NEAREST POINTS IN NONSIMPLICIAL CONES
AND LCP'S WITH PSD SYMMETRIC MATRICES

K.S. AL SULTAN
Department of Systems Engineering
King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia

and
K.G. MURTY
Department of
Industrial & Operations Engineering

University of Michigan
Ann Arbor, MI 48109-2117

Technical Report 90-22
August 1990

NEAREST POINTS IN NONSIMPLICIAL
CONES AND LCP’S WITH PSD SYMMET-
RIC MATRICES

K.S. AL-SULTAN and K.G. MURTY

Department of Industrial and Operations Engineering
The University of Michigan

Ann Arbor, MI 48109-2117, U.S.A.

and

Department of Systems Engineering

King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia

Abstract We discuss conditions for the equivalence of a lin-
ear complementary problem (LCP) with a positive semidefinite
(PSD) symmetric matrix to a nearest point problem over a Pos
cone. We then develop an algorithm for this nearest point prob-
lem, and report on its computational performance.

Key Words: nearest point problem, convex polyhedral cones,
Pos cones, linear complementary problem.

1. INTRODUCTION

Given a point ¢ € R™ and a matrix @ of order n X m, we consider the
nearest point problem (NPP), denoted by the symbol [@, ¢], of finding
the nearest point (by Euclidean distance) to ¢ in the cone Pos(Q) =
{z:2=QM\A=(A1,..y An)T > 0}. A variety of applications of this
problem in robotics have been discussed?. This problem also appears
prominently in remote sensing where the composition of a mixture of
various constituents is to be estimated using measurements on signals
from the mixture and from the pure constituents. D.R. Wilhelmsen®
discusses applications of the NPP in constructing approximations of
functions. Finally, the direction finding routine in each Step of the
gravitational method for linear programs' is an NPP. We extend an
algorithm developed” for the case of a simplicial cone, to the NPP
considered here.

2 K.S. AL-SULTAN AND K.G. MURTY

For any matrix A, we denote by A,., A, its ith row, jth column
respectively. If S and T are two sets S\T denotes the set of all
elements of S which are not in T. |S| denotes the cardinality of the
set S. For any vector z, ||z|| denotes its Euclidean norm.

Without any loss of generality we assume that every column vec-
tor of Q is nonzero. The problem is to find A = (A, ..., A)T to

minimize ||¢ — Q\||?
subject to A >0 (1)

An optimum solution A* for (1) is called an optimum combination
vector for the NPP [Q; ¢], then the desired nearest point in Pos(Q) is
z* = QN*. The nearest point z* is always unique, but the optimum
combination vector A* may not be unique.

If rank @ is p < n obtain any maximal linearly independent sub-
set of rows of @, say {Q1.,- -+, @) .}, let Q' be the pxm submatrix of Q
consisting of these rows, and F their linear hull. Let § = (¢, -+, q,)7
be the orthogonal projection of ¢ in F, and let ¢’ = (¢, -, §,) be the
subvector of ¢ corresponding to the rows in ()'. Then any optimum
combination vector for [@);g] is also an optimum combination vector
for [@’; ¢'] and conversely. Thus, it is possible to transform the NPP
[@; q] into one of the same form with the matrix of full row rank, how-
ever this transformation is computationally expensive, as it involves
finding a maximal linearly independent subset of rows of the original
@. Our algorithm works whether @Q is of {ull rank or not.

For any 1 < r < m, if the ray of ()., is not an extreme ray of
Pos(Q), deleting the column Q.. from () does not change the cone
Pos(@), and hence the NPP, and this simplifies the NPP. However,
detecting such Q.. is computationally expensive. Our algorithm will
work even if some ()., may correspond to non-extreme rays in Pos(Q).

2. THE SPECIAL CASE OF DIMENSION 2
Suppose n = 2. The following direct method can be used.

Step 1: In this case it is possible to find a feasible solution, A*, to the
2 x m system QX = ¢, A > 0, if one exists, by simple geometric
procedures. Such a A* is an optimum combination vector for
[@; g]. Otherwise, there is no feasible solution to this system, go
to Step 2.

NEAREST POINTS...

Step 2: For 1 < j < m, the nearest point, ¢/ in the ray of Q.; to ¢ is
given by

i] if (Q;)7¢<0)
T 0 () it @ >0)

Let p be such that ¢” is the closest among all the ¢’ to q. Define
A= (X;) by A} =0 for all j # p, and = (Q.p)T”—Q?’W for 7 = p.
This A* is the optimum combination vector for [Q; q].

