EXTERIOR POINT ALGORITHMS
FOR NEAREST POINTS AND
CONVEX QUADRATIC PROGRAMS

*K. S. Al Sultan and K. G. Murty
Department of Ladustrial and Operations Engineering
The University of Michigan
Ann Arbor, Ml 48109-2117 U.S.A.

and
Systems Engineering Department

King Fahd University of Petroleum and Minerals
Dhahran-31261, Saudi Arabia

October, 1989
Technical Report 89-31

*Partially supported by NSF grant No. ECS-8521183

Abstract

We consider the problem of finding the nearest point (by Euclidean distance) in a
convex polyhedral cone to a given point, and develop an exterior penalty algorithm for
it. Each iteration in the algorithm consists of a single Newton step followed by a
reduction in the value of the penalty parameter. Proofs of convergence of the
algorithm are given. Various other versions of exterior penalty algorithms for this
problem and for convex quadratic programs, all based on a single descent step
followed by a reduction in the value of the penalty parameter per iteration, are
discussed. The performance of these algorithms in large scale computational
experiments is very encouraging. It shows that the number of iterations grows very

slowly, if at all, with the dimension of the problem.

Key words: Exterior penalty function methods, nearest point problems, convex

quadratic programs, Newton step, SOR methods.

Abbreviated title: Exterior point-algorithms

1. Introduction

We consider the nearest point problem, which is that of finding the nearest point by
Euclidean distance in a convex polyhedral cone K CRN, to a point g€ RN. Itis a
special case of a convex quadratic program with many important applications. In one
class of applications in remote sensing we need to find the composition of a mixture of
various pure constituents. Signals are obtained from the mixture and each of the pure
constituents, and the problem of estimating the composition of the mixture from this
data can be posed as a nearest point problem using the least squares formulation.
Other applications of the nearest point problem in constructing approximations of
functions have been discussed by D.R. Wilhelmsen [1976]. The nearest point problem
also appears as a subproblem in each step of the gravitational method for solving
linear programs (S.Y. Chang and K.G. Murty [1988]). Also, the nearest point problem
has important applications to a variety of problems in robotics (E. G. Gilbert, D. W.
Johnson and S. S. Keerthi [1988]).

There is a linear complementarity problem (LCP) associated with the nearest
point problem, it consists of the KKT conditions that provide the necessary and
sufficient optimality conditions for it. The nearest point problem can be solved through
the associated LCP using any of the available algorithms for solving LCPs such as
Lemke's complementary pivot algorithm, or the principal pivoting methods, etc. (C.
Lemke [1965], R. W. Cottle and G. B. Dantzig [1968], K. G. Murty [1988]), or the recently
developed polynomial time interior point methods (M. Kojima [1989], M. Kojima, S.
Mizuno and A. Yoshise [1989]). The ellipsoid algorithm of linear programming has
been extended to solve the nearest point problem in polynomial time, but it is only of
theoretical interest so far, as its computational performance is poor (S. J. Chung and K.
G. Murty [1981]). Special algorithms for the nearest point problem, based on its
geometry are discussed in (E. G. Gilbert [1966], R. O. Barr and E. G. Gilbert [1969], K.
G. Murty and Y. Fathi [1982], D. R. Wilhelmsen [1976), P. Wolfe [1976]). The nearest

point problem can also be solved by specializations of any of several descent methods
or actiVe set methods for linearly constrained nonlinear programs discussed in the
nonlinear programming literature. Thus, a variety of methods are already available for
solving the nearest point problem, and some of these are practically efficient.

But the nearest point problem appears in many practical applications, and often
as a large scale problem. This has provided a continuing motivation for the
development of new algorithms which can solve large scale problems faster. This is
also the motivation for the work reported in this paper. Our inspiration comes from
recent reports of significant improvements in computational performance for solving
large scale linear programs and convex quadratic programs through the use of barrier
methods in novel ways. In this paper, we develop several penalty methods for the
nearest point problem, and report on their encouraging computational performance.

If the dimension of Kis n1 < n, let F be the subspace of A" which is the linear
hull of K, and q* the orthogonal projection of gin F. Then the nearest point in Kto q
and q* is the same, and the problem of finding the nearest point in Kto g* can be
carried out completely in the subspace F itself, with K a full dimensional cone in it.
Thus, without any loss of generality we assume that the cone K'is of full dimension.

For any matrix D, we denote by Dj., D.j, its ith row, jth column respectively. (x;)
denotes the vector whose jth component is xj-. If S, T are two sets, S\T denotes the set
of all elements of S notin T. When x is any vector, || x || denotes its Euclidean norm.
When A is a square matrix, || A || denotes its norm which is maximum { || Ax || : over x

satisfying || x || = 1}.

2 The Two Forms of Input Data for the Nearest Point Problem
There are two distinct ways in which the convex polyhedral cone K may be

specified.

One is as the POS cone of a specified subset of column vectors in A7, that is, K
=POS(Q)={y:y= 2,-51’ AjQj, A2 0} where Qis an nxm data matrix. As mentioned
above, when K is given in this form, we assume that the dimension of K'is n, i.e., the
rank of Qis n. In this form the data for the nearest point problem consists of g and Q.

The second form in which K may be givenis as { x: Ax2 0 } where A is an mxn
data matrix. Here also we will assume that the dimension of Kis n. In this form, the
data for the problem consists of gand A.

