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ployment of the steamer, might be taken at £32,079 including all
contingencies.  Supposing the reef to have been within a boating dis-
tance, say 11 mile and § mile from Suez, if' the stearaer had been
equipped at Snez, and had been continuously employed, then, on this
supposition, the cost might have been £42,082. The remaining ex-
penditure, £13,029 was entirely exceptional, arising mainly from the
steamer bEing eqUipped at Bomb&y- Proc. Inst, Civil Enx., Nov. 10, 1863.
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: Trussed Arch.
By DE VorsoN Woop, Prof. of C. E. Uriversity of Michigan.
Tug problem which I propose to discuss may be stated as follows :

Let the arch of the Truss be a parabola, or if it be polygonal, let the
vertices of the polygon be in a parabola ; the tie which joins the ends of
the arch be horizontal; all the parts of the truss be reduced to mathe-
matical lines, and the joinis perfectly flexible. Let the load over any
part of the truss be uniform—or, what is better, let the weights upon
the joints equal each other.

It is well known that for an uniform load over the whole length of
a parabolic are, there are nostrainsin it but compression (or tension),
and hence, if the Ioad be above the arch there will be no straing upon
the ties and braces; and if the load be below, the ties will simply sus-
tain the total load; hence the strains upon the several parts are
easily computed. I will, therefore, proceed to the case of a partiully
loaded truss. Let the horizontal tie be divided into equal parts by the
trussing, and let each part be called a bay.
Let N=total number of bays in the horizontal tie,
n==the number of a bay which corresponds to the number of a
brace or pair of braces,
F =the force of compression in the arch at any point,
F,—=H=horizontal force in the tie,
T,= the strain on a brace or tie in the truss,
¢==the inclination of the arch to the horizontal,
¢ =the inclination of a brace, or tie, to the vertical,
D ==greatest depth of the truss==distance from the vertex of
the parabola to the horizontal tie,
/= depth of the truss at any point,
=length of bay, _
p=one of the equal weights which constitutes the load,
vand v, == vertical re-actions of the supports, and let # be counted
from the v support,
z be horizontal and positive towards v,
y be vertical and positive downwards, then if 6 is on the right of y it
will be positive; if on the left, negative.
«/,y’ be the co-ordinates of ¢,
z'/,y'! be the co-ordinates of 5,
2p, the parameter of the parabola.
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For the equation of the arch we have,
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It can easily be shown that if the truss be uniformly loaded from
any brace to the remote cnd, the strain upon the brace will be greater
than if there be an additional uniform load between it and the near
end. I shall therefore consider the case of such an uniform load.
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First, take the case of triangular trussing as shown in Fig. 1. Let
equal weights rest upon the joints ¢, d, ¢, f, g, and %, and none upon
a and b. This will insure, as stated above, a greater strain on ¢2 than
if b or @, or both were loaded with the same weights. Suppose now
that a vertical @cction is made just at the right of ¢; said section witl
intersect ¢b, ¢2, and 3 2, and the strains in these bars must be in
equilibrinm with the forces between the section and B; in other words
they must be in equilibrium with v, and since v acts vertically, we
have the vertical components in ¢b and ¢2 equal v, and the horizontal
components in the same bars equal the strain on 3 2, or equal 1.
Hence using the notation given above, we readily have

Fsini-l-F,eosfl=v . . . (2

F c0s {1 F, 8in g=H . . (3)
Multiply (2) by cos 7, (3) by sin 7, subtract and reduce gives

T,co08 0 = V-ltangd . . . (€))

1—tange tang ¢
This formula is general, whatever be the curve of the arch.

Calling @16 the first pair of braces (or ties) counting from B; let
b 2¢ be the »* pair; then will

21 be the »™ bay; 3 2 the (n+4-1)* bay, and
N-n==the number of loaded joints,
. (N—-n) p=the total load on the truss,
Nl==a B==total length of truss,
% (N—n){==distance from the centre of the load to 4,
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Then by the principle of the lever we have
VN[=(X-n)p .3 (N-n)!
N—n)
V:(,, o ! P . . . (5)
We also have from the figure,
Bm==(n %)

D
o' =Ex-= (} N-n-1)1 ... By (1) we have /= »«»\_:—(N—Qn—-l)’
;
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To find the tension in the bar 3 2, we take the origin of moments
at ¢, and we readily have
« u(p-yH)=v(n-4-1HI

N v
T N2 S : - ®

Substitute (5), (6), (7), and (8) in (4), gives

. 0;@—@“21[,,47'/’11_]
20080 oY LdnnSda-d

_(x=n) [ N-2n
=5 P n_iﬁ’(&;h)’—hl . )

We see in (?) that when n is less than } N the fraction in the pa-
renthesis is negative; but when it exceeds § N, it becomes positive,
and observing that when it is greater than 1 X, less than one-half
the bridge is loaded, we have this peculiar result: the strain upon «
tie or brace, is greatest when the truss is loaded between it and the
nearer end. We may also observe, that in practical cases the omis-
sion of the fraction in the parenthesis, will not give an error of more
than one-fifth the truc value, and gencrally the error will be much
less. llence we have approximately

F,c08 0 :—(-1\1-27;}—@3 oo . . (10)

If (10) were true we observe that the strains on any brace will be
the sawe if the load extend from it to either end.

