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Part I ** 

1. INTRODUCTION 

The problem of constructing circuits which perform a certain 
function and have some formal properties contributing to engineering 
efficiency was considered by Shannon (1) .3 Part of Shannon’s problem 
(Part II of (l), pp. 81439) was to formulate an arithmetic condition 
such that for any sequence of positive integers satisfying that condition 
a tree circuit can be constructed whose load distribution is given by 
that sequence. That condition is identical with our notion of “ad- 
missibility,” defined in Section 3 of this paper. 

The present paper takes up this same problem, but is entirely self- 
contained. No reference to Shannon’s paper is necessary either for 
definitions of concepts or for proofs of theorems. Our results go beyond 
those of Shannon, both in that we prove the necessity of the ad- 
missibility condition and also in that we give a constructive technique, 
helpful to a practical engineer, for constructing a folded tree with any 
given load distribution satisfying the condition of admissibility. To 
obtain these results we must formulate a precise definition of the term 
“folded tree.” Although Shannon does not give a precise definition 
of any corresponding concept, it is clear that our precisely defined 
concept applies to the circuits which he considers. 

We shall use some of the concepts of our previous paper (z), but 
we define them anew here, so no acquaintance with that paper is 
presupposed. Our method, here as in (z), is to discuss diagrams rather 
than circuits directly. The diagrams may be realized by circuits of 
various different kinds, for example, relay transfer contact nets discussed 
in (I), and electronic digital computing circuits, The advantages of 
this approach are (1) that the range of application of results is wider, 
and (2) that the problems, being abstract, can be solved within pure 
mathematics. Our methods and results are intimately connected with 
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the field of mathematics known as the theory of linear graphs; but they 
are not an application of any previously known materials of that field, 
and consequently we presuppose no knowledge of it. Although our 
definitions and theorems concern diagrams, we shall frequently com- 
ment on their significance for physical circuits. 

2. DEFINITION OF FOLDED TREE 

In this section we formulate a precise definition of the term “folded 
tree” and show that the diagrams covered by this term are suitable 
for representing some familiar circuits constructed out of standard 
devices. 

” 
A 

FIG. 1. 

We shall be concerned with vertex diagrams which are arrangements 
of small circles and straight lines, such that (1) each circle has just 
three lines touching its circumference, one on its left and two on its 
right, (2) each end of each line may touch either a circle (as in Fig. 1) 
or the ends of any number of other lines (as in Fig. 10) or it may touch 
nothing (as in Fig. l), and (3) no circles touch each other. (In this 
paper if a word is italicized in a sentence, then the word is defined in 
that sentence.) The circles are called vertices and the lines wires; the 
left-hand wire is called the vertex-input, the upper right-hand wire is 
called the u#per vertex-output, and the lower right-hand wire, the lower 
vertex-output. The usage here of “output” and “input” is nearer to 
that of (1) than to (2). 
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The first vertex diagram we introduce is an n-bay tree, for which the 
following recursive definition is provided : 

1. A Z-buy tree consists of just one vertex with its input and 
output wires ; this vertex is the first (and only) buy of the l-bay 
tree ; 

2. ,4n (; + Q-bay tree results from an i-bay tree when, to each 
vertex-output u of a vertex in the ith bay, a new vertex is joined 
so that u is the vertex-input of the new vertex; the new vertices 
constitute the (; + 1)th bay; 

3. An n-bay tree has only the vertices and wires provided for 
in 1 and 2 ; no diagrams other than those so provided for are trees. 

The input of an n-bay tree is the vertex-input of the vertex of the 
first bay. An output of an n-bay tree is a vertex-output of a vertex 
in the nth bay. Note that the tree input is the only wire in the tree 
which is not a vertex-output, and that the tree outputs are the only 
wires which are not vertex-inputs. Note also that there are 2n outputs 
of an n-bay tree. The result of deleting the crosses (but no lines or 
circles) from Fig. 1 is a 4-bay tree. (Note that each bay in this figure 
is simply a vertical column of vertices. This will be true of all figures 
of trees in this paper, although the definition of “tree” does not require 
this.) 