In practical applications of the nearest point problem, K may appear in either
form. When K is given in one of these two forms, to transform it into the other form
typically requires exponential effort. A major exception to this occurs when K'is
simplicial, in this case both Q and A are square and nonsingular and A = Q'1, and we
can pass from one form to the other in this special case, with just one matrix inversion.
We develop special versions of exterior penalty methods for the nearest point problem

depending on the form in which K'is given.
3 A Penalty Algorithm When K is Given in the POS Form

Let K= POS (Q) where Q is of order nxm and rank n. In this case, the nearest point
problem is: find A = (A4, ..., Am)7 to

minimize || q- QA |2

subjectto A 2 0.

If A* is an optimum solution of this problem, x* = QA" is the nearest pointin Kto q. Itis

well known that this problem always has an optimum solution, and that the nearest

point in K'to g exists and is unique. The penalty approach solves this problem through

an unconstrained minimization problem in A of the form

minimize A g) = | q-ox||2+:—lp(x), overde AT

where P(\) is a penalty function associated with the region { A :A 2 0}, and p is a

positive penalty parameter. The various methods differ in the choice of the penalty

function P(A). In this study we will consider the penalty functions that result in the

following unconstrained minimizing functions f{(-) which are distinguished by a

subscript.
1 m
fr) = 1lq- QA2 += 3 (max {0, -A;}),
H j=1
m
Let P = 3 (max{0,- X})
J=1

forr=2, 3, 4. f (A, u) is continuously differentiable in A up to the first order. f3 (A, u)
and f4 (A,) are twice continuously differentiable in A. All the functions f2(A, p),
f3 (A,), fa(\, u) are convex in the A-space for fixed 1> 0. We denote the row vector of
partial derivatives of f, (A, u) with respect to A by g,) = V£, (A, p), and the hessian
matrix of fr (A,) with respect to A, for r=3, 4, by H(f; (A, u)). We have, forr=2, 3, 4,

g0 1) = VH () = -2gTQ+ 207QTQ + iP'r o)

where Py (A) = (81 A'7, ..., dmA'm) with & defined by

5 {o itAj2 0
Ve ifAj< 0

for j=1to m. Also, for r=3, 4, we have

Hif, O,) = 207Q *i"" 1) diag(BA'E, ... GmA2)

where for any ay, . . ., am, diag(as, ..., am) is the diagonal matrix of order mxm with

entries in the principal diagonal equal to ay, ..., am.

Line Search Routine for f, (A, u)

Let A € RMand suppose d = (dy, ..., dm)T is a descent direction for f; (&, u) at L. Then

‘C’I—:(X +ad,) (-2d7QTq + 2dTQTQY) + 2dTQTQd
1M -
+= T A1) A+ ad)™ g G (a) (1)
H j=1
where {j(a) =0ifXj+ adj 20, and 1if X} + adj < 0. o2 &+ 094 1) ig 4 sum of at

do

most m + 2 terms. Determine the set of ratios {%‘jf jsuch that either ;> 0, dj < 0, or A,

<0, dj> 0}, and arrange them in increasing order. Suppose there are s distinct
values in this set, &1 < a2 < ... < ag. Define g1 = . Forany u=11to s, in the interval

oy < o< oy, €ach of the terms on the right hand side of (1) is monotonic and has the

r dfk + ad, p)

same sign. Since dis a descent direction for f, (A, 1) at A, o <0ata=

0, and as f{A, i) is convex and has a minimum, this derivative becomes 0 at some

point in this direction. So, if we begin computingg—;‘(x +od, p) fora =0, a1, a, ...

there will be a t such that it remains negative until we get to oy, and at oy, 1 it becomes

2 0. Then, we know that the minimum of f- (A, u) in A, over the half-line { A+ad:a20},

is attained by some « in the interval ot < @ S at41, and it can be found by an efficient

search for the zero of%f—’ (A + od, u)

o

in this interval, as all the terms on the right

hand side of (1) are monotonic and of the same sign.

Thus for the problem of minimizing f, (A + ad, 1) over > 0, when d is a descent

direction for f, (A,) atA, the optimum step length can be determined efficiently by the

above method.

Selection of Search Directions

Given a fixed positive value for the penalty parameter p, a descent method can
be used for finding an unconstrained minimum of f (A, u) in A. This method begins
with an initial point A= A° and goes through several steps. If A% is such that g = Q A°,
then A0 is a global minimum of the problem when u = e and thus could be used as a
starting solution for u > 0 and large. In each step, a descent direction at the current
point, AK, is generated, and a step is taken from AX in that direction. We get a variety of
methods by varying the selection of search directions in each step. We basically

consider two search directions.

Steepest descent search direction; Under this rule, the search direction at the current
point Ak is -V f. (Ak, u), and step length for the move in this direction is taken to be the

optimum step length determined as discussed above. The method based on this

strategy is the steepest descent version of the method.

Newton search direction: Under this rule the search direction y at the current point A%

is a solution of the system
H(f (K W)y = -V (K p). (2)

If K is simplicial (i.e., if m = nand Q is of order nxn, since we already assumed that Q
has rank n) then H (f (A, 1)) is positive definite and (2) always has a unique solution.

If K is not simplicial (i.e., Q is of order nxm, m > n), H (f- (AK, p)) is positive
semidefinite, and may be singular, and (2) may not have a solution. In this case we
can use some of the standard modifications in the literature for defining the Newton

search direction. If this happens, we will replace (2) by
(H (fr K) + o) y=-V 1, (A, p) (3)

where 7> 0 and /is the unit matrix of order m. The matrix on the left hand side
of (3) is positive definite and hence (3) again has a unique solution which is a descent
direction for f, (A, y) at the current point A.

When using the Newton search direction, we can take the step length for the
move to be 1 in all the steps, this leads to the standard Newton method. Or, we can
take the step length for the move to be the optimum step length determined as
discussed above. The method based on this strateqy is the Newton method with line

searches.

