 5 of (2)). However,  folded tree relay 
t ransfer  contac t  nets  are probably  the  most  economical (in a sense to 
be defined) of all complete  decoding relay t ransfer  contact  nets. To 
formulate  this proposition precisely we mus t  delimit  the class of dia- 
grams whose realizations are all such complete decoding relay t ransfer  
contac t  nets. 

Our definition of ver tex  diagram at  the  beginning of Section 2 was 
mot iva ted  by  two considerat ions:  (1) t ha t  a relay t ransfer  contact  is 
well represented by  a ver tex with a single ver tex- input  and two vertex- 
outputs ,  and (2) t ha t  in a relay t ransfer  contac t  net  the relay t ransfer  
contacts  can be arbi t rar i ly  connected.  Hence  any  relay t ransfer  
contac t  net  can be represented by  some ver tex diagram. In this 
section we go on to define an n-label complete  decoding ver tex  diagram 
in such a way  tha t  every  t ransfer  contac t  net  which performs a complete 
decoding function is represented by  a d iagram of this kind. Our belief 
tha t  folded tree re lay t ransfer  contac t  nets  are probably  the  most 
economical  of all complete  decoding relay t ransfer  contac t  nets  can now 
be more precisely s ta ted  as the  conjec ture :  The n-bay  folded tree has 
the minimal number  of vertices of any  n-label complete  decoding vertex 
diagram. 

The  objection m a y  be made  tha t  the minimal i ty  of the number  of 
vertices of a complete  decoding ver tex  diagram is not  a sufficient 
condition for its realization by  relays to be minimal in cost, for the 
cost of a relay t ransfer  contac t  net  depends  not  only on the  number  of 
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transfer contacts  in it but  also on the number  of relay coils required 
to operate it. To particularize this objection, consider the problem of 
constructing a complete decoding net using only relays with eight 
transfer contacts  each;  here the number  of relays required is a better 
indication of the cost of the net  t han  the number  of transfer contacts  
it contains. 

There is a certain force to this objection. However, it is to a large 
extent  mit igated by our previous folding results. For if an n-bay 
s tandard tree circuit has a minimal  number  of contacts,  we can in 
practice use tha t  folded tree circuit which of all n-bay folded trees has 
the least number  of relay coils. For an example see the last part  of 
Section 2. When relays with different numbers  of contacts are avail- 
able at costs which are not  directly proportional to the number  of 
contacts they contain, then  a different folding can be employed to 
minimize the total  cost of the circuit. 

W 

FIG. 9. 

We have not  proved our minimal i ty  conjecture, but  in this section 
we present a partial result in tha t  direction. To this end we will 
introduce a certain subclass of the class of n-label complete decoding 
vertex diagrams, namely, the subclass of all n-label progressive dia- 
grams. We shall prove tha t  the n-bay folded tree has the minimal 
number  of vertices of an n-label progressive diagram. I t  seems, 
intuitively, tha t  an n-label complete decoding vertex diagram which is 
not  an n-label progressive diagram should have at  least as many  
vertices as an n-bay folded tree, and it is on this ground tha t  we make 
our conjecture. 

We now proceed to carry out  the program sketched above. Since 
all the vertex diagrams considered in previous sections were trees, we 
first present an example of a vertex diagram tha t  is not  a tree (Fig. 9). 
(Note the use of the loop in the wire W of Fig. 9 to indicate tha t  the  
wire W does not  touch the wire V.) 

Some of the concepts already introduced in connection with trees 
must  be generalized to apply to arbi trary vertex diagrams. First, we 
require a more general method  of describing the way states of wires 
are determined.  To accomplish this we define the notion of the 
connection of two wires. 
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We say tha t  two wires are directly connected when they  touch each 
other.  A ver tex is directly connected to a wire whenever  the  wire is 
e i ther  its ver tex- input ,  or its upper  (lower) ver tex-ou tpu t  when the  
ver tex  is in the  upper  (lower) sett ing. Two wires W and W' are 
connected if there  is a sequence of wires and vertices X~ . . . . .  
X~(n  >= 1) such tha t  W i s  X1, W' is Xn, and such that ,  for each i < n, 
X~ is direct ly  connected to X~ + 1. By taking n = 1 we see tha t  any  
wire is a lways connected to itself. The  sequence X1, . . . , X,~ is a 
connection of W and W t. Thus,  whe ther  two wires in a d iagram are 
connected usually depends upon the sett ings of some of the vertices of 
the diagram. 