It is easy to show, geowetrically, that the vertical components of
the strains on each of the braces which constitute a pair, as has been
designated, are equal. To give a further application of the analysis,
1 will prove it by equation (4). Now let a vertical section be made,
Jjust at the left, but infinitely near 6. The section will cut 42, be, and

*Bow in his excellent Treatise on Bracing, gives this as the ewact formula.
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2. Tang ¢ and v, will remain the same, but tang 4 is negative
1

and equal n y”; . . . - (109

k.

and to find 11 we have 1 (D-y")=v (n-})L
$(@2n-1)1

So = ’I’)_y”‘v . . . (11)
These in (4) give
9 —
et mn
p—y'" " ne . .
Fycosl=v 5 —5— Which reduced gives
) (X=3n)
W=y N2
_(N—n)? 4nt-1 :
F, coS 0-—7N— » AnN—dnz-1 :I the same as before.

But the strains on the braces of a pair will not be equal, for they are
unequally inclined.  To find r,, we find ¢ from (7) and use it in (9).
Erample.—Let =8 and p=1.

To show more clearly the value of the fraction'in the parenthesis,
Eq. (9), I will keep it separate in the following table:

i ! |
No. of the Vertical component Ineclination |

| Numbers in |
pair of of the strains on the of the ’ Values of | the second |
braces, or nth pair ; or | braces; or “ column divi-
n= F, cos 6, Kq. (9. 0, Bq. (7.)! cosg. [dedbythose
2 0059, 2 ( ) 5 ( )‘ Jin the fourth:
' | i : ()1‘, F'.’.'
L0 0 p=4:000p. | Ba, 6453/ 04245 - 0422p |
| [ > al, 854 04245 . 0R02p |
1 (%-4,) p=03403p. 101, 89222/ 07731 ’ 0440p |
, . 12, 39°22%0 07731 | 0928p
23— p=0T189p. 12 s0°11/ 08644 | 0831y
i s s - 3, 30°117]  0-8644 | 1072p
3 ;(18—17’;) p=00270p {dx, 26°35/ 08916 J» 1-038 p
| . dd, 26°557)  0-%916 1121 p
-4 ; p==10000p. {C-l-, 26°55  0-8916 | 1-121p
i 518 \p—=0-94 s, 26°357 0916 | 1057 p
|5 Gatadp=00438p [ S0 ONS 1090 p
i (341} p=076 76, 30°117  0-8644  0-870p
O Gredh) p=0T606p 70 S0yl 08o 0 998 p
T (b)) p=04514p. (g7, 39°:27) 07781 0583p !
i(” i) P P AT, 6495470 04245 1 1060p !
8 ! p:rO'OOOZ): ; i "

We may readily conceive these strains to be produced by an uni-
form load moving without shock over the truss from 8 to 4; and the
same strains in a reverse order may be produced by a movement in
the opposite direction.

Wien N is even we may have n:=-} N, which in (9) gives ¥, cos §
==k Np.

Next suppose the load on the horizontal tie. This is the more na-
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tural place for the surcharge. In this case the vertical force sustain-
ed by cach pair when they are all cqually loaded, is p. But if only o
portion of the truss be loaded, equation (9) will not apply, as may be
seen from the following statements. To produee the greatest strain on
¢3, we unload joints 1 “and 2 2, and load 3,4, 5, 6, and 7; and calling
the bay 2 -1, the nt, the load will be (N-n)p; and the centre of the
loading will be %,—(N—-n + 1) from A ; hence, to find v we have

V.Nl=}(N-n)(N-n+1).

(x—n) (NQ—;In 41 ' L)

If joint 2 be loaded, the vertical force on ¢2 will not be the same as
on b2, but we may find it on 42 by making a section just to the left
of &; and substitute in (4) the values of (6), (10’), and (12). But we
observe that these values are all the same as those before used, ex-
cept v; hence we have at once, for the strain on the first of the n4
pair,

V=

(¥-n) (N—n-1) 42— o
roos 0= D p [ (13)
Next consider panel trussing as shown in Fig. 2, and let the load
be upon the lower chord, and let the bays in the lower chord be of
equal lengths, It will make some difference in the Strains whether
they be resisted by ties or braces.

