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PREFACE

This pamphlet contains papers and problems of a Workshop
Session on the Second Method of Lyapunov, sponsored by the Nonlinear
Control Theory Subcommittee of the American Institute of Electrical
Engineers held on September 6, preceding the Joint Automatic Control
Conference for 1960, at the Massachusetts Institute of Technology,
Cambridge, Massachusetts.

In 1892 A. M. Lyapunov, a Russian Mathematician, postulated
in his book, The General Problem of Motion Stability a number of
sufficient conditions for stability or instability of undisturbed
systems. By reducing the problem of stability on an undisturbed
system to the problem of the stability of the equilibrium position,
Lyapunov connected the fact of stability or instability with the
presence of a "v" function, the time derivative of which has certain
properties. For a long time it was not clear whether the conditions
postulated by him were necessary. This question remained unanswered
for a long time and only much later were the necessary conditions
established which would insure the existence of a Lyapunov Function.

In 1949 the work was translated into English and since then
it has received some notoriety in this country, but only within the
past five years has it been given serious consideration by those in-
terested in feedback control systems. At the present time it is con-
sidered to be the most general method of studying the stability of
nonlinear systems.

The purpose of the Workshop Session as planned by the Non-
linear Control Theory Subcommittee was to organize a group of papers
which would serve to introduce this subject to the uninformed by
starting with introductory concepts and culminating in a group of home
problems designed to enhance the reader's understanding of the subject.

The workshop committee directly responsible for the success
of this Session were Professor I. Flugge-Lotz, Stanford University
Chairman; Dr. Kan Chen, Westinghouse Electric Corporation; Professor
John E. Gibson, Purdue University; and Professor T. J. Higgins,
University of Wisconsin; although all the members of the Nonlinear

ii



Control Theory Subcommittee should be congratulated for their willing-
ness to assist in every way possible.

Thanks go to The University of Michigan Industry Program,
who made possible this publication.

Louis F. Kazda

Chairman

Nonlinear Control Theory
Subcommittee
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AN INTRODUCTION TO LYAPUNOV'S SECOND METHOD

W. J. Cunningham
Yale University
New Haven, Connecticut






1. INTRODUCTION

A fundamental problem associated with the study of dynamic
systems is the determination of their stability. While wvarious tech-
niques are available for investigating stability these techniques
typically become difficult and tedious to apply if the system is of
high order, or is nonlinear or time-varying. An approach to this
problem, developed seventy years ago in Russia but almost unrecognized
in this country until quite recently, is the so-called second method
of Lyapunov. This is a method which has been much exploited in the
Soviet Union, and which appears to have great power and flexibility.
It does not provide a purely mechanical procedure applicable to all
situations; it does require ingenuity to apply to other than standard
situations. On the other hand, it may give information about systems
that cannot be analyzed in other ways.

An introduction to this second method of Lyapunov is given
in the following discussion. The purpose here 1s to describe the
basic idea of the method, to show something of the range of problems
to which it applies, and to provide simple illustrative examples. The
discussion is presented with a minimum of mathematical niceties, and
no attempt is made to justify the procedures which are employed. Most
of the published Western literature about the method has been written
by mathematicians for a mathematical audience. Those readers interested
in this aspect of the subject are referred to the literature(l’g). The
recent paper by Kalman and Bertram(3), in particular, provides an
excellent survey of the method, together with appropriate mathematical

proofs, and gives many bibliographic references.
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2. MATHEMATICAL DESCRIPTION OF SYSTEM

Throughout the following discussion it 1s assumed that the
description of the dynamic system under study has been reduced to a

set of simultaneous first-order differential equations

|
|

dxl/dt =% = fl(xl,...,xn)

(1)

1]
x‘
I

dx,/dt n = fn(xg,.e,%p)

The independent variable in these equations is time t, and the
various dependent variables are Xqpee Xy The functions fl(xl,...,xn),
..,fn(xl,...,xn may be nonlinear but are assumed to be differentiable.

The order of the system is the integer n. The system described by
Equation (1) is said to be stationary in the sense that functions
fl,...,fn do not depend upon time t. The system is said to be free
in the sense that no explicit functions of time appear as forcing
functions. A free stationary system is sometimes said to be autonomous.

An equilibrium condition exists if the variables have such
values Xjg,.--,Xpe that all the derivatives dx;/dt,...,dx,/dt are
simultaneously zero. In a general way, an equilibrium condition is
described as stable if the system tends to remain at that condition
following any small disturbance away from the condition.

The dependent variables Xyyee Xy must be chosed in such a
way and in sufficient number to describe completely the system under

study. For a physical system, these variables will generally be

quantities which have certain physical dimensions. It is often possible
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to make more than a single choice for the variables used in describing

a particular system. Sometimes one choice has advantages over some other
choice. It should be noted here that in many of the operations which
appear in the following discussion it is essential that all the dependent
variables be chosen so as to have the same physical dimensions. Either
the choice must be made intentionally with this criterion in mind, or
else the dimensions must be made the same by suitable conversion factors.
Sometimes it is desirable to normalize all quantities into pure numerics
having no dimensions. Such normalization can always be done. This
necessity for having a common dimension comes about because of the way
in which coefficients arising at several points in the equations must

be combined in subsequent work.

It is evident that if the order of the system is other than
quite small, the set of equations forming Equation (1) is going to be
complicated and difficult to manipulate. For this reason 1t is essen-
tial to use matrix notation in the analysis. Rewritten in this notation,
Equation (1) becomes

dx/dt =% = £(x) (2)
where ﬁ_is the column matrix, or vector, made up of the n dependent
variables, andwgﬁf) is a similar column matrix of the functions. An
equilibrium condition for Equation (2) is x = x_ for which dx/dt=x=0,
where O 1is the zero column matrix. If functions £(x) are linear, and
£(Q) = Q. the one equilibrium condition is X, =Q, If functions f£(x) are
nonlinear, there may be more than one equilibrium condition.

The values of the n variables in the column matrix x at

any instant describe the state of the system at that instant. It is



.

convenient to have a single number to represent, at least in part, the
state of the system. Such a single number may be a norm, which can be
defined in any of several ways. The norm 1s sometimes taken as the sum
of the magnitudes of all the state varisbles. For the present discus-
sion, it is more convenient to take the square of the Euclidean norm,

written as follows,

A

2 K ¢« o 0
|xl]™ = X'L§«=(X1:---Xn) X\ = X * + Xy
X
n

The primed matrix x' 1s the transpose of the unprimed matrix Xx.
This quantity |\x\|2 can readily be interpreted geometrically, at
least for the cases of two or three variables. It is the square of
the distance from the origin to the point representing the particular
state x of the system, as plotted in rectangular coordinates. If

the origin is an equilibrium point x = Q the norm X|| provides
% o

(S

a simple measure of the departure from this equilibrium point.
3. STABILITY OF SYSTEM

The precise definition of stability, particularly for a
nonlinear or time-varying system, is not simple. This gquestion will
not be explored here. Rather, for the present discussion, only the
concept of asymptotic stability will be employed. An equilibrium
condition is asymptotically stable if the system ultimately returns
to this condition following any slight disturbance away from it.

Stated in another way, if an initial disturbance ib&';ﬁel‘ is small,
asymptotic stability implies that ultimately x-—3x. as t—=>w., For a

linear system the disturbance need not be limited in magnitude. Since



& nonlinear system may have more than Jjust one equalibrium condition,
the disturbance used to test its stability must be small enough so
that the system remains near the point being investigated. The exact
nature of the nonlinearity governs the required smallness here.

For a linear system with an equilibrium condition at

X = Xo =0, Equation (2) may be written

v ]

dx/at =x =A% (3)

where A 1s a square matrix of constant coefficients. The solution
for Equation (3) is known to be of the general form

n (4)
xi = > C.. exp('}\jt)

< i

J= J
where the n characteristic exponents, or eigenvalues, are 1LJj, and
the constants Cij depend upon initial conditions at t = 0. Eigen-

values are determined by coefficients A in Equation (3), and are

R

roots of the characteristic equation

A-2I]=0 (5)

where I 1s the unit matrix. For a real physical system, matrix ‘éy
is real, and the eigenvalues must either be real or occur in complex
conjugate pairs. The system is asymptotically stable only if every

eigenvalue has a negative real part.
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4, TESTS FOR STABILITY

a. Routh-Hurwitz Method

The determination of the characteristic equation, and its
factorization to find the various eigenvalues, 1s a tedious process,
particularly if the order of the system is large. If a complete
solution is not needed, but information about stability is all that
is required, it is sufficient only to test whether every eigenvalue
has a negative real part. Such a test 1s provided by the well known
Routh-Hurwitz criterion. This criterion requires expansion of the

characteristic equation, Equation (5), into the polynomial form
n n-1 :
a. A + A + 't +a,(htay =0 (6)

where coefficient ay has been made positive. The following matrix

is formed from the coefficients of Equation (6)

Moo= : (7)

0] cee ay  @,-1  8p-p 8.3 8p.)

O «... O 0 an 8.1 8&p-o




All the eigenvalues, found as roots of Equation (6), can have only
negative real parts if matrix M is positive definite. This is the
case if each principal minor of M is positive. These minors are the

following determinants

al , ay a, ay ao 0
a3 a5 ) a3 a2 al .
a a a
5 Lo T30,

If all these determinants are positive, and a, >0 as already assumed,

the system leading to Equation (6) is asymptotically stable. The Routh-
Hurwitz criterion for stability requires the expansion of the determinant
of Equation (5) into the form of Equation (6), and the subsequent evalua-
tionof the determinants derived from the matrix of Equation (7). While
this is all perfectly straightforward, it is tedious to carry out if the
system is large.

b. First Method of Lyapunov

If the system described by Equation (2) is nonlinear, the
process just described is not immediately applicable. An approach
commonly used with a nonlinear system is based on what is known as the
first method of Lyapunov. In this method each equilibrium point must
be investigated in turn. The nonlinear functions f(x) of Equation (2)
are expanded in Taylor series about the equilibrium point. It is con-
venient to introduce the new variable J =;£,"q§e’ and to write Equation

(2) as
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ay/at = Fy + () F (8)
where Bfl/éxl Bfl/axg PR
F —
" dfpfoxy Ofp/oxp

and K 1s the so-called Jacobian matrix, with all its partial deriva-
tives evaluated at the equilibrium point, x = X.. The second matrix,
G(yx) of Equation (8), contains terms arising from the higher-order
derivatives in the Taylor series expansions. This matrix must have

its elements vanish at the equilibrium point, that is

HE_(VX) XH/H\XH‘)O as HWX»H—) 0.

The linearized equation

dy/at = F y (9)

is the first approximation to the nonlinear equation, Equation (8).
Lyapunov showed that if the real parts of the eigenvalues corresponding
to the linearized equation are not zero, the stability of the nonlinear
equation near the equilibrium point is the same as that of the linear-
ized equation. Thus, the stability of a nonlinear system under some
conditions can be investigated using the same techniques as are used
with linear systems. The procedure here is similar to that which would

be used in attempting to find an explicit solution for the system.



5. SECOND METHOD OF LYAPUNOV

The second method of Lyapunov is based on a somewhat different
idea, and one that i1s closely related to the concept of energy. The
energy stored in any physical system is, of course, a scalar quantity
represented by a single number, even though a complete description of
the system may require many variables. In an asymptotically stable
system, the stored energy decays with increasing time. Thus a stable
system may be characterized by stored energy, which is itself a positive
quantity, but which has a time derivative which is negative.

A simple electric circuit, consisting of a capacitance C and

a conductance G in series, is described by the equation
Cdefat + Ge = 0 (10)

where e 1s the voltage across the capacitor. Voltage e is given by
the solution e = E exp(-Gt/C), where e = E at t = 0. The system is

obviously stable. The instantaneous stored energy is W = 1 Ce? = 1 CE®

2

exp(-2Gt/C) which is positive. The time derivative is dW/dt = W = -GE

exp(-2Gt/C) which is negative. The ratio —W/W = C/2G can be interpreted
as a time constant for energy change. Its value is half the more usual
time constant, C/G, applying to voltage change.

This concept of energy and its rate of change is extended in
the second method. In this method, however, a more general "Lyapunov
function"” is used, rather than energy itself. If a system is asymp-
totically stable, a Lyapunov function can be determined for the
system. This i1s a scalar function of time and of the state variables.

It is positive, itself, and it has a negative time derivative. Con-
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versely the existence of such a function for a given system implies
that the system is asymptotically stable. The Lyapunov function is
given the symbol V(x), and the requirements for asymptotic stability

are

V(}()> 0 for V>§~+= Xe
t

avjat = V(x) < 0 for x

v w v~ Wl

V(x) » « for |g|— o

Vier

I
o
Hh
0
=
M
I
>

For simple systems, VQ&) may be taken directly as the energy of the
system. For more complicated systems, usually Vgﬁ) is better chosen
to be something other than the energy. In fact there may be great
flexibility in the choice of VQﬁ), and this is one of the features of
this method of analysis. At the same time, this flexibility requires
ingenuity and experience on the part of the analyst.

The intent in applying the method to test stability is to
determine a Lyapunov function for the system directly from the dif-
ferential equations. It is hoped to avoid many of the steps needed in
attempting to find an explicit solution for the equations. A Lyapunov
function is known for a few simple sorts of equations. There are some
indications of how such a function might be sought for more complicated
equations. There is opportunity for further work in this area.

In addition to providing a test for stability, the Lyapunov
function may also give information about the transient response of the

system. This possibility is based on the observation that the function
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gives a simple measure of the state of the system at any instant. A

parameter 1 may be defined as
no= (V/V)pin (12)

in which case l/n is the largest time constant relating to changes
in the Lyapunov function VQ&)' Since V(ﬁ) is somewhat similar to
energy which generally depends upon the squares of the state vari-
ables P2 this time constant l/n is half the more conventional

time constant defined for the state variables themselves. Usually
rapid response is desirable so that parameter 1 can be considered

as a kind of figure of merit. Larger values of 1 correspond to more
rapid response.

The point of interest here is that it may be possible to
determine a Lyapunov function Vﬁﬁ) for a system without going
through the usual steps of finding a solution in a conventional manner.
It may be possible to find a V<f) for a nonlinear system that could
not be solved at all in the usual way. In either case, figure of
merit 1n can be found. For a nonlinear system, 7 will change as the
state of the system changes. The nature of such changes may represent
useful information itself. It should be noted, however, that the actual
value of 1 will depend upon the particular Lyapunov function that is
used. Since there may be several such functions for a given system,
several alternate values of 1 may result. Presumably, the choice of
V(x) should be made so as to minimize the resulting value of n. Just

Nt

how to make this choice is usually not known in advance.
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6. LYAPUNOV'S THEOREM FOR LINEAR SYSTEM

The Lyapunov function V(x) 1is known for a free, linear,

stationary system as described by Equation (3)

(3)

defdt =x = &

X
A~

Here, ,év is a square matrix of constants and equilibrium exists for
X =% =0 For this system, Lyapunov himself showed that one suit-

able function is

|]§j} P=x' Px. Matrix L is a symmetric positive definite

matrix satisfying the equation

A’ R)+

e Ul

P A=-I (14)

where A' 1s the transpose of A, and I 1s the unit matrix. If a
matrix P that will satisfy this condition can be found, then the
system described by Equation (3) is asymptotically stable. This re-

quirement is both necessary and sufficient.

Matrix P is symmetric if P' =P. It is positive definite
if all the principal minors are positive. The elements of P can be
found from the simultaneous algebraic equations that result from ex-
panding the matrix equation, Equation (14). There are (n/2)(n +1) such

simultaneous equations. This process is similar to the Routh-Hurwitz

test for stability. However, it does not require the explicit determina-
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tion of the characteristic equation, Equation (6). This determination
is a tedious process for systems of high order, and thus the Lyapunov
approach may require less manipulation. This is typically the case if
the order of the system exceeds four or five.

The figure of merit n for the transient response of the
free, linear, stationary system can readily be found. The Lyapunov
function for the system is V(§) = *L&J[E,ﬁb which is Equation (13).

Its time derivative can be shown to be given by the relation

av/at = {7@9 = - ||zl [2 (15)

Figure of merit n 1is then

2 2
[HE Byin

n = (]lx

By additional work, this can be shown to be the minimum eigenvalue for

the inverse of matrix P, which is written o —l, where P gfl = 1.

Sy

Thus, in two alternate forms,

-1
min » (P )

0
(16)

1l

1/n =mex » (P)

The determination of this eigenvalue requires either the expansion of a
determinant similar to Equation (5), or the use of an appropriate numer-

ical prdcedure directly with the matrix.

Example 1

A simple example of the use of this technique is provided by

the electric circuit of Figure 1. The elements of this linear circuit



o+

s

-1k

c=¢C
+
C,=2C Gz= 806 /
Figure 1. Stable second-order electric current

for Examples 1 and 2.
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have the values shown. The equations for the circuit may be written

dej/at = & = -hke; + hkeg
(17)
dey/dt = e, = 2ke; - ke,
where e and. e, are the instantaneous voltages across the two
capacitors and the definition has been made, k = G/C. Written in
the form of Equation (3), these relations are
dg/dt =& =Ae_ (18)
where — —
-4k Lk
A=
| 2k -6k
It should be noted that the two dependent variables here, € and €5

are both voltages and thus have the same physical dimensions. This is
necessary for the application of Equation (14).
In a conventional solution, the characteristic equation is
found first as
P (-bk -2) bk

ok (-6k -1)

P

Its roots yield the two eigenvalues, \ 1= -2k, Ay = -&k.
Since these are both real and negative, the system is stable. If
initial conditions are chosen arbitrarily as e, = -I, e, = 2k at

t = 0, the solution for the system is easily determined to be
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2/3 exp(-2kt) - 5/3 exp(-8kt)

It

el/E

eE/E

(19)

1/3 exp(-2kt) + 5/3 exp(-8kt)

The two voltages are plotted against time in Figure 2. The initial
conditions have been chosen soO that the polarity of voltage e, re-
verses as time progresses. Both voltages decay toward zero with

increasing time, but their ratio becomes ey/e; = 1/2.

The energy stored in the circuit at any instant is given

by

2 2
W = 3 Ciey + 1/2 Coep (20)

This energy W 1is plotted logarithmically in Figure 3. It is clear
that the energy is a positive quantity, but that it has a negative
time derivative, as would be expected for a stable system. This 1is
so, even when one voltage goes through zero and reverses sign, as is
the case here.