An n-label complete decoding vertex diagram (with designated diagram 
input  and diagram outputs)  is a ver tex  diagram in which the following 
hold. 

1. Each ver tex V has exact ly  one label from a set of n dist inct  
labels. 

2. For  each label there  is at  least one ver tex with t ha t  label. 
3. There  is exact ly  one wire K designated as the  diagram input. 
4. A diagram state is a definite ass ignment  of the  ver tex  settings 

such tha t  (a) all the  vertices with the  same label are set the  same, and 
(b) a wire is in s ta te  1 if and only if it is connected to the d iagram input.  

5. For  each d iagram state,  there  is at  least one wire which is in 
s ta te  1 in t ha t  d iagram sta te  and in s tate  0 in every  o ther  d iagram 
state,  and for each diagram sta te  one such wire is designated (arbi- 
t rar i ly ,  if there  is more than  one) as a diagram output of the diagram. 

The  diagram input  is in s ta te  1 in a n y  diagram sta te  since it is 
always connected to itself. Since there  are n labels for the  vertices, 
there  are 2 ~ diagram states,  and, therefore,  2 n d iagram outputs .  For 
any  d iagram ou tpu t  Q, let S(Q) be the  d iagram sta te  in which Q is 
in s ta te  1. 

Somet imes  in these diagrams a ver tex m a y  have the  s ta te  of its 
ver tex- input  depend on the  s ta te  of one of its ver tex-outputs .  For  
example,  consider the  uppermost  ver tex  of Fig. 10. When  it is in its 
lower sett ing, the  s ta te  of its ver tex  input  Q2 depends  upon the  s ta te  
of its lower ver tex  output .  For  this reason the  te rms "ver tex- inpu t"  
and "ve r t ex -ou tpu t "  are  not  as appropria te  for the  more general  class 
of ver tex  diagrams as t h e y  are for the  class of trees. 

Obviously,  trees are ver tex  diagrams, and by  Theorem 1 n-bay  
folded trees are complete  decoding n-label ver tex diagrams. 

For  an a rb i t r a ry  connect ion X l  . . . . .  X~, if Xk is direct ly  con- 
nected to Xm for m > k + 1, then  Xk+~, . . . , X,~_~ are superfluous; 
the  sequence with t hem deleted is still a connection. It  is easy to see, 
therefore,  tha t  in a d iagram state,  S, if there  is a connection between 
W and W', then  there  is a connection between them in A: wi thout  any  
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superfluous vertices or wires. A chain of a diagram ou tpu t  Q is a 
sequence X1, . . . , Xp of wires and vertices which in S(Q) is a con- 
nection of the input  K and O wi thout  any  superfluous elements.  Ob- 
viously, the chain as defined in Section 2 is a chain in this sense. 

If X1, . . . , Xm is a chain C (where X~ is the  d iagram input  K and 
Xm is a d iagram output ) ,  then  for any  i,j such tha t  i < j we say tha t  
X~ is earlier than  Xi  in C. If Xi  is a vertex,  then  X~_I and Xi+~ are 
wires of the  vertex,  one being the  ver tex- input  of X~ and the  o ther  being 
one of the ver tex-outputs  of X~; we say tha t  X~_I is the early wire and 
X~+~ the  late wire of the  ver tex X~ in the chain C. If the early wire 
of a ver tex  in a chain is the  ver tex-input ,  then  we say the ver tex is 
oriented forward in the chain;  if the early wire is a ver tex-output ,  then  
the  ver tex is or iented backward. For example, the vertices labeled P2 
in the chains of Q1 and Q~ in Fig. 10 are backward,  whereas  the  ver tex 

Q, 

Qa 
R 

Q3 

FIG. 10. 

p, / "~f'~Q2 

K ff 

Qa 

P~ 

o., 
FiG. 11. 

labeled P2 in the  chains of Q3 and Q4 is forward in both those chains. 
The  ver tex  labeled P1 is forward in all chains. 