Vo

Y
1

5

First consider braces.
Let 2’ and 9 be the co-ordinates of .
z!! 4"’ be the co-ordinates of 5.
3 2 be the nth bay, and call ¢2 the n?% brace, and
3 the nth tie. Suppose the load is on from 4 to 3, and off from
B to 2, including 2; then the load is (N—n)p; and Vv the same as (12),
The equation of the curve is given by (1), hence we have

D \
=@x-n)l, ¥ =1y (¥-207

2= (IN-n-- 1)1, = f (N=2n+2)e
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y” 4o ,
tang i= —Z-— =3 (x-2n-+1) . . . (13a)
g2
tangf=— S . . . (14)

p-y"  dbpr(N-n)

Now conceive a section made just at the right, but infinitely near ¢,
50 as to cut ¢b, ¢2, and 3 2; then wi'l equation (4) be applicable. It
cuts &3, but it is not in action when ¢2is, Mo fiud 11, we have by an
equation of moments,

I (p-yy=vnl

=V IN*
- 4p (N—n)
These in (4) give by reduction
(\I ’I’L)(‘\I n, )(n l)n P (\ n)n N
F cos 9= n'\l N-—n -+ )n_l .:N .'.}.N 2D (1-))

This is a maximum for n =1, for which it equals 1 Np; hence, if
there are less than N bays the central brace will not be strained as
much as for half the truss loaded as for the whole truss loaded; if ¥
=38, it will be strained the same; if greater it will be strained more
for half the truss loaded than for the whole loaded. We also see that
for the partial load the central ones are strained wore than the end
ones. The formula does not give the vertical strain on Be; for it is

really v=21(N-1)p; but for n=1, (15) gives- —»«1]) The reason of

this fallure will be found by observing that in making the reduction
of (15}, a factor (n—1) is cancelled in both terms of the fraction, which

0
factor is 0 for n=1, which would make the fraction e

Ezample.~Let N=28. D has disappeared in the reduction, but it
must be kuown to get . Let p=2{. We have

l

Vertieal com-
ponent of the | Inclination

i Values | Strains on

No. of the brace, or strain on the of the of  |the »th brace,’
nih brace, or braces, ' ‘
n== ¥, cos 0;eq.(15) or o, eq. (14) cos 8. [orF,eq.(15),
| [ |
! |
lorT;o0rgb P 4848/ 20'6587 0-6641 p
or 6; orblorfd 13p 33°41" |0-8321|0-9018 p
3 or 5; orc2or ed 1ip 28° 4 10-8824 1 1-0624 p
4 ; or dd 1p 26°34/ fO 8944 11-1182 p

Although the braces which we have considered, at the rear end of
he load incline towards the load, yet they must incline both ways as
n the figure to completely brace "the truss. For this partial load, the

vertical strain on al, is the same as on 01; and if the load extends
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from 3 to A, the vertical forces on ¢2 and 52 are equal. Similarly for
the other pairs ; hence, observing the numbers in the second column
of the preceding table, and we have for the actual strains on the ver-
tical ties taken in their order from either end, when the load extends
from the tie to the other end: 1%'p, 15 p, p, 13D, 12 p, 1% P-

Now suppose there are ties instead of braces, in the panels. Mak-
ing the section at & and it will cut the acting bars ¢b, 3, and 8 2.
When it is loaded from 3 to 4, ¢2 will not act.

l

tango = -——, . . (16)
D-y
and 1 . (D-y"y=v(n-1)!
Cop¥eDI_ v

D
Y= a(3-2n+2)

Vv is given in (12) and tang ¢ in (13a); these substituted in (4) give

12D 4 )
F, C0S 6 = VD _27/ ‘4D
n—1 N—-n--1) (n-1) -
—L o L m
This formula also fails, for » = N, because, in making the final re-
duction, we dropped a factor, E—:—%, which for n=N becomes g , but it

should == 0. It is true for all the other ties.

If in (17) we write n -1 for #, we will have (N—n)n, which is the
same as (15); hence, the vertical component of the strain on a brace,
when braces are used, is the same as on the tie in the next panel,
when ties are used; and as the inclinations, ¢2 and ¢4, for instance,
are the same, the actual strains will be the same. Hence, referring to
the preceding table, we have ;% p for the vertical strain on the second
tie (or a2); 12 p on the third tie (or 53), &e.

The general principles of the methods here used are applicable to
those cases in which the bays of the lower chord are not equal; but in
such cases we cannot obtain as symmetrical expressions as those here
found.

Railroad Cuttings and Embankments.—Side Depths and Side

Stakes. By OLIVER Byryg, C.E.
From the Lond. Civ, Eng. and Arch. Jour., Feb., 1864,
(Continued from page 152)

In an embankment (Fig. 7), given the breadth of the roadway

AB =32 feet; the height cF=18 feet; the side slopes as 1 to
(Br:1Ip::1: 3); the fall of the surface F to M=1 in 26}

(PN : NM: 26} : 1); the rise of the surface from ¥ to K to be
Vor. XLVIIL.—THirDp SEr1ks.—No. 4.—APrIL, 1864. 20