Termination
In practice we select a tolerance &, positive and sufficiently small, and terminate

the methods when the current point AX satisfies i PA\) <¢, orif Ak 2 -ee, where e is the

column vector of all 1's in RM. At that stage, the point Q AKX is accepted as the nearest

point in Kto q.
The Classical Exterior Penalty Method

This method, discussed extensively in nonlinear programming literature, goes through
many iterations. In each iteration, the value of the penalty parameter p is fixed, and an
unconstrained minimization algorithm is used to find the global minimum f{A, u) over

A € RM. This algorithm itself may take several descent steps in this iteration. A

commonly used termination criteria for this unconstrained minimization is
lgdh p)ll S € (4)

where €* is a positive and sufficiently small tolerance. Then the value of the penaity
parameter p is decreased, and the method moves to the next iteration.

It has been shown (see, for example, A. V. Fiacco and G. P. McCormick [1968).
K. Truemper [1975]) that this method converges to the optimum solution of the original
problem. If A(u) denotes the unconstrained minimum of f{A, u) over A, as a function of
i, then A(u) converges to A*, an optimum A for the original problem, as u — 0. In fact.
as shown in K. Truemper [1975], it is possible to select a target value u* > 0 for the
penalty parameter, such that when p decreases to this value or becomes smaller, then

A(u) is within a specified tolerance of A*.

10

The New Exterior Penalty Method

We will now describe an algorithm based on the ideas of the classical penalty method,
but differs from it in one important aspect. In this algorithm we do not find the
unconstrained minimum of f{A,) for each fixed pu. Instead, we carry out only one
descent step of the unconstrained minimization algorithm, then reduce the value of the
penalty parameter y, and repeat in the same way.

One can visualize a path in the A-space, parametrized by p, { A : V f{A, u) = 0,
i > 0}, called the exterior path, and an envelope containing this path defined by
{M:|| VA 1) || Se, n>0} foracerain e > 0. We will later on prove that the points
obtained in this new algorithm, can be interpreted as a sequence of points in this
envelope converging to the limit of the point on the exterior path corresponding to u as

i tends to 0.

Basic algorithm
Initialization Let £ be a prespecified accuracy, p be a multiplier satisfying 0 < p

< 1. Select u°> 0 and large, select A0 satisfying QA° = q, let k= 0.

Main step

1. Akis the current point. Find the direction dk at Ak (either the steepest descent

direction or Newton's direction).

2. Select step length ax. This is 1 for standard Newton method, or the optimum

step length for other methods.
3. LetAk+T=2k4 g dX . IfAK+1> - gg stop. Otherwise, let uk+7 = p uk k=k+1,

returnto 1.

11

4 Theoretical Results on Convergence of the Algorithm

Classical penalty methods are known to converge to an optimum solution of the
original problem. Proofs can be found in nonlinear programming literature (for
example, D. G. Luenberger [1984], M. S. Bazaraa, and C. M. Shetty [1979], A. V.
Fiacco, and G. P. McCormick [1968], K. Truemper [1975], J. P. Evans, F. J. Gould, and
J. W. Tolle [1973], T. Pietrzykowski [1968]). However, these proofs assume that an
actual optimum solution for the problem of minimizing f(A, 1) over A € R™ is obtained
for each fixed value of u in a sequence converging to zero. We do not really obtain the
unconstrained minimum of fA, u) over A € RM for any value of u before we change it.
Hence, standard proofs of penalty methods do not apply directly to our algorithm.

In this section we give a convergence proof for standard Newton version of our
algorithm in the simplicial case, that is, when Q is a nonsingular square matrix. So,
m = n, and the algorithm considered is the one-step Newton method (step length = 1)
attended by a decrease in the penalty parameter u after every step. We restrict our
attention to the case r = 3, i.e., the unconstrained minimizing function is f3(A, u), which
we denote by f(A, u) for the sake of simplicity. We denote by g(A, u), H(A, u) the

gradient vector (as a row), and the Hessian matrix of f3(A, u) with respect to A. So,

o0 1) = 2(q- ANTQ - i-(m% . 53
(5)
HOL 1) = 2Q7Q - E diag (1At . . . Sk

where 8 = (81, . . ., 8p) is a function of A defined by : for =1 to n

12

0 ifAjZ 0
dj =) (6)
1 ifAj< O

THEOREM 1: fiA, p) is a strictly convex functionin A € RN, forall u> 0.

PROOF: Since Qis nonsingular, QTQ s PD (positive definite). Also, from (6), we verify
that -(6/u) diag (81A4, . . . , Ophp) is a positive semidefinite matrix for every u>0and A
€ RN, So H(\, u) is PD for every u >0 and L € R". Hence f(A, u) is a strictly convex
function in A € AN, for every u> 0. O

THEOREM 2: For each u > 0, the system

g, p) =0 (7)
has a unique solution in A, say A(u). A(u) is a continuous function of win{p:u>0}.
Also, as u — 0 through positive values, || A(x) || remains bounded above by a constant

which depends only on gand Q.