A wire is to be understood as being at any one moment in either 
of two states, state 1 or state 0, and a vertex as being in just one of two 
settings, an upper setting or a lower setting. The state of a vertex- 
output is determined by the setting of the vertex and the state of the 
vertex-input: if the vertex-input is in state 1 and if the vertex is in 
the upper setting, then the upper vertex-output is in state 1 and the 
lower vertex-output in state 0; if the vertex-input is in state 1 and the 
vertex in the lower setting, then the upper vertex-output is in state 0 
and the lower vertex-output in state 1; if the vertex-input is in state 0, 
then regardless of the setting of the vertex the state of both vertex- 
outputs is 0. 

Before proceeding we will relate trees to the net diagrams of (2) 
and described two physical realizations of trees. In the net diagram 
of Fig. 2 each square is a conjunction (“and”) element whose output 
is in state 1 if and only if both its inputs are in state 1. A vertex, 
together with its vertex-input and vertex-outputs, and the net of Fig. 2 
represent the same type of circuit if exactly one of the input pair b,b’ 
is in state 1 at any one time. (The use of the word “input” in this 
connection is similar to the use in (2) ; it differs significantly from the use 
of the word in the major part of this paper.) Wire a of Fig. 2 is the 
vertex-input, and wires G and d are the vertex-outputs, and the vertex 
is in the upper setting just in case b is in state 1. Nets like the one of 
Fig. 2 may clearly be combined to form trees. 
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A conjunction element may be realized by a crystal diode or vacuum 
tube circuit whose output voltage is high (state 1) whenever both 
circuit inputs are at high voltage, otherwise the circuit output voltage 
is low (state 0). Two such circuits, interconnected as in Fig. 2, con- 
stitute a physical interpretation of a vertex with its vertex input and 
two vertex-outputs. Wire c is in state 1 whenever a and b are both 
in state 1, and d is in state 1 whenever a and b’ are both in state 1. 

A vertex may also be realized by a relay transfer element. A relay 
transfer element is a (mechanical) single-pole double-throw switch 
with the wire of the pole realizing the vertex-input and the wires from 
the output contacts realizing the vertex-outputs. The transfer element 

Ji b 
+ 

jd 

FIG. 2. 

is controlled by a magnet and spring working in opposition, the two 
positions being represented by the two vertex settings. Thus, if 
current is flowing (state 1) in the vertex-input, it flows in the upper 
vertex-output whenever the relay is not activated and in the lower 
vertex-output whenever the relay is activated. 

It should be noted that our vertex diagrams (trees and the diagrams 
of Section 6) are particularly suited to represent relay contact nets 
composed of transfer elements, namely, single-pole double-throw 
switches, electro-magnetically controlled. In such electrical nets the 
wires to the device (magnet) which controls the settings of the transfer 
contacts are not connected into the contact net itself. That our 
vertex diagrams do not show the wires which determine the vertex 
settings is intended to represent that feature. In contrast the wires 
b,b’ of an electronic circuit of the sort represented by Fig. 2 are, in 
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general, like a, c, and d, connected to other components of the circuit. 
Electronic circuits can thereby realize nets which are more complex 
than vertex diagrams. Hence, the class of circuits represented by 
vertex diagrams (in the broad sense of Section 6) is narrower than the 
class of circuits represented by diagrams constructed from conjunction 
elements. It turns out, for example, that in a certain sense of “cost” 
the tree is probably a minimal diagram in the first class, while it is not 
at all minimal in the second class (see Section 6). To put the point 
alternatively, a generally efficient way to do complete decoding with 
relays is by means of a tree, but that is not generally an efficient way 
to do complete decoding with vacuum tubes or crystal diodes. 