A progressive diagram is a complete decoding ver tex diagram in 
which each ou tpu t  Q has at least one chain in which all vertices are 
forward. The  folded tree is a progressive diagram while Fig. 10 is a 
complete  decoding ver tex diagram which is not  progressive. 

An ou tpu t  Q of a progressive d iagram m a y  have more than  one 
chain in which all vertices are forward. It  is convenient  to pick out  
for each ou tpu t  Q of a progressive diagram one such chain and refer to 
it as C(Q), or the selected chain of the  output .  

Where  Q and Q' are two dist inct  d iagram outputs  of a complete 
decoding ver tex diagram, we define V(Q,Q') to be the  latest  ver tex V 
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in C(Q) whose early wire is in s ta te  1 in S(Q') and whose late wire 
is in s tate  0 in S(Q'). Such a ver tex must  exist since the  diagram 
input  K is in s ta te  1 in S(Q') but  Q is in s tate  0 in S(Q'); the latest 
wire of C(Q) which is in s ta te  1 in S(Q') must  be the early wire of a 
ver tex in C(Q). For example,  in Fig. 11 V(Q~,Q4) is the ver tex labeled 
P1 in C(Qd and V(Q4,Q~) is the ver tex labeled P2 in C(Q4). This 
example shows, incidentally,  tha t  V(Q,Q') and V(Q',Q) are not  always 
identical.  

Whenever  A is any  set of ou tputs  of a progressive diagram we let 
D(A) be the set of just  those vertices V(Q,Q') where Q and Q' are both 
in A. If A has only one ou tpu t  0, then  D(A) is the null set, since 
there is no V(Q,Q). For any  set A and any  ou tpu t  Q not in A, A Jr- { O } 
is the set whose members  are (2 and all the members  of A. 

Theorem 16: If A is a set of one or more outputs  of a progressive diagram, 
and if Q is an ou tpu t  not  in A, t h e n  there is a ver tex in D(A + {Q}) 
which is not in D(A). 

Proof: Let V be the latest ver tex V(Q,Q') in C(Q) where Q' is in A. 
We shall prove tha t  V is not  in D(A), from which Theorem 16 follows 
direct ly since V must  be in D(A + {Q}). 

We shall use the reductio ad absurdum method.  Suppose tha t  V 
is in D(A). Then  there  are diagram outputs  Q" and Q'" in A such tha t  
V is V(Q",Q"'). Let x be the early wire of V in C(Q) and y the late 
wire. Since the d iagram is progressive and since V is in C(Q), x is the 
ver tex- input  and y is a ver tex-output  of V. Let z be the o ther  vertex- 
ou tpu t  of V. Since V is V(Q",Q'"), x is in C(Q") and ei ther y or z is in 

c(Q"). 
Case I. y is in C(Q"). Then  y is in s tate  1 in S(Q"). The latest  

wire in C(Q) which is in state 1 in S(Q"), then,  can be no earlier than  y, 
and hence V(Q,Q") is later than  V in C(Q), cont ra ry  to the original 
st ipulation tha t  V be the latest  such ver tex in C(Q). 

Case II. z is in C(Q"). Since V is V(Q",Q'"), x must  be in 
s tate  1 in S(Q"), and z in s tate  0. This means tha t  the set t ing of the 
ver tex V in S(Q'") must  be such tha t  y is in state 1 in S(Q'"). Reason- 
ing as in Case I, then, we can show tha t  V(Q,Q'") is later than  Vin C(Q), 
which is likewise contradic tory.  This completes the proof of The-  
orem 16. 

Theorem 17: In a progressive diagram, if A is a set of k ou tputs  then 
there  are at  least k - 1 vertices in D(A). 