3. RELATIONSHIPS TO LCP’S WITH SYMMETRIC PSD
MATRICES

The KKT optimality conditions for (1) lead to the following LCP:
find = (g1, ...,)7, A, satisfying

H = (QTQ)’\ = _QT(I (3)
>0, A>0. pfA=0
If (,)) is a solution of the LCP (3). then X is an optimum
solution for (1). Conversely, if A is an optimum solution of (1), let
i=QTQM—QTq, then (&, X) is a solution of the LCP (3). Thus, any
NPP is equivalent to an LCP with a PSD symmetric matrix.

Now, suppose M is a PSD symmetric matrix of order m x m and
rank n. Consider the LCP (b, M), which is to find w € R™, z € R™
satisfying

w—Mz=50
w,z>0, wlz=0 (4)

We can find a matrix Q of order n xm and rank n such that M = QTQ
(for example, @ can be taken as the Cholesky factor of M. Subroutine
LCHRG in IMSL computes this). Consider the following system in
variables y = (y1,...,yn)"

QTy=-b (5)

(5) may not have a solution. As an example. consider

SO

4 K.S. AL-SULTAN AND K.G. MURTY

Here @ = (1,1). In this example it can be verified that system (5)
has no solution, even though the LCP (b, M) has the unique solution
(w=(3,0)T, 2= (0,7)7).

If (5) does have a solution y, then the LCP (b, M) is equivalent
to the NPP [Q;y] as discussed above.

Theorem 1: Consider the LCP (b, M) where M is a PSD sym-
metric matrix of order m and rank n. Let Q be any matrix of order
n xm satisfying M = QTQ. Then the LCP (b, M) can be transformed
into a nearest point problem iff the system QTy = —b has a solution
Y.

Proof: If y is a solution of OTy = —b. the LCP (b, M) is equiv-
alent to the NPP [Q;y] as discussed above.

Now, suppose LCP (b, M) is equivalent to an NPP [Q;§]. With-
out any loss of generality we can assume that @ is of full row rank.
From the above discussion we know that QTQ = M and QT§ = —b.
Since M is of order m x m and rank n. these facts imply that Q is of
order n x m. From standard results in linear algebra we know that if
Q is any matrix of order n x m satisfving Q7@ = M, then the linear
hull of the column vectors of Q7 is the same as F, the linear hull of
the column vectors of M, and hence (5) has a solution iff —b € F
which depends only on M. Thus, if (5) has a solution y for some @
satisfying QTQ = M, then it has a solution for all such Q. These
facts imply that the system QTy = —b must have a solution y too, in

this case.
"

Corollary 1: The LCP (b, M) where M is a PSD symmetric
matrix, can be transformed into an NPP iff b € F, the linear hull of
the set of column vectors of M.

Proof: Follows from the proof of Theorem 1.
]

A vector A € R™, X > 0, is an optimum solution for (1) iff there
exists a i € R®, i > 0, such that (fi.\) together satisfy (3), hence
i =QT(Q))—QTq, and as Q)X is constant for all optimum solutions)
to (1), this implies that the vector i remains the same in all solutions
of the LCP (3). Thus, if (%, A) is a solution of the LCP (3), every
solution of it is of the form (i, A) where \ satisfies: A, = 0 if j is such
that zi; >0, i — QTQ) = —QTq, and A > 0.

Definition: An index j, 1 < 7 < m.is said to be a critical index
for the LCP (3), or for the NPP (1), if \, > 0 in some solution of (3),

NEAREST POINTS... 3

or equivalently, if the nearest point in Pos(()) to ¢ can be expressed
as Y ey Ae@.x where A\, > 0 for all k£, and > 0 for k = 5.
Hence, if 7 is a critical index for (3), (1), ¢; = 0 in every solution

for (3).

Reduction to a lower dimensional problem using a critical
index

Consider (1), (3). Let M = (my;) = QTQ, b= (b;) = —QTq. Suppose
(1) is a critical index. Then in every solution to () we have p; = 0,
and hence (3) is equivalent to

—MI.A=b1
M A=b, 1=2 to m (6)
poto iy 20, A>0; and ;A\, =0. 1=2tom.