A chain of an n-bay tree is a sequence X1, . . . , X2n+l, where X1 
is the tree input and where, for i Z 2n, if Xi is a vertex-input of some 
vertex, then Xi+1 is that vertex and, if Xi is a vertex, then Xi+1 is one 
of its \:ertex-outputs. It follows that Xsn+l is a tree output. In 

Flc. 3. 

Fig. 1 the vertices and wires marked with crosses constitute a chain. 
It is obvious that each tree output is a member of one and only one chain. 

In an n-bay tree the settings of the vertices and the state of the 
tree input vary independently of each other, but once these are deter- 
mined the state of each wire is determined. If the tree input is in 
state 0, then every wire is in state 0, regardless of the settings of the 
vertices. If the tree input is in state 1, then there will be a chain 
whose every wire is in state 1 and such that every wire not on the chain 
is in state 0. What chain it is will depend on the settings of the vertices, 
since the state of each vertex-output is determined by the setting of 
the vertex and the state of its vertex-input. 

We are interested in trees in which the settings of the vertices do 
not vary completely independently of each other, but whose vertices are 
partitioned into a number of classes, all the vertices of each class being 
in the same setting at any one time. In such trees we indicate the 
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class to which each vertex belongs by affixing the same label to every 
vertex of a given class, vertices which belong to different classes being 
given different labels. We call such a tree a “labeled-tree,” and define 
it as follows. An n-bay labeled-tree is formed from an n-bay tree by 
marking each vertex with exactly one label from a set of m labels, and 
using each of the m labels to mark at least one vertex; m can be less 
than, equal to, or greater than n. We require, of course, that all 
vertices having the same label be in the same setting. Figure 3 is a 
3-bay labeled-tree in which m = n. 

An n-bay folded tree is an n-bay labeled-tree in which there are 
exactly n labels (that is, m = n) and, for every chain and for each label, 
there is at least one vertex with that label in the chain. It follows that 
there is exactly one vertex in each chain with a given label, since there 

FIG. 4. 

are n labels and n vertices in a chain. A remark on the appropriateness 
of the term “folded” in this connection will be made in *the Appendix. 
Note that Fig. 4 is a folded tree, but Fig. 3 is not. 

Folded trees are important among labeled-trees because they can 
function as “complete decoding nets” in the sense given in (2). We 
must explain what this means and why it is so. A circuit represented 
by a labeled-tree performs its function when the tree input is in state 1 
(for example, after all the transfer contacts of a relay contact net are 
set, an electrical signal introduced at the tree input will emerge at the 
desired output). We define a tree state of a labeled-tree to be a definite 
assignment of its vertex settings such that all vertices with the same 
label are set the same, and such that the tree input is in state 1. It is 
clear that there are 2m different tree states for a labeled-tree having m 
distinct labels. 
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’ We say that an n-bay labeled-tree is complete decoding if and only 
if the number of labels m is equal to n, and for each tree state there is 
at least one tree output which is in state 1 in that tree state and state 0 
in every other tree state. It follows that there is only one tree output 
in state 1 in any tree state of a complete decoding n-bay labeled-tree, 
since it has exactly 2n tree states and 2n tree outputs. (A nearly 
identical concept of complete decoding is discussed in Section 3 of (z).) 

Theorem 1: A necessary and sufficient condition for a labeled-tree to be 
complete decoding is that it be a folded tree. 
Proof oj necessity: Consider an n-bay labeled-tree which is complete 

decoding. Consider any tree state S and the tree output Q which is in 
state 1 only in S. There is only one chain C which includes Q. Sup- 
pose that, for some label Pi, there is no vertex in C labeled P;. Now 
let S’ be a different tree state which coincides with S except for the 
settings of the vertices labeled Pi. Q would be in state 1 in S’ as well 
as in S, contrary to the assumption that the tree is complete decoding. 
Hence, every tree state determines one chain such that for each label 
there is at least one vertex with that label in the chain. Different 
tree states determine different chains; and since there are 2n different 
tree states, there must be 2n different chains, each of which has the 
property that for each label there is at least one vertex with that label 
in the chain. But these are all the chains that there are, since an 
n-bay labeled-tree contains exactly 2n chains. Hence, any complete 
decoding labeled-tree is a folded tree. 