Proof: Let  A2 . . . . .  A~ be a sequence of subsets of A such tha t  
A ~ is A, A ~ has exact ly  i members ,  and, if 2 ~ i ~ k - 1, A ¢ is a proper 
subset  of A~+~. Thus,  A~+I has just  one member  besides those of A~. 
There  is at  least one ver tex  in D(A~) ; and by  Theorem 16 D(A~+i) has 
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at  least one more ver tex  than  D (A~). Hence,  D (A k) has at  least k - 1 
vertices. 

Theorem 18: In the  class of n-label progressive diagrams the n-bay 
folded t ree has a minimal  number  of vertices. 

Proof: In an n-label complete  decoding ver tex diagram there are 2" 
outputs .  If A is the  set of all these outputs ,  then  D(A) must  have at  
least 2" - 1 vertices. Hence,  the d iagram must  have at  least 2" - 1 
vert ices which is the  number  of vertices in the n-bay  folded tree. 

FIG. 12. 

7. A GENERALIZATION OF THE FOLDED TREE 

In this section we shall consider generalized folded trees containing 
vertices, all of which have the  same a rb i t ra ry  number  of ver tex  ou tpu t s  
and possible settings. A ver tex  with m ver tex-outputs  is called an 
m-order  ver tex and its m sett ings are the  first sett ing, the  second 
set t ing . . . .  , the  ruth sett ing. The  i th  vertex output is the  i th  r ight-  
hand  wire from the  top. (See Fig. 12.) 

A generalized n-bay  folded t ree containing vertices of order  m, 
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called an n -bay  m-order folded tree, obvious ly  contains 

n 

Z m ' - '  = 1 ) / ( m  - 
x ~ l  

vertices.  Thus  an n -bay  folded tree as previously  defined has order  2. 
The  definition of "comple te  decoding"  is the same as t ha t  given in 
Section 2, and the generalization of Theorem 1 goes through qui te  easily. 

It  is not  difficult to see wha t  sort of physical  realization an m-order  
ver tex  can have, ei ther in relay circuits or in electronic digital com- 
put ing circuits. In relay circuits the  m-order ver tex  represents  a 
single-pole m-throw switch, for example,  a s tepping switch. In elec- 
tronic digital comput ing  circuits the m-order  ver tex  can represent  an 
a r rangement  of m conjunct ion elements  generalized from the arrange- 
men t  of Fig. 2. 

As in Section 2 we ask the quest ion,  for a given loading sequence, 
al . . . . .  aN, is there  an n -bay  m-order folded tree having al vert ices 
labeled P1 . . . . .  and  a ,  vert ices labeled P~? We have a generalized 
condit ion of "admiss ib i l i ty"  which we can prove to be necessary and 
which we conjecture  to be sufficient if the. sequence contains no zeros. 
Our  generalized condit ion of admissibi l i ty involves four conditions, as 
compared  with only  three  in Section 3. 

A sequence satisfies the  unit condition if there  is a 1 somewhere  in 
the  sequence.  It  satisfies the total sum condition if the  sum of all the 
te rms  is equal  to 

p 

(mp -- 1 ) / ( m -  1) ---- E m r - '  

where p is the  number  of non-zero terms.  A sequence S satisfies the  
partial sum condition if, for each k =< p, the  sum of the  first k te rms of 
M(S)  is greater  than  or equal  to 

k 
( m k  - -  1 ) / ( m  - -  1) = E m ~ - l ,  

I t  satisfies the congruence condition if, for each term ak, ak -- l ( m o d  
m - 1), tha t  is, ak - 1 is divisible by  m - 1. A sequence is admissible 
if it satisfies all four conditions.  Note  tha t  admissibi l i ty  as defined in 
Section 3 is a special case (m = 2) of this  more general notion of ad- 
missibility, for any  sequence of integers satisfies the congruence condi- 
tion when m = 2. 