A Lyapunov function for this same system can be found by

applying Equation (14), which then appears as

bk 2k q r q r -4k ik -1
+ =
Lk -éE_ ir s T s 2k -6k 0

where symmetric matrix P has been written with elements q, r, s
LWL VA E )

that are to be determined. This matrix equation leads to the three

simultaneous equations
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-8kq + lkkr = -1
kg - 10kr + 2ks = O
8kr - 12ks = -1

Solution for the quantities g, r, s determines P as

7 L
P = (1/kok) (21)
b 6
L
Matrix P 1is positive definite, since both |7] >0 and >0,
' L6
and thus the system is asymptotically stable.
A Lyapunov function is, from Equation (13),
= Z2p = (1/k 248 62,2
V(e) = |lell “ R = (1/kok)(Te;" + eje, + fep )
(22)
= (E2/72k) [10 exp(-4kt) - 8 exp(-10kt)+ 25 exp(-16kt)]
where Equation (19), the exact solution, has been used. The time
derivative is, from Equation (15)
2 _ 2 2
V(e = llell2=-e? - e
(23)

- (E2/9 [5 exp(-Lkt) - 10 exp(-10kt) + 50 exp(-16kt)]

I

This Lyapunov function is plotted in Figure 3. It is, of course,
positive, with a negative time derivative.

The ratio -V/V is initially 16k, but becomes 4k as time
increases indefinitely. Thus, the figure of merit is n = bk, as found
from -V/V wmaking use of exact solutions for ey and e,. This result

corresponds to the more slowly-varying component of voltage, which varies



—elo=

as exp(-2kt), so that the component of energy associated with it varies
as exp(-Ukt). The figure of merit can also be found directly from
Equation (16), which does not require the use of exact solutions for

e. The eigenvalues for matrix JE are found from the relation
(7/40k - A ) L /Lok

L/hok (6/%0k - 1)

The two values are A\ = 0.263/k and Ay = 0.062/k. The reciprocal of
the larger of these is the figure of merit, n = 1/{(0.263/k) = 3.8k.
This result is similar to that found using exact solutions for g,

although it has been obtained without the need of these solutions.
7. KRASOVSKII'S THEOREM FOR NONLINEAR SYSTEM

The Lyapunov function of Equation (13), and the test for
stability employing Equation (14), apply only to linear systems. The
stability of a nonlinear system near an equilibrium point may be in-
vestigated using this technique, providing the system is appropriately
linearized. This linearization may be carried out by applying the firs%
method of Lyapunov, as described in Equations (8) and (9). An alter-
nate approach to a nonlinear system is based upon work by Krasovskii.

A free, stationary, noniinear system is described by

Equation (2) as

L/t = 20 (2)
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where f(x) is differentiable, but generally nonlinear, and it is assumed

that f£(Q) =9  The Jacobian matrix for the system is

afl/éxl afl/BXE s e
EE) =
of 5/ ox, Of /0%, ...

S —

A A
A matrix F(x) is defined as [F(x) =F(x) + I (1) where F! (x)

is the transpose of F(x). Matrix Dﬁ(§) is evidently symmetric. If
A

;E(£) is positive definite for all values of x, the equilibrium point

Xo =0 is asymptotically stable in the large, and a Lyapunov function

for the system is

(CI N HE3N i (24)

In order that Rﬁﬁé) be positive definite, all its principal minors
must be positive.

This criterion of stability is readily applied because the
mathematical manipulations required are simple. Such simplicity is an
evident necessity where a nonlinear system is involved. If the criterion
holds for all values of the state variables (X, the system 1s stable for
any state. There is no limitation to small departures from the equili-
brium condition, as is the case with linearization as used with the
Lyapunov first method. On the other hand, it must be recognized that
the criterion is a rather restrictive one. While it is sufficient to

assure asymptotic stability, it may not be necessary for such stability.
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In other words, a particular state may actually be stable even though

the criterion is not satisfied. The criterion does represent, however,

one of the few known general criteria applicable to nonlinear systems.
The time derivative of V(x) of Equation (24) can be shown

to be given by the relation

. A A
V(x) = £ “F) =5 B £ (25)

A comparison of Equations (24) and (25) with Equations (13) and (15)

indicates that figure of merit 1 1is

A
n =min A [ 'i(x)] (26)

Yo

Example 2

This metrod of Krasovskii may be applied to the circuit of
Figure 1, which is, of course, a linear system. Matrix F(e) is the
same as A of Equation (18), and is

T

Fle) =
2k -6k
A
Matrix F(e) is then
Tk bk ik 2k | -8k 6k
B =p+p = + -
ok -6k Lk -6k fk -12k
8k -6k
e =
o -6k 12k
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This matrix is positive definite since both |8k| > O and

8k -6k
> 0, and thus the system is asymptotically stable.
-6k 12k
A Lyspunov function is, from Equations (17) and (24)
2 .2 ,zZ2 2 2
V(ﬁ) = ]|£K£)|| =é +¢& =k (20el - 56ele2 + 52e22) (27)

Its time derivative is, from Equation (25),

. 2 A .2 .. .
V(e) = || £e) || F(e) = k(-8 =12 e, - 12¢,

[ 2nd

%) (28)

This Lyapunov function, Equation (27), is plotted in Figure 3 where it
may be compared with that found by the first method applicable only to
linear systems and given by Equation (22). Both these functions, as well
as the energy given by Equation (203, are positive and have negative
time derivatives. Any one provides a valid test for stability. All
three curves of Figure 3 have similar shapes in that they are asymp-
totic to two straight lines, with slopes dependent upon )\ = 16k and
A = Lk.

An estimate for the figure of merit is obtainable from

Equation (26). This leads to the relation

(8 - 1) -6k

-6k (12k - 1)

which gives N o= 16.3 k, Ao = 3.7 k. The smaller of these is taken as
N, g8iving n = 3.7k, which is similar to values found previously. The

Krasovskii method is readily applied to this example and generally
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verifies its stability and yields a value for the figure of merit.
Example 3

A somewhat different example is given by the circuit of Figure 4.
The box of this figure contains a nonlinear, voltage-controlled, nega-
tive resistance. The current in this resistance is assumed to be related
to the voltage across it as i =-ae; + bel3, where a and b are
positive constants. This relation is shown in Figure 5. Also shown in
FPigure 5 is a load line constructed to determine operating conditions if
Just a single positive resistance R were connected across the terminals
of the negative resistance. The three intersection points of this line
as drawn indicate three equilibrium points.

The equations for the circuit of Figure 4 may be written

dej/dt = & = (a/C)ey - (b/C)eyS + (1/RC)es

dep/dt = &y = -(R/L)ey - (R/L)eg (29)

I
|

where the two variables, el and e are both voltages with the same

2’

dimensions, as 1s required. The symbols have the meanings ildentified
fe. |
in Figure 4. There are generally three equilibrium conditions, e 1e,

€

¥

/
i
-e
1
where e, =+ [(a -l/R)/b]]Vnzor e = 0. If R<l/a, two of !

these conditions are imaginary.

Matrix f(e) is

1

flg) = (a/C)ey = (0/C)ey” + (1/RC)ey|
o - (R/L)ey - (R/L)e,

o R

and matrix F(e) is
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Figure 4. Electric circuit for Example 3.
The box contains a nonlinear,
voltage-controlled negative re-
sistance. The circuit may, or
may not, be stable.

/—AI /Ae|="‘|/R

Figure 5. Nonlinear current-voltage characteristic for the
negative resistance in the circuit of Figure k.
Also shown is a load line for a positive resistance
R connected to the terminals of the negative resistance.
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(a/C - 3be, "/ 1/RC

-R/L -R/L

R mmase—

A
so that matrix 1E$El becomes

A o
-F = | -2(a/C - 3 bey” /C (R/L - 1/RC)

(30)
(R/L - 1/RC) 2R/L

This matrix is never positive definite near 5i‘=125 so that there is no
assurance that the circuit can be stable near its rest condition.
On the other hand, elimination of e, in Equation (29) yields

the equivalent single equation in e

él = (R/L - a/C + 3bel2/c)él + (1/1C)(1 - R + bRel2)el =0 (31)

This equation does have a stable solution near e, = 0, provided both a

< RC/L and a < 1/R. These two conditions are equivalent to the require-
ments that both the d-c load line, governed by the resistance R, and the
a-c load line, governed by the dynamic resistance L/RC, intersect the
negative-resistance characteristic of Figure 5 only at the origin. Thus,
the circuit may be stable under appropriate conditions, although this may
not be predicted from the matrix :ﬁ/ of BEquation (30).

If the negative resistance element is removed entirely from the
circuit of Figure U4, the resulting passive circuit clearly must be stable,
Removal of the negative resistance causes both coefficients a and b of
Equation (30) to vanish, leaving

A 0 (R/L - 1/RC)

-F = (32)
(R/L - 1/RC) 2R/L
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This matrix can never be positive definite and again there is no assur-
ance of stability.

The equations for the circuit of Figure 4 can be set up in a
different way. If the definition is made, w02 = l/LC, a dimension-
less time may be introduced as 7 = dyt. Derivatives may be written in
terms of this dimensionless time as dej/dt = ®, dej/dr and dgel/dt2 =

2

2
Wy d eq /dtg. Also, the definitions can be made, x] = e] and Xp =

dxy/dr. With these definitions, Equation (31) can be written

dxp /dr

Xo

dxo/dr = -(1 - &R + bRxlE)xl - (R/Lw, - a/Cugy + 3bx12/Cwo)x2 (33)

1l

Equations (33) are different from Equation (29) even though they
describe the same physical system. Here, one variable, Xn) is simply
the time derivative of the other, x;. That is not the case with the
first set of equations. Again, however, because of the use of dimension-

less time, the dimensions of both variables are the same.

A
Matrix -F arising from Equation (33) is

9 ‘ ' 0 (- aR + SbRxl2 + 6bxlx2/Cwo).
:*,-ﬁ = E 2 2
§0a2+3mwl + 6bx1xp/Cuwy) 2(R/Lwy - a/Cwg + 3bxy  /Cuwgy)

i
R P |

This matrix, just as that of Equation (30) found previously, is never

positive definite near x = 0, sO once more there 1s no assurance that

stability can exist.
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If the negative resistance is removed, Equation (34) becomes

———sset

0 0
4. (35)
0 2R/Lwo

| . —

This matrix is positive semidefinite, in that the principal minors are
zero, and at least are not negative. The test for stability is almost
satisfied.

It should be evident from the results of this example that be-
cause the Krasovskii method gives only a sufficient condition for sta-
bility, it may lead to erroneous conclusions about the behavior of any
given system. Furthermore the conclusions that are received by applying

the method may depend upon just how the analysis 1s carried out.
8. BARBASHIN'S THEOREM FOR THIRD-ORDER NONLINEAR SYSTEM

Specific stability criteria have been obtained for one particular

third-order system by’Barbashin5’6 The system is described by the equa-
tions
}‘{l = X2
Xo = X3 (36)
i3 = - £(x) - g(xg) - agXs
where £(0) = 0 and g(0) = 0, and both f(xy) and g(xg) are differentiable.

If written as a single third-order equation, this system is equivalent to

&i + agk, + g(kl) + f(xl) =0 (37)
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The equilibrium point,‘gge = Q, is asymptotically stable in the large if

(1) a0
(11)  £(x)) %, >0, x; $0 (38)

(ii1) a2g(x2)/x2 - £1(x7) >0, x5, %0

where ' (x1) = d/dx; [£(xy)] . While Equations (36) and (37) are
written with dots indicating differentiation, the independent variable
must be a dimensionless time in order that the x's be of the same

dimensions and the criteria of Equation (38) Dbe directly applicable.

A Lyapunov function for the system is
Vx) = aF(x) + £(x)x, + G(x)) +1/2(ax, +x)°  (39)
Sl " V. 1’72 2 272 3
X Xp
where F(x) = él £(x;) dx; and Glxs) = [o &(xp) axp.
The time derivative is
T(x) = - [agg(xy) /xpm £(x))] %, (10)

Variable X3 does not appear in %(ﬁ). If the system is stable, VQ§2> o,
V(‘}‘&) < 0, except at x =0, and the conditions of Equation (38) apply.
While Equation (37) is a nonlinear, third-order equation, with
rather general nonlinearities allowed in both the dependent variable Xy
and its first derivative kl, it is necessary that there be no products
of these two sorts of terms, and that the second and third derivatives
appear only in linear terms. These requirements tend to limit somewhat
the applicability of Equation (37) to third-order systems as they arise

in physical situations.
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There have been efforts made toward extending the idea used in
this case to systems of fourthé, and higher, orders. The mathematical
complications tend to increase very rapidly when this is done, however.

It is worth noting that the stability criteria of Equation (38)
contain two different types of linearization, each of which is sometimes
used with nonlinear functions. One of these is the derivative f'(x) =
d/dx [£(x)], which corresponds geometrically to the slope of the tangent
to the curve representing f(x), at the point in question. The other is
the ratio f(x)/x, which corresponds geometricelly to the slope of the
chord from the origin to the point in question on the curve of f(x).
These two slopes are shown in Figure 6 for a case in which they are
evidently quite different. For a nonlinear electric resistance for
example, variable x might represent voltage and function f(x) would
represent current. The derivative f'(x) would then be the variational,
or a-c, conductance, while the ratio f(x)/x would be the steady, or
d-c, conductance. Often an attempt is made to analyze a nonlinear system
by introducing some kind of linearization, and often just which of these
types of linearization should be used is not self evident. In this case
of Barbashin's theorem, both types appear.

Example k4

An example of the application of Barbashin's theorem 1s given by
the electric circuit of Figure 7, which represents a kind of phase-shift
oscillator. The phase-shifting network consists of & three-section re-
sistance-capacitance network composed of elements as shown in the figure.

Its differential equation may be shown to be
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e, = r3c3 T - 5R°C7 éé +6RC e + e, (b1)

where dots indicate derivatives with respect to time, and voltages €5 and
e3 have the meaning shown in the figure. An amplifier is used in conjunc-
tion with the phase-shift network. This amplifier is assumed to saturate

as its input voltage increases, so that the following equation might apply
e, = A (1 - ve 2) e (42)
2 1 1

where A and b are positive constants, and A 1s the small-signal
voltage amplification. This relation holds only moderately well for an
actual amplifier, since it predicts that the output voltage first in-
creases, and then decreases with an ultimate change in sign, as the in-
put voltage indefinitely increases. As the circuit is commonly used,

there is a polarity reversal, as represented by the relation

e = - € ()‘1'3)

e =e (L)
If Equations (41) - (44) are combined, the result is

3,3 eee 2 D . B 2
R7C” e  + 5R°CT e  + 6RC e, t e, =- A (1 - e, )eo (45)

Again, the stability criteria of Equation (38) require the use of a
dimensionless time variable. It is convenient here to define 7 = t/RC,

in which case Equation (45) becomes
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e 45 ey "+ 6 el + (1+A) ey - bA €03 = 0

where primes indicate differentiation with respect to the dimensionless
time r. Requirements that e = 0 be stable are given by Equation (38)

as

(@]

(1) a, =5 >
(11) £(e,)/e,

(iidi) 8, g(éo)/éo - f'(ey) = [5(6) - (L + A) + 3pA eog] >0

[(1+ 4 -bre ] >0 (46)

Of these relations, (i) is obviously satisfied, while (ii) and (iii)

2
can be written respectively as A(1l - beog) > -1 and A(1 - 3be ) < 29.

If the circuit is initially at rest, €, 1s near zero, and stability is
predicted if 29 > A > -1. These are well known conditions for this cir-
cuit.

If the circuit 1s to be used as an oscillator, A 1is chosen to
exceed 29, and for example it might be assumed that A = 35. The im-
portant condition now is (iii) which becomes beo2 >(1 - 29/35)/3. Thus,
if e, is initially small, the circuit is unstable and any disturbance
builds up, ultimately leading, of course, to an oscillation. However,
if ey is initially large, the circuit is initially stable, and the large
initial voltage first decays. This decay brings the circuit into an

unstable condition, and oscillation again takes place.
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9. CONCLUSION

In conclusion, it should be pointed out that the second method
of Lyapunov is valuable, in part, because it provides a useful concept
for considering the stability of a system. The idea of the Lyapunov
function is somewhat similar to that of energy, but it is more general
and more widely applicable. In some cases, a specific expression is
known for thé appropriate Lyapunov function. When this is so, sta-
bility can be explored and information about the speed of transient
response can be obtained. Ingenuity is required to apply the concept
to systems of other than a few simple types, and there is wide oppor-

tunity for further work in this area.
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LYAPUNOV APPROACH TO STABILITY AND PERFORMANCE
OF NONLINEAR CONTROL SYSTEMS

In the theory of stability of dynamical systems, the second
method of Lyapunov should be considered as a philosophy of approach
rather than a systematic method. A unified approach to the whole
theory of control systems is made possible by using the basic
concept of a Lyapunov function. This relatively new point of view
offers much promise to the further development of control theory,
particularly as regards nonlinear systems. In the nonlinear case,
intuition must be used to obtain suitable Lyapunov functions
because no straightforward methods are available at present for
doing this,

This paper presents an application of Lyapunov's second method
to the study of stability and performance of control systems which
may be described by the following nonlinear differential equations:

1 n-2

et i+ pe =N ( D™ e, D" %€, vu. e, t ) (1)

n n
De + p,D
1
where e represents the error signal, N represents a nonlinear

function, D" = dn/dtn, and pj's are constant coefficients. A simple

example is a second-order nonlinear control system of the type
shown in Fig. 1. If G2(S) is a second-order transfer function of

the form J82 + XS + L, as it will be for a simple motor and load,
and Gl(S) is first order, the differential equation will be of the

form

2
D%e + k De + le + £ ( De, e ) = D°r + k Dr + 1r (2)

where k=K/J, 1=L/J.
Equation (2) can be rewritten
D + kDe + le =N ( De, e, t ) (3)

for any given input r(t).

-39-
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The Second Method of Lyapunov.

It is usuvally not difficult to define what is meant by stability
in a linear system. Because of the new types of phenomena which
arise in a nonlinear system, it is not possible to use a single
definition for stability which is meaningful in every case. Kalman
and Bertram, 1, stated that concepts of stability are closely related
to concepts of convergence. When there are as many of the latter,
there are correspondingly many types of stability.

Lyapunov, 2, divided the methods which could be used to indicate
the solution of the problem of stability into two categories. He
included in the first category those methods which reduce to a direct
consideration of the equation of motion, that is, to the explicit
determination of the general or a particular solution of the equation.
It is usually necessary to search for these solutions by successive
approximations. Lyapunov calls the totality of all methods of this
category the " first method ".