Proof of su.ciency: Consider any n-bay folded tree. Every tree 
output Q is on a chain C containing, for each label Pi, one and only 
one vertex labeled P;. Hence, there is a tree state S in which all the 
wires of C (including Q) are in state 1. Also, for any different tree 
state S’, there will be at least one vertex of C in a different setting and 
so Q will be in state 0 in S’. Therefore, (1) each tree output will be 
in state 1 in one and only one tree state. Furthermore, (2) any two 
tree outputs will be in state 1 in different tree states, which can be 
proved as follows. If Q1 and Qz are different tree outputs on chains 
Cl and Cs, respectively, then let i be the number of the latest bay in 
which C1 and Cz have a vertex V in common. Suppose that V is 
labeled Pk, and suppose (without loss of generality) that C1 includes 
the upper vertex-output of I/. CX must then include the lower vertex- 
output of V. In order for Q1 to be in state 1, V will have to be in the 
upper setting, and, in order for Qz to be in state 1, V will have to be in 
the lower setting. Hence, Q1 and Qz are in state 1 in different tree 
states. 

Since there are as many tree states as tree outputs it follows from 
(1) and (2) that the tree is complete decoding. This completes our 
proof of Theorem 1. 
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An n-bay standard tree is an n-bay labeled-tree in which any two 
vertices have the same label if and only if they are in the same bay. 
Figure 5 is a 3-bay standard tree. (If we interpret the vertices as in 
Fig. 2, an n-bay standard tree is essentially the same as the 2-n tree 
defined in Section 4 of (z).) 

Consider now two electrical devices, T1 realizing a 6-bay standard 
tree andTz realizing a 6-bay folded tree in which the number of vertices 
labeled PI, . . . , P6, respectively, is 1, 12, 12, 12, 13, 13. Both 
perform the same decoding function but the latter has a more nearly 
equal distribution of labels. Since all of the vertices with the same 
label are set in the same way at any one time, this means that the load 
distribution on the wires controlling the settings of the vertices is 

FIG. 5. 

more nearly equal in Tz than in T1. (The sequence 1, 12, 12, 12, 13, 13 
will later be referred to as the “loading sequence” of the tree realized 
by T,.) If the devices are constructed of relays (and for reasons 
indicated earlier in this section the tree is more important for relay con- 
tact nets than for electronic digital computing circuits), a further factor 
needs to be considered. This factor is the number of contacts that 
each available coil controls. One transfer contact can realize one 
vertex, but two contacts of the same relay cannot realize vertices 
with different labels. If one had available relays with eight transfer 
contacts each, Tz with load distribution 1, 12, 12, 12, 13, 13 would 
require eleven relays, while the (standard tree) circuit Tl would require 
only ten relays. On the other hand, a (folded tree) circuit with load 
distribution 1,8,8, 15,15,16 would require only nine relays. Depending 
upon what physical equipment is available, different load distributions 
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for a folded tree offer greater or less advantage. It is therefore of 
practical interest to know what different load distributions are possible 
for folded trees. 

We are thus led to consider the interesting problem of determining 
how the Pi’s can, in general, be distributed among the 2n - 1 vertices 
of a folded tree. More precisely, given a sequence of n integers al, 
. . . , a,, is there an n-bay folded tree having, for each i, ai vertices 
labeled Pi? A condition for a sequence of positive integers to have a 
folded tree corresponding to it was stated in (I) and there proved to be 
sufficient. That condition is the property of “admissibility” as defined 
in the following section. All the sequences discussed in the preceding 
examples have this property ; 1, 2, 5, 6, 20, 29 is a sequence that does 
not. In Section 3 of this paper we prove admissibility to be a necessary 
condition also; and in Sections 4 and 5 we present and justify a method 
of construction which when applied to any admissible sequence of 
positive integers results in a folded tree corresponding to that sequence, 
thus providing a proof of sufficiency different from Shannon’s earlier 
proof which was not constructive. 