Since my; = (Q.1)7Q.; > 0, from the first equation in (6), we can
get A, in terms of A\, to A, and eliminate it from the system. This
leads directly into an LCP in the variables p; to pn, and Ag to A,. To

get this lower order LCP perform a Gaussian Pivot Step on (—M:b)
with — M, as the pivot column and row 1 as the pivot row. Suppose
this leads to

—MmMyy —Myp - —My . bl
0 —fgy 0 =g, o b
0 —Mpmy 0 =My o by

Let M = (Myj 2,7 =2tom), b= (by .0, w= (foy s),
£ = (A3, n)T. Then the lower order LCP obtained after elimi-
nating A, from (6) is

w=ME=b, w, E>0. .TE=0, (7)

Since 1 is a critical index, every solution for (3) comes from a
solution to (7), with ;= 0 and A obtained from the first equation
in (6).

Since M is PSD, symmetric and of rank n. from the manner in
which M is obtained, M of order (m—1)x(m=-1)is PSD, symmetric,
and of rank (n—1). Also, since b is in the linear hull of the columns of

6 K.S. AL-SULTAN AND K.G. MURTY

M, b is in the linear hull of the columns of M So M has a Cholesky
factor, Q of order (n — 1) x (m — 1) and rank (n — 1) and bis in the
linear hull of the columns of Q, i.e., the system, QTJ = —b has a
solution § € R®~!. Thus (7) is equivalent to the lower order NPP
[Q; 7] where @ is of order (n —1) X (m — 1) and rank n — 1.

Hence, if a critical index for (1) is known, it can be reduced to a
lower dimensional problem

Reduction Using Geometrical Arguments

Given a critical index for the NPP [Q;¢]. its reduction to a lower
dimensional NPP can also be carried out using geometric arguments
as discussed”. Again, suppose 1 is a critical index. Then the nearest

point to ¢ in Pos(Q) is also the nearest point to ¢ in Pos((Q : — Q.1)).
Define

- Q1(Q1)TQ L
Q.sz,j———lnc—g—aTP—J-.JIZtO n
Qu@)T

=0 Fe
For j = 2 to n, Q7 is the orthogonal projection of @; in the
hyperplane through the origin orthogonal to the ray of @).;, likewise
q~ is the orthogonal projection of ¢ in the same hyperplane. The cone

Pos((Q: —@Q.1)) is the direct sum of the full line generated by @.; and
the cone Pos(Q). Let @~ = (Q5 - Q7,). If 7™ is the solution of the
NPP [@7;¢7] as embedded in R", then =T 4 —F[(QQ—h)Q—‘l is the
solution of the original NPP [Q; q].

@~ is of order n x (m — 1), and from the construction it is clear
that the rank of ()~ is one less than the rank of @, hence the set of
row vectors of Q~ form a linearly dependent set. It can be verified
that (Q~)T(Q™) = Q discussed earlier, and that the NPP [Q~;q7]
is equivalent to the LCP (b, M). Since Q~ is not of full row rank,
it is possible to transform the NPP [Q~;¢~] into an equivalent NPP
of the form [@=;¢~], where Q= is obtained from @~ by dropping a
dependent row vector from it, as discussed in Section 1, but it is not
necessary to do this work.

4. CONDITIONS FOR CRITICALITY

Given z € R™, z # q, define B(q;2z) = {x : [|[x —q| < [[x—z]|} C R™
T(q;2z) = {x: (x —2)T(q — 2) = 0} is the tangent plane to B(q;z)
at its boundary point z.

NEAREST POINTS...

Property 1: The point z € R" is said to satisfy property 1 if
z # 0 and it is the nearest point (by Euclidean distance) to ¢ on its
ray {2720},

It can be verified that z satisfies property 1 iff z # 0 and 27(q —
z) =0, i.e, 0 € T(q;2). For such points, we therefore have T(¢; z)
={z:27(¢g—-2)=0}.

The open half space defined by T(¢; z) containing ¢ is called the
near side of T(g;z), while its complement is called the far side of
T(g; 2). So, for points z satisfying property 1, near side of T(q;z) is
{z: 27(q - z) > 0}, and the far side of T(q;z) is {2 : 27(¢ - z) <0}

For z satisfying property 1, we define

N(z)={j:j=1tomand (Q;)T(q—z) >0},
it is the set of 7 such that ().; is on the near side of T(q; 2).
Let I'={1,---,m}. For ¢ # S C I, we define

@Q).s = matrix of order n x |S| whose column vectors are @).; for j € S.
H(S) = linear hull of the column vectors of (). in R™.
q(S) = orthogonal projection of ¢ in H(S).