It is possible, however, to indicate other methods of solution
of the stability problem which do not require the calculation of a
solution of equation, but which reduce to the search for certain
functions known as Lyapunov functions that possess special properties.
Lyapunov calls the totality of the methods belonging to this second
category the " second method ". Some authors, among whom are
Lefschetz, 3, and Hahn, 4, call it the " direct " method of Lyapunov,

For an autonomous system,

i= f(X) i;eo ;{i= fi( Xl,Xz...oXn ) i=l,2,....1’1 (4)

Where }.{=d.X/d.t’ X=( Xl,xz,......xn ) and fi = ( fl, f2, secooe fn )o

Lyapunov's second method consists in finding a real, continuous scalar
function V=V(x) = V ( X 3%5500000X, ) in the neighborhood U of a point

of equilibrium ( which may be assumed to be x=0 without loss of

generality ), or in the whole phase space, satisfying the following
two conditions:

(1) - v(0) =03
(ii) V(x) is positive definite.

The first condition means that the function we are interested
in vanishes only for xi=O, i=l,2,400on, The second condition
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requires that V(x) has continous partial derivatives and that %(x)>0
for all x=0; and V(x) =%5ci (oV /Jox; ) = = £.(x) ( /5 ) < 0O

for all x#0. V(x) and its time derivative V(x) are opposite in
sign. This function V(x) is called a Lyapunov function, and the
Lyapunov theorem has shown that the existence of such a function

implies the stability of the system. It may be noted that V is
actually the total derivative of V with respect to t. For non-

. oo SV + oV ; =
autonomous systems, V = oF ‘Efi( t, x ) SAr " Hence, V<O

means that V is a decreasing function of t.

Transformation to Canonical Form.

Consider the system described by equation (1), let the phase
space variables be given by the matrix equation

1

e ] (5)

N
{el, 62’.ooooenl= L‘e, De, sesess D

The equivalent system of first order is

'\‘ 4 Y , . e \
el 0 1 0 . 0 0 el
e, 0 O 1 e 0 O e,
D ee | = . . . . . . .o + . (6)
.o 0 O 0 oo 0 1 .o .
\enﬁ | “Pn “Ppo1 "Ppo2 e “Pp ~P | \enf I

which may written as

D(el = f{Al{e] +[N] (7)

where [ AJis the sguare matrix in equation (6).

It is obvious that the latent roots of the square matrix
{(Alare the characteristic roots of linear portion of the system.

Let these roots be distinct and given by Sl’SZ’ ""Sn’ Sl§2’ ....sm,

and /)Lzmﬂoooooo )ﬁ,vv where Sj and E% are complex conjugate pair and
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)Nj's are real roots. Equation (6) can be transformed to canonical

form by the following Vandermonde matrix

B 1 1 ;)
81 51 Sm Sm Aam I\

2 =2 2

-2 2
Sm Sy Nam] N (8)

w
ey

[

[ an- =nd n-l znd NG
Lﬁi Y 5!71 /\ me/ / \n

Thus, transforming the phase variables ej's to the phase variables

xj's by the equation

{e] = (1)(x] (9)

we obtain

pfx] = (B(x] + (117 (x] (10)

where

, -1 .
(8] = (25" (aJ (1] (11)
is a diagonal matrix having latent roots as its diagonal elements.

A Lyanunov Function.

The problem of determining a Lyapunov function for the systems
for wnich the solution x = O is known to ve stable, is called the
inverse problem. Uhere are necessary and sufficient coaditions for
the existence of a Lyapunov functiion, but there is nc ‘eneral metaod
of solution for the difficult inverse problem. Research nad been
done in this direction by & number of investigators, 5,0,7,0,5.

The case of autononous systems waen the number of the unknown



Ll

functions is equal to 2 has been extensively treated by Malkin and
his followers.

Actually, in his attack on the problem of stability,
Lyapunov's second method was inspired by Dirichlet's proof of
Lagrange's theorem on the stability of stationary states. This
has been pointed out by Lefschetz. The geometrical interpretation
of a Lyapunov function could be & measure of the " distance " of
the state x from the origin in the state space. Suppose the
distance between the origin and the instantaneous state is continu-
ally decreasing as t—eo , then x (t)—— 0. Since the Langrangian
function also has the property of being a measure of the swing of
the energy content of the system away from the equilibrium point,
it is natural to investigate whether it would satisfy the conditions
of a Lyapunov function. In fact, in many cases Lyapunov functions
are already available, though unrecognized, in standard results in
control theory. Kalman and Bertram pointed out that a system whose
energy L decreases on the average, but not necessarily at each
instant, is stable but E is not a Lyapunov function. A Lyapunov
function has to be positive definite. &xang and Fett, 10, suggested
the use of the envelope to the Lagrangian function instead of the
function itself as a distance function in case the Lagrangian
function contains oscillatory terms. Thus, by introducing the
following matrix.

O 845 (i:)

L0 5nSm
Swdn O

L2
(i:) /“\2nn1\22

An
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one establishes the function

v(x) =(x1, [w] [x] (13)
m = n-2m 2
or  V(x) = J‘g‘ ’5\:3, ij‘) X:y + Z A 2my szt/ (14)

Equation (14) satisfies the conditions V(x)> O when x # 0O and
v(o) = 0.

Using equation (10) and [W] = [wjt, the time derivative of

V(x) can be written as

V(x) = 2 [x], DWl[B][x + 2 [x], (W] [B]~* [ ] (15)

The first term on the left hand side of the above equation represents
the force free case to the linear system, while the second term repre-
sents the effect of the auxiliary forcing function and hence the
effect of the nonlinearity.

Denote[B]~ by‘{ s ana (e, Dey sunneess D le, )

by G(t), equation (15) becomes

V(x) = Tx) o+ T (x) (16)
where

. m 2 —2 H-2m 3

p(x) =2 2 (55 +5 0 X5y X5j +2 Z A zmy X 2t (17)

k?bn

’\T,,L(x) =26}w{; S.; ((';n. JJ*I%QJ I n sz )émg gm 72%7)7':)‘} (18)

= R 67t H
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Consideration on Stability and Performance.

The necessary and sufficient condition that the basic linear
system is stable is when the value of its Lyapunov function, along
its force free trajectory tends to zero as time approches infinity.
In terms of error coordinates e's, the Lyapunov function given in
equation (13) becomes J

7 (x) = [ely [Y] [€] (19)

where

(v]- [, [w [t (20)

If the characteristic roots of the basic linear system are all
real, then the characteristic roots of the matrix LY] are all
positive. It follows that V = constant is an ellipsoidal surface,
and the e space is topologically Buclidean. It is clear from
equation (17) that if all the characteristic roots of the basic
linear system have negative real parts, Vﬁ(x) is always negative

and the linear system is stable. Since the behavior of the non-
linear system is expressed in terms of some auxilliary forcing
function on_ a linear system, whether the effect of nonlinear terms
is to make V (x) more negative or not will depend on the sign of
Vn(x) = G(t) H. H is a linear function of the coordinates; hence

H = 0 is a plane through the origin partitioning the phase space
into two subspaces. The effect of nonlinearity can then be studied
in the light of this criterion.

Among all the states in the error coordinates, the necessary
condition that one state is better than the other is that the
distance of this state from the origin is smaller than those of the
other states. Therefore, V(x) can be used as an ordering relation
to define a preference among all states. One can also monitor the
§tate of the system or simply the sign of H in the expression of
Vn(x) by direct measurements, and then adjust the system properly

to really improve the performance. This is analogous to control
systems with system-parameter adaptation, whereby the parameter

are adjusted in accordance with input-signal characteristics or
neasurements of the system variables. o actual design of specific
systems is attempted in this paper. However it is clear that
Lyapunov method is not merely an abstract tool for studying the
stability of dynamical systems; it is also a concrete one to
facilitate the study and design of a general control system on the
basis of performance.
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Nonlinesar Control Systems with Random Inputs.

There is still a lack in the literature on the application of
Lyapunov's method to nonlinear control systems with random inputs.
Research in this direction has much promise for the development of
a satisfactory theory concerning both the analysis and synthesis
of such systems. Consider the simple second-order nonlinear systems
described by equation (2) and assume random behavior for input r(t).
Equation (2) can be written

e+F(eé) = T +kr + 1lr (21)

where the single and double dots refer to first and second time
derivatives respectively. By one of various methods of construction,
11, the phase-phane trajectories can be drawn for the case of zero
input

o d

e + F(e &) = 0 (22)
by writing in the form

_de = =T (eé) (23)
de

The finite input r(t) will increase the slope of the trajectory by

- v+ kr + 1r
=

e

or de = -F(e,e + Y+ kr + 1r (24)
de : '
e e

If the system starts at the point P, ( 5O,eo ) corresponding to the
input conditvions 55,5o,ro, this point will move in the direction
PoPy instead of along the trajectories of equation (23). After
a short time interval §t, P} will travel along another path that

nmakes an angle with the previous path denendent upon the new values
of ¥,ryr. 'This continuous veriaticn of the slope from that of the
trajectories drawn for r(t) = O results in a drunkard's walk ebout
one of the force-free trajectories, see Fig. 2.
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In mathematical statistics, the variates are mostly assumed
to be unbounded, and given a sufficiently long time infinite values
will be obtained. In actual physical control systems this is not
the case, as both the input and output and their derivatives, and
therefore the error function and all its derivatives, are bounded.
If the control system is a useful one and stable, the actual
trajectory in spite of its flucuations will tend to the origin
after a sufficient long time. The upper and lower limits of r(t)
then set a definite limit to the magnitude of excursions of the
drumkard's walk from one of the force-free trajectories. As a

result, it may be possible to put down limits onfe| __ and J&|

as shown in Fig. 2. In general, some small value e nin may exist

L
below which no matter how e varies, e can be just so large to force

the system into alignment so that e does not exceed |el nine It is

evident that the above discussions can be extended to systems of

high order. One may infer, therefore, that it is almost certain

the space trajectory of error for zero input can be used to in-
vestigate the stability of nonlinear control systems with random
inputs, provided the bounds of both input and output can be determined.
In this sense, Lyapunov's approach to system stability and performance
as presented in this paper would be useful to tackle problems of this
nature.
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INTRODUCTION

To those familiar with linear control system design the
concept of stability seems so obvious as to need no more than a
casual definition. This statement is not quite the same in the
field of rigid body dynamics. It is well kncwn that a rigid body
has two stable axes and one unstable axis. A few experiments at
throwing a book in the air will verify this. Obviously one axis
is unstable, for the book will not rotate about it. But what does
the instability mean? Is it the same as for an unstable control
system? In a sense it is, but a detailed discussion of the meaning
of stability is required to see the connection.

The original ideas on the stability of dynamic systems
were advanced by Poincare (1) and Lyapunov<2). These were extensions
of the concepts of stability for static equilibrium under small dis-
turbances. For many years they were deemed adequate for classical
dynamics. In the development of linear feedback theory this early
work was not used. Stability was based on the exponential decay of
solutions of linear differential equations. Finally, with the
revival of the Lyapunov method of analysis and its application to
control theory, the general formulation of stability and its
correlation among various disciplines was attempted.

Definitions of stability that are suitable for automatic
control may be stated in many ways, not all of which are equivalent.
The concept is somewhat arbitrary depending on the particular re-
quirements for the system. The definitions given here are those

found useful by the author in applying the Lyapunov method to
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nonlinear control problems. Certain aspects that are more of a
mathematical than an engineering nature are neglected. References
3, L and 5 contain discussions of various other definitions used

in conjunction with the Lyapunov method.

DESCRTIPTION OF PHYSICAL SYSTEMS

From an engineering standpoint the problem of stability
begins with a physical system which is capable of changing its state,
in some sense of the word, from time to time., This eliminates many
of the questions of mathematical concern, such as existence and
uniqueness of solutions, escape times etec. Specifically this dis-
cussion is concerned with a system of the type shown in Figure 1.
It is a plant -~ a dynamical system or otherwise -- whose outputs
are to be regulated by means of a set of inputs which are compared
to certain output variables, The differences are operated upon by
a controller which in turn supplies signals to the plant, In
addition, both the plant and controller may be subjected to the
influence of various uncontrolled or free inputs. These represent
such things as temperature variations, component aging or other
parametric excitation., This is essentially a conventional control
system.

There is an equation, either differential or difference,
which describes the nature of the changes that the variables of
such a system undergo. One description might be the normal set

of n first order differential equations;
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I CONTROLLER |— — —|  PLANT

Figure 1. General control system
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L= gy (xy,my(t),ug(t) i = 1,2,.....,n (1)
at J = Ll2,400e.5n

K = 1,2,.0000,D

S = 1,244004.,0

These will be used as a specific reference. The explicit dependence of
the equations on time is broken into two parts, the reference inputs
rk(t) and the free inputs ug(t). The x; represent the magnitudes of

n different variables which completely specify the state of the plant

and controller, They are called the state variables or, from a geo-

metrical viewpoint, they form the components of the state vector.

Any condition where all of the state variables are constant

is called an equilibrium position., With regard to Equations (1) this

is characterized by all of the functions fi being equal to zero. The
dependence on time of a physical system'may be divided into those
factors which influence the equilibrium position and those which do
not., In the set of reference equations it is assumed that the rk(t)
affect the equilibrium position while the us(t) do not. An equilibrium
position can exist only when the r) are constant.

The equation describing the motion of a system has a solution
defined as any set of functions ¢i(t) which, if they are substituted
for the state variables X4 satisfy the equation. Solutions are
dependent on time in the manner prescribed by the equation of motion
and also upon an initial state Xi(to) and the time ty when this state
occurs., Thus the notation ¢i(t) 1s understood to imply a set of

functions which have the value Xi(to) at a specified time tos

¢i(t) = ¢i(to;Xj(to)3t)-
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To interpret the implications associated with general con-
cepts of stability the idea of an n dimensional state space is used.
Fach of the state variables is imagined to represent a length along
an axis in this hyperspace, If the variables are functionally inde-
pendent no three axes lie in a plane. Under special circumstances
this space reduces to the conventional phase space, in which case
each succeeding axis represents the rate of change of the quanity
measured along the one preceding it.

Any point in state space is represented by a vector having
the various state variables as components. The totality of all points
in the space represents all possible states which the system may assume.
With the passage of time the state vector traces a curve in the space,
known as a system trajectory. Figure 2 is a possible trajectory in
three dimensional s»ace. It may be thought of as the projection of
a solution of the equations, plotted in a space containing the n
state axes and a time axis, onto the state space. Such a space and

the projection is shown in Figure 3.

STABILITY CONCEPTS AND DEFINITIONS

Solutions completely specify the motion of a system. When
these are known any more general properties of the motion are deter-
mined, However, 1f the solutions are divided into general classes
certain properties of each class may be found without knowledge of

the solutions, In some cases this is a simpler task than the
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determination of solutions. One useful division is into the classes
"gstable" and "unstable."

The primary purpose of the Lyapunov method is to furnish a
criterion by which an investigator can decide into which of these
classes the solutions of a particular system fall, To make the
decision a defintion of stability is required. The definition must
supply both necessary and sufficient conditions for a system to have
stable solutions. On the other hand a criterion for stability, based
on the definition, may provide only a sufficient condition, as 1is
the case in most applications of the ILyapunov method.

The concept of stability of a dynamic system is basically
the question of whether or not it will return to a particular state
after it has been disturbed in some way. Actually some state, either
stationary or dynamic, is always stable and the question is as to the
stability of a specified state., Various definitions of stability are
available depending on the nature of the state and the manner in which
the system approaches or deviates from it.

Stability in the Sense of Lyapunov

The mathematical definition of the stability of Equation (1)
as stated by Lyapunov is as follows., Let @;(t) be a solution of the
equation and define a new set of variables; q; = X; - ¢i‘ If these
are substituted into (1) & new set of equations in a4y results which
has an equilibrium position at q; = 0. This is true whether the original

set of equations possess an equilibrium position or not.
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The equilibrium position is called stable in the sense of

Iyapunov if for every e > O there exists a 8(e) > O such that,

la(t)| < e whenever \g(to)| <& for all t > ty. In other words,

the equilibrium position, g; = 0, 1is stable if the magnitude of

the new state vector g can be made to remain permanently below an
arbitrary upper bound by choosing its initial magnitude sufficiently
small. If g approaches zero as t approaches infinity the equilibrium
position is called asymptotically stable,

Extending this to (1) the solution ¢i(t) is called stable
in this sense 1if, lxi(t)—¢i(t)| < € whenever |xi(to)-¢i(to)| < % for
t > toe Thus if one solution remains arbitrarily close to another
when their initial values are sufficiently close together that solution
is called stable,

A brief consideration of the aspects of control system design
makes it evident that these definitions are not completely satisfactory.
First, the question of what happens when the initial disturbance cannot
be made sufficiently small arises. For instance, the state of a stable
system, by this definition, can go into a limit cycle or increase with-
out limit if the initial disturbance is above a specified bound.
Second, the fact that one solution remains close to another is of
little value if both deviate greatly from the desired solution.
Fortunately in the case of linear systems the definitions above are
coincident with broader aspects of stability.

More General Definitions of Stability

A more general set of stability classifications is defined
in the following discussion. The basic definition is concerned with

the stability of an equilibrium position. Let the system considered
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be one that has an equilibrium position; for example, in the set of
Equations (1) all of the forcing functions rk(t) are constant, Let
Xo be the vector representing the equilibrium position and let R be
some region in state space, bounded by a hypersurface and containing
the point Koo Tt is desired to classify solutions for which the
initial state vector represents a point in R at a time to as stable
or unstable.

A state vector at some point in R at to will be at some
other point in state space at a later time t;. Another state vector
initially in R will be at another point at t;. In terms of two such
vectors an analytic definition of stability is;

Definition: 1) An equilibrium position X is

stable in a region R at a time ty if for every

€ > 0 there exists a 5(e) > O such that | gl(to)-¢2(to)] <

implies |gl(t)-gﬁ_2(t)l < e for all gl(to) and gz(to) in R

and all t > tO.

This definition is 1llustrated in Figure 4. All trajectories
originating in a sphere of radius & arrive at some other set of points
at t7. These lie within a sphere of radius €. Regardless of the size
of € it must be possible to choose 8 small enough so that the trajec-
tories remain within it for all time and this must be true for all
possible states originating in R. These requirements are very weak
as far as the stability of control systems is concerned. They
effectively eliminate the three unstable phenomens, unbounded variations,
other equilibrium states, and limit cycles.

By this definition no state originally in R can become

infinite at infinite time for if it were possible two adjacent initial
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Figure 4. Stebility of solutions



-63-

states could exist, one of which remains finite while the other
becomes infinite. At least one state, x,, remains finite. If a
finite value of € is chosen it is impossible to choose a & small
enough to keep the difference between these two states less than
€ after a sufficiently long time.