3. LOADING SEQUENCES; ADMISSIBILITY 

In this section we define an arithmetic condition on sequences of 
non-negative integers, which we shall call the condition of “admissi- 
bility,” and show it to be a necessary condition for a sequence to repre- 
sent a distribution of labels among the vertices of a folded tree. To 
define “admissibility” we must first introduce some additional notions. 

Let V(i,j), 1 5 j 5 2i-l, be thejth vertex in the ith bay. Inasmuch 
as the bays are vertical in our figures, V(&l) is the top vertex of the ith 
bay, 1/‘(;,2) the vertex next to the top, etc. It is clear that the vertex- 
outputs of V(;,j) are the vertex-inputs of V(i + 1,2j - 1) and 
V(; + 1,2j). Now let us consider all the chains which include V(;,j). 
These all have a common vertex in each of the first i bays. That part 
of the labeled-tree which includes V(Q) and all vertices from the last 
n - i bays which are on chains containing V(;j), together with all 
vertex-inputs and vertex-outputs of those vertices, is itself a labeled-tree 
and is called a minor tree. We refer to it as r(;,j) since it is determined 
by V(ij). T(l,l) is, of course, the original labeled-tree itself. Note 
Fig. 6 in which T(2,2) is circled. 

We assume without any loss of generality that the m labels of 
T( 1,l) are P1, Pz, . . . , P,. The index of PA in r(i,j) is the number 
of vertices labeled Pk in r(ij) which we denote by uk(;j). The loading 
sequence S(i,j) of r(;,j) is the sequence al(i,j), . . . , a,(i,j). Note 
that ak(;,j) is sometimes 0. S(l,l) is then the loading sequence of the 
original labeled-tree T(l,l). In Fig. 6, S(2,2) is 2, 2, 1, 2, while S(l,l) 
is 3, 5, 3, 4. Note that 7’(ij), V(&J, S(ij), and ak(i,j) are functionally 
dependent upon the labeled-tree under consideration as well as upon 
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i and j, even though that functional dependence is not explicit in our 
notation. 

Where S is a finite sequence of non-negative integers al, . . . , a,, 
we define A&(S) to be the sequence rearranged in monotonic non- 
decreasing order, zeros deleted. Thus, if S is 3, 7, 5, 0, 2, 1, 0, 5, 
M(S) is 1, 2, 3, 5, 5, 7. 

A sequence S of m integers satisfies the unit condition if there is a 1 
in the sequence. S satisfies the total sum condition if the sum of the 
terms of S is 2~ - 1, where p is the number of nonzero terms. S 

FIG. 6. 

satisfies the partial sum condition if, for each k 5 p, the sum of the 
first k terms of M(S) is 2 2” - 1. A sequence S is admissible if it 
satisfies all of these three conditions. Thus, 0, 5, 0, 1, 0, 5, 4 is an 
admissible sequence in which m = 7 and p = 4; and 1, 9, 5, 10, 6 is an 
admissible sequence in which m = p = 5. 

Theorem 2: A minor tree r(i,j) of an n-bay folded tree is an (n - i + l)- 
bay folded tree. 
Proof: Obviously T(i,j) has n - i + 1 bays. All the chains of 

T( 1,l) containing V(i,j) have the vertices of the first i bays in common. 
These are labeled with exactly i of the labels. Now each chain must 
contain each of the remaining n - i labels in the last n - i bays. But 
these chains (with the vertices of the first i - 1 bays deleted) are the 
chains of T(i,j). Hence, T(i,j) is a folded tree. 
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Theorem 3: In an n-bay folded tree .S(;,j) has i - 1 zeros and n - i + 1 
non-zero terms. 
The proof is immediate from Theorem 2. 