Theorem 19: The loading sequence S(1,1) of an n -bay  m-order folded 
tree is an admi.~;sible sequence of n non-zero terms.  
Proof: Obviously,  S(1,1) mus t  sat isfy the  uni t  condit ion and the 

to ta l  sum condition.  The  reader  can reread Theorem 8 and its proof 
and see tha t  it ve ry  easily generalizes from the case (m = 2) to prove 
tha t  S(1,1) satisfies the  part ial  sum condit ion for any  m. To  demon-  
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strate that  S(1,1)  satisfies the congruence condit ion we consider any 
n-bay m-order folded tree having ak(1,1) vertices labeled Pk. Suppose  
that  for each h _-< n there are kh vertices labeled Pk in the hth bay. 
There are m" chains and each chain must  have exactly one vertex 
labeled Pk. 

But  a vertex in the hth bay is on exact ly  m "-h+i chains. Hence (1) 
the number of chains is equal to 

n 

k h m  "-h+~ = m " .  
h ~ l  

By elementary number theory we know that  for any non-negative 
integer x, m" ---- l ( m o d  m - I). Thus,  for each h,  k h m  "-h+~ - -  k~(mod 
m -  1). Hence  (2) 

n n 

k ~ m  "-~+1 =-- ~ kh(mod m - 1). 
h ~ l  h ~ l  

From (1) and (2), since m" = 1 (mod m - 1), it follows that  
n 

ak(1,1) = Y'.kh--= l ( m o d m -  1). 
h = l  

This  completes  our proof of Theorem 19. 

APPENDIX 

Interchange and the Folded Tree 
The phrase "folded tree" is appropriate because a folded tree can be obtained from the 

standard tree of Section 2 by the technique of "folding." That technique, perhaps better 
described as "interchange," can be defined as follows. An n-bay labeled-tree T '(I , I )  results 
from an n-bay labeled-tree T(1,1) by an interchange of P~, and Pk in the minor tree T(i,j) when 
all the vertices labeled Ph in T(i,j) are labeled P~ in T'(i,j) and vice versa, all other vertices 
of T'(1,1) being labeled the same as in T(I,1). 

By referring to the definition of "folded tree," it is not difficult to see (1) that  if T'(I,1) 
is obtained from T(1,1) by interchange, then T'(1,1) is a folded tree if and only if T(1,1) is. 

It can also be shown (2) that  for any n-bay folded trees T(1,1) and T'(1,1) having the 
same set of labels, T'(1,1) can be obtained from T(1,1) by a sequence of interchanges. For 
suppose TI(1,1), T~(1,1), . . . , is a sequence of distinct n-bay labeled-trees where TI(I,1) 
is T(1,1) and where Tx+x(1,1) is obtained from T,(1,1) by the following process. Having 
ordered all the vertices of T~(1,1) in the sequence Vx(1,1), V,(2,1), V,(2,2), V~(3,1), V~(3,2), 
. . . .  we consider the first vertex V~(i,j) which has a label different from the corresponding 
vertex V'(i,j) of T'(1,1). Suppose that  Ph and Pk are the labels of V,(i,j) and V'(i,j), re- 
spectively. Then T~+l(1,1) results from T,(1,1) by interchange of Ph and Pk in T,(i,j). It is 
easily seen that  Pk must label at least two vertices in T,(i,j), so the interchange can always 
be made if Tx(1,1) is not identical with T'(1,1). Obviously, then the label of V,+1(i,j) and 
the labels of all vertices of T,+x(1,1) which precede V**l(i,j) in the ordering of vertices men- 
tioned above are the same as the labels of the corresponding vertices of T'(1,1). It is not 
difficult to see that  the sequence TI(1,1), T~(1,1), . . . has a last member Tq(1,1) which 
must be T'(1,1). 

Since a standard tree is a folded tree, it follows from (1) and (2) that  a necessary and 
sufficient condition that  an n-bay labeled-tree with labels P~, . . . , P,, be a folded tree is 
that  it be obtainable from the n-bay standard tree by a sequence of interchanges. 

Everything asserted in this appendix is true also of trees all of whose vertices are of order 
m > 2 .  