PROOF: Fix u > 0. Select any point x from K=POS (Q). Leto=|/q-x|,S={y:
la-yllSe}T={A:A=Qly,ye S}. Tisacompact set, and as f(A, p) is a
continuous function in A, there is a point A € T where f(A, p) attains its minimum over I".
Forallyd S,||q-y|l>¢, and hence foraliL ¢ T, | q- QA |[2 > ¢2, which implies that
f(\,) > @2 since P3(A,) 20 forallA. LetX=Q'x. Asx€ Kwe haveX 2 0, thus P3 (X,
) =0, and f(X, p) = 2. Hence forall A ¢ T, we have f(A,) > @2, and for at least one A
e I"we have f(A, p) S ¢2. This implies that 7~L the minimizer of f(A,) over I is its global
minimum. Hence f(A, u) attains its minimum in A, and since it is strictly convex in A by

Theorem 1, it has a unique global minimum in A, which is attained at the solution to

ag(A,
g(A,) = 0. Hence the system g(A, u) = 0 has a unique solution, A(u), say. _gék Ko

13

H(\, y) is nonsingular for all A whenever u > 0. Hence by the implicit function theorem,
A(u) is continuous in pinthe region { u: u>0}.

From penalty function theory we know that A(u) = A* where A* = @ 1x*, x* being
the nearest point in POS (Q) to . This and the continuity of A(¢) implies that || A(u) ||
remains bounded above by a constant as u — 0 through positive values, where this

constant depends on || A* || which itself depends only on g and Q. O

From Theorem 2 we know that { A (u) : £ > 0} is a path in the A-space, called the
exterior path. The set{ A : || g(A, 1) || S &, u >0} for some € > 0 defines an envelope

containing the exterior path. We will now show that it is possible to interpret the points
obtained in our algorithm, as a sequence of points in this envelope leading to A* as u
- 0.

Foru> 0, e> 0, define
Qpe) = {A:]lglhpllSe) (8)
All the eigenvalues of QTQ are real and positive since it is symmetric and PD. Let oy,

on be the smallest and largest eigenvalues respectively, of the symmetric PD matrix

QTQ. Hence 61> 0.

THEOREM 3: Forp >0 and every A € RN, the smallest eigenvalue of H(A, p) is 2 201.

Hence f(A, 1) is a strongly convex function in A for all p > 0.
PROOF: Let og be the smallest eigenvalue of H(A, u). Then

os = min{zTHA w)z:]|z|l=1} (9)

14

From (5), we have

zZTH(\, p) z

2 TQTQz -&zT(diag (31M, - - . Snkn))z
> 22TQTQz

from the definition of §;s in (6). Hence, from (9),

v

s min{22TQTQz: || z|| =1}

= 201

This automatically implies that f(A,) is strongly convex in A for every p> 0. [
THEOREM 4: The set Q(u, €) is bounded for all € > 0, whenever pu > 0.
PROOF: Given p > 0, A(u) is the solution of g(A, u) =0 in A. In Theorem 3 we

established that f(A,) is a strongly convex function in A. Hence, there exists a

constant y such that for all A, &,

g 1) - g w11 2 YIIA-R]| (10)

See B. T. Polyak [1987]. Substituting X = A(u) in (10) leads to

g) 112 YIIA - A (11)

for all A, since g(A(n), n) = 0. From (11) we conclude that if A € Q(y, €), then

15

IA-Ap |l S ely (12)
The fact that A(i) is bounded, and (12) together imply the result in this theorem. [

We will now investigate what happens in one iteration of our algorithm.

THEOREM 5: Let p, A be the penalty parameter, and the vector respectively, at the end

of one iteration. u = py is the value of the penalty parameter for the next iteration. If ¢ >

1-
Ois suchthat || g(A, W) || S, then || g(A, 1) || :_(_;_pl B+ § where B is a constant.

PROOF: g{k /) =a +~b where a = -2(q - Q)TQ and b = -3(5122, . .. 5:A3). So
m
b
g Wl = la+—Il
pu
1 b
= - -)a+a+—
plI(P) u“
(1-p) 1 b
s Papelyas
= , llall p|| u“
1- €
PV (13)
p p
Now llall = |l-2(q-QnTQ]|

A

2qTa i+ 21 QT A

16

S B
where B is some positive constant since || A || is bounded on Q (u, €) by Theorem 4.

Hence, from (13), we have

1 - €
Il g%) | P

£ O
Y B+P

WA

LEMMA 1: || (HA&, w) 1| S 1/261, where o4 is the smallest eigenvalue of QTQ.

PROOF: This follows from the arguments in the proof of Theorem 3. O

THEOREM 6: Let u, A be the penalty parameter, and the vector at the end of one
iteration. In the next iteration set the penalty parameter to u = pu, and carry out a

single Newton step leading to the new vector . Then

lgX il S a«llg@ w2
where o = 3
411612
PROOF: Define
3 .
B = == dag(d\, ... Snin)
m
H = H(A, 1) = 2QTQ +28B (14)
g = gD =-2qTa+2TaTa-2nd ... 5md)

H

17

From the Newton step we know that X = A - H'1 g(A,) = A - H-1g. Hence

-2qTQ + 2ATQTQ - 8 (81%12, . . ., 8nkn?)
N

a(x, =

297Q + 201 - H1g)TQTQ -2 5 (4 - (H1)i. 9)2)
m

-2qTQ + (A - H-1g)T (2QTQ + 2B - 2B)

] % (8 ()ﬁ -2 (H)i g + ((H)i. g)2)
m

= -24TQ+2ATQTQ- gTH-! (H - 2B) (15)

2508 - 20 () g + (H1) 9)2)
v

-2qTQ +20TQTQ - gT +2gTH1B - 3 (& ?»?)
m

2gTH1B -2 ((H-1). 9)?)
m

((H")i. 9)2), by substituting for gT from

I lw

(14) and cancelling terms.