Theorem 4: In a folded tree, if V(;,j) is labeled Pk, then ak(;,j) = 1. 
Proof: Since V(i,j) is labeled Pk, no other vertex in any chain 

containing V(i,j) is labeled Pk. For suppose that V(i’,j’), i’ # i, on 
a chain C with V(;,j) is also labeled Pk. Then C has n - 2 other ver- 
tices which must (in order to satisfy the folded tree condition) bc 
labeled with n - 1 other labels which is impossible. 

Theorem 5: In a folded tree S(i,j) satisfies the unit condition. 
Proof: This follows directly from Theorem 4. 

Theorem 6: In a folded tree S(i,j) satisfies the total sum condition. 
Proof: This follows from Theorem 3 since there are 2%-;+l - 1 vertices 

in T(i,j). 

Theorem 7: In an n-bay folded tree a,(i + 1,2j - 1) = 0 if and only 
if ak(,i + 1,2j) = 0. 
Proof: T(i,j) by Theorem 2 is a folded tree and, therefore, each P, 

which labels any vertex of T(i,j) has to label at least one vertex in each 
chain of T (i,j) . Every such chain contains V(Q). Beyond V (ij) each 
chain of T(i,j) lies wholly within T(i + 1,2j - 1) or T(i + 1,2j). 
Hence any label occurs in T(i + 1,2j - 1) if and only if it occurs in 
T(i + l,Zj), from which Theorem 7 follows directly. 

Theorem 8: In an n-bay folded tree S(&j) satisfies the partial sum 
condition. 
Prooj: The proof is by induction, beginning at the nth bay of the 

tree and going to the left. We first show (1) that, for every j z 2r~-‘, 
the theorem holds for S(n,j). We then show (2) that, if it holds for 
S(i + 1,-j) for everyj 5 2i, it holds for S(i,j) for everyj z 2i-*. (1) is 
true by Theorem 3 for .Y(n,j) has only one non-zero term. We prove 
(2) by showing that, if it holds for S(i + 1,2j - 1) and S(i + l,Zj), 
then it holds for S(&j). Suppose V(;,j) is labeled P,. Let M(S(i,j)) 
be ~,(~,_/i, a&j). a&j>, . . . , a,,_i (i$), where, of course, a,(i,j) = 1. 
By hypothesis S(i + 1,2j - 1) and S(i + 1,2j) satisfy the partial sum 
condition; in other words, for each k 5 n - i, the sum of the first 
k terms of M(S(i + 1,2j - 1)) or M(S(i + 1,2j)) z 2k - 1. Now, if 
such a condition holds for a monotonic non-decreasing sequence, it holds 
for the sequence in any order. Furthermore, since, for k # p, ak(i,j) 
= ak(i $- 1,2j - 1) + ak(i + 1,2j), with the aid of Theorem 7 it is 
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easy to see that the non-zero terms of S(i + 1,2j - 1) are a,,(; + 1, 
2j - I), . . . , a,,_,.(i + 1,2j - 1) and the non-zero terms of S(i + I, 
773 are a,,(i + 1,2j), . . . , a,,_i (i + 1,2j). Hence for each k z n - i, 

&,,(i + 1,2j - 1) Z 2k - 1 and ka,,(i + 1,2j) 2 2” - 1. Hence, 
x=1 2=1 

;(a,,(i + 1,2j - 1) + a,,(i + 1,2j)) 2 2k+1 - 2. Clearly, 

k k 

u&j) + c &,(i,j> = 1 + c (h,(i + I,3 - I> + Q8z(i + 1723); 
2=1 z=l 

hence for any K z n - i, a,(;,j) + i ug,(i,j) z 2k+1 - 1, which means 

that the sum of the first k + 1 terms of M(S(i,j)) is Z 2k+1 - I, proving 
that S(i,j) satisfies the partial sum condition. 