In the algorithm, we will deal with subsets S C T satisfying:
{Q;:Jj €8S} is linearly independent. [or such sets S, we have
4(S) = Qs((Qs)"Qs)"(@s)"q.

We have the following Theorems 2, 3 based on corresponding
results” for the NPP in simplicial cones.

Theorem 2: A point Z € Pos(Q) is the nearest point in Pos(Q)
to ¢ iff

(i) Z satisfies property 1. and
(ii) either T = ¢ itself. or N(&) = o.

Proof: If = ¢, ¢ € Pos(Q) and hence ¢ is the nearest point in
Pos(Q) to itself. So, assume that ¥ # ¢.

Since Z € Pos(Q), it is the nearest point in Pos(Q) to ¢ iff Pos(Q)
N B(g;Z) = 4, i.e., iff Z is a boundary point of Pos(Q), and T(¢; Z)
separates Pos(Q) and B(g; Z) which happens iff N(z) = ¢.

]

Theorem 3: Assume that ¢ € Pos(()). Let & € Pos(Q) satisfy

property 1. If N(Z) is a singleton set, {h}. then h is a critical index
for the NPP [Q; q].

8 K.S. AL-SULTAN AND K.G. MURTY

Proof: Since N(Z) # ¢, by Theorem 2, Z is not the nearest
point in Pos(Q) to ¢. Let z* be the nearest point in Pos(Q) to ¢. So
lz* = ¢|l < ||z — q|| and hence z* € B(¢;).

Since Z satisfies property 1, 0 € T(¢;). Also, since N(Z) =
{h}, Q. is on the far side of T(g;Z), that is T(q;) separates the
ray of Q.; from B(g;z), for all ;7 # h. Hence T(q;Z) separates
Pos(Q.1, -+, @ae1, Quhsr, - Q) and B(q: 7).

These facts imply that Pos(Q) N B(¢: %) # ¢, and that none of
the points in it is in Pos(Q.1, -+, Qh-1,Qht1. -+, Q.m). Hence, z*
satisfies this property too, that is, if +* = 3"7_, ;@.; with v; > 0 for
all 7, then we must have v, > 0. Therefore h is a critical index for

5. THE ALGORITHM

If (Q;)Tg <0forall j =1tom, N(0) = o. and hence 0 is the nearest
point in Pos(Q) to ¢ by Theorem 2, in this case (p* = —QT¢,* = 0)
is the solution of the LCP (3).

So, in the sequel we assume that ()¢ > 0 for at least one j.
The algorithm applies a routine for finding a critical index at most
n — 2 times. This routine itself may either terminate with the nearest
point (in which case the whole algorithm terminates), or with a critical
index. In the latter case we use the critical index to reduce the NPP
into one of lower dimension as discussed above. and repeat the whole
procedure on the reduced problem. As the rank reduces by 1 with each
reduction, this routine will be called at most (n — 1) times during the
algorithm. Actually, when the rank becomes 2. the reduced problem
can be solved by the special direct algorithm discussed in Section 2,
and then from this solution build up an optimum combination vector
for the original problem using equations of the form of the first in (6)
from earlier reduction Steps.

The routine maintains a subset S C T such that {Q; :j € S} is
linearly independent, and a current point .« € Pos(Q.g) which always
satisfies Property 1. Z gets closer to ¢ as the algorithm progresses.
X = (};) > 0 is the combination vector corresponding to Z. satisfying:

A;j=0forallj¢S,and QA =z

NEAREST POINTS...

Routine for Finding a Critical Index

Step 1: [Initialization]: For each j = 1 to m. define ¢’ as in (2). ¢’
is the nearest point to ¢ in the ray of Q. If ¢/ =0 forall j =1
to m, 0 is the nearest point in Pos(Q)) to ¢, terminate the whole
algorithm.

If ¢/ # 0 for at least one j, let ¢* be the nearest to ¢ among all
¢’, break ties arbitrarily.

Set # = ¢", it satisfies property 1. Let S = {h}. Define the

corresponding) = /—\j where)\, = (([?Q”:ﬁf), and Xj = 0 for
j#h

Step 2: Compute N(z) = {7 : 1 < j < m and (Q;)T(¢ —z) > 0}.
If N(Z) = ¢, is the nearest point in Pos(Q) to ¢, and the

corresponding A is an optimum combination vector, terminate
the whole algorithm.