18

So,

9 m
gk, w2 = — ¥ ((H")i.g)*
12 i=1
< i m -1). 2
= 2 ((H1);. g)
12 i=1
Hence,
3
g mil = ~IIHTgl?
m
3
s - IHT2 || g2
m
2 g2 ,bylemma 1
4 612
. 3
That is, g wIl S Il g(A, 1) |2
45 612

Now we select a sufficiently small target value for the penalty parameter y, say
ﬁ, and a tolerance €, and show that the algorithm converges to a point A satisfying (4),
i.e., || g(A, u*) || S €*, for some p* S I, € €. By the results on the classical penalty
method mentioned above, this will imply that point A at termination is within the

specified tolerance of A*, the optimum A. Define

1 3
o = max{ —x , =&

16
2¢ 4].1012} (16)

19

. 3 v
= , £ =
4a* 042 20"

Therefore p* < ﬁ €' :é\. Since ﬁ € are small, & is a large positive number. Let B* > 1
be a large positive number which is an upper bound for || A || over the set Q(u*, €),

guaranteed by Theorem 4. Select

17)

We will now denote by K, AK, the penalty parameter, and the A-vector at the end of

iteration k in the algorithm, fork = 1, 2, ... uk+! = puk < pk for all k, and we will show that
when k is such that pk < p*, then || g(AK, pk) || £ €* will hold.

LEMMA 2: If the algorithm did not terminate in iteration k, then we will have

g+t) | S @t [l gk, pk+) |2

PROOF: Since the algorithm did not terminate, we have pk+1 > u*, and this lemma

follows from Theorem 6. O

THEOREM 7: If || g(AK, pK) || S €, then || g(Ak+1, uk+1) || < €* too.

PROOF: From Lemma 2, we have

gkt ket || = ot [gAk, uk+T) |12

20

A

1 - :
o (() p) B* + e;JZ by Theorem 5

L((1-p)2 (B*)2 ()2 2e*B*(1-p)
(X(p2 + p2 + p2)

= e"(1—1§+ 1§+ %)(;12') (18)

by substituting for 1 - p from (17).
From the choice of p it is clear that the right hand side of (18) is < €*, proving the

theorem. O

How to initiate the algorithm?
IfQ1q 2 0,then ge POS (Q), and hence q is itself the nearest point in POS (Q)

to q, terminate. So, assume Q'1q 0.

We will now show how to select an initial penalty parameter u° and point A°, so
that || g(A%, o) || S €*. Select

A0 = Qg (19)

o = 3\/2 (23)# - over j such that A5 < 0)

Then it can be verified that || g(A°, u°) || = €*. When initiated with A9, u° as given in
(19), with p selected as in (17), it is clear that the method terminates after at most

(log uo - log u*) / (- log p) iterations, with a A close to the optimum point A*.

21

5 The exterior penalty method for the nearest point problem
when K is specified by homogeneous linear inequalities.

Let K={x:Ax >0} where A = (aj) is of order mxn. We assume that K is of full

dimension in RM. In this case the nearest point problem is: find x € RN to

minimize || q-x]|2

subjectto Ax20

In the penalty approach we solve this problem through the unconstrained

minimization problem of the form

m
minimize he(x, p) = ||q-x||2+i Y (max{0,-Aix}) overxe RN

forr=2, 3, or 4, where | is a positive penalty parameter as before. For u >0, hy (x, 1)
is convex in x for all these values of r. Forr =2, 3, 4, V he(x, i), the gradient vector (as

a row) of he(x, p) with respect to x at x, is

m
Vh@W = 2a-0T+ 0 T o (max (0 AT A
|=
0 ifAL.x2 0
where i = - (20)
(-1)r if Ai. X < 0

22

fori=1tom. Also, forr =3, 4, we have H(h,(x, 1)) = the hessian matrix of h(x, p) with

respect to x,

H(he (x, 1)) = 21+ E
where | is the unit matrix of the order n, and E = (ejj) of order nxn is given by

rr-1) M
6i =—(u—l % o (max {0, Av x})2 a ay

fori, j = 1 to n, with v as defined in (20).
Using these, the new exterior penalty algorithm for this problem, based a single
descent step followed by a decrease in the penalty parameter per iteration, is

constructed in a way similar to that discussed in Section 3.

6 Extension to convex quadratic programs

Consider the convex quadratic program,

minimize z(x) = cx + % xTDx

subjectto Ax2b

x20

where D is a symmetric positive semidefinite matrix and A is of order mxn. In the
penalty approach we solve this problem through the unconstrained minimization

problem of the form

23

m
minimize wr(x,) = CX + % xTDx +‘:I Y (max{0,bj-Aix})
i=1

+1 g (max{0,-x})
T o

overx € RN

Using the function we(x,), versions of the new exterior penalty algorithms for this

problem are constructed exactly as before.

7 Results from computational experiments
So far, we have conducted a computational experiment with the new exterior penalty
algorithm described in Section 3, for solving randomly generated nearest point

problems in simplicial cones of dimension n ranging from 10 to 700.

DATA GENERATION: Results are reported for the case of problems in which q and Q
are generated randomly as follows. Each element of q is generated from the uniform
distribution between -5 to +5, of double word length (8 bytes). Likewise elements of Q
are generated from the uniform distribution between -20 and +20, of the same word
length. No nonsingularity checking was ever carried out on any of the matrices Q
generated, but the system of equation (2) always had a solution in methods which
used it to generate descent directions. The vector q and the matrix Q are fully dense in
all the problems generated.

We have solved various other problems in which q and Q are randomly
generated according to different distributions, but the performance of the algorithms

turned out to be the same.

24

Implementation details

Experiments were carried out using the following versions of the algorithm.