No trajectories initiating in R can go to other equilibrium
positions, if they exist, for if this were possible two adjacent
initial states could exist, one of which would approach another
equilibrium state while the other would not. Again at least one
trajectory exists which remains at a specified position, Then for
a sufficiently small value of € it is impossible to choose a & small
enough that the variation between the states will not exceed this
value. A similar argument proves that if any trajectories initiate
in R and go to a limit cycle the requirements of the definition are
violated.,

It is noted that under this definition a stable system
does not necessarily return to the equilibrium position., A typical
example is a second order conservative system such as might be repre-
sented on an analog computer by two integrators each of whose outputs
feeds the input of the other. The poles of the transfer function are
purely imaginary and any disturbance results in a continued oscillation
of fixed amplitude. Unlike a limit cycle, however, the amplitude is
dependent on the initial disturbance.

A stronger kind of stability is given by the following

statement.
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Definition: 2) An equilibrium position x  is asymptoti-

cally stable in a region R at a time to if it is stable

and if g(t) - %, as t - for all #(ty) in R.

In applying the Lyapunov method it is customary to distinguish stability
for cases where (2) is not satisfied by the statement;
Definition: 3) An equilibrium position X is neutrally

stable in a region R at a time t, 1f it is stable and

0

not asymptotically stable.

Geometrically, asymptotic stability means that the region R,
which becomes a region Ry at time tl as shown in Figure 4, eventually
becomes arbitrarily small. In other words, no matter what initial
disturbance is given to the system within the limits specified at to
the system will return to its equilibrium position, As far as control
systems are concerned this behavior is usually necessary to achieve
their objectives,

Neutral stability is primarily of interest in these appli-
cations for interpretation of analytical results. It represents the
boundary between stability and instability. However, in other
applications, such as the motion of rigid bodies or planets in orbit,
it is the only kind of stability possible,

So far the definitions have been concerned with the behavior
of solutions after a long time has elapsed since the initial disturbance.
Trajectories on the boundary of R at to are on the boundary of Ry at t,.
Thus a system which is asymptotically stable in R at ty is also asymp-
totically stable in Rl for all tl after to. However, R, can become

considerably larger than R before the trajectories begin to conveige.
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In effect an asymptotically stable system can behave as an unstable
one for an indefinite length of time. In practical problems not only
the asymptotic character of the solutions but also the manner in
which they exhibit this behavior is of importance.

A convenient way to state a definition of stability having
more desirable properties for automatic control is to use a con-
struction similar to the formulation of the second method itself.
Thus the Lyapunov method is especially suited for providing the
desired information. It will be called monotonic stability because
of the similarity to a monotonic sequence.

Tmagine the space inside of the region Ry, derived from R
as above, to be divided into a continuous nest of non-intersecting
hypersurfaces inclosing the point Xen The innermost surface reduces
to a point at Koo This is shown for two dimensions in Figure 5.
Designate one of the surfaces by S; and another inside of it by Ss.

Definition: 4) The equilibrium position is

monotonically stable in R at t, if it is possible

to choose a set of surfaces in R; such that, if
@#(+1) is a state vector representing a point on
any surface Sy at t, @(t,) represents a point on

some surface Sg inside of Sl for all t2 > tl and

This definition is concerned with the behavior of the system
at all times rather than only after a long time since tn. It necessarily
implies asymptotic stability, since if the solutions go inside of every
surface they must eventually converge to Koo It is a stronger require-

ment than the "exponential stability" defined in reference L; for even
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Figure 5. Monotonic stability
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though the solutions remain bounded by an exponential function they
may increase at times, whereas by this definition they must always
tend toward equilibrium. It is a property of autonomous systems that
this is the only kind of asymptotic stability possible, but it is not
necessarily restricted to autonomous systems.

Stability As a Function of Initial Conditions

Definitions 1 to 4 are concerned with stability for a given
set of initial conditions, namely for an initial state in a region R
at a time to. These are usually dependent upon the choice of R and to.
Tt may be that the system is such that the definitions hold irrespective
of the time tOo

Definition: 5) The equilibrium position is called

respectively uniformly stable, uniformly asymptoti-

cally stable, uniformly neutrally stable, or uniformly

monotonically stable if the choice of the region R in

definitions 1, 2, 3, or 4 is independent of the initial

time t,.

Specifically the requirements of (5) are always satisfied
for autonomous systems. For non-autonomous systems they may be
fulfilled for certain regions and not for others. Uniform stability
is a desirable feature for control systems. For example, if it is
known that a control is unstable when the initial disturbance exceeds
a specified bound a limit stop may be added below the bound to prevent
this occurrence, However, if the stability is not uniform it may be

difficult to specify the bound or design the limit stop.
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5o far nothing has been said about the size of the region
R. Sometimes it may be chosen as small as is necessary to satisfy
the particular requirements., When this is all that is required the
investigation of stability is a comparatively simple task, Usually
a linearigzation about the equilibrium position is sufficient.

Definition: 6) The equilibrium position is called

respectively A-stable, asymptotically A-stable,

neutrally A-stable or monotonically A-stable at

to if definitions 1, 2, 3, or 4 are fulfilled for

initial states within an arbitrarily small region

A about the equilibrium position.
This condition is referred to as "stability in the small" in Russian
literature, The "stability in the sense of Lyapunov" defined pre-
viously is of this kind. It has considerable mathematical interest
but ié of little use for control system design since the possibility
of rather large disturbances always exists,

A more practical condition is given by;

Definition: 7) The equilibrium position is called

respectively B-stable, asymptotically B-stable,

neutrally B-stable, or monotonically B-stable at

tO if definitions 1, 2, 3, or 4 are fulfilled
for initial states within a specified and finite
region B containing the equilibrium position,

This is usually called "stability in the large" by Russian authors,

The major problem in nonlinear systems where a finite region of
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stability exists is in determining the largest boundary within which
the solutions tend toward equilibrium. This is usually very difficult
but if a boundary is determined which is so large that no disturbance
is likely to exceed it the problem is solved for practical purposes.
The Lyapunov method gives such information more or less precisely.

A special case of the above occurs when the stability re-
quirements are satisfied for all possible initial states.

Definition: 8) The equilibrium position is called

respectively B-stable, asymptotically B-stable,

neutrally B-stable, or monotonically B-stable at

tp if definitions 1, 2, 3, or L are fulfilled for

all possible initial states,

This clearly implies B~stability as B-stability implies A-stability.
It is alternatively called "stability in the whole" and "stability
in the large" in various translations of Russian papers. This is
often considered to be the only kind of stability of interest for
control systems, With anything less there is always the risk of
some random disturbance putting the system into an unwanted mode

of operation, Of course in linear systems the nature of the
stability is always independent of the magnitude of the initial
disturbance., For these there is no distinction between A and B

or B-stability.

The process of classification of solutions could be carried
on to considerably greater length but the definitions given so far
serve to outline the principal distinctions among the ways solutions
can behave, The strongest classification is uniform-monotonic-Bs

stability while the weakest is A-stability. The rest fall at intervals
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between these two. Finally, instability is defined by the statement;
Definition: 9) If the equilibrium position is

not stable it is unstable.

Figure 6 is a flow diagram illustrating the various classi-
fications. The restrictions on the system become progressively
stronger in going from left to right on the diagram or from the
bottom to the top. The implications of each class can be noted
by following the flow back to the solution. Thus B-stability implies
A-stability but neutral B-stability does not imply asymptotic A-stability
nor does monotonic A-stability necessarily follow from asymptotic
B-stability.

Stability of Control Systems with Forcing Functions

When the system is subjected to dynamic inputs which affect
the equilibrium position, as when the ry(t) in Equations (1) are not
constant, the stability of an equilibrium position has no meaning.
Then it is customary, in mathematical discussions, to follow the
method of Lyapunov described previously. Some solution is called
the "undisturbed motion" and all other solutions, called "disturbed
motion", are classed according to whether or not they converge toward
this one.

The procedure followed here is similar in meaning but 1t 1s
stated differently. A control system is designed to follow a particular
set of inputs. The information that is desired is the stability for
these inputs. For this purpose the description "reference inputs" is
understood to include all functions of time which influence an equi-
librium position whether they are specifically intended as references

or not.
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When the reference inputs are identically zero the system
has some equilibrium position which may be classed as stable or
unstable, Similarly when they have a constant set of values there
is another equilibrium position which may be considered. For physical
systems this position depends continuously on the set of values assumed
by the inputs. Thus at any time there can be said to be an equilibrium
position corresponding to the instantaneous values of the references.

A time varying set of references may be considered as an
effective movement of an equilibrium state from point to point in
state space. If they vary slowly enough the state of the system
will follow a stable position., Of course the references may affect
other aspects of the motion as well as the equilibrium state.

Definition: 10) Let x.(t) be the equilibrium

position corresponding to a set of reference

inputs 1y (t) and let B(to) = x.(tg). A systenm

1s stable at tp with respect to this set of
inputs if there exists a T > tg such that
¢(tl) falls inside of a region for which the

equilibrium position corresponding to rp(ty)

is stable by definition 1 for all t; > T.

In effect this definition states that the motion is stable
if there is some time after which the references may be held constant
and the ensuing motion is stable. It differes from the usual one in
that no initial disturbance is specified. This is taken into account
in specifying the reference themselves and also the possibility of
continuously acting disturbances is admitted. The solution may

temporarily go into an unstable region provided that the inputs
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are such that it returns to a stable region and remains there. This
is somewhat risky when classes of inputs rather than specific inputs
are considered.

To avoid such behavior a stronger restriction is
imposed,

Definition: 11) A system is called continuously

stable with respect to a set of inputs if definition

10 is satisfied for all t > tg.

Here the inputs may be fixed at any time after t; and the resulting
motion must be stable. Both definitions (10) and (11) may be extended
to include asymptotic stability, uniform stability, etc., by inserting
the appropriate one of definitions (2) to (8) instead of defintion (1).
Thus a set of classifications for systems with forcing function inputs
is defined, Many more refined distinctions exist which could be used
as a basig for further subdivision but these describe the major courses

that a state of motion may follow,
CONCLUSIONS

Various classifications of stability for equilibrium and
dynamic states have been discussed. It is emphasized that these are
not unique. The variation from the strongest kind of stability to
instability is a continuous process which may be graduated by a variety
of demarcations. For most applications in automatic control only the
most restrictive categories are of value; however, there are circumstances

where weaker classifications may be used.
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In general it can be sald that the strongest kinds of
stability are also the easiest to investigate. For example, a
Lyapunov function for a neutrally stable system is unique, whereas
a variety are possible for a monotonically stable one. The investi-
gation of anything but Bzstability for dynamic states of a nonlinear
system is particularly difficult since a set of solutions must be

known or at least approximated by suitable upper bounds.
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THE DIRECT METHOD OF LYAPUNOV IN THE ANALYSIS AND
DESIGN OF DISCRETE-TIME CONTROL SYSTEMS

1. Introduction:

Lyapunov's Direct Method often called the Second Method is one
of the most general methods known for the study of the stability of equilibrium
solutions of dynamic systems described by ordinary differential or difference
equations. The present paper is restricted to the study of dynamic systems in
which the time variable changes discretely, i.e. those governed by ordinary
difference equations. With the advent of digital components, pulsed radar, and
analytical instruments employing sampling techniques, discrete-time systems
have become quite common to the control engineer. The objective of the paper
is to present methods rather than the rigorous development of the mathematical
structure. Good sources for the statements and proofs of the mathematical
theorems underlying the method can be found in [1}, [2], [3], and [4]. These
references also contain extensive bibliographies.

2. Description of Discrete-Time Dynamic Systems:

A large class of discrete-time dynamic systems may be de-
scribed by the vector difference equation

X(tesq) =f(x(t) , wt)) . (2.1)

where the tk (k an integer) indicate discrete values of time

S, b <t <t <ot @ as ke

at which the behavior of the system can be or is observed; t_is regarded as
an independent variable analogous to t in continuous-time systems. Equation
(2.1) is equivalent to the set of n scaler difference equation

xi(tkﬂ) =fi(x1(tk) ) eee s xn(tk) , ul(tk) y e um(tk)) ,  (2.2)

i=1,...,n

The vector x is the state of the system (2.1); its components x, are the
state variables, The vector u is the control input of the system; its components
u, are the control variables. The system is specified by the vector valued func-
tion f. The integer n is the order of the system. Usually the number of control
inputs, m, is less than the order of the system, n, (m < n).
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Example 2.1,

To illustrate how equations in the form of (2.1) are obtained from
control problems consider the block diagram of the sampled-data system in
Figure 1. It consists of the following:

(a) The plant and the feedback instruments, which are governed by
ordinary, linear, time-invariant, differential equations. As
is customary in the control system literature, the plant and the
instruments are described by rational tranfer functions.

(b) The sample-and-hold element, which replaces the continuous error

signal e(t) with a piecewise constant sampled signal e*(t) described
by

e*(t)=e(tk) Vb St <t k=0,1,2, ... (2.3)

The sampling is periodic with period T.

(¢) The amplifier which as shown has a gainof k for [ e| < e
and saturates for | e| >e.. The transfer characteristic of
the amplifier is given by the function fS so that

m(t) =£_(e(t)) (2.4)

The first step in obtaining the equations (2.1) is to redraw the block
diagram in such a way as to make the state variables accessible. This can
be done by simulating the plant and the feedback instruments on an analog
computer. One such simulation of the system is shown in the block diagram
of figure 2. The state variables are the outputs of the two integrators and
are labeled x_ and Xy At the sampling instant t = + in terms of the state
variables ::md1 the input at the sampling instant t = are given by

Xy (b yg) =% () + TX() + Tz/ﬁ m{t,)
(2. 5)
Xo(bero) = X(t) + Tm(t)

where

m(t) =1 (e(t)) (2.6)
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Figure 3.

Examples of Norm
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and

e(tk) =u(tk) - xl(tk) + axz(tk) (2.7)

Therefore substituting (2. 6) and (2.7) in (2. 5) the system is described by
the equations

2
) = %4080 Taglh) + T/, 1006 - xy(6) + axy(t))
(2.8)

Xyty) = Kyt + THut) - x,(h) + axy(h)
which are in the form of (2.1) and (2, 2) where

2
fl(xl, Xp) U) =X, + Tx, + T/2 fs(u - X, ¥ ax,)

and

fz(xl, Xy u=x +T fs(u - X, +ax

2 1 2)

3. Concepts of Stability:

If the control input 1_1_(tk) = ( for all tk’ we say that the system
(2.1) is unforced.

x(t ) =fx(t)) (3.1)
A state X, of the unforced dynamic system (3.1) is an equilibrium state if

) (3.2)

Thus if the unforced system (3.1) is started in the equilibrium state, x , it
remains in this state for all t . This is, of course, a mathematical statement,
and the actual physical behavior raises the problem of stability. It is never
physically possible to start the system exactly in its equilibrium state and, in
addition, the system is always subject to outside forces which are not considered
in the mathematical description. Thus the system is constantly being disturbed
and displaced from its equilibrium state. Roughly speaking, if it remains near
the equilibrium state we say that the system is stable. If the system remains
near to the equilibrium state and, in addition, tends to return to equilibrium we
say that the system is asymptotically stable.
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Now to make these notions more precise let us assume that the equilibrium
state being investigated is located at the origin: x = 0. (This can always be
accomplished by a translation of coordinates). Lef || x ||  be the Euclidean

2, L1 ©
R .
region of radius R about the origin, then S(R) consists of all points x such that
%1l < R.

length of the vector x ( || x | Ie = (X If S(R) denotes the spherical

The equilibrium state at the origin is said to be stable if corresponding
to each S(R) there is a spherical region S(r) of smaller radius such that for an
initial state g_(to) starting in S(r) the solution _>g(tk) does not leave S(R) for all

>t .
-0

If, in addition, there exists a third spherical neighborhood of the origin
S(R,) such that every solution starting in 8(R,) approaches the origin as tx = <,

the system is said to be asymptotically stable.

Stability and asymptotic stability are local concepts. In practice some
knowledge as to size of the rgion in which stable behavior is to be expected is
required. In many control system applications it is important to assure that
no matter how large the perturbation, the system tends to return to its equilibrium
state. This is asymptotic stability in the large.

4, Principal Result:

If within the neighborhood of the equilibrium state the total energy
of the unforced system is always decreasing, we should expect that the equilibrium
state is asymptotically stable. Lyapunov's direct method generalizes this idea.
Suppose that within some neighborhood S(R) of the origin it is possible to construct
a scaler function V (%), continuous in x, and such that V(0) = 0 and V(x) > 0 for all
x # 0. Define, with reference to the unforced system (3.1)

AVEKE) ) = V(x(h, ) - V&R (4.1)

Now, if x(t,) is the solution of (3.1), the change of the Lyapunov function
V(x) along the solution sequence { x(t) } is

AV((L) ) = VEXE))) - V() (4.2)

which is obtained without any knowledge of the solutions but directly from the
structure of the difference equations. If such a Lyapunov function V(x) can be



constructed in a neighborhood S(R) of the equilibrium state and if in that neighbor-
hood V(x) > ¢ for x = 0, then the equilibrium state is asymptotically stable if
AV(x) < 0. This is one form of Lyapunov's Asymptotic Stability Theorem for
difference equations. The proof of this theorem is quite simple and can be found
in [3].

A few additional conditions are necessary to assure asymptotic stability in
the large. Because of its many applications in the control field I shall state it as
a theorem.

Theorem 1.

Consider the unforced, discrete-time, dynamic system

x(ty ) =£x(t) )

where f(0) = 0. Suppose there exists a scaler function V (x) such that V(0) = 0

and
(1) V(x) >0 whenx #0;
(i) AV(X) <0 whenx = 0;
(iii) V(x) is continuous in x;
(v V(x) = = when || x|| ==

Then the equilibrium state x = ( is asymptotically stable in the large and V(x) is
is a Lyapunov function.

Since the major difficulty in applying the Second Method is the construction
of a suitable Lyapunov function, it is desirable to weaken condition (ii) of Theorem 1
and thereby enrich the class of functions. Actually A V(x) need only be non-positive
(0> AV(x)) aslong as it doesn't vanish identically on any solution sequence of the
difference equation. Thus (ii) can be replaced by the conditions

(iil) AV(x) < 0 for all x

(ii AV(x) does not vanish identically for any sequence {gc_(tk) }

)
2 satisfying the difference equation being studied.
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5. Applications:

Traditionally, the study of automatic control systems proceeds along

the following path. After an adequate mathematical model of the system is obtained,
conditions for stability are sought. Once the system is stabilized attention is usually

focused on the transient behavior. Then the effect of arbitrary inputs and noise
disturbances are considered. Finally when the analysis problems related to a
class of control problems are understood, effort is directed toward deriving a
synthesis or design procedure which ensures a stable system whose transient
behavior and response to inputs is optimal in some specified sense. In this
section, with the aid of numerous examples, it will be shown how the '"direct
method" may be used for the study of discrete-time automatic control systems
of the regulator type.