If N(z) is a singleton set {h}, h is a critical index for the present
nearest point problem, terminate this routine.

If IN(z)| > 2, go to Step 3.
Step 3: If N(Z) N (T'\S) = ¢ go to Step 5. otherwise go to Step 4.

Step 4: Select a p € N(z) N(I'\S). Compute ¢, the orthogonal
projection of ¢q onto the linear hull of { ,Q,}. ¢ will be in
Pos(z,@Q.,). Actually ¢ = T + ayQ., where both a; > 0 and
a; > 0. Define A = ()\j) where \ = al\ for j € S, a, for
J = P, and 0 otherwise. Let S; = S U{p}. Obtain (QTIQ.SI)
from (Q%Q.s)™! using any of the updating schemes. If linear
dependence of ()., with columns of () g is signaled, go to Step 5,
otherwise replace S, Z, A by S1. G. \ respectively and go back
to Step 2.

Step 5 Compute ¢(S) = Q.sa(S), where a(S) = (¢;(S) : j € S) =
(@s)Q:5)7(Qs)"q

If a(S) > 0, define A= (;\j) by \, =a,(S)ifj €8S, 0 otherwise.
Replace Z, A by ¢(S), A respectivelv and go back to Step 2.

If a(S) 20, go to Step 6.

10

K.S. AL-SULTAN AND K.G. MURTY

Step 6 Let & denote the last point in Pos(Q)) as we move from Z

along the line segment joining it to ¢(S). Actually

= Z ((1 - ﬂ)/_\] + ,3(.\7(5)) Q.

jes

where

1.
B = min{m :7 €S such that «;(S) < 0} (8)

Let k € S attains the minimum in (8), break ties arbitrarily.
Define A = ();) where A; = (1 —3)A; + 3q;(S), and 0 for j & S.
Replace z,), by &,)\, respectively. delete & from S, and go to
Step 5.

Finite Convergence of the Algorithm

We have the following facts:

1. At each pass through Step 4, ||z — ¢| strictly decreases. At each

pass through Steps 5 and 6, ||z — ¢|| may decrease or stay the
same.

. Step 4 can be performed at most n times consecutively before

linear dependence is signaled.

. Steps 5 and 6 could be performed at most n—1 times consectively

before the projection gets into the relative interior of the Pos of
the current set.

. The same subset of I" cannot reappear as S once it changes due

to 1.

Since there are only a finite number of subsets of T', these facts

imply that the routine must terminate in a finite number of steps.
Also, the overall algorithm is finite as it uses the above routine at
most (n —2) times.

NEAREST POINTS...

6. IMPLEMENTATION AND RELATED NUMERICAL
ISSUES

((@s)TQ.s)~! can be updated by standard updating schemes for pro-
jection matrices whenever S changes (as it always changes by the
addition or deletion of one element). These schemes will detect linear
dependence of the set of column vectors of the new @, if it occurs
when a new element is added to the set S. An even better imple-
mentation is obtained by updating and using the Cholesky factor of
(Qs)TQ.s instead of its inverse, this cuts down the amount of work
for each updating from O(|S|*) to O(|S]?).

Computing N(Z) completely in Step 2 is expensive, particularly
when m is large. We found that an efficient way to carry out Step 2
and to select a p for carrying out Step 1 if that is the step to move
next, is to begin the search for the new p from the previous p, continue
upto m, and then from 1 upto the previous p again, until the first eli-
gible candidate is noticed, at which point the search is terminated by
selecting that candidate as the new p. This is similar to the LRC (least
recently considered) entering index strategy commonly mentioned in
the literature on the Simplex algorithm for linear programming.

Computational Experience

The above algorithm was coded in FORTRAN 77 and tested us-
ing APOLLO series 4000 machines. The performance of the algo-
rithm is compared with the performance of the following two algo-
rithms. K. Haskell and R. Hanson* for solving linearly constrained
least square problems (HH) which - in our case - boils down to their
implementation of Lawson and Hanson® for Pos cones. The code is
available as ACM software 587. The other algorithm WIL is that
of D.R. Wilhelmsen®. We coded Wilhelmsen's algorithm using FOR-
TRAN 77. We used updating procedures based on the Cholesky fac-
tor. And we used LRC (least recent considered) entering rule as dis-
cussed above. Surprisingly this happens to be far superior to other
rules. These strategies accelerate this algorithm a lot.