VERSION 1: Using Newton direction with step lengths 1: In this version,
exactly one descent step is carried out, followed by a decrease in the penalty
parameter, per each iteration. f3(A, u) and f4(A, p) both have second derivatives at all A
€ RNn. But fa(A, u) has second derivatives only at points A in which all components are
nonzero. It has been observed that all the Ak generated in the algorithm tended to
have all components nonzero, even though some of the components were clearly
converging to zero (as explained in D. G. Luenberger [1984], this might be due to the
fact that exterior methods approach the optimum from outside the feasible region). So,
we implemented this version also with fa(A, p), using the formula for the hessian given
in Section 3, and the method never encountered any problems in thousands of runs in

early experiments.

VERSION 2: Using Newton direction with line searches: Unlike Version 1,

here we implemented this version only using f2(A, p), because of the simplicity of the

line search routine for r = 2. Again, only one descent step was carried out per iteration

VERSION 3: Using steepest descent strategy: We implemented this version
using fa(A,) and also f1(A, n). Although f(A, p) is not differentiable at points A with

some components zero, the previous discussion on second order differentiability

applies here. Unforlunately, this version based on f{(A, p) did not converge in most

cases. A close look at the gradient reveals that this divergence is expected since the

gradient does not carry much information about negative A;s.

25

In this version we also experimented with carrying out several descent steps per
iteration (i.e., several descent steps between changes in the value of the penalty

parameter).

Termination Criteria
For all versions, the following criteria have been tried as signals for convergence in
early experimentation. Small positive tolerances €4, €2 have been selected, and the

algorithm is terminated in iteration k if the penalty parameter uk and the vector Ak

satisfied both the following conditions

i) A2 -eqforallj=1ton
o
i) = Pr(AX) < £2

M

condition (i) relates to "near feasibility" (within the tolerance €1). Both conditions have
been used in early experiments, and it always turned out that when one held the other
too held in the same iteration (depending on the choice of suitable values for €1 and
£2). Hence, in later tests, we used condition (i) as the sole termination criterion.

In Figure 1 we provide the plot of ¥ (| Aj| : over j such that A; < 0), which is a
measure of infeasibility of the current A-vector, in each iteration of the standard Newton
version based on fa(A, p), for a problem of dimension n = 40. It can be seen that this
infeasibility measure drops very sharply and becomes almost zero in about 6

iterations.

26

Infeasiblility

Infeasibility versus # iterations

409.6

iteration #

Figure 1

27

Updating the Penalty Paramter

For the algorithm to converge, we observed that the penalty parameter p must reach a
sufficiently small value (like 10-12, this depends on the desired accuracy e1). The
penalty parameter is updated using the formula pk+1 = puk. Clearly, the smaller the
value of p, the more rapid is the decrease in pu. However if p is taken too small, the
unconstrained minimum of f(\A, pk+1) tends to be far away from the unconstrained
minimum of (A, uK), thus ruining the chance of gaining advantage from using steps of
Newton's method which is only locally convergent. So, we experimented with different
values of p, and provided the best observed values of p in the tables.

A lot of experimentation has been done to determine the best value of u°, the
initial penalty parameter value. The smaller the value of uo, the less the number of
iterations to drive u to its terminal value. However, since the starting A, which is
A° = Q-1q, is the unconstrained minimum of f,(X, u) only at u = =, choosing a small
value for uO puts the unconstrained minimum of (A, uo) far away from A9, resulting in

slow convergence. In most experiments, selecting p° = 0.01 yielded excellent results.

Solving (2) For Finding Newton Directions
Several strategies have been tried for this. One is to solve this system directly using
matrix factorizations. This provides accurate solutions but is expensive in computer
time when the dimension n is large (particularly because all our problems are fully
dense). lterative methods based on preconditioned conjugate gradient methods
turned out to be even more expensive computationally than direct matrix factorization
methods. We also tried iterative successive overrelaxation (SOR) method, which
turned out to be the best among all the methods we tried. In fact approximately Vn
iterations of these SOR methods each with 0(n2) effort yielded results comparable in

accuracy to those obtained with 0(n3) effort in other methods. The best value for the

28

relaxation parameter, w*, seems to increase with n (Table 2). However, a lot more
work remains to be done to obtain good implementation for this aspect of the
algorithm. Since almost all the work in algorithms based on Newton directions goes
into solving system (2) in various steps, optimizing this aspect is very important.

The algorithms were coded in FORTRAN 77 using double precision arithmetic
and run on an IBM 3033 or on an APOLLO Series 4000.

Summary of Computational Results: Number of Iterations

NEWTON BASED METHODS: In all versions based on Newton directions, it can be
seen from Table 1 that the number of iterations grows extremely slowly, if at all, with
problem dimension. As mentioned earlier, there is tremendous scope for improving
the computer time taken for solving (2) in each iteration, hence the number of iteration
is a more reliable guide of algorithm performance, than the computer time, and this is
about 6 for version 1 (constant step length) and marginally less for version 2 (Newton
with line searches), almost independent of problem dimension. Even with our current
tentative equation solving routines for direction finding, it is clear that these algorithms
are superior to implementations of other existing algorithms.

This almost constant number of iterations was about 6 for versions based on
fa(A, p), 38 for versions based on f3(A, p), and 70 for versions based on f4(A, p). The
main reason for this may be the fact that fa(A, n) is very nearly quadratic in A, thus
making it well suited for Newton method. Since fa(A, p) is almost quadratic one
Newton step almost always leads very close to the unconstrained minimum of this
function in each iteration, thus enabling a much faster reduction in the value of pu. The
barrier terms based on logarithmic functions employed by interior point methods do

not share this nice propenty.