() The Mathematical Model.

We are concerned with the analysis and design of automatic control
systems in which the plant to be controlled is described by the ordinary difference
equation

X)) = g, (%), u(t), v(t)) (5.1)

where x is the state vector of the plant, u is the control vector, and v is an
uncontrolled input or disturbance vector. The plant is described by the vector
valued vector function g, It is assumed that gl(g, G, 0,) =0.

The regulator type control problem is concerned with generating the con-
trol vector,u, by means of a feedback structure so that the state of the plant is
pear in some sense to the equilibrium state 3{9 =, In function notation

u(t) = gyt ) (5.2)

Thus the closed-loop, regulator system that we are considering is of the form

X(t L) 51< (t)s g2 (x(tk ¥(t)) (5.3)
f(x(t) , v(t)
Example 5.1.

In many practical situations the dynamic behavior of the plant is
adequately approximated by an ordinary, linear, time-invariant, difference
equation
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X(t,,) = @XM+ Aut) + v(t) (5.4)

(i.e. g is a linear function of x, u, and v.)

With such plants the control input, y( tk) is often made a linear function of the

state, x(tk)

u(t) =B xt,) (5.5)
Thus the overall system is described by the relation
U (UL (LW (5.6)

where ¥ = & + A B.

Example 5. 2,

Even when the plant is described by a nonlinear difference equa-
tion it is often found that the dynamic behavior is close to that of a linear system.
Thus it is convenient to describe such systems in the following way

x(t, ) =1 (1), ue), vit))

(5.7)
=& x(t +Au(tk +g(x(t tk tk))
8fi of,
where the elements of ® and A, ¢,, and A,,, are — and —L evaluated at
ij ij axj 8uj

the equilibrium point, x = 0, u = 0. The vector valued vector function g is
defined by (5.7).

Because of its simplicity, such systems are often stabilized as in the
linear case by linear feedback of the state §(tk). That is

u(t) =B x(t) (5.8)

In this case the overall system is governed by the difference equation
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Xt = ¥ X(b) * gt ¥E)) (5.9)

where as before ¥ = & + A B.
In example 5.1 we are interested in the conditions on the matrix ¥ so that
the overall system performance is satisfactory in the presence of the disturbance

v. Example 5.2 is similar, except that the disturbance has become a nonlinear term.

(b) Conditions for Stability.

As we previously pointed out, the major problem envolved in applying
the direct method is to find a Lyapunov function. For discrete-time systems, a
class of functions which has proven extremely useful in a number of cases is just
the norm of the state vector x.

The norm of x denoted by || x || may be thought of as a measure of the
length of the vector. To see that a norm might make a useful Lyapunov function,
let us define the concept more precisely. A norm is a function which assigns to
every vector x in a given Euclidean space a real number denoted by || x || such that

M |1 x|l =0 if, andonlyifx=0

(i) || x||>uforallx =0

(ifiy || ex|| =] @ | < || x|| for all x and « a real constant
() [l x+y !l <l x{l +]] y|| for allx and y

The best known norm is probably the Euclidean measure of length

n 1
xll=(2 et
i=

Some other commonly used norms are

el =max {1 x;1)

n
Hxllg= X ix

It is easily shown that all tliree satisfy the four conditions of a norm.
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The use of the norm as a Lyapunov function is facilitated by the geometrical
picture of the locus of x for a constant value of the norm. In Figure 3 the loci in
the two dimensional case for the three norms set equal to unity are shown. Note

that for || x | |p= 1 the locus is a circle of radius, one centered at the origin;
for || x || =1 the locus is a square with sides of length, two parallel to the
coordinate axes and centered at the origin; and for || x || =1 the locus is again

a square but in this case the sides are of length ¥'7 and the verticies lie in the
coordinate axes one unit from the origin.

It is often desirable to emphasize certain elements of the vector X 8o that
in the cases discussed the circle becomes an ellipse, the first square a rectangle,
and the second square a diamond. This is accomplished by weighting each of the
elements X, by positive, scaler constants. In this way we obtain the norms

n 2 2
HzHec=pﬂox)”
1 1=

2l o mmex (el %1}
n
H-’st,c=£1 c; I x|

where the ¢ are positive scaler constants,

In the examples which follow it will be convenient to rotate the major and
minor axes of the ellipse. For any rotation of the type described it is always
possible to find a nonsingular, linear transformation T acting on the vector x
which produced it. From this point of view we can define a generalized Euclidean
norm

H§Hp=[<T_>9'<T911/2=[3<_'T'T§11/2
' n n 1/2

= P =(Z p> . p.. X,

x x (1=1 j=1 Xx le XJ)

The matrix P generated in this way is always symmetric and has the property
that 3{_' Px>¢forallx #0. Amatrix with this property is said to be positive
definite. Thus the generalized Euclidean norm is defined for any positive
definite matrix P. For a complete discussion of the concept of norm and normed
linear spaces see [5].
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Now returning to the stability problem we consider-the unforced system
X(t ) =fxt)) (5.10)
where f () = 0. Setting the Lyapunov functien equal to the norm of x

V) ) = | x| (5.11)

we satisfy all conditions of Theorem 1 except for condition (ii). In this case
the difference

AVt ) =] xth ) 1] - 1] ) |
(5.12)
=1 fxe) ) [ - 1] x|

From (5.12) we see that condition (ii) is satisfied and the equilibrium solution
X = 0 of the system (5.10) is asymptotically stable in the large if

159 1] <[l x1] forallx =0

A function f which has this property for some norm is said to be a contraction.
Unfortunately considerable ingenuity is often required to find such a norm.

The following examples show the type of results that may be obtained
from the norms previously defined.

Example 5. 3.

For the linear, time-invariant, discrete-time, dynamic system

Xt )= ®x(t) (5.13)

a convenient Lyapunov function is the square of the generalized Euclidean norm.
Thus we set

(5.14)
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where as previously noted P is a symmetric, positive definite matrix. From
(5.13) and (5.14) the difference is seen to be

A V() =x(t) 8 P Ex(t) - x(6) P Xt
(5. 15)

= - X (t) QX

where Q =P - <I>' P & is a symmetric matrix. From (5.15) we see that
A V<0 forall x = if Qis positive definite. The positive definiteness
of Q can be checked from Sylvester's inequalities for it is necessary and
sufficient that the n determinants

90 Yk

D, = . . >6,k=1,2,...,n (5.16)

ek

G+ 0 -

all be positive in order that Q be positive definite.

Since in the present example it is well known that the null solution is
asymptotically stable in the large if. and only if, all roots of the characteristic

equation

det[ #-I1]=0 (5.17)

are less in magnitude than unit (| A i | <1i,i=1,2,...,n), itis possible
to obtain similar results which are both necessary and sufficient. Since this
result is used so often it will be stated as Theorem 2.

Theorem 2.

The discrete-time. unforced, linear, time-invariant dynamic
system of (5.13) is asymptotically stable in the large if, and only if, given any
symmetric, positive-definite matrix Q there exists a symmetric, positive-
definite matrix P which is the unique solution of the linear equation

Q=% P&-P (5.18)



V@) =x Px

is a Lyapunov function with A V(x) = - x' Q x.

The proof of Theorem 2 is analogous to the proof in the continuous-
time case of reference [3]. Note carefully that the theorem does not say
that if the system is stable, then given any symmetric, positive definite P
the resulting Q is positive definite.

Example 5. 4.

Consider the nonlinear system’
X)) = 3 x(t) ) E(tk) (5.19)

where & (_)g(tk) ) is an (n x n) matrix whose elements ¢ij are functions of
X(t).

(a) If we let

Ve =l x|l =max Lo} x|} (5.20)

where c_, Cos » + ., C are positive constants, then from the principle of a
contracfllon, the system (5.13) is asymptotically stable in the large when

@ @) xit) 1] <11 xe) 1]

For the norm chosen

n
H<I>(x>.>sll=mgx{cisjflcs»ij@)xji}
n Ci
smfx{jfl—gj— Loy @1 e ix )



Consequently if

n C.
max{z——-1¢(_)|}<1,fora11>_¢ (5.21)
i jzl CJ
the system of (5.13) is asymptotically stable in the large.
(b) If we let the norm be
n
Vi) =l xIl = Z ¢ |x]| (5.22)
i=1
then
n n
d(x)x|{|{=Z c, | Z .. (X) X,
He@xll=2 ¢l 2 ¢ 0]
n Ci n
<z — [ .®]" clx]
=1 % =1 U !
n C n
< max z — Z ¢ .| Xx
< m L2 : o @I 2 elxl
Consequently for this norm if
n o,
max { £ — |¢.(®][} <1 , forallx (5.23)
J i=1 CJ 1]

the system of (5.13) is asymptotically stable in the large.

Therefore we conclude that the system of (5.13) is asymptotically stable
in the largeifit is possible tf) find n positive constants Civ Corm v v s O such that
maximum absolute sum of either the rows or columns of the weighted matrix

e

N

o), ® |

c

(¢}

€9

1
|0, @1 . ..

°

c
n

210, @1 lo®| ...

16, ® |

o, (]

(5. 24)
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is less than unity.

Example 5.4. b,

To illustrate the application of this result, consider the sampled
control system of Figure 4. In the sampled-data controller the storage element
denoted by z~1 saturates as would be expected in any physical system. The
saturating storage is represented by the function of Figure 5. From this figure
it is seen that the instantaneous gain f(x) / x is such that

0« @l (5. 25)

x| =

for 0 < x < . The problem is to determine if the system is asymptotically stable
in the large with this saturating element. Since our methods only give sufficient
conditions a negative result would be inconclusive.

From an inspection of Figure 4 the state equation of the unforced system
can be written as

X, () = % (6) = 0.2 %,(6) + 0.6F_ (=X (£) + 0.3 x,(t) )
(5. 26)
Xoltyyp) = Fg (X (B) + 0.3 %,(8) )

It is desirable to make a transformation of variables in this case so that the
argument of the function Fs is a single variable. One such transformation
is to let

v (t) =X (t)

(5.27)
Yolt) = -y (6) + 0.3 x,(t)

With this transformation the system equations are easily put in the form of (5.13)

- T Fo,t)) | [ 7]
yl(tk+1) 1/3 (-2/3 +3/5 W yl(tk)
= (5.28)
F_(7,(t))
s“v2
Yoltey) | 1F1/3(2/3 -3/10 W Yolt,)
L 4 L 4 L




+

Figure 4. Sampled system with saturating storage

R(y)

<V

Figure 5. Saturation function
| R
Ue A PAS=C
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u*+ d*
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Figure 6. Input space--Example 5.10



Considering just the columns, we conclude that the system is asymptotically

stable in the large if positive constants ¢ and ¢, can be found such that

!
| 1/3] + -5——| 1/3] <1
2
(5.29)
c F (v,) F (¥y,)
2
== | -2/3+3/5 S 2 2/3-8/0—2) <1
1 2 2
| Py, |
A study of these inequalities show that for Ty | restricted to the
2
| Foly,) | ¢
range 0 < I_T——T < 3.34, the inequalities are satisfied for Pl 2 -¢,
2 2

where € > 0, Thus the system is asymptotically stable in the large.

(c) Estimation of Transient Behavior.

If the asymptotic stability in the large of a discrete-time dynamic
system has been established by means of a Lyapunov function, it is possible to
estimate the transient behavior. This depends upon regarding the value of the
Lyapunov function for every point X as a measure of the distance from the
equilibrium state X, =0 Consider the obvious equality for x =0

AVIHG) ) = Vil ) - Vb)) = (A VIRE)) /yoe )] Vi)

(5. 30)
from which we obtain the difference equation for V
V) = [+ AV )y ) 1 VYY) (5.81)

Since the system is asymptotically stable in the large the ratio -1 <
AV(X(t) ) /V (xt)) < 0 ; and if condition (ii) of Theorem 1 rather than

the alternate condition (ii.) and (ii,) are satisfied, then -1 < AV(x(t, )) < 0.
Letting 1 2 tk / V@(tk))



n = max AV
1 X V()
(5.32)
A V(x)
o = m;_n V(®)
we see that
(L-n,) V(X)) < V) <(1-n,) V(b)) (5.33)

Thus if the system starts in initial state x(t ) the "distance" from the origin,
as measured by the Lyapunov function decreases in the following way

k k
(1-n))" VxE)) < Vb)) € (1-my) V() (5.34)

We may consider (1 - nz) the largest time constant of the discrete-time system
and (1 -7, ) the smallest. Note however thatn, and n, depend on the Lyapunov
function c]hoosen. In fact if the function were c]hoosen So as to satisfy only con-
dition (ii, ) and (ii_) of Theorem 1 , thenn, = 0. In this case the transient
behavior would have to be studied in regions of the state space and not the entire
space.

Example, 5.5.

From Theorem 2 we know that if the linear system

Xt ) = 2 XE) (5. 35)

is asymptotically stable in the large, then by choosing any symmetric, positive
definite Q and solving the linear equation

Q=P-8 P& (5. 36)

for P, we obtain a satisfactory Lyapunov function

Vi =x Px (5.37)



The determination of n_ and 1, is well known [3] in this case.

1 2
|
n | = max ﬁ,QE =>\max(QP_1)
X xPx
(5. 38)
x Qx -1
n2=m.i)in §'Px =7‘min(QP)

where A (Q P'I) and A, (Q P'l) denote the largest and smallest char-
max min

acteristic roots of the equation det [Q P_1 -IA]=0.

Example 5. 8.

In example 5.4 if the saturation effect were not present
(Fg(y,y) /y =1) the conditions for asymptotic stability in the large could
2

have been achieved with ¢, =1 and ¢_ = 2. With these values we see that
the Lyapunov function, in ]this case tﬁe norm of x, as a function of time is
bounded by
1 k
oz 1< (5) 11 &y 1] (5.39)

This means that in each sampling period the norm is at least halved.

Now let us consider the effect of the nonlinear saturating term. Re-
stricting | Yo | <10 confines 0.1 < | F (¥,) |/ky | < 1. In this case the

least upper bound on the transient behavior is obtg’med with c = 1.86 and c, = 1
which insures asymptotic stability in the large. The bound on the transient
behavior is

k
IEI R RIE N (5.40)

Thus we see that the effect of the saturation is to slow down the transient
behavior. Further the slowing down action increases with increased |y,|.
The same conclusion is easily obtained from physical reasoning in this example.

(d) Effect of Inputs.

Also, when the system stability has been determined by means of a
Lyapunov function, it is possible to estimate the effect of bounded input disturbances.
The following example illustrates the method.
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Example 5.7,

Consider the nonlinear discrete-time regulator system

Xt ) =Hxt) ) + ¥t (5.41)

where f (0) = 0. The function f is a contraction with respect to a certain norm
so that

2@ 1] <e 11 x1] ,0<c <1 (5.42)
Therefore the system is asymptotically stable in the large. The disturbance,
v, is bounded so that || v || < c_. The effect of this disturbance is to perturb
the system away from the equilibrium point, x = 0. We are interested in de-
termining the extent of these perturbations. To do this, note that the difference
AVis

"

AVt = 1 5l 11 -1 26 1]

] feet) ) + vt 1] -1 xee) 1] (5.43)
ce 11 xt) 1l oy - 11 xe) |l
The difference AV < 0 as long as

TEVIEL 5. 40

This implies that for any x such that || x || > c(y - e the effect is to
!

force x into the region bounded by || x || = c()/ (1 - ep) but once x is in this

H

region there is no restoring effect. Thus the perturbations resulting from the
disturbance input are confined to this region. Note that this region becomes
smaller as ¢; - 0 (as the transient behavior becomes faster).

Example 5. 8.

As a second and more complex example consider the system

X, ) = & Xt +Hx(t)) + v(ty) (5.45)
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where the nonlinear term f represents parameter variations (f (0) = (). With
£ and v equal to zero the system is asymptotically stable in the large. It is
“assumed that the parameter variations and the disturbances are such that

L@ i< e lxl|

Hyll < e,

As a Lyapunov function in this example we choose the form V = 3:_' P x where
P is the solution of the linear matrix equation Q =P - & P &, Since the linear
part of (5.45) is stable, for any positive definite Q the solution P is positive

definite,

The difference A V is

AV =-x' Qx+2f PEx+2y Pex+2f Py
(5. 46)
+fPf+y Py

Obviously

AV <-min{x Qx}+2 £ P &x|+2|y Pox| +2|f Py
X
B (5.47)

+|fPE+]|v Py

Furthermore from the Schwarz inequality and relation (5. 38)

Froxi<d 0’ @ orten e 1lPA2 @' P2y
yeexi <y @'Pzézc)”zscoilgm;ﬁ @' P2 8

x || ey A o (P)

s
"U
7
=3
>
=
|
e
]

"

>
~
I

£ PEl<(EDA_(P) < ol

1A
Q
>
—~~
=z

|y Pyl<(x A o (P 0 A ax
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while
. ' 2
min {x @x} =2, @ |lxll
Consequently A V<0 if
2
~all x||7+b]| x|| +c<0 (5.48)
where
_ 1/2 v _2 2
a-[hmm(Q)-clh max (¢ P @)-clhmax(P)]
_ 12 12
b~[c0k max (® P <I))+c(> c hmax(P)]
2
c=c A (P)

If the system is to be stable then a must be a positive number. Note that this
condition is satisfied if the nonlinear effect is sufficiently small (i.e. c
sufficiently small), If this condition is satisfied, since b and c are always
psoitive, it follows that A V is negative for

b+ \/b2+4ac

%112 -

(5.49)

Thus in this rather complicated example the effect of the disturbance is con-
fined to a sphere of radius
(b+‘/b2+4ac ) / 2a.

(e) Design and Optimization.

In complex systems it is almost a necessity that the design
procedure be so devised that it ensure system stability. Procedure based
on the direct method have this property. First consider the methods of the
next example.

Example 5.9.

If a system is asymptotically stable in the large then the sum
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- 2 AV@E)) = V) (5.50)

Thus if the - A V (x) is considered as the penalty for system deviation and
the sum of such penalities along a solution sequence as the performance index,
then (5. 50) gives a simple method for evaluation of this index. In the linear
case

Kty = ©28)

if the penalty function - AV (§(tk) ) = g{_'(tk) Q §_(tk) then
Lty == 2 X(0) Qxlt) =X () PRy (5.51)

where P is the solution of -@ = & P & - P.