Thearem 9: The loading sequence S(l,l) of an n-bay folded tree is an 
admissible sequence of n non-zero terms. 

This result follows immediately from Theorems 3, 5, 6, and 8, 
putting i =j = 1. 

4. THE SPLITTING TECHNIQUE 
In this section we provide an effective method of constructing a 

folded tree with a given admissible loading sequence of positive integers. 
The proof that this method will produce a folded tree is given in the 
next section. The procedure consists in taking the loading sequence 
proposed for the folded tree T( 1, I), selecting the unit term for V( l,l), 
and dividing the remaining terms so as to yield two admissible sequences, 
one for T(2,l) and the other for T(2,2). This procedure, called the 
“splitting technique,” is then repeated for each of those two sequences 
to provide admissible sequences for T(3,1), T(3,2), T(3,3), and T(3,4). 
The process is iterated until T(n,2n-1) is reached. It will be proved 
in the next section that each vertex is thus provided with a label and 
that, for each K, the proper number of vertices will be labeled Pk. 

It must be admitted that there are alternative splitting techniques 
which applied to the same admissible sequence give different folded 
trees. Our splitting technique, for example, applied to the admissible 
sequence 1, 4, 5, 5 gives a folded tree having three different labels in 
its last bay, but there is also a folded tree with the same loading se- 
quence which has only two different labels in its last bay (see Fig. 7). 

In this section and in Section 5 we let S’(i,j), which is al’(i,j), 
az’(i,j>, * * *, u,,‘(i,j), be the sequence obtained by repeated applications 
of the splitting technique from S’(l,l), which is an arbitrary admissible 
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sequence without zero terms. The symbols S’(i,j) and S(ij) are to be 
clearly distinguished even though in some cases they refer to the same 
sequence of numbers. S(ij) is the sequence derived by our splitting 
technique from a given admissible sequence S’( 1 ,1), whereas S(i,j) is the 
loading sequence of r(i,j), a minor tree of a given labeled-tree. 

Let us suppose that S’(ij) is a given admissible sequence. We 
describe now the splitting technique which determines S’(i + 1,2j - 1) 
and S’(i + 1,2j). For every k, if ak’(i,j) = 1 or 0, then let 
~‘(i + 1,2j - 1) = ak’(i + 1,2j) = 0. Let M(S’(i,j)) be l,dl, . . ., d,. 
(It will turn out that p = n - i.) We then determine sequences 
b . . . , b, and cl, - . . , c,, such that, if d, is ak’(&j), b, and cZ are to be 
a:‘(i + 1,2j - 1) and ~.~‘(i + 1,2j), respectively. The recursive pro- 
cedure for determining b, and c, is as follows: (1) put cl = 1 and 

bl = 
first 

dl - 1; (2) if b, = 1 (that is, if dl = 2), proceed to (3), otherwise 
put bz = 1 and c2 = d2 - 1; (3) (for each x, x z 3, and, for x = 2 

if dl = 2) assuming that bl, . - a, b,_l and cl, . . . , c,_~ have been deter- 
mined, put 

b, = [ “‘; “‘1 
and 

where 

c _ dz+l-A, 
1:-- 1 2 ’ 

2-I 

At= C (q/b,). 
l/=1 
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Here [+I, for any real number $, is the integral part of 4, that is, the 
greatest integer not greater than 4. The reader can readily verify that 
for each x, b, + c, = d,. 