Test problems were constructed by generating the elements of @
to be uniformly distributed between -5 and 5 and the elements of ¢
to be uniformly between -20 and 20. All the test problems are fully
dense.

The timings of all three algorithms are shown in Table 1. It is
clear from the table that our algorithm is 2-1 times faster than the

11

12 K.S. AL-SULTAN AND K.G. MURTY

Table 1: Summary of Performance Results
(Average time per problem in APOLLO 4000 seconds
on fully dense randomly generated problems.)

n | m | # problems | our algorithm | HH WIL
50 | 70 10 6.84 8.53 9.55
150 | 150 10 49.9 74.1 93.6
200 | 250 10 180.3 112.5 400.1
300 | 400 10 790.0 1544.0 | 1644.1
400 | 500 5 1194.5 3038.9 | 31184
500 | 550) 14704 17785 | 4364.4
600 | 800 3 5285.0 11927.0 | 13260.7

Table 2: Average number of type (i) and (ii) projections per
problem.

n | m | # type (i) projections | # tvpe (ii) projections
50 | 70 52.8 3.5
100 | 150 116.4 4.5
200 | 250 177.6 3.7
300 | 400 303.4 4.2
400 | 500 351.6 3.9
500 | 550 357.2 3.4
600 | 800 587.0 1.67

HH and the Wilhelmsen algorithms on an average. Moreover, the
algorithm performs much better than HH when the cone is close to
simplicial (or when m is comparable to n) while marginally better
when m > n. This may be due to the fact that computationally
cheap two ray series of projections (Step 4 of the algorithm) becomes
less effective when m > n.

The work in our algorithm consists of three types of steps, (i) the
orthogonal projection of a point into a two dimensional subspace, (ii)
orthogonal projection of a point into a subspace of dimension > 2,
and (iii) reduction of the problem into one of lower dimension using
a critical index. Among steps (i) and (ii). clearly (ii) is far more
expensive than (i). In Table 2, we provide the total number of steps
of types (i) and (ii) carried out on an average per problem in our
algorithm as the order of Q ranges from 30 x 70 to 600 x 800. The
number of steps of type (i) clearly grows as the order of) increases,

NEAREST POINTS... 13

but the number of steps of type (ii) seems to be more or less constant
(between 3 to 5). The good performance of our algorithm stems from
the fact that the majority of work in it involves steps of type (i) which
are computationally cheap.

ACKNOWLEDGEMENTS

This work was partially supported by NSF Grant No. ECS-8521183
and by King Fahd University of Petroleum and Minerals.

7. REFERENCES

1. Chang, S.Y. and Murty, K.G. (1939) The Steepest Descent Gravi-
tational Method for Linear Programming, Discrete Applied Math-
ematics, 25, 211-239.

2. Gilbert, E.G., Johnson, D.W., and Keerthi, S.S. (1938) A Fast
Procedure for Computing the Distance Between Complex Ob-
jects in Three-Dimensional Space. [EEE Journal of Robotics and
Automation, 4 (2), 193-203.

3. Golub, G.H.and Van Loan, C.F. (1939) Matriz Computations, Bal-
timore, MD, John Hopkins University Press.

4. Haskell, K. and Hanson, R. (1981) An Algorithm for Linear Least
Squares Problems with Equality and Nonnegativity Constraints,
Mathematical Programming, 21, 93-115.

5. Lawson, C.L. and Hanson, R.J. (1974) Solving Least Squares Prob-
lems, Englewood Cliffs, N.J, Prentice-[lall. Inc.

6. Murty, K.G. (1988) Linear Complementarity. Linear and Nonlin-
ear Programming, West Berlin, Heldermann Verlag.

7. Murty, K.G. and Fathi, Y. (1982) A ('vitical Index Algorithm for
the Nearest Point Problem on Simplicial C'ones, Mathematical
Programming, 23, 206-215.

8. Wilhelmsen, D.R. (1976) A Nearest Point Algorithm for Convex
Polyhedral Cones and Applications to Positive Linear Approxi-

-

mations, Mathematics of Computation. 30. 13-37.

14 K.S. AL-SULTAN AND K.G. MURTY
9. Wolfe, P. (1974) Algorithm for a Least Distance Programming,
Mathematical Programming Study I, 190-205.

10. Wolfe, P. (1976) Finding Nearest Point in a Polytope, Mathemat-
ical Programming, 11, 128-149.