Thus if some parameters of & denoted by @ are adjustable we can select
them so as to minimize the performance I(§(t0) )

min { 1(x(t) } =min {x(t) Px(ty)} (5.52)
(4 o

Note that this minimum is a function of the initial state x(t ) so that the
minimizing parameters o are different for each initial state.

The design objective might be to select the parameters a so as to
minimize the maximum performance index for the initial state x(t 0) ina
certain region X of the state space

min { max  I(x(t) } = min max {gg'(to) Pxt)}  (5.59)
a §(t0) eX a gc_(to)eX

In this way a is made independent of the initial state x(t 0)0

Example 5,10,

As a final design example consider the problem of designing a
regulating input for the plant described by

Xt ) = @ x(t) + Aut) (5.54
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and where the control inputs are constrained such that

lu®l<e, ,e>0, (i=1,2 ..., ) (5. 55)

Assume that the unforced system is asymptotically stable in the large so
that given any symmetric positive definite Q the linear equation -Q = &' P & - P
has an unique solution the positive definite matrix P.

Then V(x) = 5' P x is clearly a Lyapunov function for the unforced part
of the system. For the forced system the difference

AV=-x Qx+2u' A'Péx+u'A'PAY (5.56)

The transient behavior relative to the Lyapunov function (norm) choosen is
made as fast as possible by choosing u, the control input, so AV is as negative
as possible. If there are no constraints on the input magnitude by ordinary
calculus we find that the optimum u in this sense

u(t)=-a'PaT AP & xt) (5.57)

This solution exists ifA' P A is nonsingular. Actually A'PAis positive
definite (and thus nonsingular) provided that the columns of A are linearly
independent. Physically this condition requires that the effects of the control
inputs be linearly independent. If this is not so we can always consider a sub-
set of the inputs which are independent. Therefore in what follows A' P A is
assumed to be positive definite (nonsingular).

When the input magnitudes are constrained in magnitude, it is convenient
to consider the space of the inputs. For example, with two inputs (m = 2) the
constraints require that a permissible input lie in the shaded rectangle of
Figure 6. If the optimum control input u*, calculated by (5.57), lies inside
this rectangle then it is the solution. If the optimum control input u* lies
outside the rectangle, then the constrained solution lies somewhere on the
boundary of the rectangle.

We have previously noted that A V assumes its largest negative value
when u = u . The first term in A V is independent of the choice of u. The
last two terms of AV become more positive as u moves away from t u To
study this effect let u =u* + &. Then

V=x'Qx-u APAu +8a'PA & (5. 58)

where5 A'"PAS >¢forall =0 and- u ‘A PAU <Uforu = (, since
A' P A is positive definite. The loci of 5 A'"PA & =c(aconstant) is a
quadratic surface (in two dimensions an elhpse) The optimum control input
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in the sense of making A V as negative as possible and with constraints on the
input magnitudes is to set

u= u o+ _6_* (5.59)

where that 8* is that value of § which produces the smallest term 8'aA'pa 8
and is just tangent to the rectangle containing permissible inputs. This optimum
solution requires extensive computation for each x(t 0).

Note that it is always possible to insure stable operation with the con-
strained inputs (saturation) by setting

*
) =au (t) (5. 60)
where ¢ is choosen such that

max {a]u |} < c (5.61)
i i i

This solution is not optimal but it has the advantage of being easy to calculate
and insures stable operation.

These two examples illustrate only a few of the ways in which the direct
method may be used in the design of discrete-time systems. As more workers
in the control field become familiar with the techniques I expect that such design
methods will become very numerous.
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I. INTRODUCTION

In the first several of a series of related interesting papers,(l_8)
the nature of the inherent stability, and the power and temperature time-
responses to a step-function input of excess reactivity, of several types
of nuclear chain reactors (initially in an equilibrium state and operating
under certain prescribed conditions as noted below), characterized by non-
linear differential equations of performance, are determined by classical
procedures: primarily as based on use of the Hamiltonian function, on use
of Green's function, ete. In a later paper<9) the natures of the inherent
stability of the reactors sé constructed and operated that the Hamiltonian
analysis is applicable are redetermined somewhat more elegantly and con-
cisely by use of Liapounoff's Direct Method (hereafter designated, for
conciseness of expression, by LDM). And in most recently published papers,
@O—l?)consideration has been extended to obtain knowledge not merely of
ordinary local stability (i.e., whether the equilibrium state is asymptoti-
cally or locally stable under disturbances resulting from the introduction
of an excess reactivity of "sufficiently small" magnitude), but also of
bounds on the range of reactivity under which the equilibrium point is yet
stable.

A rather considerable interest and scope of application attends
such use of IDM: both to the general student, teacher or worker in control
systems engineering and to the specialist in nuclear reactor control sys-
tems theory and design. To the latter it is of obvious value to know the
theory and use of this powerful phase of analysis as it applied in his

particular field of work. To the former it provides as example of the use

-107-
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of IDM whereof the pertinent physical phenomena requires analysis, perspec-
tive and interpretation rather unique as compared with the (electrical,
mechanical, hydraulic, etc.) systems more familiar to him.

It is in such thought that the present paper, exhibiting the
nature and use of LDM in the kinetic analysis of nuclear reactors, is

advanced. As the paper is tutorial in purpose, it comprises in the large

a connected exposition and interweaving of analysis and results to be found
disseminated through the cited papers: thus, it i1s instructive, rather
than Qriginal, in content. And in that prime interest re instruction
centers on the application of LDM, rather than on account of reactor
kinetics, the latter is enfolded only as needed to make understandable the
nature of the problem and the procedure attending investigation by LDM.
For detail of reactor kinetics and of the investigation of more complex
reactors than considered in this paper, the reader so particularly in-
terested will have little difficulty reading the above cited references
after assimilating the content of the present paper (in a systematic read-
ing of the cited references, it is advantageous to read them in the order

published, because of the interlinking of their contexts).
IT. THE GENERAL PROBLEM

If -- as in early prototypes -- a reactor is large in structure,
low in power, and operates at equilibrium at a temperature well below that
at which appreciable temperature-effect damage would result, the rate of
temperature rise resulting from suddenly introduced excess reactivity (say
by a step-function motion of control rods) is -- usually -- rather slow,

a considerable safety margin of temperature exists, and manual or simple



-109-

automatic control may prove satisfactory. But as with view of increasing
rating and efficiency, demands for minimizing size and operating at tem-
peratures close to the permissible maximum are conjoined with increase of
power rating -- as is sought in modern power reactor design -- the
associated control system becomes correspondingly more complex in con-
struction and operation: to the end that knowledge of the inherent sta-
bility and the character of its responses to suddenly-introduced changes
in reactivity become increasingly important relative to effecting optimal
design of the control system.<l8'2o)

Such knowledge is gained by solution of the nonlinear differential
equations of performance characterizing reactor performance and the asso-

1-30) In general, the equations of

ciated initial and boundary conditions.(
simple reactors are not formidable. Thus, a well-investigated class of
homogeneous reactors, whereof in the first consideration delayed neutron

effects are neglected (but can be enfolded by an elaboration of analysis),

is characterized by the pair of nonlinear differential equations

dlog P = _(g/r)T (1)
dt

e & = (2-p,) (2)
dt

where

P is the total power generated in the reactor (necessarily
positive)

P. 1is the total power extracted from the reactor

T is the reactor temperature, on a scale whereat T=0 at
equilibrium
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-0, is the temperature coefficlent of reactivity
T is the mean lifetime of the neutrons

€ 1is the thermal capacity

and the notation and terminology are as used in most of the cited references.
Specified physical conditions of operation correspond to certain

functional expressions of P,. Thus, to consider two of interest in this

baper;

A. Constant power extraction, P, = Pjy

B. DNewton's law of cooling, Pe = x(T-TO)

wherein Py is necessarily positive, A is a positive constant, and Tg is
the ambient temperature of the surrounding medium, necessarily negative
since T = 0 is reactor temperature at equilibrium, and this temperature
must be greater than that of the ambient medium if an outflow of heat is
to result.

With, initially, the reactor in a state of equilibrium, let at
t = tp a positive excess reactivity E be introduced suddenly, say by a
step-function withdrawal of control rods, as characterized in strength by

E=-aT at t = tg. Hence,

T = -E/a, at t = tg (3)
Then it is desired to know whether or not the resulting kinetic action of
the reactor is "stable"; and, although this is not the major interest in
this paper, the time responses of the temperature and power may be desired.
An alternative statement of the problem, both somewhat more

familiar in form to those not experienced in nuclear reactor control theory
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and more directly linked to stability analysis by LDM as this is set out
in textbooks, is to be gained as follows. Introducing new variables,
defined by y = T and x = log P, whence P = exp x and P, = exp Xg, in (1)
and (2) yields

-(a/7)y (&)

e
i

7 = (exp x - exp x)/€ (5)
For the stated conditions of operation, X 1s respectively
Xe = X and Xe = x(y-yo). Then (4) and (5) comprise a pair of first-order

non-linear differential equations, with the corresponding equations of

first approximation

% = -(o/7)y (6)

7 = (x-xe)/€ (7)
The associated singular point in the finite plane, [y =0, x = x, for
y = Oj, and thus at [T =0, P = Pe for T = 0] in the (P,T)-plane, corre-
sponds to reactor equilibrium. Then it is desired to know the nature of
the singular point, and thus the nature of the stability of the rgactor
relative to the stated equilibrium conditions enfolded in Pg. Such can
be ascertained in Liapounoff's local sense of stability (i.e., examination
of the nature of the response following an initial "sufficiently small"
displacement at t = to from the singular point (XS, ys) to (x = X0, ¥ = yo),
corresponding to, say, (yo = -E/a, X = X0 for yo) resulting from intro-
duction of the excess reactivity E into the reactor. The pertinent criterion
relative to LDM is stated and use is illustrated on, say, pages 491-497 of

the text(31> by Gille, Pelegrin and Decaulne, to cite an easily-obtained

control engineering text.
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General investigation of stability in the large requires a more
comprehensive exposition of LDM than as cited at present in control engi-
neering texts (at least in other than the Russian language), which point

is discussed in greater detail in Section IV.
IIT. SOLUTION BY LDM

In general, as emphasized on page 496 of Reference 31, no specific
procedure exists for finding the required Liapounoff function for an arbi-
trarily-specified system. For a broad class of problems the LurJje trans-
form and its generalization by Letov, as discussed in the recently-published
text(52) by the above-named authors, can be used to obtain the desired func-
tion. Leaving aside these more sophisticated and as yet relatively un-
familiar (in the U.S.) techniques, the commonly-stated textbook approach is
construction, as possible, of an appropriate quadratic form V(x,y) -- as
exhibited on pages 493-497 of Reference 31. Now in two variables such de-
fines a conic, through V(x,y) = const; and a necessary condition in use of
Liapounoff's criterion relative to the above-stated problem is that the
Liapounoff function V(x,y) must be positive for all values of x and y ex-
cept that it may be zero at x = 0, y = 0. This conjunction suggests that
quadratic forms defining ellipses, through V(x,y) = 0, may prove suitable
choices -- which is the approach used on pages 495-496 of Reference 31.

Now ellipses are closed curves in the (x,y)-plane; which suggests, in turn,
that yet other closed curves may provide Liapouncoff functions similarly;
and again in turn, this suggests that the easily-written Hamiltonian func-
tion (expressing the sum of the kinetic and potential energies to within

an arbitrary constant, say) pertinent to a particular problem may provide
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the desired function; and that the corresponding function in terms of T
and P provides a desired function for the nuclear reactor stability
analysis; and such results for the two cases A and B cited in Section II.
The desired Hamiltonian is easiest constructed by noting that
(1) and (2) can be interpreted as characterizing the motion of a sphere
on a surface, whereof -log P is the horizontal coordinate, (o/T)T the
velocity, (Q/T)T the acceleration, Te/a the mass, and (P - Pe) the
"general" forcing function. In turn, the "general" potential energy is,
log P
to within an arbitrary constant, [ (P-P.) d(log P) and the kinetic
log Peg
energy is (eo/27)T°,
Such interpretation provides obtaining the equations of the
trajectories in the (T,P)-phase plane in the usual fashion; i.e.,
log P 5
(P-Pg) d(log P) + (ae/27)T° = const., say Cy (8)
log Peo
whereof Cp is determined by the initial conditions.
For case A, P, = Pp; and substituting in (8), noting that

d(log P) = (1/P)dP, and integrating yields

[P-Py - Py log P/Py + (ae/2m)T?] = C, (9)
Now (8) can also be obtained by reversing the members of (2), dividing by
€, multiplying the corresponding members of the resulting equation and
of (1), shifting all terms in the resulting equality to the left-hand side,
multiplying through by dt, and integrating each side of the resulting ex-
pression. Accordingly, (9), as a particular case of (8), is pertinent to
the system characterized by (l) and (2) from either of the two approaches

yielding (8).
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Now (9) is positive definite for P> O and all T; and
H(t) = P - (B/P)P + (ae/T)T T (10)

which on substituting for T and T from (l) and (2) equals zero. Hence the
reactor is stable relative to the polint of equilibrium.(T =0, P = Pgy);
but it is not asymptotically stable (in the local sense) since such re-
quires that H(t) be always negative for all P and T.

For case B, Newton's law of cooling, for which P, = k(T—TO) and
Ty < 0, substituting in (8), using -AT d(log P) = -AT(d log P/dt)dt =
—AT(—O/T)& dt, and integrating gives

t

~(a/2) [ TPat + ¢, (11)
£=0

P+ ATy + Mg log(P/-2Tp) + (ae/2T)T?

li

Now the left-hand member of (11) is positive definite for P> 0 and all T;
and characterizing it by H(t),

E(t) = -(a/2)T2 (12)
which is always negative.* Hence the reactor is asymptotically stable rela-
tive to the point of equilibrium_(T =0, P= —kTO).

Corroboratively, for case A it may be noted that (9) is the
Hamiltonian of a conservative system; the phase-plane plois are closed
curves in the (T,P)-plane; the value of CO is determined by the initial
conditions; if these are, as remarked above, furnished by P = PO,
T = -E/a at t = 0, then the constant CO = (G/EGT)EE; the maximum swings
on T, corresponding to dT/dP = 0, occur at (P = Po, T =+ E/a); the maxi-
mum swings on P, corresponding to dP/dT = 0, occur at [T =0, P = P1, Po,
the two roots of (9) with T = 0]; the point (T =0, P = Py) is the limit
point of the closed curves as E approaches zero and thus the singularity

is a center; and as 1s well-known, this type of singularity is stable, but

* Provided T % 0. ©Special investigation for points on the line T = 0 is
easily effected.
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not asymptotically so, in Liapounoff's sense (the interested reader will
find corresponding phase-plane plots and time-resonses of Pand T, for
specified numerical values in References 1 and 2. It would seem that the
temperature used in these plots but not in the equations is the tempera-
ture increase, thus T - E/Q).

Again, for case B, it may be noted that the left-hand members
of (9) and (11) are of the same form, -ATp in (11) playing the role of
PO in (9), both being positive. But the additional integral term in the

log P

right-hand member of (11), equivalent to (7/a) [ (ar/7)d log P, is

log Peo
interpretable as energy loss due to viscous friction (frictional force
proportional to velocity). Hence the system is damped; and as t ap-
proaches infinity, the disturbed system (T = -E/a at t = 0) returns to
equilibrium at (T=0,P= -KTO), the coordinates of the singular point:
which in this case is a node or focus, hence asymptotically stable, de-
pending on assigned numerical values of the parameters of the reactor.
(The corresponding plots are given in Reference 33,

In similar fashion, the interested reader can determine the sta-
bility of reactors with more complex programs of operation and/or complex
structures by LDM, and compare these with results obtained thusly or other-
wise in the literature: say, for adiabatic operationgg) Po = 0, which in-
volves the interesting concept of a singularity occurring at (x=) infinity;
a. heterogeneous reactor,(5’6) with two media, wherefore the equilibrium
for Pe may be stable or unstable depending on the structure (but proves
stable for, say, uranium and heavy water as in the ZOE reactor at Chatillon);
the generalization(9) of the latter to the case of two, three and n media

with heat generated in each medium; and other special cases.(12’16)



IV. OTHER STABILITY ASPECTS

The analysis outlined in Section III is suitable, in general,
for investigation of ordinary "local" stability: i.e., as determined if
the initial departures of P and T from equilibrium are "sufficiently
small". Often, however, knowledge is desired of the extent (at least in
some measure) of a domain about the equilibrium point in which the initial
conditions may be arbitrarily established and the system yet be stable.
This problem is examined re use of LDM in recent reports by LaSalle(Bh)

and by Smets,(l6’17)

the latter being especially concerned with nuclear
reactor stability investigation. His analysis is illustrated by considera-
tion of several of the above-remarked types of reactors, for a boiling
water reactor, and consideration of xenon build-up. Stability in the large
is considered (i.e., any initial location) and is of especial interest.
Also termed global stability, the problem has been investigated for a
particular set of differential equations in a recent paper(lB) in a very
abstract manner, and application to nuclear reactors then advanced.

Again, analysis of a continuous medium reactor in which parame-
ters are a function of a space variable, thus the temperature is also,
would not seem easily ( if at all) analyzable by LDM. For such reactors

(21) has been used with suc-

an approach along lines used early by Welton
cess.(ll:lg) This approach can also be applied to reactors treatable by
LDM, hence comprises a somewhat more general mode of stability analysis.
This method, involving Green's function analysis, has been used to investi-
gate the stability of circulating-fuel reactors.(e'u)

In conclusion, attention may be directed to a Liapounoff func-

tion somewhat different than those used in earlier-cited references, which
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affords somewhat more general results, as suggested by Popov.(lo) A dis-
cussion is given by Smets,(l6) in a report which has somewhat restricted
circulation. But no doubt this discussion, and a very thorough and well-
integrated account of the use of LDM (and other approaches) for the
stebility analysis of nuclear reactors will be found in his forthcoming
monograph(l7> thereon-- to which the attention of the particularly in-
terested reader is directed; as also to exhaustive bibliographies on the
kinetics and control of nuclear reactors(55> in the large (from.which the
references of this paper have been drawn) and on the literature of

Liapounoff's theory in particular and of nonlinear system theory in

general. (56 :57)
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A RESUME OF THE BASIC LITERATURE ON NONLINEAR SYSTEM THEORY
(WITH PARTICULAR REFERENCE TO LYAPUNOV'S METHODS)

In detailing the time stream of the development of nonlinear con-
trol systems theory in a 1957 paper (h6), the author noted that "the fifth
and present stage of work originated about 1950. On one side, through the
start of a considerable effort directed toward improving the performance
of control systems by the deliberate inclusion of nonlinear elements and
effects (as in MacDonald's work on multiple-mode switching); on the other
side, through attempt to study inherent nonlinear effects in control systems

in the "large", rather than just in the small wherefor linearization yields

useful [but limited] solutions.” Scan, now, several years later, of the
proceedings of subsequently held-conferences and symposia<l32-l35), of re-

and selective bibliographies and

cent review papers<33’4o’lo9’118’121)

summary papers on adaptive(g), sampled-data(u9:5O)llu:lu6)lu8), time-

lag(25’125) and relay-types(129) of specialiized control systems and on
continuous systems in general(29’u9’62’7o)90:95>123;137’139;1u1;1“9) both
supports the validity and strengthens the tone of this two-fold statement:
For in each of the several mentioned areas of control activity, a concen-
trated, fervid and accelerating interest now centers on enlarging the scope
of nonlinear aspects and on broadening the domain over which analysis and
synthesis can be effected with increased "exactness'.