In actual calculation the work is even simpler than it appears from 
the formal statement of the procedure. The idea behind the split- 
ting technique is simply to provide for the 1 in each sequence, and, for 
each d,, to find a b, and cz such that b, + c, = d,, in such a way that 

is as nearly equal as possible to 

We also require that 

be never less than 

i: bu, 

except where dl > 2 and x = 2. Thus, all terms except possibly the 
first three will be split as evenly as possible so that A, for x > 3 is either 
Oor 1. For x > 3, then, if d, is even, b, = cz = d,/2 ; if d, is odd and 
AZ is 1, then b, = (d, + 1)/2 and cz = (d, - 1)/2; if d, is odd and AZ 
is 0, then b, = (d, - 1)/2 an c, = (d, + 1)/2. Furthermore, AZ does d 
not have to be recalculated each time for x > 3 ; for if d, is even, then 
A z+l = A,, and if d, is odd, then A2+1 is 1 if AZ is 0 and 0 if A, is 1. 

The following table carries through a calculation from S’(i,j) to 
S’(i + 1,2j - 1) and S’(i + 1,2j). 

S’ (i, j) 

d-sequence 
b-se&ence 2 1 5 7 
c-sequence 1 4 3 7 

S’(i+1,2j-1) 0 2 0 0 5 7 1 
S’(i t’ 1,2j) 0 1 0 0 3 7 4 

It is simple to rearrange the terms of the b and c sequences in forming 
the sequences S’(i + 1,2j - 1) and S’(i + 1,2j) in accordance with the 
rule that where d, is ak’(i,j), b, and c, are ak’(i + 1,2j - 1) and 
ak’(i + 1,2j), respectively. 
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To illustrate the case where dl = 2, consider the M(S’(i,j)) sequcncc 
1, 2, 5, 9, 14. Here the b-sequence is 1, 2, 5, 7 and the c-sequence is 
1, 3, 4, 7. 

Since we have shown how an admissible S’(i,j) is split into 
S’(i + 1,2j - 1) and S’(i + 1,2j), t i is easy to see that given S’(l,l) 
all the S’(i,j) can be calculated, provided all the applications of the 

splitting technique yield admissible sequences. Once all these have 
been calculated, a folded tree whose S(i,j) is S’ (;,j) can easily be con- 
strutted. If there are n terms in S’(l,l), then, of course, we want an 
n-bay folded tree. An n-bay tree is constructed and each vertex 

FIG. 8. 
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V(i,j) is labeled Pk where ak’(i,j) is unity. (In the next section we 
prove that a vertex will be assigned one and only one label by this 
procedure.) 

We will now provide an example showing the use of this procedure 
in constructing a S-bay folded tree with the given admissible loading 
sequence, 1, 7, 7, 8, 8, which is one of the most evenly balanced loading 
sequences possible for a S-bay folded tree. We omit the d-sequence, as 
well as the b-sequence and c-sequence, in each step. 

Since S’(l,l) is 1, 7, 7, 8, 8, 

S’(2,l) is 0, 6, 1, 4, 4, and S’(2,2) is 0, 1, 6, 4, 4; 
S’(3,l) is 0, 3, 0, 3, 1, and S’(3,2) is 0, 3, 0, 1, 3; 
S’(3,3) is 0, 0, 3, 3, 1, and S’(3,4) is 0, 0, 3, 1, 3; 
S’(4,l) is 0, 2, 0, 1, 0, and S’(4,2) is 0, 1, 0, 2, 0; 
S’(4,3) is 0, 2, 0, 0, 1, and S’(4,4) is 0, 1, 0, 0, 2 ; 
S’(4,S) is 0, 0, 2, 1, 0, and S’(4,6) is 0, 0, 1, 2, 0; 
S’(4,7) is 0, 0, 2, 0, 1, and S’(4,8) is 0, 0, 1, 0, 2. 

For each i,j we label V(i,j) Pk where the kth term of S’(i,j) is unity. It 
is not necessary to compute S’(Sj) for any j, since every V(S,j) can be 
labeled with that label which has not already appeared in the chain 
containing that V(Sj). The result is Fig. 8. 

(To be concluded.) 
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