29

We compared the performance of our algorithms with M. J. D. Powell's
implementation of A. Idnani and D. Goldfarb's dual quadratic programming algorithm
(available through IMSL as subroutine QPROG), K. Haskell and R. Hanson's [1981]
routine available through ACM algorithm 587 for linearly constrained least squares,
and with our implementation of D.R. Wilhelmsen's nearest point algorithm. Our
algorithm was superior to each of these, but we display comparative figures only for K.
Haskell and R. Hanson's code and QPROG to conserve space (comparative timings

for the other algorithm can be obtained from the authors).

We found that the total number of iterations depends critically on the value of p

used. We found that once a A; becomes > 0, it remains > 0 in almost all subsequent

iterations. This may explain the excellent performance of the algorithm.

STEEPEST DESCENT BASED METHODS: We found that it is better to do many
descent moves between consecutive updates of the penalty parameter. In each
iteration we continue making descent moves as long as there is significant change in
the solution vector A. When this becomes small by the L., norm we update p and go to
the next iteration.

There is the possibility of using conjugate gradient based moves rather than
steepest descent moves in each iteration. Implementing conjugate gradient moves
may be tricky as p becomes smaller, hence this has not been tested yet.

In comparing these methods with those based on Newton directions one should
bear in mind that each move in these methods is computationally cheaper as there s
no equation solving involved.

These methods are more sensitive than Newton based methods to the strategy
for updating the penalty parameter. In general the rate of reduction of p has to be

slower, more S0 as n increases.

30

The number of descent moves per iteration was almost constant at 15
independent of problem dimension. The number of iterations itself averaged around
37 in problems with n up to 250.

From Tables 1, 2, and 3 we see that our current implementation of this version
does not compare favorably with the implementations of Newton based versions, or
even with QPROG, in terms of computer time. However, there is tremendous scope to

improve the coding of this version.

LINE SEARCHES IN NEWTON DIRECTIONS: In versions based on Newton's method
with line searches, almost always the step length ranged between 0.8 to 1.2, with
many of them very close to 1. Moreover, the line search faces numerical difficulties
when the penalty parameter gets small. Thus, the following strategy was
implemented: apply Newton's method with line search till the penalty parameter
reaches a certain value, and then start applying standard Newton's method (i.e. with a
constant step length of 1). Unfortunately, Newton's method with line search does not
reduce the number of iterations significantly (this may be attributed to the surprising

small number of iterations, and the size of the optimum step length which is close to 1).

SAVING ITERATIONS BY PROJECTIONS: It has already been mentioned earlier that
if \; becomes > 0, it tended to remain > 0 in subsequent iterations. In the nearest point

problem, if we know the setJ = {j: A;> 0 in the optimum solution }, it is well known that

the nearest point itself can be found by orthoganally projecting q into the linear hull of
the face of K corresponding to J. In some experiments we selected a tolerance &3
(about 10-3) and when the current solution vector Ak satisfied A 2 -e3 for all j, we have

taken {j :X'j‘ > 0 } as an estimate for J and used the projection strategy. This has cut

the number of iterations by about 1/3 on an average.

31

pu Fixed At A Small Value
We experimented with selecting p at the small target value initially itself and carrying
out several descent steps keeping u fixed. This scheme worked well and converged

with the same (sometimes less) number of iterations as the usual scheme. However,
numerical difficulties have been encountered as the product i 7\.2]' was large causing

the hessian to be unstable. This does not happen when pu is gradually reduced
because as pk gets smaller, | 7\."" | for j such that x'j‘ < 0 also gets smaller, and the

numerical difficulty is avoided.

32

TABLE 1: Time in Seconds on IBM 3033 for Version | (Standard Newton Steps) Based on fp (A, p)
r = 2 r=23 r = 4
n # Avg. # time | optimal Avg. # time | optimal Avg. # time |optimalfl Time
problems | iteration p iteration p iteration p for
QPROG*
10 200 5.80 .658 .02 37.4 71 .29 69.5 77 .4 .656
20 200 6.01 .681 .02 38 .877 .29 70.1 1.075 .4 .675
30 200 6.03 722 .02 38.1 1.17 .29 70.5 1.62 .4 .73
40 200 6.04 .7983 .02 38.13 1.61 .29 70.6 2.44 .4 .819
50 200 6.04 .895 .02 38.4 2.24 .29 70.79 3.59 .4 .964
100 100 6.08 1.98 .02 39.1 9.27 .29 71.2 16.35 4 2.88
700 1 7 339.7 .02 + + + + + + 652

33

Accuracy = 10-8, System (2) solved by direct factorization using IMSL routines LFCSF and LSLSF
* This is M.J.D. Powell's inplementation of A. Idnani and D. Goldfarb's dual QP algorithm (IMSL routine QPROG).

+ Not tried.

TABLE 2 : Time in Seconds on APOLLO Series 4000 for Version 1 (Standard Newton Method) based on f (A, pn)

n # problems Avg. # of time optimal w* time for
iterations p m”

10 10 6.0 m;w .02 1.02 6.07
50 10 6.0 4.05 .02 1.05 4.50
100 10 6.0 24.0 .02 1.25 34.0
200 10 6.1 150.0 .02 1.30 259.6
300 10 6.3 405.1 .02 1.30 890.0
400 10 6.3 902.3 .02 1.30 2123.0
700 2 6.5 4302.0 .02 1.45 11768.0

Accuracy = 10-7. System (2) solved by SOR with relaxation parameter w* (found best by experimentation).

Almost in all cases Yn SOR iterations give an accurate solution to (2).