To achieve this latter in the fullest possible sense requires con-
sideration of the actual nonlinear differential equations of performance,
with consequent attendant need of the fullest possible knowledge of avail-
able analytic methods of solution (and of supporting graphic, numeric and
computer techniques). An obvious approach to gain of such is assimilation

of theory as set-out in the excellent recently-published texts wholly(76’106)

(8,26,65,8k4,92)

or in part devoted to nonlinear differential equation theory
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and/or associated linear differential equation theory and to more specialized
texts relative to asymptotic behavior, particularly as linked with considera-
tions of stability of solution.(12,15,20,98)

In this connection a logical course of procedure, for one not al-
ready well-versed in these texts, is to read each of the first group of re-
marked books as language facility permits: and then to take iﬁ turn the clearly
written, easily-grasped book by Bellman(lg), which advances an admirable treat-
ment of the bases of the vector approach to differential equations; follow
this with Cesari's(go) glowingly-reviewed, exhaustively-detailed four-chapter
text enfolding: 1) various concepts of stability and linear systems with con-
stant coefficients, 2) variable and periodic coefficient systems, with empha-
sis on second-order systems, 3) account of the first and second methods of
Lyapunov and various analytic methods well-illustrated by solution of some
of the better-known (by name) differential equations, and conjoined analytical-
topological methods, 4) the general theory of asymptotic development, the
whole comprising a unique synthesis of content enfolded in the 69-page, 700-
odd item bibliography, which comprises an exhaustive listing of pertinent
periodical literature, including numerous papers on control systems theory;
and then end with a reading of the rather abstract and well-complementing
work by Bogolyubov and MJ’.‘c,ropol‘slw.(l5>

In a connected area of theory, attention is to be directed to sev-
eral recent texts particularly pertinent to solution of nonlinear control
systems containing distributed parameter elements, which give rise to char-
acterization by difference-differential equations.(86’ 88, 99) Finally,
in the thought that a powerful method of solving system problems character-

ized by differential or difference-differential equations is to



-127-

so recouch them (often by use of variational techniques) as system problems
characterized by integral equations, attention is directed to the recent
(110)

excellent text on nonlinear integral equations by Smirnov , complement-

ing several recent texts on linear integral equation theory, including
the pertinent content in the unparalleled text on approximate methods by
Kantorovich and Kryloff(151> which contains a most excellent account of
variational methods originated by Ritz, Galerkin, Treffetx, Grammel and
others (collocation, least squares, etc.) and yet other methods as dis-

(152)

cussed in the author's summary of these methods Finally note may

be made of several works especially useful with respect to the details of
the theory of parametric oscillation<35’75’llg).

Background and basic knowledge so gained will prove most help-
ful to a rapid assimilation of the more advanced of recent control en-
gineering texts devoted to treatment of nonlinear systems on other than
the now-familiar describing-function and phase-plane approaches: either
in part, through one or more chapters enfolding content such as an intro-
duction to Lyapunov's second method(2’3l’32’37’38’101’136); or in whole,
(2,27, 34,41,61,73,113,
(68,69)

with content ranging from easy to medium difficult
129,130,131,153,154); o the quite sophisticated texts by Letov
and Lurje(72’73), to which especial attention is to be directed: in
that they provide, at present, the most comprehensive rigorously-based
account of nonlinear control systems theory, of such basic nature that
knowledge of this content ought now be held, or rapidly gained, by all

seriously-interested in study and research in control engineering.
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In a complementive sense, and in knowledge that much of the theory
and method used to effect analysis of the operating performance of nonlinear
control systems were earlier, and are now, used in other branches of tech-
nology--especially in nonlinear mechanics in the large and nonlinear vibra-
tion theory in particular and in nonlinear electric circult analysis; that
a great deal of the theory and of numerous powerful methods developed for
solution of problems therein are only now coming over into control engineer-
ing (as, for example, use of Lvapunov's second method in English-language
literature); and that much yet remains to be bought over (such as a more
general use of abstract-space theory), the control engineer can well take-up
study of what has been developed to-date in these associated fields.

A rational program therein is to start with some of the well-
written, simple to moderate-difficulty, shorter texts on general treat-

(28,46,61,11k)

ment , then in a specialized area of nonlinear electric

systems(ll:lu:39:54;56;57;108:122) or nonlinear mechanical systems(58'6o’

87,93,97,102,111,115,119,120,1&4,lh?), though some overlap occurs among
the two groups. ©Subsequently, one would take-up the recent exhaustively-
detailed accounts enfolded in the second editions of books by Minorsky(85)
&his pending work ought be the most complete account in English); by
Bulgakov(l9) and by Andronov, Witt and Chaikin(u’5), both of which are
strong in illustrative numerical examples; by Kauderer(53), which has

a particularly-well-detailed account of parametrically-produced oscil-
lations); by Malkin(8o), especially strong in the more abstract phases

of theory; by Mitropolskv(89), especially concerned with transient phenom-

ena; and by Hayashi<u5>, which advances perhaps the most detailed account

of sub-harmonic oscillatory phenomena in forced nonlinear systems.
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As evidenced in a number of the above mentioned texts, a central
problem in modern control systems analysis and design comprises investi-
gation and determination of the nature of various aspects of stabllity;
with respect both to specified desired driving inputs and to undesired
disturbance inputs. To such end the considerable literature stemmning
from a lengthy history of work in other connections--as well detailed
in the excellent history of the development of the stability of motion
by Moisseev(9l), can be brought over and used for solution of the pro-
blems of control theory. Thus, the algebraic methods initiated in the

(104)

work of Routh (among the first of modern workers) and of Hurwitz,
the topological and trajectorial techniques initiated by Poincare and
advanced by Birkhoff(l3), and the analytic techniques founded by Lia-
pounov(7) have in recent years been expanded by a host of workers, par-
ticularly in the USSR, to the end that there is now a very comprehensive
and well-integrated body of available theory which has been set out in

well-detailed texts by, especially, Soviet authors<lo’21’23’30’5)’78’79’

9k, 100,127)

A particular attention has centered in recent years on
Lyapunov's methods. The control engineer desirous of gaining a firm
foundation and an extensive knowledge of his approaches, and their en-
largement by a host of workers (particularly by his fellow countrymen),
now has available to him two recent excellent texts written especially
for those interested primarily in control engineering: by Malkin(79)
and by Hahn(uh). The former is somewhat broader in scope and less con-
cisely written, the latter is concerned principally with Liapounov's

second, or direct, method.
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To summarize: Malkin's book comprises a thorough, clearly-
written treatment of Lyapunov theory, supported by numerous illustrative
examples drawn from both the technical and mathematical literature, and
enfolding discussion and illumination of valuable work contained in
difficult-to-obtain (at least in the U.S.) sources. The context com-
prises six chapters, divided into three sections of successively in-
creasing complexity and abstractness. The first three chapters enfold
general account of the stability problem for equilibrium points, out-
lines the basic theory of the direct method thereto, and accounts its
interlinking (with use of interesting geometric sketches) to Routh-
Hurwitz stability criteria as stemming from consideration of the equations
of first approximation. Chapters IV and V, constituting the second
section, are respectively concerned with certain critical cases of
equilibrium motion and with the stability of periodic oscillations
(1imit cycles) as characterized by linear and nonlinear periodic-co-
efficient equations. Chapter VI is concerned principally with certain
quite advanced aspects of general theory, the theory of first approxi-
mation, the theory of stability by first approximation and with certain
pertinent critical cases. Other writings by Malkin are enfolded in(77)
or complement this text(78>.

Hahn's eight-chapter text(luu)

, concerned largely with analytic
aspects, comprises an introductory account of basic theory and of suf-
ficient conditions for stability or instability (I, II), exemplification
by solution of various rather general problems drawn from technology,
particularly control engineering theory (III), generalization anq ramifi-~

cation of the basic theory, ranging from the inverse problem to critical

cases (IV-VII), and extension to investigation of the stability of systeums
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characterized by partial differential, difference-differential, and dif-
ference equations. A lengthy bibliography of some 98 authors, many en-
tailing from two to a dozen or so entries, evidences the degree of the
author's avowed purpose of summarizing "all pertinent publications up to
and including 1957", thus digesting the most significant work up to some
three years ago. The subsequent literature, 1957-1960, is already large
in extent: but the particularly interested reader can easily gather it
from the pertinent abstracting Jjournals, as desired.

These two exhaustive works are quite formidable in their en-
tirety, though the first several chapters of each can be read without too
great analytic demands. Accordingly, one interested in somewhat simpler
introductions, yet somewhat more advanced than is to be found in control
engineering textbooks to date, might well look over the excellent sur-

(7) (66,67)

vey by Antosiewicz '’, read the interesting reports by Lefschetz

64)

and LaSalle( , turn, as feasible, to the excellent accounts, well

(1)

buttressed by numerical examples, in the writings by Hahn s (as

(103) (127, 128)

editor), Reissig , and Zubov ; and, finally, as indeed is
necessary to keep abreast in this rapidly developing area of control
theory, to a systematic reading of the periodical control literature.
The variety of applications and the extent and complexity of use in
control theory, which Lyapunov theory has already gained in countries in
which little had been written therein only several years ago is mani-
fest in, say, the general programs of the recent IFAC Conference in
Moscow and of the present Joint National Automatic Control Conference

at MIT, in certain of the survey papers which will appear in the Pro-

ceedings of these Conferences, and in the large body of already published
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(12k4

papers, on such diverse areas as electrical machines ), nuclear re-

(1k2) (150)

, continuous-time

(143) 44

actors , general nonlinear control systems
and discrete-time systems(51), pulsed sampled-data systems
cite only a few items which the author has recently read or worked-

on with interest.

In recapitulation of the foregoing it is of interest to note
the very considerable degree to which the methods affording exact treat-
ment of nonlinear systems engineering, in the various aspects of mech-
anics, electric circuits and control engineering, were conceived in the
USSR and the rapidity with which they were developed and utilized in
practice, a veiwpoint well-emphasized in LaSalle and Lefschetz's re-

(63)

port An overall survey of this, in considerable depth, is

afforded by the well-detailed review articles by Alekseeva(3), Rytov(lo5),

(81,82)

Mandelstam and others on nonlinear mechanics and electric cir-
cults in general and by Hahn and others(uo’h3’7u’107) on control en-
gineering in particular; and in the accounts of the professional work
of several of the more distinguished Soviet workers(6’l6’36’83’112)
whose names occur repeatedly above.

Finally, it way not be inappropriate to close with the rather
apt quotation from the recent 48-th Wilbur Wright Memorial Lecture,
"Mathematics and Aeronautics" by the distinguished English mathemati-
cian Dr. M. J. LJ'.g;hthil]_(u5> director of the Royal Aircraft Estab-
lishment, at Farnmborough, England: "The great scientific and en-
gineering advances of the present day are coming from the bringing
together of widely different departments of knowledge--for example,
the way in which electron microscopy has been used to solve the chemi-

cal bonds of genetics or solid state quantum theory to transform elec-

tronic circuits': and in such thought to consider the kindred way in
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which quite abstract theory developed earlier in nonlinear mechanics and
electric circuit theory has provided a reservoir that now affords means
of solution of pressing modern-day problems in nonlinear control engi-
neering theory and practice--a reservoir, moreover, which is both not

fully tapped<£2> and is yet filling.(126).
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A PROBLEM IN STABILITY ANALYSIS BY DIRECT
MANIPUIATION OF THE EQUATION OF MOTION

INTRODUCTION

Stability analysis by the Lyupunov method is simply
the problem of finding a positive delinite function, V, whose
time derivative, taken in the direction of the motion of &
system, is non-positive. If V also becomes infinite with in-
finite deviation from equilibrium, stability for all possible
initial conditions is assured. The tailure of a function to

satisly these conditions does not necessarily imply instability.

Various formal methods for producing such functions,
notably the one of Lur'e, ave available. All of these reduce
to certain fundamental manipulations of the equation of motion.
The nuture of the desired operations is not always evident [rom
the equation alone and, therefore, the lormal procedures are

useful.

The following problem is instructive in that it can
hbe investigated by purely "brute force” techniques without any
more knowledge of the Lyapunov method than the statement above.
Such an approach is suggested. It can also be solved by the
method of Tur'e and by the use of describing functions. The
result Crom describing function analysis is given for compari-

son.
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By carrying through the indicated operations, it is
seen that the production of Lyapunov functions is just a matter
of integrating parts of the differential equation. The question
of which parts to integrate may be answered by trial and error
and inspection of the results. Such an inductive process is
useful only to gain an understanding of the principles involved.
The Lvapunov function achieved in this way was originally pro-
duced by a more formal method of matrix integration, soon to
be published, and it was observed that the mechanics of the

method for this special case reduce to those indicated.

THE PROBLEM

The third order system shown below has a linear trans-
fer function with three poles and no zeros preceded by a non-
linear gain which increases with increasing error. It is
compensated for stability by a derivative feedback which modi-
fies the signal to the nonlinear element. It is desired to

system
find the conditions under which this/is stable for all inputs.

Y e N(e) K 9
r(t) + N # >
s(1+sT)(1 +5sT,)

0

Cs

N(e)=e + c.e’
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It is assumed that K, T,, T,, ¢y and ¢, are all positive

constants. DBy making the substitutions;
) £1+r2 b ! b k and b, = hcl
' D) 1 b ' « 4 ‘ '
] 11r2 2 Fll2 3 FIFQ ! 11F2

the difterential equation of the system becomes;

[} 6+ 6 - by [r(t)—@-cqé} Pob fr(t)—@—cQé]?

with definition (10) of the paper "Principal
stability of the equilibrium position

at the instantaneous

In accordance
Definitions of Stability",
must exist after a time t if r(t) is lixed
value it assumes at tl' Therefore, after tl the substitution;
y - y(t), reduces the problem to a consideration of the

following equation of motion.

r . een .o . e ' . !
D] Yoot bly { (b2 t h3<2)y tobay b,

In order that the system be stable for all input functions r(t),

the equilibrium position of this equation must be stable for all

possible initigl disturbances.
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CONDITIONS FOR STABILITY FROM DESCRIBING FUNCTION ANALYSIS

The describing function for the nonlinear gain is
9 9
(1 + % cle°). If N(e) is replaced by a constant gain of this
magnitude, the equation of the system, expressed in operational

notation is;
o 3 22,
ST bhosT ot bys b e, (b, Th e )s 4 (h% b=h . e”) ] ®
3 p
= (b, jhAv ) R (s)

The Routh-Hurwitz criterion predicts stability for this when;

r _"i 2 . a
Thyhy by - 1) (l)3 by )]l >0

In terms of the variables in the previous equation,

this expression becomes;

biby + (hyey = 1) Tyt mhy (y oY )“ 1 >0,

where Yo and §0 are interpreted as the peak magnitudes of the
fundamental components of the variables y and y. The condition
for stability is placed in this analytic form for comparison

with the result derived by the Lyapunov method.
A MEANS FOR FINDING A LYAPUNOV FUNCTION

It is well known that integrals for certain differ-

ential equations can be found by multiplying the equation by an
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appropriate integrating factor. The integrating factors are
usually obtained by a combination of inspection and guesswork.

A common practice in second order, conservative systems is to
obtain an energy integral by multiplying by the derivative of
the dependent variable. In higher order systems the integrating

factor is more complicated.

As an example of the way this may be applied to the
problem, let the equation of motion be divided into linear and

nonlinear parts.

L] =y + by ¥+ (by + bacy)f + bay

3

3 2. 2 02 03
F = . J - ’
'N] b4 (y" + 302) y + 302 yy 1oy

)

First consider. the equation "I.] = 0. It may be ob-
served that the first and third terms can be integrated by

multiplying by y. Therefore,

[NY S

The term in the brackets might be selected as a candidate for a
Lyapunov function for the linear equation except that it is
only semi-definite. Another integration can also be accomplished

by multiplication by y.

q b § bgy 0
. R r « eee o . « < -
ylL] = qt 79 t 5 ]+ ¥y o+ (h2 4 b3c2)y 0

fu—
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Here the bracketed term also has some of the desired character-
istics, although it is also semi-definite. The next logical
step is to try a combination of the equations above.

2

2 2

2 v Y
£ (b)" + by + bacy) F ¥ by ]

rof<s

. . d
(v + ) [L] = g7l

0l

. o .2 _
by oy F b3yy LI A bl(bQ + b3c2)y =0

The term in the bracket is positive definite but since [L] = 0,
. . . . o0 o e 0‘2 .2
its derivative is —(bly y + b3yy + bly + bl(b2 + b302)y ),
which cannot be non-positive. However, the undesirable terms
in the derivative can be converted to a more convenient form by
an integration by parts, giving;
d 0.2 2 02

D) ) - 4 r L or o .

(by + V) [L] TR b ¥V + (b)" + by + b302) 5t bayy

+ (b1b2 + b1b3c2 - b3)y = 0.

Now, if the bracketed expression is chosen as a
Lyapunov function, its derivative is, _(ble + b1b3c2 - b3)§2.
which is non-positive when the coefficiegt in parentheses 1is
positive. From Sylvester's inequalities it may be found that
this is the same condition under which the bracketed expression
is positive definite. Thus, a Lyapunov function and its deriva-

tive for the equation, [L] = 0, are;

* See page 11 of "The 'Direct Method' of Lyapunov in the Analysis
and Design of Discrete-Time Control Systems", J. E. Bertram.
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Ve T by by by bgey) o vyt byby g
{5 —(boby t boboes = h.) $°
Lo 172 173" 2 37 Y
The remainder of the problem consists in applying
similar reasoning to the equation, D] = 0. 1In this case, the

same integrating factor may be used for the nonlinear part of the

equation as is used above for the linear part.

A SOLUTION

By applying the operations indicated for the linear
part of the equation to the nonlinear part, and eliminating the
undesirable remaining terms through an integration by parts, it

can be deduced that;

. o r 1 - _C'_ 3 i 2 "{3 ' E ,'7-2
(hly V) OIN] = Tt b402 v bitz yy - c2b4\ y
4
3. y
+ + -—
b,yy bbb, 7 ]
2 . 2ol

+ h4(blc2—1)(ﬂy4 T 3coyy A Co yT) ¥

That the variable term in parentheses is semi-definite is verified

by Sylvester's inequaljties. Call the bracketed expression VV'
L
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This is monotonically increasing in y and y as can be verified

by observing that

q~—x and aVL
oy 8y
have zeroes only for zero values of y and y. Therefore, VN is
semi-definite.
As a Lyapunov function for the equation, ‘D] = 0, the
sum of the functions V. and V. may he used. lLet V, + V. = V.
avh . N N L
Then (b1§ byoinl o= T 0, where;
2 . o2 ol
' ‘y_ e ,: ‘Y_‘ o 00 /
Vo= h]h3 5 b ngv f (lu I hQ r (zh%) 5 hlvy i %
1_{1 3. 3 212 |-) ‘(% 3 S{_{l
] / 4 -_— ; 4 4
h1b4 1 t hlv y 5 (2b4y b,02 yy bl(‘2 1
and;
v ’{"1"2 C ey = ) Thy by (3y° 1 deayi <,,_}‘y")]} i

V is non-positive lor;

)

: 2 . 2.2
hoby (bl(‘2 - 1) "b, ¢t b, (3yT b Begyy ooy )] > 0.
. ) — [

1 “ 4

This inequality may be compared with the one-obtuined
by the use ol describing functions. 1In hoth cases stability

exists for all inputs when;

(b1c2 - 1) > 0.
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I. Introduction

The major difficulty in applying Liapunov's "Second Method"
to the analysis of practical control systems is due to the lack of a
straightforward procedure of finding a Liapunov's function (i.e. a func-
tion of the system variables satisfying Liapunov's stability or insta-
bility theorems). However, several Liapunov's functions have been
developed that apply to a large group of control systems that can be
described by the so-called "first canonic form" of system differential
equations, The first canonic form is defined in Section II. As is
shown in Section II any autonomous closed-loop system with a single non-
linear gain element can be described by the first canonic form of dif-
ferential equations. Several Liapunov's functions applicable to systems
expressed in the first canonic form of differential equations are out-
lined in Section III. These functions enable one to establish sufficient
conditions for asymptotic stability of such systems.

The systems to which the procedure of stability analysis pre-
sented in this paper is applicable can be represented by the block
diagram shown in Figure 1.

It is assumed that the input into the system, r(t), is removed
at time t =0, i.e.,

r(t) =0 for all t > 0. (1.1)
Under the above assumption the block diagram of the system can be
simplified as shown in Figure 2.

It will also be assumed that the input-output characteristics
of the nonlinear gain element can be described by a continuous, single-
valued function;

vy o= f£(x); f(o) = 0, (1.2)

where x is the input into and y the output of the nonlinear element.
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II. Canonic Transformations

Consider a closed-loop servo system described by a set of dif-

ferential equations

—d=yzg o+ £(x) i=1,2, ...n, (2.1a)
dt
n
X = Z, a,l Zl (E.lb)
i=1
and
n
dx - )
s L B oz rf(x). (2.1c)

This form of differential equations is called the First Canonic Form
(or Lur'e's First Canonic Form) of differential equations (Ref. 1,

p. 1357). It may be used to represent a closed-loop system with a

single nonlinear gain element, and with the driving function removed
at time t = 0. The block diagram of such a system is shown in Figure 2.
To show that Equation (2.1) actually represents the system of

Figure 2, let

Ad
p2d (2.2)

Then, from Equation (2.1a) and Equation(2.1b) one finds

(D - A 2y =Y i=1,2, ...n (2.3)
and

n

X =i§i 8, I (2.4)
where

y = £(x) (1.2)

represents the nonlinear element characteristics.
Solving Equation (2.3) for zZ; and substituting into Equa-

tion (2.4) one obtains

v (2.5)
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Note that the loop transfer function of the system of Figure 2 is
a(s) = G (s) Gole) = - F75) . (2.6)
Consequently, from Equation (2.5) end Equation (2.6) the loop transfer

function is

Gs) = - A (2.7)

i =l s - }\'j_

Equation 2.7 indicates that the constants ki are the poles
of the loop trensfer function G(s) at the corresponding poles. Thus
the first canonic form of differential equations for the system of
Figure 2 (or that of Figure 1 with either constant or zero input) can
be obtained from the partial fraction expansion of the loop transfer
function G(s). To complete the transformetion of system differentiel
equations into the first canonic form one may differentiate Equation 2.1b
with respect to time and then substitute Equation 2.la. This procedure

yields .= oas s i=1,2, ... n, (2.8)
By i M

and r

n
; . (2.9)
1§i "1

Once the numerical values for the coefficients ki’ P 51 and r have
been calculated it may be possible to prove the stebility of a system by

mesns of one of the Liapunov's functions discussed in the next section.

IIT. Liapunov's Function

Iur'e has considered the function

X
n n ay 83 Zj Zj

V=% ¥ 2424 "f f(a) da (3.1)
1=l §=1 Mt 5

as a Liapunov's function for systems described by the first canonic form of
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differential equations. It can be shown* that this V-function is nega-

tive definite¥*¥* if the following inequality is satisfied:

k/x f (a) da >o. (3.2)

0

provided that the constants ai are real for corresponding real xi‘s
and are in pairs of complex conjugates for corresponding complex conju-
gate pairs of xi's and that Re 2y <O.

The time derivative of this Liapunov's function, in connection

with the first canonic form of system differential equations, is

2 2
%% =r f (x)° + §§l ayz4)" -
n n &3
-f(x) ¥ oz3 ( By -28;) ). (3.3)
i=1 =L N f kj

The time derivative of this Liapunov's function [Equation (3.3)] cean

be made positive semidefinite***by letting

n aj
2 a, L + g i=1,2,...0 (3.4)
J=1 Nt kj

Lur'e has also shown that by adding to the Liapunov's function of

Equation (3.1), the term

2 2 2
¢ = AlZl + Azy el ¥ Aszs + Cl Zoy] Zet2

C (3.5)

zZ
+ C3 B343 “sl Foeee b1 Zn-1 %n

¥Ref, 2, p.46
*i.e., V is negative everywhere in the phase space of the variable x,
except at the origin where it is equal to zero.

**xI,e., %% is non-negative everywhere in the phase space of the system

variable x.
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where the constants A and C are infinitesimally small negative num-
bers, the time derivative of the Liapunov's function [Equation (3.3)]

can be made positive definite. Consequently the application of Liapunov's
stability theorem leads to the following stability theorem known as

Iur'e's Theorem:*

If a system described by Equation (2.1) satisfies the follow-
ing conditions:
a. There exists at least one solution of a set of stability
equations [Equation (3.4)] such that a; are real for cor-
responding real Ai’s and are in pairs of complex conjugates

for corresponding complex conjugete pairs of A3
X

nk[f(wda>oif®)=m

c. the constant r §“O,

d. Re A <O for all i=l,2, ... n;

then the system is globally asymptotically stable. Local asymptotic
stability can also be established by means of Lure's theorem, if there
is a range of values of x, containing the equilibrium state, over which
Equation (3.2) is satisfied.

The preceding stability equation [Equation (3.4)] may frequently
reject systems that are actually stable since it puts too many restric-
tions on the system. Since Lur'e's theorem represents sufficient condi-
tions for asymptotic stability, which may not always be necessary
conditions for stability, it is possible to relax the requirements of
Lur’'e's theorem considerably, thus meking it applicable to a greater

number of stable systems.

*Ref. 2, p. 51
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By adding to and substracting from Equation (3.3) the quantity
n
24r  f£(x) ¥ ayzg

i=1

and then selecting as stability equations

-Jr) = p; i=1,2, ... n (3.6)

one obtains

g [@ 0§ oun] e

Consequently, Equation (3.6) can also be used as a stability equastion in

Lur'e's Theorem. In other words the roots a; of Equation (3.6) can be
used instead of the roots a; of Equation (3.4) to prove that a system
is stable by the use of Lur'e's Theorem.

The exact solution of Equation (3.6) is not known for higher

order systems (n > 3). It is sometimes possible to find approximate

values of the roots a, of Equation (3.6) by rewriting this equation as

2 M a
(3.8)

then assuming the values of ay and aj on the right-hand side of

Equation (3.8), solving for a; and repeating the procedure until the

change in the values of a. became negligible. The relationship*

1
as I . |
3\;3._ =/Z i_‘] +r A/ (3.9)
J=1 "4 J=1 J

can be used to check the answer.

MBS

*Ref. 2, D. 55
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Iur'e also considered the function

n n as &
V=3 18 2, %: (3.10)
i=1 j:l )\,i+ }\.J'

as a possible Liapunov's function in connection with the first canonic
form of differentisl equations and obtained the stability equation
n aJ-

2 a, —_ =a,;i1i=1,2, +u.. n. 11
D h e Twithe (3.11)

A system was shown to be asymptotically stable if:
a. the roots ay of Equation (3.11) satisfy the requirements of

Lur'e's stability theorem,

b. Re A < Oforelli=1, 2, ... n,
c. x f(x) > 0 for all |x| >0; £(o) = 0.

Various other simplified stability criteria (i.e., other stabil-
ity equations based on the above two Liapunov's functions as well as other
V-functions) have been successfully applied to prove stability of closed-
loop systems with a single nonlinear element. References 1 through 4
contain many examples of such simplified stability criteria.

Meny stable systems will be rejected by the simplified stability
criteria [Equations (3.4, 3.6, and 3.11) ] presented in this outline due to
rather weak restrictions on nonlinear ggin characteristics. A procedure
whereby the nonlinear element characteristics are restricted to a much
smaller region of its input-output plane is reported in Reference 3.%
Such restrictions decrease considerably the number of actually stable
closed-loop systems which otherwise would have been rejected by the

V-functions of Section 3 of this paper.

*¥Tt will also be included in Technical Report No. 3, to be published in
October, 1960 by Purdue University, School of Electrical Engineering under
Contract No. AF 29(600)-1933 from the Holloman Air Force Base, New Mexico.
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It must be emphasized, however, that the problem of finding
Liapunov's functions which would yield necessary conditions for stabil-
ity of the systems shown in Figure 1 in case of higher order systems
(n > 3) has not been solved. Hence, if one set of stability equations
rejects a system, it does not mean that the system is definitely un-
stable, since a different set of stability equations may be used to

prove that such a system is stable.

IV. Problems

Problem 1:
Consider a closed loop system shown in Figure 1 with

G, (s) =1

Gg(s) = L

sZs+l§Is+25

and the nonlinear element being a saturating amplifier. The input-output
characteristics of the amplifier [Figure (3)] satisfy the inequality
x £f(x) 20 for all |x| > 0; f£(o) = 0.
Let the driving function r(t) be removed at time t = 0.
a. Arrange the differential equations describing this system for time

t > 0 into the canonic form

1= )\, z g+ ) i=1,2, ... n,

and

b. Find also

Find numeric values for all the coefficients of the canonic

equations.
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Problem 2:

Consider the closed-loop servo system described by the canonic

equations

Efi = -2z + £(x)

dt

EEE = -3z, + £(x)

dt

EEQ * -523 + £(x)

dt

X = 0.333z =z % 0.667 Zgs

Find the loop transfer function g(s) if r(t) =0 for all t > O.
Problem 3:

6. Consider the V-function of Equation (3.1) as a possible Liapunov's
function for the system of Problem 2. Assume that the nonlinear
element is a saturating amplifier with the input-output charac-
teristics as shown in Figure 3. What conclusions can you draw
about the stability of the system of Problem 27

b. Try

D S e
s

i=l 3=l Mt A

as a possible Liapunov's function for the system of Problem 2.
Can you draw any stability conclusion from this V-function and

its time derivative %%?

Problem 4:
The V-functions of Section III cannot be used as Liaspunov's
functions for the system of Example 1. This 1s due to the fact

that
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In such cases where one of the poles of the loop transfer function G(s)

is at the origin of the s-plane, the function

n 8. & X
Yo 13 g g, - ff (a) da
. (¢}

may frequently be used as a Liapunov's function.

a. What conclusions can you draw about the stability of the system
of Problem 1 from this V-function?

b. The results of part (a) should not be surprising. Can you give
some reasons explaining the result of part (a)? (Hint: replace
the nonlinear element by a linear amplifier, i.e., let y =kx).

Problem 5:

Consider the system shown in Figure 1 with

s + 1
(s+2) (s+3)

G(s) =

and a saturating nonlinear element, the imput-output characteristic of
which is shown in Figure 3.
a. Find the region of the nonlinear element input-output charac-

teristic plane [Figure (4)] over which the system is stable.



E
- —tQ—»— Gy (s) ——]

Fig. 1

Fig. 2
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Nonlinear Y

Element —P—

Block Diagram of a Closed-Loop System with a Single

Nonlinear Element

Nonlinear

Element

L——{G(s)=G; (8)Gp(s) —

A A

Simplified Block Diagram of a Closed-Loop System with
a Single Nonlinear Element

output, y

A
y=£(x)

Fig. 3

Input, x

Input-Output Characteristics of a Saturating Amplifier
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R E
___% G(s) |~ DNonlinear >
_ Element

Fig. 4 Block Diagram of the System of Problem 2,

Fig. 5 Allowsble region of the amplifier gain for the
system of problem 5.
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SOLUTIONS OF THE WORKSHOP PROBLEMS

Problem 1:

a) The loop transfer function of this system is

_ - 1
¢(s) s(s+1) (s+2)

Expanding this transfer function into partial fractions one obtains

G(s) _ 0.5 _ 1 + 0.5
s s+1 s+2

Consequently, from Equation 2.7 and Equation 2.1 the canonic form

of differential equations for this system becoumes

dzq
el = f(X),
dZ2
- == Zp + f(X),
dt
dz
_3-_2 z3 + f(x),
dt

and
x = - 0.5 zq + 2o - 0.5 Z3.

b) Differentiation of the last equation with respect to time and sub-
stitution of the preceding three equations yields

dx
= = - 20 + 22.
dt 2 3

Problem 2:

The canonic equations can be rewritten in operational notation as

follows:
g1 =
L7 D2
.
22 7 Dr3
oy
3 = D+5
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and

e
Il

0.333 29 - 25 + 0.667 Z3

where
y = £(x)
represents the output of the nonlinear element. ZEliminating the canonic

variables among the above four equations one obtains

%35

o(s) = X(s) _-0.333 , 1 _ 0.667 '
Y(s) s +2 s+3 s + 5

Thus

(s+2) (s+3) (s+5)
Problem 3:

a) The V-function of Equation 3.1 implies the use of either Equation

3.4 or Equation 3.6 as the stability equations for the system.

Note that, from Equation 2.8, 2.9 and 2.1la

dx

vl 0.667 zq + 3.000 z, - 3.333 z, + 0.000 y.

3

Hence
r=20
and consequently Equation 3.6 is, for this system, identical to

Equation 3.4. Substitution of the numerical values in Equation
3.4 yields:

2
0.500 al + 0.400 ala2 + 0.286 ala3 = 0.667,
| 2
0.400 ajast 0.333 as + 0.250 a2a3= -3.000,

+0.250 agag + 0.200 a° = 3.333.

0.286 a;a 3

3
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Simultaneous solution of the sbove three equations yield the .con-

stants
a; =+ 3.333,
a, = - 12.000,
8y =+ 11.667.

Hence the requirements of Lur'e's Theorem are satisfied and thus
the system 1s globally asymptotically stable.

The suggested V-function implies the use of Equation 3.1l as the
stability equation. Substitution of numerical values into Equation

2
0.400 a a, + 0.333 a, + 0.250 aya

] = 1.000,

3

- 2 _
0.286 8,83 + 0.250 a8y + 0.200 a5 = 0.667.

Simultaneous solution of the above equations yields

a = 1.340 - jO.513,
ay = - 4.360 + j2.720,
8y = 3.033 - j3.210.

Since all A's of this system are real and all a's are complex,
the V-function used in this part rejects this system, even though

it was shown in part (a) that the system is actually stable.
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Problem k:
a) The time derivative of the proposed V-function, corresponding to

the first canonic form of system differential equations is

[ o |2 [ n
AV o Y ez o+ f(x) | (e - z2; + L L
T \i=2 121 (x) {( 1 - B1) z4 !
[ 2. \ ; 22
2 a; Yo . By 11+ f(x)
i=2 M+ 2 /f t 4

The stability equations, obtained by setting the term in f(x)

equal to zero, are

ap =Ph
and
n
a .
J = B.
2 ai Jgg __-—__.__+ " Bl
ki j

Substituting the numerical values (from the solution of Problem

l) one obtains

al=O
and
- a2 - 0.667 asa. =- 1.000
2 ) 295 : ’
0.66 0.500 ° . 1.000
- 0.067 apay - .5 a3z = L. .
Hence
ap = - 1.41h - 31.000,
8y = - 1.414 + 32.000.

Since A and l3 are real while &5 and a3 are complex, the stability

equations reject this system.
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b) If the V-function used in this problem could prove that this
system is stable, then it should also prove that this system re-
mains stable if the nonlinear amplifier is replaced by a linear
amplifier with a positive gain K. That is, it should prove that
the system, described by the equations

_r
s(s+1) (s+2)

G(s) =
and

y=kx; 0<k<w
is also stable. This is obviously impossible, since the linear-
lzed system is unstable for sufficiently high values of gain K.

Problem 5:

Expanding the loop transfer function G(s) into partial fractions
one obtains

G(s) = :E_ + _E_ .

s+2 s+3
Hence, from Equation 2.1, the canonic equations for this system
are:
le
dt

dzp
dt

Il
1
(W)
N
[\
+
Hy
—~
i
~

and
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Try Equation 3.10 as a possible Liapunov's function for this system.
From the stability equation (Equation 3.11) one obtains

2

- 0.5 a,° - 0.400 aja, = 1.000

~ 0.400 ay8s - 0.333 85> = - 2,000
. 12 . 2 - . .

Simultaneous solution of the above equations yields

- 6.448

a
1

a, =+ 3.552.

1l

Consequently, from Lur'e's Theorem, this system will be global'ly
asymptotically stable if

x £(x) 30 for all |x| > 0; f(o) = 0.
This means that for global asymptotic stability the input-output
characteristics of the nonlinear element shall be confined to the

1st and 3rd quadrants of the x-y plant.
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