* .
This is the K. Haskell and R. Hanson's routine available through ACM algorithm 587.

34

TABLE 3: Time in Seconds on IBM 3033 for Version 3 (Steepest Descent Steps) based on) (A, p)
n # problems Avg. # of Avg. # steps Time Optimal Time for
iterations per iteration p QPROG
10 200 12 14.66 1.807 1 .565
20 200 12 15.16 1.17 1 .67
30 200 35 14.9 3.76 .5 727
40 200 36 15.56 6.26 .5 815
50 200 36 13.38 8.08 .5 .96
100 100 36 15.58 32.9 5 2.33
250 1 37 14.9 197.3 .5 31.7
Accuracy = 10-3

35

Conclusion
In our experiments so far we found that the best performance is obtained by the

version using standard Newton steps and based on fa(A, p). Of course, several other

versions are still under investigation.

Acknowledgements
We acknowledge the many discussions we had with R. Saigal. We are also grateful to
O. L. Mangasarian [1989] for bringing the result on strongly convex functions to our

attention which greatly simplified the proof of Theorem 4.

36

References

M.S. Bazaraa and C.M. Shetty, Nonlinear Programming: Theory and

Algorithms, (Wiley, NY, 1979).

S.Y. Chang and K.G. Murty, "The Steepest Descent Gravitational Method for

Linear Programming," Discrete Applied Mathematics, to appear.

S.J. Chung and K.G. Munrty, "Polynomially Bounded Ellipsoid Algorithms for
Convex Quadratic Programming,” in O.L. Mangasarian, R.R. Meyer, and S.M.

Robinson (Eds), Nonlinear Programming 4, (Academic Press, 1981).

M.B. Daya and C.M. Shetty, "Polynomial Barrier Function Algorithms for Convex
Quadratic Programming," School of ISE, Georgia Tech (Atlanta, GA, 1988).

J.P. Evans, F.J. Gould, and J.W. Tolle, "Exact Penalties Functions in Nonlinear

Programming,” Mathematical Programming, 4,2 (1973) 72-97.

A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential

Unconstrained Minimization Techniques, (Wiley, NY, 1968).

E.G. Gilbert, D.W. Johnson, and S.S. Keerthi, "A Fast Procedure for Computing
the Distance Between Complex Objects in Three-Dimensional Space," IEEE

Journal of Robotics and Automation, 4, 2 (1988) 193-203.

G.H. Golub and C.F. Van Loan, Matrix Computations, (John Hopkins University
Press, Baltimore, MD, 1989).

37

10.

11.

12.

13.

14.

15.

16.

K. Haskell and R. Hanson, "An Algorithm for Linear Least Squares Problems
with Equality and Nonnegativity Constraints," Mathematical Programming, 21

(1981) 98-118.

N. Karmarkar, "A New Polynomial Algorithm for Linear Programming,”

Combinatorica, 4(1984) 373-395.

M. Kojima, "A Polynomial-Time Algorithm for a Class of Linear Complementarity

Problems", to appear in Mathematical Programming [1989].
M. Kojima, S. Mizuno, and A. Yoshise, "A Polymonial-Time Algorithm for a Class
of Linear Complementarity Problems," Mathematical Programming, 44, 1 (1989)

1-26.

C.E. Lemke, "Bimatrix Equilibrium Points and Mathematical Programming,”

Management Science, 11 (1965) 681-689.

C.E. Lemke, "On Complementary Pivot Theory" in G. B. Dantzig and A. Veinott

(eds) Mathematics of the Decision Sciences," (1968).

D.G. Luenberger, "Linear and Nonlinear Programming,” 2nd edition (Addison-

Wesley, Melo Park, CA, 1984).

O.L. Mangararian, Private Communication (1989).

38

17.

18.

19.

20.

21,

22.

23.

24,

25.

K.G. Murty, Linear Complementarity, Linear and Nonlinear Programming,

(Heldermann Verlag, West Berlin, 1988).

K.G. Murty and Y. Fathi, "A Critical Index Algorithm for the Nearest Point
Problem on Simplicial Cones," Mathematical Programming, 23 (1982) 206-215.

T. Pietrzykowski, "An Exact Potential Method for Constrained Maxima," SIAM J.
Numerical Analysis, 6, 2 (1968) 299-304.

B. T. Polyak, Introduction to Optimization, (Optimization Software, Inc., NY,

1987).

J. Renegar, "A Polynomial-Time Algorithm Based on Newton's Method for

Linear Programming,” Mathematical Programming, 40, 1 (1988) 59-95.

J. Renegar and M. Shub, "Simplified Complexity Analysis for Newton LP
Methods," Tech Report No. 807, SORIE, Cornell University (Ithaca, NY, 1988).

K. Truemper, "Note on Finite Convergence of Exterior Functions, Management

Science, 21, 5 (1975) 600-606.

D.R. Wilhelmsen, "A Nearest Point Algorithm for Convex Polyhedral Cones and
Applications to Positive Linear Approximations,” Mathematics of Computation,

30 (1976) 48-57.

P. Wolfe, "Algorithm for a Least Distance Programming," Mathematical

Programming Study 1 (1974) 190-205.

39

CHIGAN

il

OF\ i
7435

I

47

Il

11(1976) 128-149.

27. Y.Yeand E. Tse, "An Extension of Karmarkar's Projective Algorithm for Convex

Quadratic Programming,” Mathematical Programming, 44, 2 (1989) 157-181.
28. D.M. Young, "Convergence Properties of the Symmetric and Unsymmetric

Successive Overrelaxation Methods and Related Methods," Mathematics of

Computation, 24(112), (1970) 793-807.

40

